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We propose a new simulation-based estimation method, adversarial estimation, for
structural models. The estimator is formulated as the solution to a minimax prob-
lem between a generator (which generates simulated observations using the structural
model) and a discriminator (which classifies whether an observation is simulated). The
discriminator maximizes the accuracy of its classification while the generator minimizes
it. We show that, with a sufficiently rich discriminator, the adversarial estimator at-
tains parametric efficiency under correct specification and the parametric rate under
misspecification. We advocate the use of a neural network as a discriminator that can
exploit adaptivity properties and attain fast rates of convergence.

KEYWORDS: Structural estimation, generative adversarial networks, neural net-
works, simulation-based estimation, efficient estimation.

1. INTRODUCTION

STRUCTURAL ESTIMATION is a useful approach to learn about the effects of policies that
are yet to be implemented. Structural models are naturally articulated as parametric mod-
els, and as such, may be estimated using maximum likelihood (MLE). However, likelihood
functions are sometimes too complex to evaluate or may not exist in closed form. This has
motivated large literature on simulation-based estimation methods.

A prominent example of such methods is the simulated method of moments (SMM)
(McFadden (1989), Pakes and Pollard (1989)). If we want identification and estimation of
the parameters to rely on specific features, SMM is a natural tool as long as such features
can be expressed as moments. At the same time, the naive strategy of stacking many
moments is known to yield poor finite sample properties (Altonji and Segal (1996)). This
tradeoff is especially pronounced in models with rich heterogeneity, where the number
of moments may grow rapidly with the number of covariates. While this problem may be
resolved if we can reduce the moments to a handful of informative ones, such a choice is
often not obvious.
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This paper proposes a new simulation-based estimation method, which we call adver-
sarial estimation. It is inspired by the generative adversarial networks (GAN), a machine
learning algorithm developed by Goodfellow et al. (2014) to generate realistic images.
We adopt their adversarial framework to estimate the structural parameters that gen-
erate realistic economic data. The proposed estimator achieves efficiency under correct
specification and the parametric rate under misspecification. Thus, our method is useful
in applications where the likelihood is not computable but simulation is feasible and it
can be a more efficient alternative to SMM.

The generative adversarial estimation framework is a minimax game between two
components—the discriminator and the generator—over classification accuracy:

min
{generator}

max
{discriminator}

classification accuracy�

The generator is an algorithm that produces the simulated data; its objective is to find a
data-generating process that confuses the discriminator. The discriminator is a classifica-
tion algorithm that distinguishes the observed data from the simulated data; it takes an
observation as input and classifies it as coming from either observed data or simulated
data; its objective is to maximize the accuracy of its classification.

In the original GAN, both the discriminator and the generator are given as neural net-
works (hence the name). In this paper, we take the generator to be the structural model
we intend to estimate and the discriminator to be an arbitrary classification algorithm
(while our primary choice is a neural network). To quantify classification accuracy, we
employ the cross-entropy loss, following Goodfellow et al. (2014).1

Interestingly, our framework establishes a bridge between SMM and MLE. When
we use a logistic discriminator with inputs equal to moments, the resulting estimator is
asymptotically equivalent to optimally-weighted SMM (Kaji, Manresa, and Pouliot (2023,
Section S.1)). When we use the oracle discriminator, the resulting estimator is equiva-
lent to MLE when the simulation sample size increases faster than the actual sample size,
since our classification accuracy is a symmetrized Kullback–Leibler divergence. Of par-
ticular interest is the middle case, in which the oracle discriminator is not available but a
sufficiently rich discriminator capable of approximating it is used. Under some conditions,
the resulting estimator enjoys the desirable properties of both SMM and MLE: the user
has the flexibility to choose moments if desired, a closed-form likelihood is not required,
and the asymptotic efficiency is attained.

We illustrate the theoretical properties of our estimator in simulations using simple
models. We show that the curvature of the classification accuracy is comparable to that
of the log likelihood function for a suitable choice of discriminator. In addition, we show
that the estimator can achieve the parametric rate under misspecification and has smaller
bias compared to SMM. We also showcase the implementation of the method using the
Roy model with two occupations over two time periods.

Our method contributes to the vast literature of simulation-based estimation. The first
application of GAN to economics is due to Athey et al. (2021), who apply GAN to produce
a realistic sampler of economic data for Monte Carlo studies. In contrast, in our paper
the generative model is identified and we aim to estimate its parameters. In computer

1There are also other losses considered in the literature. In machine learning, they concern high-
dimensional data such as images, sounds, and texts, and the Wasserstein distance has gained huge popularity
for its ability to measure the distance of disjoint probability distributions. It is also used in economic applica-
tions (Athey, Imbens, Metzger, and Munro (2021)).
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science, the literature on GAN is rapidly growing; for a recent review see, for example,
Cheng, Yang, Tang, Xiong, Zhang, and Lei (2020) or Asimopoulos, Nitsiou, Lazaridis,
and Fragulis (2022).

The rest is organized as follows. Section 2 defines the setup. Section 3 illustrates the
estimator with simple examples. Section 4 develops the asymptotic properties.

2. ADVERSARIAL ESTIMATION FRAMEWORK

The adversarial estimation has two main components: simulation and discrimination.
The simulation component is the same as other simulation-based estimation methods,
such as SMM or indirect inference, but the discriminator component is new. The essence
of the adversarial framework is to find a parameter value for which the corresponding
simulated data is indistinguishable from the real data according to the discriminator. We
now describe each component in turn.

Suppose we have data {Xi}ni=1 drawn i.i.d. from an unknown distribution P0. Suppose
we have a fully parametric model {Pθ : θ ∈ �} for which the likelihood is not tractable but
simulation is feasible.2 Our target is the parameter θ that best describes the distribution
of the data P0 through the model Pθ.

We formalize the simulation process as follows: for a given θ and a given sample size m,
we obtain a sample of simulated observations, {Xi�θ}mi=1, according to model Pθ by taking
draws {Zi}mi=1 from a known distribution PZ and applying a transformation Tθ to them,
Xi�θ = Tθ(Zi). Typically, Zi is a vector of independent uniform random variables and Xi�θ

is generated by inverse transform sampling, that is, Xi�θ = F−1
θ (Zi). For models with in-

tractable likelihood, Tθ may further involve optimization or integration. For illustration,
take the example of a normal location model with known variance 1 and unknown mean θ,
that is, Pθ = N(θ�1). Then we can generate a simulated observation Xi�θ from Pθ through
Xi�θ = θ+�−1(Zi), where � is the standard normal cdf and Zi ∼ U[0�1].

We now turn to the discriminator. The discriminator is the novelty in the estimation
framework and is the key component in the construction of the objective function for the
adversarial estimator. For some θ and x, consider the problem of assessing whether x is
from Pθ or P0. If Pθ is very different from P0, it should be easy to distinguish realizations
of Pθ from those of P0. If they are close, it should be harder. The idea, therefore, is to
pick a classification algorithm that takes a value x and predicts which distribution it came
from, and to search for the value of θ for which the algorithm is least able to classify the
data correctly.

If we had access to the probability density functions corresponding to P0 and Pθ, it
would be easy to assign the provenance of x according to the likelihood of x for each
distribution. This suggests an estimation strategy based on the search of θ for which the
probability that any draw Xi�θ is drawn from P0 versus Pθ is 0�5. Since we do not have
access to the probability distributions, this strategy is infeasible. However, we can take
advantage of the availability of samples {Xi}ni=1 and {Xi�θ}mi=1 to estimate the extent to
which, for a given θ, these two distributions are different. In particular, we use the predic-
tions of a discrete choice model (called the discriminator), where the dependent variable
is 1 if the data is real and 0 if it is simulated, and the explanatory variables are Xi if the
data is real, and Xi�θ if it is simulated. When θ is a poor candidate to describe the observed
data, the predictions will be either close to 1 or close to 0. However, as θ becomes a bet-
ter candidate to describe the real data, the distribution of the prediction will concentrate
around 1/2.

2This is the case for many structural models in economics involving dynamic decision-making.
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Formally, classification is defined as a function D :X → [0�1] such that D(x) represents
the likelihood of x being an actual observation; D(x) = 1 means that x is classified as
“actual” with certainty; D(x) = 0 that x is classified as “simulated” with certainty. Denote
by Dn the class of classification functions we consider. The dependence on n allows us to
use a richer classification algorithm as the sample size gets larger. The choice of Dn is an
important one for the researcher as it impacts the properties of the estimator. While any
class of binary choice models would work, certain choices will have attractive properties,
as we discuss below.

The adversarial estimator is defined by the following minimax problem:3

θ̂ = arg min
θ∈�

max
D∈Dn

1
n

n∑
i=1

logD(Xi) + 1
m

m∑
i=1

log
(
1 −D(Xi�θ)

)
�

Since D is between 0 and 1, both logD and log(1 −D) are nonpositive. If {Xi} and {Xi�θ}
are very different from each other, the discriminator may be able to find D that assigns 1
on the support of {Xi} and 0 on the support of {Xi�θ}, in which case the inner maximization
attains the value of zero. Meanwhile, regardless of the values of {Xi} and {Xi�θ}, the dis-
criminator can always attain the classification accuracy of 2 log(1/2) by setting D ≡ 1/2.4
In general, therefore, the inner maximization will give a number between 2 log(1/2) and
0, and the closer it is to 2 log(1/2), the less able the discriminator is to classify the obser-
vations.

When we let n and m grow, we obtain the population counterpart of the problem

min
θ∈�

max
D∈Dn

EXi∼P0

[
logD(Xi)

]+EXi�θ∼Pθ

[
log
(
1 −D(Xi�θ)

)]
�

If there is no restriction on Dn (so any function D : X → [0�1] is allowed), the optimum
classifier for the population inner maximization is known to be

Dθ(x) := p0(x)
p0(x) +pθ(x)

�

where p0 and pθ are the densities of P0 and Pθ with respect to some common dominating
measure (Goodfellow et al. (2014, Proposition 1)).5 We call this Dθ the oracle discrimina-
tor. If the model is correctly specified, then θ0 is the unique solution to the outer minimiza-
tion (Goodfellow et al. (2014, Theorem 1)). In the normal location model, if we assume
P0 =N(0�1), the oracle discriminator is given by Dθ(x) =�( 1

2θ
2 −θx) =�(−θ(x− 1

2θ)).
Since � is a standard logistic cdf, �(0) = 1/2, limt→∞ �(t) → 1, and limt→−∞ �(t) → 0.
Therefore, if θ < 0, positive deviation of x from θ/2 is classified as more likely an actual
observation, and negative deviation as less likely; if θ = 0, whatever value of x has an
equal chance of being actual.

Certain choices of Dn make for interesting special cases. First, if we use the oracle dis-
criminator Dθ, the resulting estimator for θ becomes efficient under correct specification
and m � n. In the normal location model, we see that as m → ∞, the oracle estimator

3Minimization and maximization need not be solved exactly (Assumptions S.2 and 3).
4This is of course provided that a constant function 1/2 is in Dn, which is usually the case.
5Note that Dθ does not depend on the relative sizes of n and m, since we take the averages, not the sums,

of classification accuracy.
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solves

θ̂ = arg min
θ∈�

1
n

n∑
i=1

log�
(

1
2
θ2 − θXi

)
+Eθ

[
log
(

1 −�

(
1
2
θ2 − θXi�θ

))]
�

The FOC combined with the first-order Taylor expansion of � around 0 yields

0 = 1
n

n∑
i=1

(θ−Xi)
[

1 −�

(
θ2

2
−θXi

)]
−Eθ

[
(θ−Xi�θ)�

(
θ2

2
−θXi�θ

)]
≈ 1

2n

n∑
i=1

(θ−Xi)�

Therefore, θ̂ is approximately the sample average, which is the MLE.
Second, if we use the logistic discriminator and n = m, the cross-entropy loss can be

interpreted as the (scaled) log likelihood of the logistic regression where the actual ob-
servations are labeled 1 and the simulated ones are labeled 0.6 The resulting estimator
for θ is then asymptotically equivalent to the optimally-weighted SMM with moments
E[Xi] under m � n (Section S.1). In practice, we may use a sieve of discriminators that
can represent oracle Dθ asymptotically, for example, the sieve of neural networks or the
sieve of logistic discriminators with an increasing number of polynomials of X . In fact,
we can regard Dθ as the nuisance parameter estimated in the inner maximization. Sec-
tion 4 presents conditions under which the estimation of Dθ via nonparametric estimation
makes the adversarial estimator efficient.

The asymptotic distribution of the adversarial estimator depends on the choice of Dn. If
the discriminator is logistic, the asymptotic variance of the adversarial estimator coincides
with SMM (Section S.1). If Dn is a nonparametric discriminator, under some conditions,
the asymptotic variance will be a function of the score and Hessian of the likelihood (The-
orem 3 and Assumption 6). When the likelihood is intractable, estimating this asymptotic
variance formula is not an easy task; we recommend using bootstrap in which we resam-
ple both {Xi}ni=1 and {Zi}mi=1 with replacement. We note, however, that, while well corrob-
orated by simulation exercises, the validity of bootstrap is not theoretically established in
this paper.

The estimation algorithm when Dn is a class of neural networks and the transforma-
tion Tθ(·) is differentiable in θ is given in Algorithm 1. The algorithm is based on an
iterative strategy in which (1) given a particular value θ, we train the discriminator to
completion using {Xi}ni=1 and {Xi�θ}mi=1, and (2) we update the value of θ according to the
direction of the gradient of the objective function taking as fixed the predictions of the
discriminator obtained in the previous step. Training the discriminator till completion,
while computationally costly, provides a much more reliable strategy to compute the esti-
mator, as opposed to only training the discriminator for a few steps for each update in θ.
The algorithm is initialized with a random value of θ and with m independent draws from
the distribution PZ . Essential is the fact that we use the same shocks {Zi}mi=1 to generate
{Xi�θ}mi=1 across different θ.7

To train the discriminator, we use the Adam algorithm (Kingma and Ba (2015)), which
combines the estimate of the current gradient with previous estimates of the gradient and

6When n 	=m, the binary cross-entropy loss weights the two sets of observations differently.
7Importance of using the same shocks is widely known in the literature. For example, Nevo (2000, Appendix)

states that “it is important to draw these only once at the beginning of the computation. If the draws are
changed during the computation the nonlinear search is unlikely to converge.”.
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Algorithm 1 Algorithm for adversarial estimation with a neural network discriminator.
The discriminator is trained to completion for every update of the generator. We use
Adam stochastic gradient descent with minibatch for the discriminator, and gradient de-
scent with adaptive learning for the generator.

Input: – {Xi}ni=1, actual data – PZ , distribution of shocks
– m, simulation sample size – Tθ, structural transformation
– Dn, discriminator, for example, one hidden layer ten nodes NN

Tuning Adam: – mb, minibatch size, assumed wlog to be a factor of n+m
– lDr , β1, β2, ε, parameters for Adam hypergradient descent
– nepochs, number of iterations across the entire data set

Tuning GD: – lθr�(0), initial learning rate vector for gradient descent
– lf , lb, parameters to increase or decrease the learning rate

Output: – Estimate θ̂


 Initialization
1: Sample Zi ∼ PZ for i = 1� � � � �m 
 Shocks are drawn only once here
2: k← 0 
 Initialize the gradient descent counter
3: θk ← initial value


 Main loop for gradient descent
4: while θk has not converged do
5: Xi�θk ← Tθk (Zi) for i = 1� � � � �m 
 Generate the simulated data for θk


 Train the discriminator till completion.
6: Dk ← initial network
7: d ← 1 
 Initialize the epoch counter
8: while out-of-sample classification improves and d ≤ nepochs do
9: for all b in 1 : n+m

mb
do 
 b indexes the minibatches

10: ({Xb
i }

mb
i=1�{X

b
i�θk

}mb
i=1) ∼ ({Xi}�{Xi�θk}) 
 Sample minibatch from data


 Compute the gradient with respect to the parameters in D

11: δD
k (b) ← ∇D

1
mb

∑mb

i=1 logDk(Xb
i ) + 1

mb

∑mb

i=1 log(1 −Dk(Xb
i�θk

))
12: Dk ← Adam(δD

k (b)�Dk� l
D
r �β1�β2) 
 Update the discriminator

13: end for
14: d ← d + 1
15: end while


 Compute the gradient with respect to θ, keeping the discriminator fixed
16: δθ

k ← ∇θ
1
m

∑m

i=1 log(1 −Dk(Xi�θk))
17: lθr�k+1 ← update(lθr�k� δ

θ
k� δ

θ
k−1� l

f � lb) 
 Update the learning rate
18: θk+1 ← θk − lθr�k+1δ

θ
k 
 Update θ by gradient descent

19: k ← k+ 1 
 Update the iteration counter
20: end while
21: return θ(k)

information about the second moment.8 We use a version in which the gradient is stochas-
tic, evaluated only at a small subsample of the data (minibatch, mb), and we update the
predictions of the discriminator by looping through all minibatches in the data set, and

8There are four tuning parameters in Adam: the learning rate lDr , the exponential decay of the first moment
β1, and the exponential decay of the second moment β2, and ε, a small number to avoid dividing by zero.
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through many iterations across the entire data set. The number of iterations across the
data set is called the number of epochs, and we typically set it on the order of thousands.9

To train the generator, we use standard gradient descent with a simple adaptive learning
rate rule that combines information on the sign of each of components of the current
and the previous gradient. For each component, when the sign of the previous gradient
and the current gradient coincide, the learning rate of such component increases by a
constant factor of lf > 1. On the other hand, if the signs are opposite, the learning rate
decreases by a factor of 0 < lb < 1. This strategy, in our experience, significantly speeds
up convergence and helps escape areas of the parameter space where the gradient is flat
due to the distributions of Xi and Xi�θ being too far apart.

Finally, the algorithm converges when two criteria are met: changes in θ are small, and
the loss function is bounded away from zero.

3. ILLUSTRATION WITH SIMPLE EXAMPLES

We illustrate properties of our estimator using simple examples. The first example we
consider is a logistic location model in which the mean is unknown and the variance
is known. We illustrate three points using this example: (1) the adversarial estimator
achieves parametric efficiency under correct specification; (2) the adversarial estimator
is asymptotically normal under model misspecification; (3) the adversarial estimator is
less sensitive to the curse of dimensionality than SMM. Next, we consider a Roy model
with two occupations over two time periods. This example illustrates the whole procedure
of estimation and inference in a case when the likelihood is intractable.

We write Lθ := − 1
2n

∑n

i=1 logpθ(Xi) for minus half the log likelihood and Mθ(D) :=
1
n

∑n

i=1 logD(Xi) + 1
m

∑m

i=1 log(1 −D(Xi�θ)) for the sample objective function.

3.1. Logistic Location Model

3.1.1. Efficiency

Suppose we have n i.i.d. observations X1� � � � �Xn from the standard logistic distribution
with pdf p0(x) = �(x)(1 − �(x)). Our structural model is the logistic distribution with
unit scaling, that is, pθ(x) = �(x − θ)(1 − �(x − θ)). The oracle discriminator is given
by Dθ(x) = �(−θ − 2 log(1 + e−x) + 2 log(1 + e−(x−θ))). The synthetic data is generated
as Xi�θ = Tθ(Zi) := θ+Zi where Zi follows the standard logistic distribution. We set n =
m = 300 and run 500 replications.

To yield a discriminator capable of representing the oracle, we consider D(x;λ) =
�(λ0 −2 log(1+e−x)+2 log(1+e−x+λ1)) parameterized by λ ∈R

2. This class of discrimina-
tor is “correctly specified” in that the oracle discriminator is a special case, λθ := (−θ�θ)�;
thus, it allows us to ignore the approximation error for Dθ and focus on aspects conducive
to efficiency. Nevertheless, we also present results with a nonparametric estimator, a shal-
low neural network, at the end of this section.

An intuition behind efficiency is that the curvature of Mθ(D̂θ) at θ0 is proportional
to the Fisher information. Figure 1a illustrates this point. First, the curvature of Lθ is
a quarter of the Fisher information, and so is the curvature of the oracle loss Mθ(Dθ)

9Call back options, in which the optimization procedure stops after the loss function does not improve
significantly for a few iterations, can be helpful to cut computation time. In addition, dropout is also useful, in
our experience, for regularization.
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FIGURE 1.—The logistic location model. The curvature of oracle and estimated cross-entropy losses
matches the log likelihood (a). This makes the adversarial estimator comparable with MLE (c) and as good
as the oracle estimator (b). The standard errors (se) are multiplied by

√
n. The vertical dots indicate the true

parameter θ0.

(Lemma S.3). Second, the estimated loss Mθ(D̂θ) traces Mθ(Dθ) very well. As a result,
the curvature of Mθ(D̂θ) becomes a quarter of the Fisher. This is somewhat surprising
since D̂θ is estimated separately for each θ (Algorithm 1, line 8); the plot of Mθ(D̂θ)
could have been zigzag if maximization was noisy each time.

An important practice that effects a “smooth” Mθ(D̂θ) is to use a deterministic algo-
rithm for the inner maximization. Here, we use Matlab’s fminsearch for maximization,
which employs a deterministic algorithm. However, if some stochastic optimization is to
be used, we advise that the random seed be reset to the same value each time maximiza-
tion is carried out. For a logistic discriminator with differentiable Tθ, Section 4.2.1 shows
that the estimated loss Mθ(D̂θ) will be smooth in θ if {Zi} is fixed and the exact maximum
is attained at the inner step for each θ.

With the curvature of Mθ(D̂θ) matching Mθ(Dθ), the asymptotic variance of the ad-
versarial estimator is 1 + n/m times the inverse Fisher (Corollary 4, Section 4.3). In this
example, the theoretical asymptotic standard deviation of MLE is 1.73 while that of the
adversarial estimator is 2.45, which are closely reproduced in Figures 1b and 1c.10

Similar results hold when m is increased (figures omitted); the curvatures of Mθ(Dθ)
and Mθ(D̂θ) match closely with that of Lθ, and the adversarial estimator gets closer to
the MLE. For example, when m = 3�000 (so m = 10n), the simulation standard error of
the adversarial estimator decreases to 1.82 (which is almost identical to the theoretical
asymptotic standard error of 1.82).

To see how a nonparametric discriminator fares, we also try a shallow neural network
discriminator. The input is a one-dimensional observation X; there are three nodes in
one hidden layer with a hyperbolic tangent activation function; the output is a sigmoid
function. The neural network discriminator is trained for each θ using Matlab’s train
function, which is deterministic. Figure 2a shows that the estimated loss Mθ(D̂θ) still gives
a good approximation to Mθ(Dθ). It is notable that as we increase m, the level of Mθ(D̂θ)
departs from that of Mθ(Dθ), but the curvature is still correctly estimated (Figure 2b). If
we adjust the level, it becomes clear that the curvature matches that of the log likelihood
(Figure 2c). According to our theory, the quality of the adversarial estimator hinges on

10All theoretical asymptotic standard deviations of the adversarial estimators in Section 3 are calculated
with a general version of Theorem 3 that allows limn→∞ n/m> 0 (Kaji, Manresa, and Pouliot (2022, Theorem
3)).
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FIGURE 2.—Use of a neural network discriminator on the logistic location model.

the curvature of Mθ(D̂θ)—but not on the level of Mθ(D̂θ)—being close to that of Mθ(Dθ).
Thus, the resulting estimator is very close to the oracle (figures omitted).

We also examine whether bootstrap works for the adversarial estimator. The bootstrap
consists of 500 replications where both {Xi}ni=1 and {Zi}mi=1 are resampled with replace-
ment, but where we hold fixed the specification of the discriminator. The bootstrap stan-
dard error is 2�28 for the logistic discriminator and 2�55 for the neural network discrimi-
nator, both of which are close to the theoretical limit 2�45.

3.1.2. Normality Under Misspecification

We now explore how the adversarial estimator behaves under misspecification. Sup-
pose we misspecify the model to be a normal location family with unit variance, pθ(x) =

1√
2π

exp(− (x−θ)2

2 ), while the true distribution is still the standard logistic distribution with
variance π2/3 ≈ 3�3. The oracle discriminator is Dθ(x) = �(log

√
2π − x + 1

2 (x − θ)2 −
2 log(1+e−x)). Here, we use the correctly specified discriminator D(x;λ) = �(λ0 +λ1x+
λ2x

2 + λ3 log(1 + e−x)) parameterized by λ ∈ R
4.

Figure 3a shows that the curvature of Lθ is much steeper than Mθ(Dθ) due to misspecifi-
cation (particularly to misspecification of variance). However, the estimated loss Mθ(D̂θ)
still estimates the curvature of the oracle loss correctly. Figure 3b shows that the oracle
adversarial estimator is approximately normal and comparable with quasi-MLE. A slight
inflation of the variance is due to the fact that the adversarial estimator uses the synthetic
data and gets affected by their randomness while quasi-MLE does not. Figure 3c shows
that the adversarial estimator is very close to the oracle one. The theoretical asymptotic
standard deviation of the adversarial estimator is 2.27 while of quasi-MLE is 1.81. The

FIGURE 3.—The normally-misspecified logistic location model. The adversarial estimator is comparable
with quasi-MLE.
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results for the increased synthetic sample size m and for the neural network discriminator
are analogous to Section 3.1.1, and hence omitted for space.

3.1.3. Comparison With SMM

Finally, we compare the adversarial estimator with SMM. As discussed, the adversarial
estimator with a logistic discriminator is asymptotically equivalent to SMM. However,
it is known that stacking up many moments yields poor finite-sample performance of
SMM. To compare our estimator in this regard, the logistic location model is a particularly
interesting one. Unlike the normal distribution, the sample average is not a sufficient
statistic for the mean of a logistic distribution. Indeed, the collection of order statistics
is known to be a minimal sufficient statistic. Technically speaking, therefore, the higher-
order moments E[X2

i ], E[X3
i ], � � � do contribute to identifying the mean. This motivates

the following exercise.
For SMM, we consider matching (1) three moments E[Xi], E[X2

i ], E[X3
i ], (2) seven mo-

ments E[Xi]� � � � �E[X7
i ], and (3) eleven moments E[Xi]� � � � �E[X11

i ]. Since the optimally-
weighted SMM beats the unweighted SMM in all cases in our simulation, we only present
the optimally-weighted SMM for comparison; the weights are estimated with the actual
sample. For the adversarial estimator, we use the same set of moments as the inputs
to the discriminator. In particular, the discriminator is the logistic classifier of the form
D(x;λ) =�(λ0 +λ1x+· · ·+λdx

d) for d = 3�7�11 parameterized by λ ∈ R
1+d . In contrast

to the one in Section 3.1.1, this discriminator is “misspecified” but is good enough to yield
a reasonable estimator for θ. As discussed in Section S.1, the optimally-weighted SMM
is asymptotically equivalent to the adversarial estimator with this choice of discrimina-
tor. However, their finite-sample properties are subject to debate. For this exercise, we
decrease the sample sizes to n =m = 200 to emphasize the finite-sample performance.

Figure 4 shows the plots of the cross-entropy loss and the log likelihood for varying
numbers of inputs. It is noteworthy that the curvature of the estimated loss Mθ(D̂θ) is
very close to the oracle one up to seven moments. We see nonnegligible deviation of the
curvature for eleven moments but, as we see below, it is still sharp enough to yield a much
better estimator than SMM.

The first row of Figure 5 shows the histogram of the optimally-weighted SMM. The
horizontal scales of the figures are adjusted to match the distribution of SMM; MLE is
the same for all figures and serves as the reference point. We see that the precision of
SMM deteriorates quickly as the number of moments increases. For eleven moments, the
standard error is eight times as large as MLE. The second row of Figure 5 presents the
adversarial estimator. Even for seven inputs, the adversarial estimator is as tight as the
MLE, and for eleven moments, it is still comparable (three-times larger standard error).

FIGURE 4.—The logistic location model with increasing numbers of inputs. The curvature of the cross-en-
tropy loss is very close to the log likelihood up to 7 moments and is still good for 11 moments.
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FIGURE 5.—The logistic location model with increasing numbers of inputs. Precision of the optimal-
ly-weighted SMM rapidly deteriorates as the number of moments increases. The adversarial estimator is much
less sensitive. The standard errors (se) are multiplied by

√
n.

This shows that the adversarial estimator is less sensitive to the number of moments than
is SMM. This can be an advantage especially when we do not know which moments to
match.

We also note that since the moments are highly correlated, the estimation of the dis-
criminator gives warnings of multicollinearity, but it does not impair the quality of the
subsequent estimator θ̂. This is insightful for a more general neural network discrimina-
tor since neural network weights are not identified uniquely. This observation is in line
with our theory, which depends on the quality of the estimator D̂θ for Dθ but not on the
quality of the estimator λ̂θ for λθ.

The improvement of our method relative to SMM is analogous to the improvement of
empirical likelihood relative to GMM (Imbens (2002)). SMM, like GMM, suffers from
substantial bias when the number of moments is large; our method, like empirical like-
lihood, has better finite-sample and large-sample properties at the expense of computa-
tional cost. The idea of both comes from treating the nuisance component as a kind of a
nonparametric maximum likelihood problem. Meanwhile, both SMM and GMM retain
the advantage of simplicity to easily accommodate time-series settings.

3.2. The Roy Model

We consider the following model of self-selection, for which the likelihood is not
tractable under some configurations of the parameter values. Suppose there are two sec-
tors and two periods. In each period, an agent chooses the sector to work in to maximize
her present and discounted future expected wages. The wage wi1s for agent i in period 1
in sector s is determined by logwi1s = μs + εi1s, and the wage wi2s for agent i in period 2
in sector s by logwi2s = μs + γs1{di1 = s} + εi2s where di1 is the sector choice of agent i
in period 1. The parameter μs represents the base wage in sector s and γs the returns to
experience in sector s. The error terms are observable to the agent in respective periods
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(so she observes εi1• in period 1 and εi2• in period 2) and are distributed as

⎡
⎢⎣
εi11

εi12

εi21

εi22

⎤
⎥⎦∼ N

⎛
⎜⎜⎝
⎡
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0
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Observable to us is the quartet Xi = (logwi1� di1� logwi2� di2) of realized log wages and
sector choices in both periods. They are functions of above variables by wi1 =wi1di1 , di1 =
arg maxs∈{1�2}wi1s +βE[wi2 | di1 = s], wi2 = wi2di2 , and di2 = arg maxs∈{1�2}wi2s where β is the
discount factor. We fix β = 0�9, so β is not a free parameter.

3.2.1. Comparison With MLE

As a first exercise, we show that the adversarial estimator has a computational ad-
vantage over MLE. To this end, we fix ρt = 0 to have a tractable likelihood. Thus,
the parameter of interest is θ = (μ1�μ2�γ1�γ2�σ1�σ2�ρs). The true value is θ0 =
(1�8�2�0�5�0�1�1�0�5). We set the sample sizes at n= m= 300.

Although the likelihood is available, the correct functional form of Dθ is not easy to de-
rive. Therefore, we skip the correctly specified discriminator and use the neural network
discriminator for the feasible adversarial estimator. The neural network has one hidden
layer with ten nodes with a hyperbolic tangent activation function. The input is Xi without
transformation. The output layer uses a sigmoid function.

Note that if wi11 + βE[wi2 | di1 = 1] < βE[wi2 | di1 = 2], there is no way that agent i
chooses sector 1 in period 1. Therefore, if we see a pair (wi1� di1) = (wi11�1) that satisfies
this inequality for a particular θ, this observation is not supported by Pθ. This is indeed a
common phenomenon. Figure 6 plots the loss and the log likelihood against each param-
eter, holding all other parameters to the truth. The range of the figures reflects the range
of MLE and the adversarial estimator. In this “relevant” region, we see that Lθ sometimes
breaks off; this is because the discontinued part does not support the real data so Lθ is
infinity.

FIGURE 6.—The loss for the Roy model. In the region where Lθ is not plotted, the real data X is not
supported on the corresponding model Pθ, so Lθ = ∞. The figure for ρs is omitted.
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Aside from possible inefficiency, this is not a problem for MLE insofar as the likelihood
maximizer can be found. However, there may be difficulties when the initial value of θ
does not support the real data. In fact, if we do not pick the initial value carefully, Matlab’s
fminsearch wanders around the unsupported region and returns a meaningless value
after the iteration limit is reached. Meanwhile, Figure 6 indicates that such a problem
does not occur for the cross-entropy loss; indeed, Mθ(Dθ) extends a nice curve throughout
the “unsupported” region. The key is in the robustness of the sample Jensen–Shannon
divergence,

1
2
Mθ(Dθ) = 1

2n

n∑
i=1

log
p0(Xi)

p0(Xi) +pθ(Xi)
+ 1

2m

m∑
i=1

log
pθ(Xi�θ)

p0(Xi�θ) +pθ(Xi�θ)
�

When a single observation Xi is not on the support of pθ, the corresponding fraction
is 1, which does not ruin the sum so we can still calculate a meaningful distance using
remaining observations; hence the curve continues. Moreover, even if the entire sample
{Xi} goes outside the support, the divergence still works as long as (some of) the synthetic
data are on the support of p0 and the second sum is informative. It is only when both
the entire real sample {Xi} and the synthetic sample {Xi�θ} are outside the supports of
pθ and p0, respectively, that the Jensen–Shannon divergence gets fixated at 0 and loses
guidance on θ0.11 This is the intuition for why the adversarial estimator does not suffer
from the support issue in the Roy model. We can also see this as a virtue of estimating the
likelihood ratio as opposed to the raw likelihood.

However, the cross-entropy loss breaks down when the distributions become com-
pletely disjoint, which can often be an issue in high-dimensional data such as images. As
the Wasserstein distance is known to be capable of handling these distributions, the GAN
literature in computer science has mostly moved to the Wasserstein loss. Importantly, the
results of this paper do not cover the Wasserstein loss. For the use of Wasserstein GAN
in economics, we refer the reader to Athey et al. (2021).

Figure 6 also illustrates that, despite having discrete observables (sector choices), the
objective function is smooth thanks to continuous observables (wages), so there is no need
for smoothing even when we employ gradient-based methods. The resulting estimators
are comparable with MLE just as in the previous examples (Figure 7).

3.2.2. Case With Intractable Likelihood

Now, we illustrate the whole procedure of estimation and inference using the Roy
model with intractable likelihood. Let us consider the same model as in Section 3.2.1
but without assuming ρt = 0, so the parameter is θ = (μ1�μ2�γ1�γ2�σ1�σ2�ρt�ρs). The
true values are the same as before. We first preestimate the model with a logistic dis-
criminator and then estimate it with a neural network discriminator using the logistic
estimator as the initial value. Since it is natural to speculate that identification comes
from the moments of the log wages, we consider the logistic discriminator of the form
D(logw1� d1� logw2� d2;λ) = �(λ0 + λ1 logw1 + λ2d1 + λ3 logw2 + λ4d2 + λ5(logw1)2 +
λ6(logw2)2 + λ7 logw1 logw2).

As the curvature of the logistic loss is quite sharp, we may in practice stop here and go
with the logistic estimator. For illustration, we move on to the neural network discrimina-

11If the supports of p0 and {pθ} are fully disjoint, the Jensen–Shannon projection θ0 is not defined.
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FIGURE 7.—The oracle adversarial estimator and the adversarial estimator for the Roy model with ρt = 0.
Figures for other parameters are omitted.

tor with the same configuration as in Section 3.2.1. The loss is plotted as the solid line in
Figure 8. The vertical solid lines indicate the neural network estimator.12

Next, we use bootstrap to compute the standard errors. We resample both the actual
data {Xi}ni=1 and the simulation shocks {Zi}mi=1 with replacement, preestimate the model
with the logistic discriminator, and then estimate the model with the neural network dis-
criminator. Figure 9 shows the bootstrap samples of the logistic estimator (hatched) and
the neural network estimator (filled). We see that the neural network estimator is compa-
rable to the logistic estimator. Note that the neural network discriminator takes as inputs
the raw quartet but not the higher-order moments fed into the logistic discriminator.

FIGURE 8.—The logistic loss is smooth and corroborates orthogonality. The neural network loss also indi-
cates orthogonality, albeit a bit rough.

12Note that the global minimizer is not the same as the local minimizers of the figures since the other
parameters are fixed at the logistic estimator.
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FIGURE 9.—The bootstrap samples and bootstrap standard errors (multiplied by
√
n).

Thus, the neural network with one hidden layer of ten nodes “figures out” the correct
moments to match and produces an estimator comparable with the logistic discriminator
whose inputs are deliberately chosen.

Table I presents the estimates and the standard errors (not multiplied by
√
n). Along

with the adversarial estimator, we present the results of SMM. SMM matches the same
seven moments as the inputs to the logistic discriminator, namely E[logwi1], E[di1],
E[logwi2], E[di2], E[(logwi1)2], E[(logwi2)2], and E[logwi1 logwi2]. The optimal weights
are estimated with the actual data. We see that the adversarial estimators are slightly
more precise than the SMM.

3.3. Challenges of the Adversarial Estimator

Not every aspect of our method is superior to alternatives. First, the theoretical results
in this paper do not cover time series data. The Roy model has a dynamic choice of in-
dividuals, but we have many i.i.d. observations of individuals. This is not to say that the
adversarial framework cannot be extended thereto, but it would require a careful design
of the discriminator to incorporate the structure of the serial correlation.

Second, the adversarial estimator can be time consuming. The adversarial estimator
with a logistic discriminator is as fast as SMM, but one with a neural network discrim-
inator can take a long time to train. In the logistic location model, both MLE and the

TABLE I

ESTIMATES AND BOOTSTRAP STANDARD ERRORS FOR THE ROY MODEL FOR ONE REPLICATION.

μ1 μ2 γ1 γ2 σ1 σ2 ρt ρs

Logistic D 1�88 1�81 0�33 0�06 0�97 1�06 −0�03 0�54
(0�09) (0�11) (0�12) (0�14) (0�10) (0�13) (0�09) (0�13)

Neural network D 1�83 1�82 0�40 0�01 0�92 1�15 0�11 0�57
(0�09) (0�11) (0�12) (0�11) (0�06) (0�09) (0�10) (0�12)

SMM 1�88 1�81 0�33 0�06 0�95 1�08 −0�03 0�56
(0�10) (0�12) (0�13) (0�16) (0�11) (0�14) (0�09) (0�14)

Truth 1�80 2�00 0�50 0�00 1�00 1�00 0�00 0�50
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adversarial estimator with a logistic discriminator take less than a second, while the ad-
versarial estimator with a neural network discriminator takes about 30 seconds on a laptop
without a GPU or parallelization. For this, we recommend preestimation with a logistic
discriminator or other existing methods to start with a good initial value.

The third drawback is a possible roughness of the loss surface. As seen in Section 3.1.1,
a logistic discriminator tends to yield a very smooth objective function (Figure 1) while
a neural network discriminator may sometimes get bumpy and have spurious local min-
ima (Figure 2). Some degree of roughness can be smoothed with the choice of a training
method or an increased number of iterations; additionally, we can estimate the discrimi-
nator several times and take the average and/or use an optimization method tailored for
noisy functions. If the initial value is good enough, we may also employ grid search in the
neighborhood to skip estimation of the gradient. At any rate, we recommend plotting the
loss surface before computing the estimator.

Fourth, being comparable with MLE, the asymptotic variance of the adversarial estima-
tor depends on the score and Hessian (Theorem 3), which is not easy to compute given
the intractable likelihood. Therefore, we may resort to resampling methods like bootstrap
to obtain a variance estimator, which can cost additional time.

4. STATISTICAL PROPERTIES

This section states the asymptotic properties of our estimator. For more general results,
we refer the reader to the earlier version in February 2022, Kaji, Manresa, and Pouliot
(2022). Also, the theoretical results on the discriminator is given in Section S.2.

Let Zi ∼ PZ be a common random shock used in simulation. The simulated obser-
vation Xi�θ ∼ Pθ is then constructed by transforming Zi through a map, Xi�θ = Tθ(Zi).
For a function f , the sample averages of f (Xi) and f (Xi�θ) are denoted by P0f :=
1
n

∑n

i=1 f (Xi) and Pθf := 1
m

∑m

i=1 f (Xi�θ). Their population counterparts are denoted as
P0f := ∫ f (x) dP0 and Pθf := ∫ f (x) dPθ. We denote the population objective function
by Mθ(D) := P0 logD + Pθ log(1 − D) as well as the previously defined sample objec-
tive function Mθ(D) := P0 logD + Pθ log(1 − D). We also define the distance on � by

h(θ1� θ2) :=
√∫

(√pθ1 − √
pθ2)2.

Suppose that observables can be written as Xi = (Yi�Wi) where θ affects only the con-
ditional distribution of Yi given Wi. Such Wi is called the covariate. In the maximum like-
lihood literature, it is known that an efficient estimator is obtained by maximizing the
conditional likelihood of Yi given Wi, so the marginal distribution of Wi can be left un-
specified. The same observation holds true in the adversarial framework. Namely, the
oracle discriminator Dθ does not depend on the marginal distribution of Wi, so the dis-
tributions P0 and Pθ can be regarded as specifying only the conditional distribution of Yi

given Wi. In our theory, we save notational complexity by allowing this implicitly. One
possible complication this might bring is the method to draw covariates for the simulated
data. In Section 3.1.2, we set n =m and use the same sets of covariates in the actual data.
Another possibility is to bootstrap the covariates.

4.1. Consistency

The adversarial estimator is consistent if the estimated loss Mθ(D̂θ) converges uni-
formly to the oracle loss Mθ(Dθ) and θ̂ finds a global minimizer. As the maximized cross-
entropy loss is effectively bounded between 2 log(1/2) and 0, uniform convergence on �
is not an unreasonable assumption.
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THEOREM 1—Consistency of generator: Suppose that for every open G ⊂ � containing
θ0, we have infθ/∈GMθ(Dθ) > Mθ0 (Dθ0 ), that {logDθ : θ ∈ �} and {log(1 − Dθ) ◦ Tθ : θ ∈
�} are P0- and PZ-Glivenko–Cantelli, respectively, that supθ∈�|Mθ(D̂θ) − Mθ(Dθ)|→ 0 in
probability, and that θ̂ satisfies Mθ̂(D̂θ̂) ≤ infθ∈�Mθ(D̂θ) + o∗

P (1). Then h(θ̂� θ0) → 0 in
probability.

This theorem does not assume that the generative model is parametric, so it also applies
to possibly “nonparametric” generators.

4.2. Rate of Convergence

To obtain a rate of convergence of the generator, we assume that the structural model
is parametric.

ASSUMPTION 1—Parametric generative model: � is (a subset of) a Euclidean space; pθ

is differentiable in θ at every θ ∈ � for every x ∈ X with the derivative continuous in both x
and θ; the maximum eigenvalue of the Fisher information Iθ = Pθ�̇θ�̇

�
θ is bounded uniformly

in θ ∈ �; the minimum eigenvalue of Iθ is bounded away from 0 uniformly in θ ∈ �. The
same is assumed for the “inverted” structural model P̃θ ={((p0/pθ) ◦ Tθ)pZ : θ ∈ �}.

We next assume that the synthetic sample size m grows faster than n.

ASSUMPTION 2—Growing synthetic sample size: n/m→ 0.

The next assumption ensures that the estimation procedure finds a good minimum and
that the derivative of the estimated loss converges to that of the oracle. The first prop-
erty hinges on the estimation procedure employed, the tolerance level, etc. The second
property is used in semiparametric M-estimation to obtain a regular estimator orthogo-
nal to nuisance estimation (e.g., Klein and Spady (1993)). We revisit the plausibility of
this condition in Section 4.2.1.

ASSUMPTION 3—Approximately minimizing generator and orthogonality: There exists
a sequence of open balls Gn := {θ ∈ � : h(θ�θ0) < ηn} such that ηn

√
n → ∞, Mθ̂(D̂θ̂) ≤

infθ∈Gn Mθ(D̂θ) + o∗
P (n−1), and infθ∈Gn[Mθ̂(D̂θ̂) − Mθ(D̂θ)] − [Mθ̂(Dθ̂) − Mθ(Dθ)] =

o∗
P (n−1).

The next assumption posits a stronger identification condition than in Theorem 1 that
ensures a quadratic curvature at θ0; this is implied by the positive definiteness of Ĩθ0 in As-
sumption 5. Also, it assumes that P0 is “close enough” to Pθ0 in the sense that convergence
of θ to θ0 takes place on the support of P0.

ASSUMPTION 4—Smooth synthetic data generation and overlapping support: There
exists open G ⊂ � ⊂ R

k containing θ0 in which Mθ(Dθ) − Mθ0 (Dθ0 ) � h(θ�θ0)2. Also,
h(θ�θ0)2 =O(

∫
Dθ0 (√pθ0 − √

pθ)2) as θ → θ0.

THEOREM 2—Rate of convergence of generator: Under Assumptions 1 to 4, h(θ̂� θ0) =
O∗

P (n−1/2).
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4.2.1. On Assumption 3

The second condition of Assumption 3, which we call orthogonality, is essential in the
rate of convergence for θ̂ in Theorem 2. Even in the best scenario, we can only expect
Mθ(D̂θ) −Mθ(Dθ) = OP (n−1), so the convergence of D̂θ alone does not grant orthogonal-
ity. The key to satisfying it is, therefore, some extent of the convergence of the derivative
of D̂θ with respect to θ to that of Dθ. Note that this is different from the derivative of D̂θ

with respect to x, so it does not follow from the convergence of the derivative of a non-
parametrically estimated function. Rather, it is the structure of the nested optimization
that brings about orthogonality.

Take the logistic discriminator D(x;λ) = �(x�λ) as considered in Section 3. We
can check that orthogonality holds if the following conditions are met. Let Enf (X) :=
1
n

∑n

i=1 f (Xi) and Emf (Xθ) := 1
m

∑m

i=1 f (Xi�θ) and denote the differentiation with respect
to a row vector θ� by a dot, for example, λ̇θ = ∂

∂θ�λθ.
1. (Smooth model) Tθ is continuously differentiable in θ for every x ∈ X̃ , so Xθ is

continuously differentiable in θ.
2. (Finite moments) E[XX�] is positive definite; E[‖X‖4], E[‖Xθ‖4], E[‖Ẋθ‖2],

and E[‖Xθ‖2‖Ẋθ‖2] are bounded uniformly over θ; Em[‖Xθ‖2], Em[‖Ẋθ‖], and
Em[‖Xθ‖‖Ẋθ‖] converge uniformly in θ.

3. (Smooth discriminator) λθ is continuously differentiable in θ.
4. (Exact maximizer) λ̂θ is the exact maximizer of Mθ(D(·;λ)) in that the FOC for λ̂θ

is exactly zero for every θ ∈�.
5. (Uniform convergence rate of discriminator) supθ ‖λ̂θ − λθ‖ =OP (n−1/2).
For ease of notation, we assume that λ and θ are one-dimensional; however, the

argument below applies equally to the vector case. The FOC for λ̂θ yields En[(1 −
�(Xλ̂θ))X] − Em[�(Xθλ̂θ)Xθ] = 0. This holds for every θ, so we may differentiate both
sides by θ, which can be solved for the derivative of λ̂θ with respect to θ,

˙̂λθ = −(En

[
�(1 −�)(Xλ̂θ)X2

]+Em

[
�(1 −�)(Xθλ̂θ)X2

θ

])−1

× (Em

[
�(1 −�)(Xθλ̂θ)XθẊθ

]
λ̂θ +Em

[
�(Xθλ̂θ)Ẋθ

])
�

Note that λθ satisfies the population FOC, which leads to the population counterpart of
the same expression, so ˙̂λθ is consistent for λ̇θ. Moreover, by the uniform convergence
assumptions, we deduce supθ ‖ ˙̂λθ − λ̇θ‖ = OP (n−1/2). Thus, the derivative of the discrimi-
nator converges.

To derive orthogonality, we first Taylor-expand it in λ around λ̂θ. In doing so, the first-
order term can be ignored thanks to Condition 4. For arbitrary θ,

Mθ

(
D(·;λθ)

)−Mθ

(
D(·; λ̂θ)

)
= [En log�(Xλθ) +Em log(1 −�)(Xθλθ)

]− [En log�(Xλ̂θ) +Em log(1 −�)(Xθλ̂θ)
]

= 1
2

(λ̂θ − λθ)2
[−En�(1 −�)(Xλ̂θ)X2 +Em�(1 −�)(Xθλ̂θ)X2

θ

]+ oP

(
(λ̂θ − λθ)2

)
�
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Next, we expand it further in θ around θ̂,

[
Mθ

(
D(·;λθ)

)−Mθ

(
D(·; λ̂θ)

)]− [Mθ̂

(
D(·;λθ̂)

)−Mθ̂

(
D(·; λ̂θ̂)

)]
= −(λ̂θ̂ − λθ̂)( ˙̂λθ̂ − λ̇θ̂)(θ− θ̂)

[
En�(1 −�)(Xλ̂θ)X2 −Em�(1 −�)(Xθλ̂θ)X2

θ

]
− 1

2
(λ̂θ − λθ)2(θ− θ̂)En�(1 −�)(1 − 2�)(Xλ̂θ̂)X

3 ˙̂λθ̂

+ 1
2

(λ̂θ − λθ)2(θ− θ̂)Em�(1 −�)(1 − 2�)(Xθ̂λ̂θ̂)X
3
θ̂

˙̂λθ̂

+ 1
2

(λ̂θ − λθ)2(θ− θ̂)Em�(1 −�)(1 − 2�)(Xθ̂λ̂θ̂)X
2
θ̂
Ẋθ̂λ̂θ̂

+ (λ̂θ − λθ)2(θ− θ̂)Em�(1 −�)(Xθ̂λ̂θ̂)Xθ̂Ẋθ̂ + oP

(
(λ̂θ − λθ)2

(
1 + |θ̂− θ|))�

This is OP (n−1) for fixed θ, so we can take a shrinking neighborhood of θ around θ0 that
contains θ̂ to make the supremum of this oP (n−1), yielding orthogonality. If the neighbor-
hood shrinks only slightly slower than n−1/2, then convergence of λ̂θ and ˙̂λθ can be relaxed
to as slow as oP (n−1/4) if possibly a few more degrees of differentiability and finite mo-
ments are granted. It is also straightforward to relax the exact FOC condition to allow for
errors of negligible order and to allow for nonlinear but parametric logistic discrimina-
tors, such as small neural networks. An interesting conclusion of this is that the curvature
of the estimated loss converges faster than the level, as observed throughout Section 3.

For a general nonparametric discriminator, it is not trivial to obtain a similar low-level
condition. Section S.2 develops conditions for D̂θ to converge faster than n−1/4 (pointwise
in θ), which seems necessary but is not sufficient to derive orthogonality.13 In Section 3,
the plots of Mθ(D̂θ) confirm orthogonality in examples with or without differentiability.

4.3. Asymptotic Distribution

To derive the asymptotic distribution of the adversarial estimator, we need the struc-
tural model to be differentiable as in maximum likelihood.

ASSUMPTION 5—Twice differentiability: The parameter space � is (a subset of) a Eu-
clidean space R

k. The structural model {Pθ : θ ∈ �} has a likelihood that is twice differen-
tiable in θ at θ0 for every x ∈ X with the derivatives continuous in both x and θ. The Fisher
information matrix Iθ0 := Pθ0 �̇θ0 �̇

�
θ0

= −Pθ0 �̈θ0 and the matrix Ĩθ0 := 2Pθ0 (Dθ0 �̇θ0 �̇
�
θ0

+ (�̈θ0 +
�̇θ0 �̇

�
θ0

) log(1−Dθ0 )) are positive definite. Tθ is continuously differentiable in θ for every x ∈X
and P0 has a likelihood that is continuously differentiable in x.

REMARK: The score and Hessian are related to the oracle discriminator Dθ by �̇θ =
1
Dθ

∂ log(1−Dθ)
∂θ

= − 1
1−Dθ

∂ logDθ

∂θ
and �̈θ + �̇θ�̇

�
θ = 1

1−Dθ
[ ∂ logDθ

∂θ

∂ logDθ

∂θ� − ∂2 logDθ

∂θ∂θ� ].

13In a similar situation where the derivative of the nuisance parameter identifies θ, Klein and Spady (1993)
exploit the structure of a kernel density estimator to show the convergence of the derivative, whereby obtaining
a corresponding orthogonality condition.
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THEOREM 3—Asymptotic distribution of generator: Under the conclusion of Theorem 2
and Assumptions 2, 3, and 5,

√
n(θ̂− θ0) = 2Ĩ−1

θ0

√
n
[
P0(1 −Dθ0 )�̇θ0 − Pθ0Dθ0 �̇θ0 − P̃0τn

]+ o∗
P (1) �N

(
0� Ĩ−1

θ0
V Ĩ−1

θ0

)
�

where V := limn→∞ 4Pθ0Dθ0 (1 −Dθ0 )�̇θ0 �̇
�
θ0

.

An efficiency result holds if the structural model is correctly specified.

ASSUMPTION 6—Correct specification: The synthetic model {Pθ : θ ∈ �} is correctly spec-
ified, that is, Pθ0 = P0 and Dθ0 ≡ 1/2.

COROLLARY 4—Efficiency of generator: Under the conclusion of Theorem 3 and As-
sumption 6,

√
n(θ̂− θ0) = I−1

θ0

√
n(P0 − Pθ0 )�̇θ0 + o∗

P (1) �N(0� I−1
θ0

).

4.4. What if D Is not Rich Enough?

Our theory assumes that D is a sieve that eventually is capable of representing Dθ. In
finite samples, however, we do not know how well D approximates Dθ. Therefore, it is in-
teresting to see what happens when D is not a sieve but a fixed class of functions. Although
the complete treatment of this case is beyond our scope, we examine what happens to the
population problem as we enrich D, for example, by gradually adding nodes and layers to
the neural network.14

For simplicity, we maintain Assumptions S.3, 5 and 6 and assume that D contains
a constant function 1/2. Let D̃θ be the population maximizer of Mθ(D) in D. Since
Mθ(D) −Mθ(Dθ) = −2dθ(D�Dθ)2 +o(dθ(D�Dθ)2) by Theorem S.2, D̃θ is equivalent to a
minimizer of dθ(D�Dθ)2 in D up to o(dθ(D�Dθ)2). Under Assumption 6, D̃θ0 = Dθ0 ≡ 1/2
and Mθ0 (1/2) =Mθ(1/2). By Theorem S.2,

Mθ0 (D̃θ0 ) −Mθ(D̃θ) = Mθ(Dθ0 ) −Mθ(Dθ) +Mθ(Dθ) −Mθ(D̃θ)

= −2dθ(Dθ0�Dθ)2 + 2dθ(D̃θ�Dθ)2

+ o
(
dθ(Dθ0�Dθ)2

)+ o
(
dθ(D̃θ�Dθ)2

)
�

Note that by Lemma S.6, dθ(Dθ0�Dθ)2 = 1
2

∫
p0

p0+p0
(
√
p0 − √

pθ)2 + 1
2

∫
pθ

pθ+pθ
(
√
p0 −√

pθ)2 + o(h(p0�pθ)2) = 1
2h(p0�pθ)2 + o(h(p0�pθ)2). Thus, we obtain

Mθ0 (D̃θ0 ) −Mθ(D̃θ) = −h(p0�pθ)2 + 2dθ(D̃θ�Dθ)2 + o
(
h(p0�pθ)2

)
�

If D contains Dθ, the second term is zero and the Hellinger curvature allows us to estimate
θ efficiently; if D is a singleton set that contains only 1/2, the first and second terms cancel
and the objective function becomes completely flat, rendering estimation of θ impossible.
Therefore, the second term represents the loss in efficiency due to the limited capacity of
D. For the regular logit case, we know that D is already rich enough that the curvature
admits

√
n-estimation. Then, as we enrich D, it becomes more capable of minimizing

dθ(D̃θ�Dθ)2, getting closer to efficiency.

14The case where D is fixed to be the class of logistic discriminators is analyzed in Section S.1.
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5. CONCLUSION

We propose a simulation-based estimation method for structural estimation inspired by
GAN. The method uses a minimax formulation between a generator given by the struc-
tural model and the adversarial discriminator given by a possibly nonparametric classifier.
Under the given conditions, the estimator is

√
n-asymptotically normal under possible

global misspecification and is efficient under correct specification.
The adversarial estimator fills the gap between SMM and MLE. When a logistic dis-

criminator is used, the estimator is asymptotically equivalent to optimally-weighted SMM.
When an oracle discriminator is used, it is asymptotically equivalent to MLE under cor-
rect specification and m � n. Simulation indicates that the estimator is robust to the curse
of dimensionality compared to SMM.

APPENDIX

PROOF OF THEOREM 1: Observe that Mθ̂(Dθ̂) − infθ∈�Mθ(Dθ) is bounded by[
Mθ̂(D̂θ̂) − inf

θ∈�
Mθ(D̂θ)

]
+ [Mθ̂(Dθ̂) −Mθ̂(D̂θ̂)

]+ sup
θ∈�

[
Mθ(D̂θ) −Mθ(Dθ)

]
�

The first difference is less than o∗
P (1) and the latter two are o∗

P (1) by assumption.
Therefore, Mθ̂(Dθ̂) ≤ infθ∈�Mθ(Dθ) + o∗

P (1). Let M1 := {logDθ : θ ∈ �} and M2 :=
{log(1 − Dθ) ◦ Tθ : θ ∈ �}. By the assumption of Glivenko–Cantelli, ‖P0 − P0‖M1 → 0
and ‖P̃0 − PZ‖M2 → 0 in outer probability as n�m → ∞. By van der Vaart and Wellner
(1996, Corollary 3.2.3(i)), it follows that θ̂ → θ0 in outer probability. Q.E.D.

Let h̃(θ1� θ2) := [PZ(
√

(p0/pθ1 ) ◦ Tθ1 − √
(p0/pθ2) ◦ Tθ2 )2]1/2.

PROOF OF THEOREM 2: Assumption 3 implies Mθ̂(Dθ̂) ≤ Mθ0 (Dθ0 ) + O∗
P (n−1), so we

apply van der Vaart and Wellner (1996, Theorem 3.2.5) to Mθ(Dθ). By Assumption 4,
Mθ(Dθ) − Mθ0 (Dθ0 ) � h(θ�θ0)2 ∧ c for some c > 0 globally in θ ∈ �. By Assumption 1,
h̃(θ�θ0)2 =O(h(θ�θ0)) as θ → θ0.

Next, we show the convergence of the sample objective function. Note that

(Mθ0 −Mθ0 )(Dθ0 ) − (Mθ −Mθ)(Dθ) = (P0 − P0) log
Dθ0

Dθ

+ (P̃0 − PZ) log
(1 −Dθ0 ) ◦ Tθ0

(1 −Dθ) ◦ Tθ

�

By Lemma S.5, ‖ log
Dθ0
Dθ

‖2
P0�B

≤ 4h(θ�θ0)2 and ‖ log
(1−Dθ0 )◦Tθ0
(1−Dθ)◦Tθ ‖2

PZ�B ≤ 4h̃(θ�θ0)2. For δ > 0,

define M1
δ :={log

Dθ0
Dθ

: h(θ�θ0) ≤ δ} and M2
δ :={log

(1−Dθ0 )◦Tθ0
(1−Dθ)◦Tθ : h̃(θ�θ0) ≤ δ}. By van der

Vaart and Wellner (1996, Lemma 3.4.3),

E
∗ sup
h(θ�θ0)<δ

∣∣∣∣√n(P0 − P0) log
Dθ0

Dθ

∣∣∣∣� J[]

(
2δ�M1

δ�‖ · ‖P0�B

)[
1 + J[]

(
2δ�M1

δ�‖ · ‖P0�B

)
4δ2√n

]
�

Let [��u] be an ε-bracket in {pθ} with respect to h. Since u − � ≥ 0 and e|x| − 1 −|x|≤
2(ex/2 − 1)2 for every x≥ 0,

∥∥∥∥log
p0 + u

p0 +pθ0

− log
p0 + �

p0 +pθ0

∥∥∥∥
2

P0�B

≤ 4
∫ (√

p0 + u

p0 + �
− 1
)2

p0 ≤ 4h(u��)2 ≤ 4ε2�
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Thus, [log p0+�

p0+pθ0
� log p0+u

p0+pθ0
] makes a 2ε-bracket in M1. Hence, N[](2ε�M1

δ�‖ · ‖P0�B) ≤
N[](ε�Pδ�h) � (δ/ε)r by Assumption 1. This induces J[](2δ�M1

δ�‖ · ‖P0�B) � δ. Ergo,
E

∗ suph(θ�θ0)<δ|
√
n(P0 − P0) log

Dθ0
Dθ

|� δ + 1√
n
. Similarly, we have E

∗ suph̃(θ�θ0)<δ|
√
m(P̃0 −

PZ) log
1−Dθ0
1−Dθ

|� δ+ 1√
m

. Then the result follows by van der Vaart and Wellner (1996, The-
orem 3.2.5). Q.E.D.

PROOF OF THEOREM 3: By Theorem 2, θ̂ is consistent and
√
n(θ̂ − θ0) is uniformly

tight. Assumption 3 implies Mθ̂(Dθ̂) ≤ infθ∈Gn Mθ(Dθ) + o∗
P (n−1). Under Assumptions 2

and 5, for every compact K ⊂ �,
√

n
m

suph∈K|
√
m(P̃0 − PZ)(

√
n[log(1 − Dθ0 ) ◦ Tθ+h/

√
n −

log(1 − Dθ0 ) ◦ Tθ0 ])| = o∗
P (1 + n

m
) and

√
n
m

suph∈K ‖√m[(Pθ0+h/
√
n − Pθ0+h/

√
n) − (Pθ0 −

Pθ0 )]Dθ0 �̇θ0‖ = o∗
P (1). Let Gθ0 �̇θ0 := √

n(P0 − P0)(1 −Dθ0 )�̇θ0 . With Assumptions 2 and 5,
Lemma S.3 implies that uniformly in h ∈K compact,

n
[
Mθ0+h/

√
n(Dθ0+h/

√
n) −Mθ0 (Dθ0 )

]= −h�
Gθ0 �̇θ0 + h�Ĩθ0h

4
+ oP (1)�

In particular, this holds for both ĥ := √
n(θ̂− θ0) and h̆ := 2Ĩ−1

θ0
Gθ0 �̇θ0 , so

n
[
Mθ0+ĥ/

√
n(Dθ0+ĥ/

√
n) −Mθ0 (Dθ0 )

]= −ĥ�
Gθ0 �̇θ0 + 1

4
ĥ�Ĩθ0 ĥ+ o∗

P (1)�

n
[
Mθ0+h̆/

√
n(Dθ0+h̆/

√
n) −Mθ0 (Dθ0 )

]= −Gθ0 �̇
�
θ0
Ĩ−1
θ0
Gθ0 �̇θ0 + oP (1)�

Since Gn shrinks slower than 1/
√
n, θ0 + h̆/

√
n is eventually contained in Gn. Since ĥ min-

imizes Mθ(Dθ) up to o∗
P (1/n) in Gn, the LHS of the first equation is larger than that of the

second up to o∗
P (1). Subtracting the two, we have 1

4 (ĥ−2Ĩ−1
θ0
Gθ0 �̇θ0 )�Ĩθ0 (ĥ−2Ĩ−1

θ0
Gθ0 �̇θ0 ) +

o∗
P (1) ≤ 0. Since Ĩθ0 is positive definite, ĥ− 2Ĩ−1

θ0
Gθ0 �̇θ0 = o∗

P (1), proving the expression of√
n(θ̂− θ0). The asymptotic variance is 4Ĩ−1

θ0
Var(Gθ0 �̇θ0 )Ĩ−1

θ0
. Q.E.D.

REFERENCES

ALTONJI, JOSEPH G., AND LEWIS M. SEGAL (1996): “Small-Sample Bias in GMM Estimation of Covariance
Structures,” Journal of Business & Economic Statistics, 14 (3), 353–366. [2041]

ASIMOPOULOS, DIMITRIOS C., MARIA NITSIOU, LAZAROS LAZARIDIS, AND GEORGE F. FRAGULIS (2022):
“Generative Adversarial Networks: A Systematic Review and Applications,” SHS Web Conferences, 139,
03012. [2043]

ATHEY, SUSAN, GUIDO W. IMBENS, JONAS METZGER, AND EVAN MUNRO (2021): “Using Wasserstein Gen-
erative Adversarial Networks for the Design of Monte Carlo Simulations,” Journal of Econometrics (forth-
coming). [2042,2053]

CHENG, JIEREN, YUE YANG, XIANGYAN TANG, NAIXUE XIONG, YUAN ZHANG, AND FEIFEI LEI (2020): “Gen-
erative Adversarial Networks: A Literature Review,” KSII Transactions on Internet and Information Systems,
14 (12), 4625–4647. [2043]

GOODFELLOW, IAN J., JEAN POUGET-ABADIE, MEHDI MIRZA, BING XU, DAVID WARDE-FARLEY, SHERJIL
OZAIR, AARON COURVILLE, AND YOSHUA BENGIO (2014): “Generative Adversarial Nets,” in Proceedings
of the 27th International Conference on Neural Information Processing Systems, NIPS’14, Vol. 2. Cambridge:
MIT Press, 2672–2680. [2042,2044]

IMBENS, GUIDO W. (2002): “Generalized Method of Moments and Empirical Likelihood,” Journal of Business
& Economic Statistics, 20 (4), 493–506. [2051]

KAJI, TETSUYA, ELENA MANRESA, AND GUILLAUME POULIOT (2022): “An Adversarial Approach to Structural
Estimation,” February. arXiv:2007.06169v2. [2048,2056]

https://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/altonji1996small&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/refId0&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/tiis:24135&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/i2002&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
http://arxiv.org/abs/arXiv:2007.06169v2
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/altonji1996small&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/refId0&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/refId0&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/tiis:24135&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/tiis:24135&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/i2002&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6


AN ADVERSARIAL APPROACH TO STRUCTURAL ESTIMATION 2063

(2023): “Supplement to ‘An Adversarial Approach to Structural Estimation’,” Econometrica Supple-
mental Material, 91, https://doi.org/10.3982/ECTA18707. [2042]

KINGMA, DIEDERIK P., AND JIMMY BA (2015): “Adam: A Method for Stochastic Optimization,” in 3rd Inter-
national Conference on Learning Representations. Conference Track Proceedings, ed. by Yoshua Bengio and
Yann LeCun. [2045]

KLEIN, ROGER W., AND RICHARD H. SPADY (1993): “An Efficient Semiparametric Estimator for Binary Re-
sponse Models,” Econometrica, 61 (2), 387–421. [2057,2059]

MCFADDEN, DANIEL (1989): “A Method of Simulated Moments for Estimation of Discrete Response Models
Without Numerical Integration,” Econometrica, 57 (5), 995–1026. [2041]

NEVO, AVIV (2000): “A Practitioner’s Guide to Estimation of Random-Coefficients Logit Models of Demand,”
Journal of Economics & Management Strategy, 9 (4), 513–548. [2045]

PAKES, ARIEL, AND DAVID POLLARD (1989): “Simulation and the Asymptotics of Optimization Estimators,”
Econometrica, 57 (5), 1027–1057. [2041]

VAN DER VAART, AAD W., AND JON A. WELLNER (1996): Weak Convergence and Empirical Processes: With
Applications to Statistics. New York: Springer. [2061,2062]

Co-editor Guido Imbens handled this manuscript.

Manuscript received 14 July, 2020; final version accepted 6 September, 2023; available online 7 September, 2023.

The replication package for this paper is available at https://doi.org/10.5281/zenodo.8310266. The Journal
checked the data and codes included in the package for their ability to reproduce the results in the paper and
approved online appendices. Given the highly demanding nature of the algorithms, the reproducibility checks were
run on a simplified version of the code, which is also available in the replication package.

https://doi.org/10.3982/ECTA18707
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/ks1993&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/m1989&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/n2000&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/pp1989&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://doi.org/10.5281/zenodo.8310266
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/ks1993&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/m1989&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/n2000&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/pp1989&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2041%3AAAATSE%3E2.0.CO%3B2-6

	Introduction
	Adversarial Estimation Framework
	Illustration With Simple Examples
	Logistic Location Model
	Efﬁciency
	Normality Under Misspeciﬁcation
	Comparison With SMM

	The Roy Model
	Comparison With MLE
	Case With Intractable Likelihood

	Challenges of the Adversarial Estimator

	Statistical Properties
	Consistency
	Rate of Convergence
	On Assumption 3

	Asymptotic Distribution
	What if D Is not Rich Enough?

	Conclusion
	Appendix
	References

