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We study extensive-form games and mechanisms allowing agents that plan for only
a subset of future decisions they may be called to make (the planning horizon). Agents
may update their so-called strategic plan as the game progresses and new decision points
enter their planning horizon. We introduce a family of simplicity standards which re-
quire that the prescribed action leads to unambiguously better outcomes, no matter
what happens outside the planning horizon. We employ these standards to explore the
trade-off between simplicity and other objectives, to characterize simple mechanisms
in a wide range of economic environments, and to delineate the simplicity of common
mechanisms such as posted prices and ascending auctions, with the former being sim-
pler than the latter.

KEYWORDS: One-step simplicity, (strong) obvious strategy-proofness, planning hori-
zon, limited foresight, price and priority mechanisms, ascending auctions, extensive-
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1. INTRODUCTION

CONSIDER A GROUP OF AGENTS who must come together to make a choice from some set
of potential outcomes that will affect each of them. This can be modeled as an extensive-
form game, with the final outcome determined by the decisions made by the agents during
the game. To ensure that the final outcome satisfies desirable normative properties (e.g.,
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efficiency or revenue maximization), the standard approach in mechanism design is to
provide agents with incentives to play in a predictable and desirable way. For instance,
the designer may use a Bayesian or dominant-strategy incentive-compatible direct mech-
anism where it is in each agent’s best interest to simply report all of their private informa-
tion truthfully. This approach succeeds so long as the participants understand that being
truthful is in their interest (for instance, if the designer has the ability to successfully teach
the agents how to play). However, there is accumulating empirical evidence of agents not
reporting the truth in such mechanisms.1 Bayesian or dominant-strategy mechanisms are
thus sometimes not sufficiently simple for participants to play as expected. Using simpler
mechanisms can reduce such strategic confusion. It may also lower participation costs,
attract participants, and equalize opportunities across participants with different levels of
access to information and strategic sophistication. Additionally, designing simpler mech-
anisms requires less information about participants’ beliefs.2

What mechanisms, then, are actually simple to play? We address this question by intro-
ducing a general class of simplicity standards for games and mechanism design. We use
these standards to assess the restrictions that simplicity imposes on the mechanism de-
signer and to characterize simple mechanisms for a broad range of social choice environ-
ments with and without transfers.3 Analogously to the revelation principle for Bayesian
mechanism design, we construct classes of mechanisms that limit the space over which a
designer interested in implementing a simple mechanism must search.4 As applications,
we provide simplicity-based microfoundations for popular mechanisms such as posted
prices, priority mechanisms, and ascending auctions.

The main innovation in our approach is a departure from the standard assumption that
agents have unlimited foresight and are able to plan a complete strategy for every possible
future contingency. Rather, we allow for agents with limited foresight who, each time they
are called to play, make plans for only a subset of possible future moves, their current
planning horizon. We refer to these plans as partial strategic plans.5 A partial strategic plan
is simply dominant if the called-for action is weakly better than any alternative, irrespective
of what happens at decision points not planned for. As the game progresses, agents may
update their strategic plans, and choose an action that is different from what they planned
in the past. This potential for updating is what differentiates strategic plans from the
standard game-theoretic concept of a strategy.6

1See, for example, Kagel, Harstad, and Levin (1987), Li (2017b), Hassidim, Romm, and Shorrer (2016),
Rees-Jones (2017, 2018), Shorrer and Sóvágó (2018), and Artemov, Che, and He (2017).

2See Vickrey (1961) for participation costs, Spenner and Freeman (2012) for attracting participants, Pathak
and Sönmez (2008) for leveling the playing field, and Wilson (1987) and Bergemann and Morris (2005) for a
designer’s informational requirements.

3Examples include auctions (Vickrey (1961), Riley and Samuelson (1981), Myerson (1981)), voting (Ar-
row (1963)), school choice (Abdulkadiroğlu and Sönmez (2003)), organ exchange (Roth, Sönmez, and Ünver
(2004)), course allocation (Sönmez and Ünver (2010), Budish and Cantillon (2012)), and refugee resettlement
(Jones and Teytelboym (2016), Delacrétaz, Kominers, and Teytelboym (2016)).

4Direct mechanisms are not necessarily simple, and hence the revelation principle does not extend to simple
extensive-form games; cf. Li (2017b).

5Savage (1954) wrestled with whether decision-makers should be modeled as “look before you leap” (create
a complete contingent plan for all possible future decisions one may face) or “you can cross that bridge when
you come to it” (make choices as they arise). While standard strategic concepts of game theory formalize the
former modeling option, our approach formalizes the latter.

6We are agnostic as to whether the agents are sophisticated and understand that their plans might be up-
dated, or whether the agents are naive about this possibility. The future actions in the partial strategic plan
merely ensure the optimality of the initial action.
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We model variations in simplicity and required foresight ability by varying agents’ plan-
ning horizons. This gives rise to a family of simple dominance standards. The stronger the
simplicity standard—that is, the fewer information sets in the current planning horizon—
the more robust the corresponding mechanism is to agents who can plan for only limited
future horizons.7 We show that the longer the planning horizon of the agents, the more
social choice rules a designer can implement in a simply dominant way. Furthermore, any
implementable social rule can be implemented via a perfect-information extensive-form
game.

We focus on special cases of simple dominance in which agents are able to plan some
exogenously given number k ∈ {0�1� � � � �∞} of future moves and analyze three such spe-
cial cases of simple dominance in detail:

• k = ∞: each agent’s planning horizon consists of all information sets at which this
agent moves (and contains no other information sets); in other words, at each in-
formation set, an agent can plan the actions they will take at any future information
set at which they may be called to play. In this case, simple dominance becomes
equivalent to Li’s (2017b) obvious dominance, and so we refer to the resulting simply
dominant strategic plans as obviously dominant, and the corresponding mechanisms
as obviously strategy-proof (OSP).

• k = 1: each agent’s planning horizon consists of their current information set and
only the first information sets at which they may be called to play in the continuation
game; in other words, agents are able to plan at most one move ahead at a time. We
refer to the resulting simply dominant strategic plans as one-step dominant, and the
corresponding mechanisms as one-step simple (OSS).

• k= 0: each agent’s planning horizon consists only of their current information set; in
other words, agents cannot plan for any moves in the future. We refer to the resulting
simply dominant strategic plans as strongly obviously dominant, and the corresponding
mechanisms as strongly obviously strategy-proof (SOSP).

The above standards are nested: strongly obviously dominant strategic plans are one-step
dominant, which in turn are obviously dominant. Obvious dominance is the most permis-
sive of these standards. It relies on the assumption that agents can create a complete plan
for all possible contingencies going forward, and further are able to perform backward
induction over at least their own future actions (though not over the actions of their op-
ponents). For instance, consider the game of chess: assuming that White can always force
a win, any winning strategy of White is obviously dominant; yet, the strategic choices in
chess are far from obvious. Winning strategies in chess require looking many steps into
the future, and thus are not one-step dominant nor strongly obviously dominant. Games
that admit one-step and/or strongly obviously dominant strategies do not require agents
to have such lengthy foresight.

For the above three simplicity standards we ask: which mechanisms are simple? For ob-
vious dominance, we focus on social choice environments without transfers, hence com-
plementing Li (2017b), who focused on the case with transfers. We show that OSP games
can be represented as millipede games. In a millipede game, each time an agent is called
to move, she is presented with some subset of payoff-equivalent outcomes, or more sim-
ply payoffs, that she can ‘clinch’. Clinching corresponds to receiving a payoff for sure,
and leaving the game. The agent may also be given the opportunity to ‘pass’. If the agent

7We show that a strategic plan is simply dominant if and only if in every game an agent may confuse with the
actual game being played, the strategic plan is weakly dominant in the standard sense (Theorem 3). Li (2017b)
provided a related behavioral microfoundation for his obvious dominance, on which we build.
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passes, she remains in the game, with the potential of being offered better clinching op-
tions in the future. Agents are sequentially presented with such clinch-or-pass choices un-
til all agents’ payoffs are determined. The millipede class includes as special cases some
familiar, and intuitively simple, games, such as serial dictatorships. However, the milli-
pede class also admits other games that are rarely observed in market-design practice,
and whose strategy-proofness is not necessarily immediately clear. In particular, similarly
to chess, some millipede games require agents to look far into the future and to perform
potentially complicated backward induction reasoning (see Figure 2 in Section 4.2 for an
example).

We next study one-step dominance in environments both with and without transfers. We
show that in the binary allocation environments with transfers studied by Li (2017b)—
which encompass canonical special cases such as single-unit auctions and binary public
good choice—any one-step simple mechanism is equivalent to a personal clock auction.
This strengthens Li’s result that OSP mechanisms are equivalent to personal clock auc-
tions. In particular, any social choice rule that is implementable in obviously dominant
strategies is also implementable in one-step dominant strategic plans. In no-transfer en-
vironments, one-step simplicity eliminates the complex OSP millipede games discussed
above (and also eliminates games such as chess). Indeed, we characterize OSS millipede
games as those that satisfy a property we call monotonicity. Monotonicity ensures that, at
the first time an agent may be called to play again in the continuation game that begins
following any of her current actions, the agent’s best clinching option will be weakly bet-
ter than anything she could have clinched in the past. Monotonic games seem particularly
simple, since the agent only needs to recognize that she can do no worse at her very next
move if she remains in the game.8

For strong obvious dominance, we show that SOSP games do not require agents to look
far into the future and perform lengthy backward induction: in all such games, each agent
has essentially at most one payoff-relevant move. Strongly obviously dominant strategic
plans are incentive-compatible even for agents concerned about trembles, or who have
time-inconsistent preferences. Building on this insight, we show that all SOSP mecha-
nisms can be implemented as sequential choice mechanisms in which each agent moves
at most once, and, at this move, is offered a choice from a menu of options. If the menu
has three or more options, then the agent’s final payoff is what they choose from the
menu. If the menu has only two options, then the agent’s final payoff might depend on
other agents’ choices, but truthfully indicating the preferred option is the strongly obvi-
ously dominant choice. The offered menu may include prices, in which case we call the
mechanism a sequential posted price mechanism. The strong obvious dominance of these
mechanisms provides an explanation of the popularity of posted prices, a ubiquitous sales
procedure.9

Our construction of simplicity criteria is inspired by Li (2017b), who formalized obvious
strategy-proofness and established its desirability as an incentive property. We go beyond
his work in two ways. First, we introduce gradated standards of simplicity, which allow
us to assess the trade-off between simplicity and implementation flexibility. Second, we

8Monotonicity is a generalization of a similar feature of ascending auctions: in an ascending auction, if an
agent passes (continues in the auction), at any next move, she is able to drop out (clinch the zero payoff), except
if she wins. Since the zero payoff is the only clinchable payoff and this payoff is always clinchable (except if
the agent wins), ascending auctions are monotonic. Such monotonicity is also satisfied by Li’s personal clock
auctions.

9For earlier microfoundations of posted prices, see Hagerty and Rogerson (1987) and Copic and Ponsati
(2016).
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provide simplicity-based microfoundations for popular mechanisms such as posted prices
and priority mechanisms. Following up on Li’s work, but preceding ours, Ashlagi and
Gonczarowski (2018) showed that stable mechanisms such as Deferred Acceptance (DA)
are not obviously strategy-proof, except in very restrictive environments where DA simpli-
fies to an obviously strategy-proof game with a ‘clinch-or-pass’ structure similar to simple
millipede games (though they did not describe it in these terms). Other related papers
include Troyan (2019), who studied obviously strategy-proof allocation via the popular
Top Trading Cycles (TTC) mechanisms, and provided a characterization of the priority
structures under which TTC are OSP-implementable.10 Following our work, Arribillaga,
Massó, and Neme (2020) and (forthcoming) characterized the voting rules that are ob-
viously strategy-proof on domains of single-peaked preferences. Bade and Gonczarowski
(2017) studied obviously strategy-proof and efficient social choice rules in several environ-
ments. Mackenzie (2020) introduced the notion of a “round table mechanism” for OSP
implementation and drew parallels with the standard Myerson–Riley revelation principle
for direct mechanisms. There has been less work that goes beyond Li’s obvious domi-
nance. Li (2017a) extended his ideas to an ex post equilibrium context, while Zhang and
Levin (2017a, 2017b) provided decision-theoretic foundations for obvious dominance and
explored weaker incentive concepts.11

Our work also contributes to the understanding of limited foresight and limits on back-
ward induction. Other work in this area, with different approaches from ours, includes Je-
hiel (1995, 2001) on limited foresight equilibrium in which players’ forecasts are correct,
Gabaix, Laibson, Moloche, and Weinberg (2006) on directed cognition, and Ke’s (2019)
axiomatization of bounded-horizon backward induction. A major difficulty for models of
imperfect foresight is how an agent takes into account a future they are unable to foresee;
we resolve this difficulty by designing games in which all resolutions of the unforeseen lead
the agent to the same current decision.12 As a by-product, our mechanisms work well when
agents are intertemporally inconsistent, for instance because they face Knightian uncer-
tainty or optimize against multiple priors (as, e.g., in Knight (1921) and Bewley (1987)) or
have time-inconsistent preferences (as, e.g., in Strotz (1956) and Laibson (1997)). Finally,
this paper adds to our understanding of dominant incentives, efficiency, and fairness in
settings with and without transfers. In settings with transfers, these questions were stud-
ied by, for example, Vickrey (1961), Clarke (1971), Groves (1973), Green and Laffont
(1977), Holmstrom (1979), Dasgupta, Hammond, and Maskin (1979), and Hagerty and
Rogerson (1987). In settings without transfers, in addition to Gibbard (1973, 1977) and
Satterthwaite (1975) and the allocation papers mentioned above, the literature on mech-
anisms satisfying these key objectives includes Ehlers (2002) and Pycia and Unver (2020,
2017) who characterized efficient and group strategy-proof mechanisms in settings with

10Li showed that the classic TTC mechanism of Shapley and Scarf (1974), in which each agent starts by
owning exactly one object, is not obviously strategy-proof. Following our and Troyan’s work, Mandal and Roy
(2022) characterized the priority structures under which Hierarchical Exchange of Pápai (2000) and Trading
Cycles (group strategy-proof and efficient mechanisms) of Pycia and Ünver (2017) are OSP-implementable;
cf. also Mandal and Roy (2022).

11Also of note is Glazer and Rubinstein (1996), who argued that extensive-form games may simplify the
solution of normal-form games, and Loertscher and Marx (2020), who studied environments with transfers
and constructed a prior-free obviously strategy-proof mechanism that becomes asymptotically optimal as the
number of buyers and sellers grows. A different strategic perspective on simplicity in mechanism design was
explored by Börgers and Li (2019).

12The issue of accounting for the unforeseen is also crucial for the analyses of incomplete contracts (e.g.,
Maskin and Tirole (1999)) and unawareness (e.g., Karni and Viero (2013)). Agents who rely on incomplete
models have been also studied in the context of persuasion (e.g., Schwartzstein and Sunderam (2021)).
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single-unit demand, and Pápai (2001) and Hatfield (2009) who provided such characteri-
zations for settings with multi-unit demand.13

 Liu and Pycia (2016), Pycia (2011), Morrill
(2015), Hakimov and Kesten (2018), Ehlers and Morrill (2020), and Troyan, Delacretaz,
and Kloosterman (2020) characterized mechanisms that satisfy incentive, efficiency, and
fairness objectives.

2. MODEL

2.1. Preferences

Let N = {i1� � � � � iN} be a set of agents, and X a finite set of outcomes.14 An outcome
might involve a monetary transfer. Each agent has a preference ranking over outcomes,
where, for x� y ∈ X , we write x �i y to denote that x is weakly preferred to y . We allow
for indifferences, and write x ∼i y if x �i y and y �i x. For any �i, we let �i denote the
corresponding strict preference relation, that is, x �i y if x �i y but not y �i x. We use Pi

to denote the domain of agent i’s preferences, and refer to �i as agent i’s type.
We allow incomplete information through the standard imperfect-information con-

struction of a meta-game in which Nature moves first and determines agents’ types, and
only then the designed game/mechanism is played. Due to the nature of the dominance
properties we study, we do not need to make any assumptions on agents’ beliefs about
others’ types nor on how agents evaluate lotteries.15

2.2. Extensive-Form Games

To determine the outcome, the planner designs a game � for the agents to play. We
consider imperfect-information, extensive-form games with perfect recall. These are de-
fined in the standard way: there is a finite collection of partially ordered histories, H. We
write h′ ⊆ h to denote that h′ ∈ H is a subhistory of h ∈ H, and h′ ⊂ h when h′ ⊆ h but
h 	= h′. Terminal histories are denoted with bars, that is, h̄. Each h̄ ∈H is associated with
an outcome in X . At every non-terminal history h ∈ H, one agent, denoted ih, is called
to play and chooses an action from a finite set A(h). We write h′ = (h�a) to denote the
history h′ that is reached by starting at history h and following the action a ∈ A(h). To
avoid trivialities, we assume that no agent moves twice in a row and that |A(h)|> 1 for
all non-terminal h ∈ H. To capture random mechanisms, we also allow for histories h at
which a non-strategic agent, Nature, is called to move. When Nature moves, she selects
an action from A(h) according to some known probability distribution.

The set of histories at which agent i moves is denoted Hi ={h ∈H : ih = i}. We partition
Hi into information sets and denote this partition by Ii. For any information set I ∈ Ii

13Pycia and Ünver (2020) characterized individually strategy-proof and Arrovian efficient mechanisms. For
an analysis of these issues under additional feasibility constraints, see also Dur and Ünver (2019) and Root
and Ahn (2020).

14Assuming X is finite simplifies the exposition and is satisfied in the examples listed in the Introduction.
This assumption can be relaxed. For instance, our analysis goes through with no substantive changes if we
allow infinite X endowed with a topology such that agents’ preferences are continuous in this topology and the
relevant sets of outcomes are compact.

15It is natural to assume that an agent weakly prefers lottery μ over ν whenever for all outcomes x ∈ supp(μ)
and y ∈ supp(ν) this agent weakly prefers x over y . This mild assumption is satisfied for expected utility agents,
as well as for agents who prefer μ to ν as soon as μ first-order stochastically dominates ν. While our results
do not rely on this assumption, it ensures that dominant actions always lead to weakly preferred lotteries over
outcomes.
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and h�h′ ∈ I and any subhistories h̃ ⊆ h and h̃′ ⊆ h′ at which i moves, at least one of
the following two symmetric conditions obtains: either (i) there is a history h̃∗ ⊆ h̃ such
that h̃∗ and h̃′ are in the same information set, A(h̃∗) = A(h̃′), and i makes the same
move at h̃∗ and h̃′, or (ii) there is a history h̃∗ ⊆ h̃′ such that h̃∗ and h̃ are in the same
information set, A(h̃∗) = A(h̃), and i makes the same move at h̃∗ and h̃. We denote
by I(h) ∈ Ii the information set containing history h. We say that an information set I1

precedes information set I2 if there are h1 ∈ I1 and h2 ∈ I2 such that h1 ⊆ h2. If I1 precedes
I2, we write I1 ≤ I2 (and I1 < I2 if I1 	= I2); we then also say that I2 follows I1 and that I2 is
a continuation of I1. An outcome x is possible at information set I if there is h ∈ I and a
terminal history h̄⊇ h such that x obtains at h̄.

3. SIMPLE DOMINANCE

What extensive-form games are simple to play? Intuitively, choosing from a menu of
outcomes—for example, a take-it-or-leave-it opportunity to buy an object at a posted
price, or a choice from a set of objects in an extensive-form serial dictatorship (cf. Sec-
tion 4.3)—entails simpler strategic considerations than those faced by a bidder in an
ascending clock auction. Similarly, ascending clock auctions are simpler than complex
games such as chess. We propose a class of simplicity standards that allows us to differen-
tiate the strategic simplicity of these and other games.

In defining our class of simplicity standards, we relax the standard assumption of eco-
nomic analysis that players can analyze and plan their actions arbitrarily far into the fu-
ture. Such unlimited foresight assumptions are embedded in standard game-theoretic
concepts of backward induction, dynamic programming, perfect Bayesian equilibrium,
iterated dominance, weak dominance, and Li’s obvious dominance. In relaxing the fore-
sight assumption, we build on the pioneering approach of Li (2017b), whose obvious dom-
inance allows for agents who do not reason carefully about what their opponents will do,
while still requiring that they search deep into the game with regard to their future self.
Li’s agents know the structure of precedence among the information sets at which they
move and the sets of outcomes that could possibly obtain conditional on any sequence
of their own actions (though not conditional on their opponents’ actions). For instance,
if White has a winning strategy in chess—that is, at the start of the game, White knows
what to do at any possible future configuration of the board to ensure a victory—then this
strategy is also obviously dominant. We relax Li’s foresight assumptions, only maintaining
that players know possible outcomes of actions and precedence relations for information
sets in their planning horizon (i.e., those information sets for which the agent plans).

The key innovation in our framework is that an agent may update their plan as the
game is played. In other words, we allow the agent’s perception of the strategic situation,
and hence, their planned actions, to vary as the game progresses. To differentiate them
from the standard game-theoretic notion of a “strategy” as a complete contingent plan of
action, we refer to these objects as “strategic plans,” introduced in the next subsection.

3.1. Strategic Plans

Formally, each information set I∗ ∈ Ii at which agent i moves has an associated set of
continuation information sets Ii�I∗ ⊆ {I ∈ Ii|I ≥ I∗} that are simple from the perspective of
I∗; we call Ii�I∗ agent i’s planning horizon at I∗. We assume that I∗ ∈ Ii�I∗ , but otherwise,
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the only restriction is that Ii�I∗ ⊆ Ii.16 A (partial) strategic plan Si�I∗ (�i) for agent i of type
�i at information set I∗ maps each simple information set I ∈ Ii�I∗ to an action in A(I).17

Note that a strategic plan does not specify the play at all continuation information sets at
which i may be called to move; rather, the strategic plan at I∗ only specifies an action at
the information sets in the planning horizon at I∗. Sets of strategic plans (Si�I∗ (�i))I∗∈Ii

and (Si�I∗ (�i))I∗∈Ii��i∈Pi
of agent i are called strategic collections.

An extensive-form mechanism (��SN �I), or simply a mechanism, is an extensive-form
game � together with a profile of strategic collections, SN �I = ((Si�I∗ (�i))I∗∈Ii��i∈Pi

)i∈N .
For any strategic collection (Si�I∗ (�i))I∗∈Ii

, we define the induced strategy Ŝi(�i) : Ii →
⋃

I∈Ii
A(I) as the mapping from information sets to actions defined by Ŝi(�i)(I) = Si�I (�i

)(I) for each I ∈ Ii; that is, Ŝi(�i) is a standard game-theoretic strategy (complete con-
tingent plan of action) defined by agent i selecting the action that is called for by the
strategic plan Si�I at information set I itself. For any SN �I and type realization �N , we can
determine the terminal history and associated outcome that is reached when the game is
played according to the profile of strategic collections SN �I(�N ) by following the profile
of induced strategies ŜN (�N ). For each player i and type �i, the induced strategy Ŝi(�i)
also allows us to define the set of on-path information sets for a strategic collection. These
are the information sets I ∈ Ii such that there exist strategies for the other players and
Nature such that I is on the path of play of Ŝi(�i).

Induced strategies allow us to define equivalence of mechanisms: two mechanisms
(��SN �I) and (�′� S′

N �I) are equivalent if, for every profile of types �N , the distribution
over outcomes from the induced strategies ŜN (�N ) in � is the same as that from the in-
duced strategies Ŝ′

N (�N ) in �′. This equivalence definition is purely outcome-based, and
allows that (��SN �I) and (�′� S′

N �I) have different planning horizons for the agents. Every
mechanism implements a mapping from preference profiles to outcomes, which we call
the social choice rule. If two mechanisms are equivalent, they implement the same social
choice rule.

3.2. Simple Dominance

Strategic plan Si�I∗ (�i) is simply dominant at information set I∗ for type �i of player i if
the worst possible outcome for i in the continuation game assuming i follows Si�I∗ (�i)(I)
at all I ∈ Ii�I∗ is weakly preferred by i to the best possible outcome for i in the continuation
game if i plays some other action a′ 	= Si�I∗ (�i)(I∗) at I∗. (We provide an example below
to illustrate this definition.) We say that a strategic collection (Si�I∗ (�i))I∗∈Ii��i∈Pi

is simply
dominant if, for each type �i∈ Pi, the strategic plan Si�I∗ (�i) is simply dominant at I∗

for each on-path information set I∗.18 We say that a game is simply dominant if it admits
simply dominant strategies.

16The assumption that Ii�I∗ ⊆ Ii is what makes our simplicity standards dominance standards. Dropping this
assumption and endowing players with beliefs of what other players do at simple information sets leads to an
analogue of our theory for equilibria. A natural requirement on the collection of simple node sets is that if an
agent classifies an information set I > I1 as simple from the perspective of information set I1, then the agent
continues to classify I as simple from the perspective of all information sets I2 > I1 such that I ≥ I2; while we
do not impose this requirement, it is satisfied in all of the examples of simple dominance that we study.

17We focus on pure strategies; the extension to mixed strategies is straightforward.
18When assessing Si�I∗ (�i)(I), we take the worst case over all game paths consistent with i following

Si�I∗ (�i)(I) at all I ∈ Ii�I∗ , and compare to the best case over all game paths following any alternative ac-
tion a′ 	= Si�I∗ (�i)(I∗). While formulated slightly differently than Li (2017b), who invoked the notion of an
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Note that the collection of planning horizons, (Ii�I∗)I∗∈Ii
, is a parameter of the model.

In the sequel, we focus on planning horizons that vary agents’ length of foresight. This is
not necessary, however, and there are other ways to conceptualize what information sets
are in the planning horizons.19 Given a fixed k ∈ {0�1�2� � � � �∞}, we say that agent i has
k-step foresight if

Ii�I∗ = {
I ∈ Ii|I∗ ≤ I and I∗ < I1 < · · ·< Ik < I ⇒ ∃� ∈{1� � � � �k} s.t. I� /∈ Ii

}
�

We refer to the resulting simply dominant strategic collections as k-step dominant and say
that a strategy is k-simple if it is the induced strategy for some k-step dominant strategic
collection. Varying k allows us to embed in our model the following special cases:

• k = ∞: That is, Ii�I∗ = {I ∈ Ii|I∗ ≤ I}, and i can plan all of her future moves. In this
case, the induced strategy of any resulting strategic collection is obviously dominant
in the sense of Li (2017b), and further, any obviously dominant strategy Si in the
sense of Li (2017b) determines an obviously dominant strategic collection (Si�I∗)I∗∈Ii

in which Si�I∗ (I) = Si(I) for any I∗ ≤ I. For these reasons, we refer to such strategic
collections as obviously dominant. If a mechanism admits obviously dominant strate-
gic collections, then we say it is obviously strategy-proof (OSP).

• k = 1: That is, Ii�I∗ = {I ∈ Ii|I∗ ≤ I and I∗ < I ′ < I ⇒ I ′ /∈ Ii}, and i can plan one
move ahead but not more. We refer to the resulting simply dominant strategic col-
lections as one-step dominant. The information sets in Ii�I∗ − {I∗} are called i’s next
information sets (from the perspective of I∗). If a mechanism admits one-step domi-
nant strategic collections, then we say it is one-step simple (OSS).

• k = 0: That is Ii�I∗ = {I∗}, and i cannot plan any future moves. We refer to the re-
sulting simply dominant strategic collections as strongly obviously dominant. In this
case, we can also talk about strongly obviously dominant strategies because, as for
obvious dominance, there is a one-to-one correspondence between strategic collec-
tions (Si�I∗)I∗∈Ii

and the induced strategies Ŝi(I∗) = Si�I∗ (I∗). If a mechanism admits
strongly obviously dominant strategic collections, then we say it is strongly obviously
strategy-proof (SOSP).

EXAMPLE—Simple Dominance in Ascending Auctions: We illustrate simple domi-
nance by looking at an ascending auction for a single good. The payoff of an agent i is
equal to the agent’s value vi minus their payment if the agent receives the good and it is
equal to minus their payment otherwise. For the purposes of this example, an ascending
auction is a finite game with the following properties. At each non-terminal information
set, an agent is called to play and can take one of two possible actions: Stay In or Drop
Out. Only agents who have not dropped out yet—called active agents—are called to play.
Each non-terminal information set I is associated with the current price p(I) ≥ 0, which
weakly increases along each path of play. Whenever there is only one active agent left, the
game ends, though it can also end when there are several active agents. One of the agents

earliest point of departure between two strategies, our definition is formally equivalent to his when Ii�I∗ is the
set of all continuation information sets at which i moves. Both we and Li (2017b) require dominance only on-
path; this choice is in line with, for example, Pearce’s (1984) extensive-form rationalizability and Shimoji and
Watson’s (1998) conditional dominance. An alternative approach is to require simple dominance at all nodes
(information sets) in the game, including off-path ones.

19For instance, the planning horizon could consist of the information sets at which a measure of computa-
tional complexity of a decision problem is below some threshold; cf., for example, Arora and Barak (2009) for
a survey of computational complexity criteria.
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active when the game ends is designated the winner. The winner receives the good and
pays the price associated with the last history at which this agent moved; a winner who
has not yet moved pays 0. All other agents receive no good and pay 0.

The ascending auction is OSP because the strategy of staying in as long as the cur-
rent price is below the agent’s value is obviously dominant, as shown by Li (2017b). The
ascending auction is also OSS because the following strategic collection is one-step dom-
inant. For any information set I∗ at which i moves and p(I∗) ≤ vi, i’s strategic plan is
Si�I∗ (I∗) = In and Si�I∗ (I) = Out for all next information sets I > I∗; for any information
set I∗ at which i moves and p(I∗) > vi, the strategic plan is Si�I∗ (I) = Out for I = I∗ and
for all next information sets I > I∗. This strategic collection is one-step dominant because
if p(I∗) ≤ vi, then staying in at I∗ and planning to drop out at the next information set
gives a worst-case payoff of 0, which is no worse than dropping out now; if p(I∗) > vi,
then dropping out at I∗ is weakly better than any scenario following staying in. The as-
cending auction might be SOSP, for instance when the starting prices are higher than the
agents’ values. In general, however, the ascending auction is not SOSP: Let i be the first
mover and suppose the prices i might see along the path of the game start strictly below
vi, but prices further along the path are strictly above vi. Then, at the first move of i, no
move is strongly obviously dominant: the worst case from choosing In results in a strictly
negative payoff, which is worse than choosing Out and getting 0. Thus, In is not strongly
obviously dominant. Similarly, the payoff from choosing Out is 0, which is worse than
choosing In and winning at the current low price, and so Out is not strongly obviously
dominant, either.

REMARK 1—Plan updating and consistency: In the one-step dominant strategic collec-
tions in the example above, the action an agent plans at I∗ for the next information set
I > I∗ may differ from the action the agent chooses upon actually reaching I, that is, we
may have Si�I∗ (I) 	= Si�I (I). There is no need for such action updating in obviously domi-
nant or strongly obviously dominant strategic collections. For each OSP collection, there
is an equivalent OSP collection that is consistent in the following sense: Si�I∗ (I) = Si�I (I)
for all I ∈ Ii�I∗ and all I∗ ∈ Ii. SOSP collections are always consistent.

We emphasize that agents with inconsistent strategic plans are not necessarily time-
inconsistent or irrational. Indeed, such agents might understand that they may adjust
their plans later, and think of the partial strategic plan Si�I∗ as an argument establishing
that playing Si�I∗ (I∗) is better than any other action they could take at I∗. The tentative-
ness of such partial plans is an important possibility in the under-explored game-theoretic
paradigm of making choices as they arise, a paradigm that Savage (1954) described as
“you can cross that bridge when you come to it” (cf. Introduction).

3.3. Simplicity Gradations and Design Flexibility

A direct verification shows that the smaller the planning horizon, the stronger is the
resulting simplicity requirement. To formulate this result, for any planning horizons Ii�I∗
and I ′

i�I∗ such that I i�I∗ ⊆ I ′
i�I∗ , we say that a strategic collection (S′

i�I∗ (�i))�i∈Pi
on I ′

i�I∗ is
an I ′

i�I∗ -extension of a strategic collection (Si�I∗ (�i))�i∈Pi
on I i�I∗ if S′

i�I∗ (�i)(I) = Si�I∗ (�i

)(I) for all I ∈ I i�I∗ .

THEOREM 1—Nesting of Simplicity Concepts: If planning horizons Ii�I∗ and I ′
i�I∗ are

such that I i�I∗ ⊆ I ′
i�I∗ and strategic collection Si�I∗ is simply dominant at I∗ for I i�I∗ , then any

I ′
i�I∗ -extension of Si�I∗ is simply dominant at I∗ for I ′

i�I∗ .
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As a corollary, we conclude that the lower the parameter k, the more restrictive k-step
simplicity becomes. Further, our class of simple dominance concepts has a natural lattice
structure, with obvious dominance as its least demanding concept and strong obvious
dominance as the most demanding one.

COROLLARY 1: (i) Take k�k′ ∈ {0�1�2� � � � �∞} and assume k < k′. Then, any strategic
collection that is k-step dominant is also k′-step dominant.

(ii) If a strategic collection (Si�I∗)I∗∈Ii
is simply dominant for some collection of simple

information sets, then the induced strategy Ŝi(I∗) = Si�I∗ (I∗) is obviously dominant.
(iii) If the induced strategy Ŝi(I∗) = Si�I∗ (I∗) is strongly obviously dominant, then the strate-

gic collection is simply dominant for any (Ii�I∗)I∗∈Ii
.

From an implementation perspective, an immediate consequence of Corollary 1 is that
the set of k-step simple implementable social choice rules weakly expands as k is in-
creased. The following result shows that in general, this inclusion is strict: that is, stronger
simplicity constraints (lower k) reduce the flexibility of the designer.20

THEOREM 2—Simplicity-Flexibility Trade-off: Let k�k′ ∈ {0�1�2� � � � �∞} and assume
k′ > k. There exist preference environments and social choice rules implementable in k′-step
simple strategic collections, but not implementable in k-step simple strategic collections.

The presence of the simplicity-flexibility trade-off depends on the preference envi-
ronment. For instance, Theorem 6 shows that in some environments, there is no loss
in imposing one-step simplicity (k = 1) relative to obvious strategy-proofness (k = ∞):
in these environments, any social choice rule that is OSP-implementable is also OSS-
implementable.

To get a sense of why the inclusion can be strict, consider an environment with transfers
in which there are at least two agents and each agent’s value for an object comes from the
same support with at least three distinct values. Suppose we want to allocate the object
to the highest-value agent. This social choice rule can be implemented via an ascending
auction and ascending auctions are OSS (we establish the one-step simplicity of ascending
auctions in Theorem 6). At the same time, this social choice rule, and the price discovery it
entails, cannot be implemented via SOSP mechanisms, which resemble posted prices (the
posted price characterization of SOSP is given by our Theorem 8). For k�k′ strictly larger
than 0, the comparison is more subtle. Our proof in the Appendix constructs social rules
that are k′-step simple implementable but not k-step simple implementable in no-transfer
single-unit demand allocation environments.

3.4. Behavioral Microfoundations

We may think of simple strategic plans as providing guidance to a player that is unaf-
fected even when they may be confused about the game they are playing, in the sense
that they may mistake the game for a different game that has different players, actions,
and precedence relations at non-simple information sets. An alternative interpretation is
that the player is only given a partial description of the game: each time they are called
to move, they are told what happens at their own simple information sets, but not at

20In particular, the theorem shows that for any k < ∞, there are social choice rules that are OSP-
implementable but not k-step implementable.
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any other non-simple information set. If players have simply dominant strategic plans,
the prediction of play is unaffected by the player’s confusion or partial description of the
game.

To formalize this idea, say that game �′ is indistinguishable from � from the perspective
of agent i at information set I∗ of game � if there is an injection λ from the set of agent
i’s simple information sets Ii�I∗ in � into the set of agent i’s information sets I ′

i in �′ such
that:

1. If I1� I2 ∈ Ii�I∗ and I1 precedes I2 in �, then λ(I1) precedes λ(I2) in �′.
2. For each I ∈ Ii�I∗ , there is a bijection ηI that maps actions at agent i’s information

set I in � onto actions at agent i’s information set λ(I) in �′.
3. An outcome is possible following action a at I ∈ Ii�I∗ in � if and only if this outcome

is possible following ηI (a) at λ(I) in �′.
We say that λ(I) is the game �′ counterpart of information set I and ηI (a) is the game �′

counterpart of action a at information set I in game �. The concept of indistinguishability
captures the idea that agent i understands the precedence relation among simple infor-
mation sets, as well as the available actions and possible outcomes at these information
sets.

Simple dominance is equivalent to standard weak dominance on all games that are
indistinguishable from the game played. We say that a strategy Si of player i weakly dom-
inates strategy S′

i in the continuation game beginning at I∗ if following strategy Si leads
to weakly better outcomes for i than following strategy S′

i, irrespective of the strategies
followed by other players. Note that here, Si and S′

i denote full strategies in the standard
game-theoretic sense of a complete contingent plan of action.

THEOREM 3—Behavioral Microfoundation: For each game �, agent i, type �i, and col-
lection of simple information sets (Ii�I∗)I∗∈Ii

, the strategic plan Si�I∗ is simply dominant from
the perspective of I∗ ∈ Ii in � if and only if, in every game �′ that is indistinguishable from �
from the perspective of i at information set I∗, in the continuation game of �′ starting at the
counterpart of I∗, any strategy that at the counterpart of each I ∈ Ii�I∗ selects the counterpart
of Si�I∗ (I) weakly dominates any strategy that does not select the counterpart of Si�I∗ (I∗) at the
counterpart of I∗.

When the strategic collection is consistent, this result says that the induced global strat-
egy Si(I) = Si�I (I) is simply dominant in one game if and only if Si(I) is weakly dominant
in all indistinguishable games. When expressed in this way, this result corresponds to Li’s
(2017b) microfoundation for obvious strategy-proofness.21

3.5. Design Sufficiency of Perfect-Information Games

Under perfect information, each information set I contains a single history h and, to
keep the notation at the minimum, we identify history h and information set {h}. The
planning horizon at h∗ then becomes the set Hi�h∗ of simple histories and the collection
of planning horizons becomes (Hi�h∗)h∗∈Hi

. We denote the corresponding strategic collec-
tions by (Si�h∗)h∗∈Hi

.
Perfect-information games play a special role in designing simply dominant mecha-

nisms because for any imperfect-information simply dominant mechanism, we can find

21While the two results capture the same phenomenon, there is a slight difference between them even when
restricted to OSP, as Li’s (2017b) microfoundation assumes that λ is a bijection while we only require that λ is
an injection. This difference has no impact on the validity of the claim nor the proofs.
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an equivalent perfect-information one.22 To make this point precise, for any imperfect-
information game �, define the corresponding perfect-information game �′ with the same
set of histories as �. Given a collection of simple information sets (Ii�I∗)I∗∈Ii

in �, we de-
fine the induced collection of simple histories (Hi�h∗)h∗∈Hi

in �′ such that Hi�h∗ consists of
all histories in Ii�I∗ . For a strategic collection (Si�I∗)I∗∈Ii

, we define the induced strategic
collection (Si�h∗)h∗∈Hi

such that Si�h∗ (h) = Si�I∗ (I), where I is a continuation information
set of I∗, h∗ ∈ I∗ and h ∈ I.

THEOREM 4—Perfect-Information Reduction: If (Si�I∗)I∗∈Ii
is simply dominant in an

imperfect-information game � with simple information sets (Ii�I∗)I∗∈Ii
, then in the corre-

sponding perfect-information game �′ with the induced simple histories (Hi�h∗)h∗∈Hi
, the in-

duced strategic collection (Si�h∗)h∗∈Hi
is simply dominant.

To prove the theorem, consider an agent i with type �i. Notice that if some history h is
on-path for the strategic collection (Ŝi�h∗ (�i))h∗∈Hi

in �′, then the corresponding informa-
tion set I � h is on-path for the strategic collection (Ŝi�I∗ (�i))I∗∈Ii

in �. Furthermore, the
worst outcome following Si�h∗ (h) = Si�I∗ (I) in �′ is weakly better than the worst outcome
over the entire information set I when following this strategy. Similarly, the best outcome
following an alternative action a 	= Si�h∗ (h) at h is worse than the best outcome following
an alternative action a 	= Si�h∗ (h) over the entire information set h. Thus, if the strategic
plan Si�I∗ (I) is simply dominant in �, then the induced strategic plan Si�h∗ (�i) is simply
dominant in �′.

In light of Theorem 4, the restriction to perfect-information games does not affect the
class of social choice rules that can be implemented in simple strategies. We hence adapt
this restriction in the study of mechanism design in the next two sections.

4. CHARACTERIZING SIMPLE MECHANISMS

We now consider three special cases of the above simplicity standards—obvious dom-
inance, one-step dominance, and strong obvious dominance—and characterize simple
mechanisms and social rules in environments both with and without transfers. To make
our analysis relevant for market-design applications and to avoid general impossibility re-
sults such as the Gibbard–Satterthwaite theorem, we must allow some restrictions on the
domains of agent preferences. We formalize this as follows.

We take as a primitive a structural dominance relation over outcomes, denoted �, where
� is a reflexive and transitive binary relation on X . The notation x� y is read as “x weakly
dominates y .”23 If x � y but not y � x, then we write x � y , and say that “x strictly dom-
inates y .” For instance, in environments with transfers, outcome x dominates outcome y
for an agent if the agent receives a higher transfer under outcome x, and all else is equal.
We say that a preference ranking �i is consistent with � if x � y implies that x �i y and
x� y implies that x �i y .

22An analogous property of obvious strategy-proofness was first asserted in a footnote in Ashlagi and
Gonczarowski (2018). Following our work, Mackenzie (2020) extended this property of obvious strategy-
proofness to extensive-form games without perfect recall.

23For brevity, we write “weakly dominates” rather than “weakly structurally dominates” when the context
makes clear that we refer to outcomes, comparable in terms of �, and not to strategies, comparable in the
game-theoretic sense of weak dominance.
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We allow the possibility that different agents have different dominance relations, �i,
and therefore different preference domains. We assume that all rankings in Pi are consis-
tent with �i. If x �i y and y �i x, then x and y are �i-equivalent. Any �i determines an
equivalence partition of X . We refer to each element [x]i = {y ∈ X : x �i y and y �i x} of
the equivalence partition as a payoff. Consistency implies that each preference ranking in
Pi induces a well-defined preference ranking over payoffs in the natural way: [x]i �i [y]i if
x �i y and [x]i �i [y]i if x �i y . To avoid unnecessary formalism, we use the same symbol
for preferences over payoffs as for preferences over outcomes, and write “payoff x” for
[x]i and phrases such as “payoff x obtains” when the realized outcome belongs to [x]i.
Unless stated otherwise, we assume in this section that the preference domain Pi is rich
in the following sense: the set of induced preferences over payoffs consists of all strict
rankings over payoffs.24

The framework of rich preference domains is flexible and encompasses many standard
economic environments. Some examples of rich domains will help clarify the definitions
and notation:

• Voting: Every agent has strict preferences over all alternatives in X . This is captured
by the trivial dominance relation �i in which x �i y implies x = y for all i. Each
agent’s preference domain Pi partitions X into |X| individual payoffs. Richness im-
plies that each Pi consists of all strict preference rankings over X .

• Allocating indivisible goods without transfers: Each x ∈ X describes the entire allo-
cation of goods to each of the agents. Each agent has strict preferences over each
bundle of goods she may receive, but is indifferent over how goods she does not re-
ceive are assigned to others. This is captured by a dominance relation �i for agent
i defined as follows: x �i y if and only if agent i receives the same set of goods in
outcomes x and y . Each payoff of agent i can be identified with the set of objects
she receives. Richness implies that every strict ranking of these sets belongs to Pi for
each i.

With these two examples in mind, we say that an environment is without transfers if the
dominance relation �i is symmetric for all i.25 Non-symmetric dominance relations �i

allow us to model transfers: all else equal, having more money dominates having less.
Examples of rich domains with transfers include the following:

• Social choice with transfers: Let X = Y × WN , where Y is a set of substantive out-
comes and W �R a (finite) set of possible transfers. For a fixed y ∈ Y , agent i prefers
to pay less rather than more and is indifferent between any two outcomes that vary
only in other agents’ transfers. The structural dominance relation is (y�w) �i (y ′�w′)
if and only if y = y ′ and wi ≥w′

i, where w ≡ (wi)i∈N is the profile of transfers.
• Auctions: Let X ⊆ NO ×WN , where O is a finite set of goods and W �R is a finite

set of transfers. Each agent i prefers to win more goods and to pay less rather than

24Our use of the term richness shares with other uses of the term in the literature the idea that the domain
of preferences contains sufficiently many profiles: if certain preference profiles belong to the domain, then
some other profiles belong to it as well (cf. Dasgupta, Hammond, and Maskin (1979) and Pycia (2012)). The
more outcome pairs that are comparable by the structural dominance relation �i , the smaller the resulting
preference domain and less restrictive the simple dominance requirement. At one extreme, �i is an identity
relation for each i ∈ N , agents’ preference domains consist of all strict rankings, and simple mechanisms re-
semble dictatorships as in Gibbard (1973) and Satterthwaite (1975) and our Corollary 2. At the other extreme,
�i compares all outcomes, each agent is indifferent among all outcomes, and any strategy in any game is sim-
ple. In between these extremes, we have other classes of simple mechanisms, as we explore in this section. We
would like to thank referees for these clarifications.

25A binary relation �i is symmetric if x �i y implies y �i x. It is easy to see that this holds in the examples
without transfers above, but not in those with transfers below.
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more. Denoting by Oi the set of goods allocated to i and writing O = (Oi)i∈N , the
structural dominance relation is given by (O;w) �i (O′;w′) if and only if Oi ⊇O′

i and
wi ≥w′

i.
These are just a few examples of settings that fit into our general model. While rich-

ness is a flexible assumption, not all preference domains are rich. For instance, domains
of single-peaked preferences are typically not rich. Arribillaga, Massó, and Neme (2020)
showed that our millipede construction does not extend to single-peaked preference do-
mains.

4.1. Obvious Dominance

By Theorem 1, the weakest simplicity standard in our class is obvious dominance of Li
(2017b). Recall that, in analyzing obvious dominance, we do not need to distinguish be-
tween strategies and strategic plans; thus, for simplicity of exposition, we focus on strate-
gies in this section. If a game � admits a profile of obviously dominant strategies, then the
game and the resulting mechanism are said to be obviously strategy-proof (OSP).

In this section, we focus on environments without transfers and show that any OSP
game is equivalent to a millipede game.26 Roughly speaking, a millipede game is a clinch-
or-pass game similar to a centipede game (Rosenthal (1981)), but with possibly more
players and more actions (“legs”) at each node. A simple example of a millipede game
in an object allocation environment is a serial dictatorship in which there are no passing
moves and all payoffs that are not precluded by the earlier choices of other agents are
clinchable (cf. Section 4.3).

As a preliminary step to define millipede games, we introduce the following definitions,
which apply to any game �. Given some history h, we say that payoff x is possible for agent
i at h if there is a terminal history h̄ ⊇ h at which agent i obtains payoff x. We use Pi(h)
to denote the set of possible payoffs for i at h. We say that agent i has clinched payoff
x at history h if, at all terminal histories h̄ ⊇ h, agent i receives payoff x. If i moves at
h, takes action a ∈ A(h), and has clinched x at the history (h�a), then we call action a
a clinching action; any action at h that is not a clinching action is called a passing action.
We denote by Ci(h) the set of all payoffs x that are clinchable for i at h; that is, Ci(h) is
the set of payoffs for which there is an action a ∈ A(h) such that i has clinched x at the
history (h�a). At a terminal history h̄, no agent is called to move and there are no actions;
however, it is notationally convenient to define Ci(h̄) = {x}, where x is the payoff that i
obtains at terminal history h̄.

We further define C⊆
i (h) = {x : x ∈ Ci(h′) for some h′ ⊆ h s.t. ih′ = i} to be the set of

payoffs that i can clinch at some subhistory of h, and C⊂
i (h) ={x : x ∈ Ci(h′) for some h′ �

h s.t. ih′ = i} to be the set of payoffs that i can clinch at some strict subhistory of h. Note
that while the definition of Ci(h) presumes that i moves at h or h is terminal, the payoff
sets Pi(h), C⊆

i (h) and C⊂
i (h) are well-defined for any h, whether i moves at h or not, and

whether h is terminal or not. Finally, consider a history h such that ih′ = i for some h′ � h
and either ih = i or h is a terminal history. We say that payoff x becomes impossible for i
at h if x ∈ Pi(h′) for all h′ � h such that ih′ = i, but x /∈ Pi(h). We say payoff x is previously
unclinchable at h if x /∈ C⊂

i (h).
Given a mechanism (��SN ) and a type �i, we call strategy Si(�i) a greedy strategy if,

at any history h ∈ Hi, it satisfies the following: if the �i-best still-possible payoff in Pi(h)

26This characterization complements Li’s (2017b) result that in binary allocation environments with trans-
fers, every OSP mechanism is equivalent to a personal clock auction; cf. Section 4.2.
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is clinchable at h, then Si(�i)(h) clinches this payoff; otherwise, Si(�i)(h) is a passing
action. A greedy strategic plan is defined in the same way.27

Given these definitions, we define a millipede game as a finite extensive-form game of
perfect information that satisfies the following properties:

1. Nature either moves once, at the empty history h∅, or Nature has no moves.
2. At any history at which an agent moves, all but at most one action are clinching

actions, and following any clinching action, the agent does not move again.
3. At all h, if there exists a previously unclinchable payoff x that becomes impossible

for agent ih at h, then C⊂
ih

(h) ⊆ Cih (h).
We refer to millipede games with greedy strategies as millipede mechanisms. In a mil-

lipede game, it is obviously dominant for an agent to clinch the best possible payoff at h
whenever it is clinchable. The last condition of the millipede definition ensures that pass-
ing at h is obviously dominant when an agent’s best possible payoff at h is not clinchable.

THEOREM 5—Millipedes: Consider an environment without transfers. Every OSP mech-
anism is equivalent to a millipede mechanism. Every millipede mechanism is OSP.

This theorem is applicable in many environments. This includes allocation problems in
which agents care only about the object(s) they receive, in which case clinching actions
correspond to taking a specified (set of) object(s) and leaving the remaining objects to
be distributed amongst the remaining agents. Theorem 5 also applies to standard social
choice problems in which no agent is indifferent between any two outcomes (e.g., voting),
in which case clinching corresponds to determining the final outcome for all agents. In
such environments, we have the following:

COROLLARY 2: Let each agent’s preference domain Pi be the space of all strict rankings
over outcomes X . Then, every OSP game is equivalent to a game in which either:

(i) the first agent to move can clinch any possible outcome and has no passing action; or
(ii) there are only two outcomes that are possible when the first agent moves, and the first

mover can either clinch any of them, or can clinch one of them or pass to a second agent, who
is presented with an analogous choice, etc.

The former case of Corollary 2 is the standard dictatorship, with a possibly restricted set
of outcomes. The latter case is a generalization that allows an agent to enforce one of the
two outcomes, but not the other, at her turn; see Figure 1 for an example. In particular,
this corollary gives an analogue of the Gibbard–Satterthwaite dictatorship result, with no
efficiency assumption.

The full proof of Theorem 5 is in the Appendix; here, we provide a brief sketch of
the more interesting direction that, for any OSP game �, there is an equivalent millipede
game. We construct this millipede game via the following transformations. Starting with
any arbitrary game, we begin by breaking information sets; this only shrinks the set of
possible outcomes any time an agent is called to play, which preserves the min/max obvi-
ous dominance inequality. For similar reasons, we can shift all of Nature’s moves to the
beginning of the game, and so now have a perfect-information game �′ in which Nature

27A stronger concept of a greedy strategy would additionally require that when passing, the agent takes an
action a such that they are indifferent between the best possible payoffs at h and (h�a). (Such an action a
exists because Pi(h) = ⋃

a∈A(h) Pi((h�a)).) This distinction is immaterial for millipede games, since they have
at most one passing action at each history, and all of our results are valid for both concepts of greediness.
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FIGURE 1.—An example of a non-dictatorial millipede game in a voting environment with two outcomes,
X ={x�y}. The obviously dominant (greedy) strategy profile is for any agent to clinch if she is offered to clinch
her preferred option among {x�y}, and otherwise pass.

moves once, as the first mover.28 Second, if there are two passing actions a and a′ at some
on-path history h, then there are (by definition) at least two payoffs that are possible for
i following each. We show that obvious dominance then implies that i must have some
continuation strategy that can guarantee his top possible payoff in the continuation game
following at least one of a or a′. Then, we can construct an equivalent game via a transfor-
mation in which we add an action that allows i to clinch this payoff already at h by making
all such “future choices” today. We also rely on Li’s pruning, in which the actions no type
chooses are removed from the game tree; cf. Appendix A.1. We repeat these transforma-
tions until there is at most one passing action remaining. The final step of the proof is
to show that these transformations give us a millipede game. This last step relies on rich-
ness and shows that if there remains some h such that agent i cannot clinch her favorite
possible payoff at h, the game must promise i that she will never be strictly worse off by
passing, which is condition 3.

4.2. One-Step Dominance

One-step simple dominance is stronger than obvious dominance. To see why this
strengthening might be useful, recall that obviously dominant strategies may not be in-
tuitively simple; an already discussed stark example is White’s winning strategy in chess.
As another example, consider a no-transfer object allocation environment and the two-
player millipede game in Figure 2. At the first move, type o100 �i o1 �i o2 �i · · · �i o99 is
offered her second-favorite object, o1, while her top choice, o100, is possible. The obviously
dominant greedy strategy of this type is to pass; however, if she does so, she may not be
offered the opportunity to clinch her top object, o100, or even go back to her second-best
object, o1, until far into the future. Thus, while passing is obviously dominant, compre-
hending this requires the ability to reason far into the future of the game and to perform
lengthy backward induction.29

The more demanding concept of one-step simplicity eliminates the intuitively complex,
yet still formally obviously dominant, strategies such as White’s winning strategy in chess
and the greedy strategy in the millipede of Figure 2, while still classifying greedy strategies
in serial dictatorships and ascending auctions as simple.

28Both parts of this transformation were first asserted for OSP in a footnote by Ashlagi and Gonczarowski
(2018); cf. our Theorem 4 and Lemma A.4.

29The first 100 moves of this millipede cannot be substantially shortened because, given the players’ greedy
strategies, for k= 1� � � � �50, i can obtain ok+1 if and only if j’s top choice is o100−k+1 or a lower-indexed object,
and j can obtain o100−k+1 if and only if i’s top choice is ok or a higher-indexed object.
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FIGURE 2.—An example of a millipede game with two agents {i� j} and 100 objects {o1�o2� � � � � o100}. If the
first clinching is in an agent’s first 50 moves, then the other agent is given the choice of clinching any object he
or she could have clinched previously; if the first clinching is after the clinching agent’s first 50 moves, then the
other agent is given the choice of clinching any still-available object.

Binary Allocation With Transfers

Consider a set of outcomes X = Y ×RN , where Y ⊆ {0�1}N is a set of feasible alloca-
tions and RN is the set of profiles of transfers, one for each agent. A generic allocation is
denoted y and a generic profile of transfers w = (wi)i∈N . Agents have types θi ∈ [θi� θi],
where 0 ≤ θi < θi < ∞, and each agent’s preferences are represented by a quasilinear
utility function: ui(θi� y�w) = θiyi +wi. Following Li (2017b), we call this preference en-
vironment binary allocation with transfers.30 This framework captures many important
environments of economic interest, including single-unit auctions, procurement auctions,
and binary public goods games.

For these environments, Li introduced the class of personal clock auctions, which gen-
eralize the ascending auction in several ways: agents may face different individualized
prices (“clocks”); at any point, there may be multiple quitting actions that allow agents
to drop out of the auction, or multiple continuing actions that allow them to stay in the
auction; and when an agent quits, her transfer need not be zero. The key restrictions are
that each agent’s clock must be monotonic, and that whenever the personal price an agent
faces strictly changes, she must be offered an opportunity to quit. The formal definition
of a personal clock auction can be found in Appendix B.3 of the Supplemental Material
(Pycia and Troyan (2023)), where we also prove Theorem 6.

Li (2017b) showed that in binary allocation settings, OSP games are equivalent to per-
sonal clock auctions. We strengthen this result to show that personal clock auctions are
also OSS. Thus, in the binary setting, there is no loss in imposing one-step dominance:
any OSP-implementable social choice rule is also implementable in one-step dominant
strategic collections.

THEOREM 6—OSS and Personal Clock Auctions: In binary allocation settings with trans-
fers, every one-step simple mechanism is equivalent to a personal clock auction with one-step
dominant strategic collections. Furthermore, every personal clock auction is one-step simple.

Because our Corollary 1 shows that any OSS mechanism is also OSP, the first part of
the theorem follows from Li’s (2017b) result that any OSP mechanism is equivalent to a
personal clock auction with greedy strategies, provided we can find a profile of one-step
dominant strategic collections that replicates the play of Li’s greedy strategies. We con-
struct these collections in the proof of the second part of the theorem by generalizing the

30We allow for a continuum of types and transfers here in order to reproduce the binary allocation environ-
ment of Li (2017b). Our simplicity concepts extend to this environment when we substitute inf for min and sup
for max in our definitions. Richness plays no role in the binary allocation results.
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FIGURE 3.—An example of a monotonic millipede game. The game allocates three objects A�B, and C
to three agents (or players) 1�2, and 3. Agent 1 moves first and can clinch one of the objects A or B, or can
pass. The second move is made by agent 2, who either clinches an object (in which case the allocation is fully
determined) or passes (the passing move is only possible following a pass by 1). Agent 3 only moves following
two passes; this player can then clinch any object. If agent 3 clinches A or B, then the allocation is determined,
and if agent 3 clinches C , then agent 1 can choose between A and B.

one-step dominant strategic plans from the ascending auction example of Section 3. As
in the ascending auction, in a personal clock auction, whenever an agent’s price changes,
she is offered an opportunity to drop out. In effect, the strategic plan to stay in when-
ever an agent’s personal price is below her valuation and to plan to drop out at any next
information set is one-step dominant.

Environments Without Transfers

Recall the complex millipede game of Figure 2 that requires lengthy foresight on the
part of the agents. One-step simplicity eliminates these complex millipede games, and
leaves only millipedes that are monotonic in the following sense: a millipede game � is
monotonic if, for any agent i and any histories h, h′ such that: (h�a∗) ⊆ h′ where a∗ is a
passing action at h, ih = i, ih′ = i or h′ is terminal, and ih′′ 	= i for any h′′ such that h �
h′′ � h′, either (i) Ci(h) ⊆ Ci(h′) or (ii) Pi(h) \ Ci(h) ⊆ Ci(h′). In words, this says that if
an agent passes at h, the next time she moves, she is offered to clinch either (i) everything
she could have clinched at h or (ii) everything that was possible, but not clinchable, at
h. Some millipede games, such as serial dictatorships in which each agent only moves
once and has no passing action, are trivially monotonic; for a less trivial example of a
monotonic millipede game that allows for passing actions and more complex allocation
rules, see Figure 3. We say that a mechanism is monotonic when the underlying game is.

THEOREM 7—Monotonic Millipedes: In environments without transfers, every one-step
simple millipede mechanism is equivalent to a monotonic millipede mechanism with one-
step dominant strategic collections. Furthermore, every monotonic millipede mechanism is
one-step simple.

At any history h in a monotonic millipede game, the one-step dominant strategic plan is
as follows: if the agent can clinch her top outcome that is possible at h, then she does so;
otherwise, the agent passes at h, and for any next history h′, the strategic plan is to clinch
her top possible outcome in Ci(h′). If clause (i) of monotonicity holds, then this is at least
as good as anything she could clinch at h (since the clinchable set weakly expands); if
clause (ii) of monotonicity holds, then she obtains her best possible payoff in Pi(h), which
is again at least as good as anything that was clinchable at h.
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From the perspective of an agent playing in a game, monotonic games seem particularly
simple: each time an agent is called to move, she knows that if she chooses to pass, at her
next move, she will either be able to clinch everything she is offered to clinch currently,
or she will be able to clinch everything possible but currently unclinchable. On the other
hand, in a non-monotonic game such as that in Figure 2, an agent’s possible clinching
options may be strictly worse for many moves in the future, before eventually the agent
is re-offered what she was able to clinch in the past (or something better). If agents are
unable to plan far ahead in the game tree, it may be difficult to recognize that passing is
obviously dominant in such a game; in a monotonic game, however, agents only need to
be able to plan at most one step at a time to recognize that passing is a dominant choice.

Further, from a practical implementation perspective, monotonic games are also partic-
ularly simple for a designer to run dynamically: at each step, the designer only need tell an
agent her possible clinching options today, plus that if she passes, at her very next move,
her clinchable set will either weakly expand, or she will be offered everything possible that
she was not offered today. Such a partial, one-step-at-a-time description is simpler than
trying to describe all of the possibilities many moves in the future that would be necessary
to implement more complex, non-monotonic OSP games.

4.3. Strong Obvious Dominance, Choice Mechanisms, and Posted Prices

In light of Theorem 1, the strongest simplicity standard in our class is strong obvious
dominance. If a game � admits a profile of strongly obviously dominant strategic collec-
tions, we say that it is strongly obviously strategy-proof (SOSP). Random Priority is SOSP,31

but ascending auctions are not. Thus, SOSP further delineates the class of games that
are simple to play, by eliminating millipede games that require even one-step forward-
looking behavior. As there is a one-to-one correspondence between strongly obviously
dominant strategic collections and strongly obviously dominant strategies, for simplicity
of exposition we focus on strategies. Additionally, in this section, we make use of the con-
cept of an undominated payoff, where we say that a payoff x is undominated in a subset
of payoffs for agent i if there is no payoff y in this subset such that y �i x. A mechanism
(�� (Si(�i))i∈N ) is pruned if every information set in � is on the path of play for some type
of some player. Li (2017b) observed that every OSP mechanism is equivalent to a pruned
OSP mechanism. The same is true for SOSP; cf. Appendix A.1.

Strongly obviously strategy-proof games are particularly simple to play. Any strongly
obviously dominant strategy is greedy. Further, SOSP games can be implemented so that
each agent is called to move at most once and has at most one history at which her choice
of action is payoff-relevant. Formally, we say a history h at which agent i moves is payoff-
irrelevant for this agent if i receives the same payoff at all terminal histories h̄ ⊃ h; if i
moves at h and this history is not payoff-irrelevant, then it is payoff-relevant for i. The
definition of SOSP and richness of the preference domain give us the following.

LEMMA 1: Along each game path of a pruned SOSP mechanism, there is at most one
payoff-relevant history for each agent.

31By Random Priority we mean the following mechanism that is commonly used to allocate indivisible ob-
jects to a group of agents: first, Nature randomly selecting an ordering of the agents, and then the agents
are called one at a time in this order to select their favorite still-remaining object at their turn (cf. Abdulka-
diroğlu and Sönmez (1998), Bogomolnaia and Moulin (2001), and Liu and Pycia (2016) who studied the direct
mechanism implementation of Random Priority). This mechanism is also sometimes called Random Serial
Dictatorship, and is a special case of the more general sequential choice mechanisms we characterize in this
section.
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This result—proven in Appendix B.5 of the Supplemental Material—allows us to fur-
ther conclude that, for a given game path, the unique payoff-relevant history (if it exists)
is the first history at which an agent is called to move. While an agent might be called
to act later in the game, and her choice might influence the continuation game and the
payoffs for other agents, it cannot affect her own payoff.

Building on Lemma 1, we show that SOSP effectively implies that agents—in a
sequence—are faced with choices from personalized menus; for example, in allocation
with transfers, this may be menus of object-price pairs. At the typical payoff-relevant his-
tory, an agent is offered a menu of payoffs that she can clinch, she selects one of the
alternatives from the menu, and she is never called to move again. More formally, we
say that � is a sequential choice game if it is a perfect-information game in which Nature
moves first, if at all. The agents then move sequentially, with each agent called to play
at most once. The ordering of the agents and the sets of possible outcomes at each his-
tory are determined by Nature’s action and the actions taken by earlier agents. As long as
there are either at least three distinct undominated payoffs possible for the agent who is
called to move or there is exactly one such payoff, the agent can clinch any of the possible
payoffs. When exactly two undominated payoffs are possible for the agent who moves, the
agent can be faced with either (i) a set of clinching actions that allow the agent to clinch
either of the two payoffs, (ii) a passing action and a set of clinching actions that allow the
agent to clinch exactly one of these payoffs. Note that we allow potentially many ways of
clinching the same payoff; we can conceptualize the many ways of clinching a fixed payoff
as clinching it and sending a message from a predetermined set of messages. Note also
that (ii) does not allow the agent to clinch the other payoff.

THEOREM 8—Sequential Choice: Every strongly obviously strategy-proof mechanism is
equivalent to a sequential choice mechanism with greedy strategies. Every sequential choice
mechanism with greedy strategies is strongly obviously strategy-proof.

Theorem 8 applies to any rich preference environment, including both those with and
without transfers. In an object allocation model without transfers, every SOSP mechanism
resembles a priority mechanism (or, sequential dictatorship), in which agents are called
sequentially and offered to clinch any object that still can be clinched given earlier clinch-
ing choices; they pick their most preferred object and leave the game. The key difference
between a sequential choice game and priority mechanisms is that at an agent’s turn in
sequential choice, she need not be offered all still-available objects.

In environments with transfers, sequential choice games can be interpreted as sequen-
tial posted-price games. In a binary allocation setting with a single good and transfers,
each agent is approached one at a time, and given a take-it-or-leave-it (TIOLI) offer of
a price at which she can purchase the good; if an agent refuses, the next agent is ap-
proached, and given a (possibly different) TIOLI offer, etc. If there are multiple objects
for sale, each agent is offered a menu consisting of several bundles of objects with associ-
ated prices, and selects her most preferred option from the menu.

Price mechanisms are ubiquitous in practice. Even on eBay, which began as an auc-
tion website, Einav, Farronato, Levin, and Sundaresan (2018) documented a dramatic
shift in the 2000s from auctions to posted prices as the predominant selling mechanism.
Posted prices have also garnered significant attention in the computer science community.
For instance, computing the optimal allocation in a combinatorial Vickrey auction can be
complex even from a computational perspective, and several papers have shown good per-
formance using sequential posted-price mechanisms (e.g., Chawla, Hartline, Malec, Sivan
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(2010) and Feldman, Gravin, and Lucier (2014)). By formalizing a strategic simplicity-
based explanation for the popularity of these mechanisms, our Theorem 8 complements
this literature.32

5. CONCLUSION

We study the question of what makes a game simple to play, and introduce a gen-
eral class of simplicity standards that vary the planning horizons of agents in extensive-
form imperfect-information games. We allow agents that form a strategic plan only for
a limited horizon in the continuation game, and the agents may update these plans as
the game progresses and the future becomes the present. The least restrictive simplicity
standard included in our class is Li’s (2017b) obvious strategy-proofness, which presumes
agents have unlimited foresight of their own actions, while the strongest, strong obvious
strategy-proofness, presumes no foresight. For each of these standards, as well as an in-
termediate standard of one-step simplicity, we provide characterizations of simple mech-
anisms in various environments with and without transfers, and show that our simplicity
standards delineate classes of mechanisms that are commonly observed in practice. We
show that SOSP delineates a class of posted-price mechanisms, OSS delineates a class
of ascending clock mechanisms, and OSP delineates a richer class of mechanisms we call
millipedes.33 Along the way, we provide a logically consistent—though limited to simple
games—approach to the analysis of agents with limited foresight.

Our results contribute to the understanding of the fundamental trade-off between sim-
plicity of mechanisms and the ability to implement other social objectives, such as effi-
ciency and revenues. In environments with transfers, Vickrey (1961), Riley and Samuel-
son (1981), Myerson (1981), Manelli and Vincent (2010), and Gershkov, Goeree, Kush-
nir, Moldovanu, and Shi (2013) showed that the efficiency and revenues achieved with
Bayesian implementation can be replicated in dominant strategies; thus, the accompa-
nying increase in simplicity may come without efficiency and revenue costs. Li (2017b)
and our paper advance this insight further and establish that obviously strategy-proof
and one-step simple mechanisms can also implement efficient outcomes (and revenue-
maximizing outcomes).34 At the same time, strong obvious dominance is more restric-
tive, and more severely limits the class of implementable objectives. In environments
with transfers, SOSP generally precludes efficiency and revenue maximization.35 In envi-
ronments without transfers, however, even SOSP mechanisms—serial dictatorships—can
achieve efficient outcomes. Building on the results of the present paper, in single-unit
demand allocation problems without transfers, Pycia and Troyan (2023) and Pycia (2019)

32Prior economic studies on the focal role of posted prices in mechanism design—for example, Hagerty and
Rogerson (1987) and Copic and Ponsati (2016)—focused on bilateral trade, while our analysis is applicable to
any economic environment satisfying our richness assumption.

33Building on these results, Pycia and Troyan (2023) showed that every obviously strategy-proof, Pareto
efficient, and symmetric mechanism is equivalent to Random Priority.

34In Li’s binary allocation settings, we show that all OSP mechanisms can be simplified to OSS.
35For instance, when we want to allocate an object to the highest value agent with transfers and with at

least two agents, and agents’ values are drawn i.i.d. from among at least three values, an impossibility result
obtains: no SOSP and efficient mechanism exists. This is implied by Theorem 8. This also shows that SOSP
mechanisms raise less revenue than optimal auctions. On the other hand, Armstrong (1996) showed that posted
prices achieve good revenues when bundling allows the seller to equalize the valuations of buyers, and Chawla
et al. (2010) and Feldman, Gravin, and Lucier (2014) showed that sequential price mechanisms achieve decent
revenues even without the bundling/equalization assumption.



THEORY OF SIMPLICITY IN GAMES AND MECHANISM DESIGN 1517

showed that the restriction to strongly obvious strategy-proof mechanisms allows the de-
signer to achieve virtually the same efficiency and many other objectives as those achiev-
able in merely strategy-proof mechanisms. Thus, in many environments, simplicity entails
no efficiency loss. In other environments, the trade-off between simplicity and efficiency
is more subtle. Our Theorem 2 shows that, in general, imposing more restrictive simplicity
standards on the mechanisms limits the set of implementable social choice functions.36

Our work is complementary to the experimental literature on how mechanism partici-
pants behave and what elements of design enable them to play equilibrium strategies; cf.,
for example, Kagel, Harstad, and Levin (1987) and Li (2017b). While this literature iden-
tifies implementation features that facilitate play and confirms that obviously strategy-
proof mechanisms are indeed simpler to play than merely strategy-proof mechanisms,
while strongly obviously strategy-proof mechanisms are easier still and nearly all partici-
pants play them as expected (see Bo and Hakimov (2020) and Chakraborty and Kendall
(2022)),37 our general theory of simplicity opens new avenues for experimental investiga-
tions. For instance, we may define the simplicity level of a game in terms of the smallest
(in an inclusion sense) set of future histories that an agent must see as simple in the sense
of Section 4 in order to play the equilibrium strategy correctly, or as the highest k that still
allows the agent to play k-simple strategies correctly. We may similarly define the mea-
sure of sophistication of experimental subjects as the highest k that allows the subjects to
play k-simple strategies correctly.

In sum, the sophistication of agents may vary across applications, and so it is important
to have a range of simplicity standards. For sophisticated agents, a weaker simplicity stan-
dard ensures they play the intended strategies, allowing the designer more flexibility on
other objectives; however, for less sophisticated agents, a stronger standard of simplicity
may need to be imposed to ensure the intended strategies are played, with potential lim-
itations on flexibility. Understanding the simplicity of games and the simplicity-flexibility
trade-off requires an adaptable approach to thinking about simplicity. This paper puts
forth one such proposal, though there is much work still to be done in fully exploring this
trade-off and testing various simplicity standards empirically.

APPENDIX A: PROOFS

This appendix contains the central elements of the proofs of our main theorems. All
lemmas used in these proofs, as well as Theorem 6 and Lemma 1 from the main text, are
proven in the Supplemental Material.

A.1. Pruning Principle

Given a game � and strategy profile (Si(�i))i∈N , the pruning of � with respect to
(Si(�i))i∈N is a game �′ that is defined by starting with � and deleting all histories of
� that are never reached for any type profile. Li (2017b) introduced the following pruning
principle: if (Si(�i))i∈N is obviously dominant for �, then the restriction of (Si(�i))i∈N to
�′ is obviously dominant for �′, and both games result in the same outcome. Thus, for

36A different approach to the trade-off between simplicity and flexibility was proposed by Li and Dworczak
(2020), who studied strategy-proofness, obvious strategy-proofness, and strong obvious strategy-proofness.
While we evaluate this trade-off for designers who never confuse the mechanism participants, they evalu-
ated it for designers who can confuse participants. See also work in progress by Catonini and Xue (2021), who
studied a weakening of one-step simplicity.

37For a test of the first claim, see also Breitmoser and Schweighofer-Kodritsch (2019).
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FIGURE 4.—A game in which greedy strategies are two-step simple and for which no equivalent one-step
simple mechanism exists.

any OSP mechanism, we can find an equivalent OSP pruned mechanism. For strong ob-
vious dominance, the pruning principle remains valid: if (Si(�i))i∈N is strongly obviously
dominant for �, then the restriction of (Si(�i))i∈N to its pruning �′ is strongly obviously
dominant for �′, and both games result in the same outcome.

A.2. Proof of Theorem 2

In light of Corollary 1, it is sufficient to prove the result for k < ∞ and k′ = k+ 1. For
k = 0, the result follows from Theorems 6 and 8, applied to a single-unit auction with
transfers. Theorem 6 shows that in such a setting, personal clock auctions are efficient
and OSS, while Theorem 8 implies that an efficient, SOSP (k = 0) mechanism does not
exist when there are at least two agents whose valuations are drawn i.i.d. from at least
three values (see also footnote 35). For k = 1, we construct below a 2-step simple social
choice rule that cannot be one-step implemented; we conclude the proof by extending
this example to any larger k.

Consider an object allocation environment without transfers in which agents demand
exactly one object each. There are at least three agents i� j� � and the objects included in
the game � are shown in Figure 4. Each branch of the game tree represents a clinching
action where the agent clinches the labeled object (x� x̃, etc.). The notation such as “�→
γ” below terminal nodes denotes that agent � is assigned to object γ at this node, without
needing to take any action. The root of the game is agent i’s choice between clinching
x and passing. If i clinches x at the first move, then the game immediately ends with
j assigned αj and � assigned α�, and further, this is the only terminal history at which
j receives αj and � receives α�. Similarly, there are objects β�, γ�, and δ� that agent �
receives only at the denoted terminal histories, and nowhere else in the game.

It is straightforward to check that (��SN �H), where SN �H is a profile of greedy strategic
collections, is k-step implementable for any k ≥ 2; in particular, this implies that � is
OSP. It is also easy to check that � itself is not OSS: the type of i that ranks w �i x �i z
has no one-step simple strategic plan when choosing between x and passing at the first
move of the game. Showing that the social choice rule implemented by (��SN �H) cannot
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FIGURE 5.—A game in which greedy strategies are three-step simple and for which no equivalent two-step
simple mechanism exists.

be OSS-implemented by any other mechanism is subtler, and we relegate the proof of
the following lemma establishing this statement to Appendix B.1 of the Supplemental
Material.

LEMMA A.1: No one-step simple mechanism is equivalent to (��SN �H).

For k = 2, game �(2) in Figure 5 is an example that is k′-step simple for any k′ > k, but
for which no equivalent k-step simple mechanism exists. This game is similar in structure
to that of Figure 4, but has the following additions:

(i) In the subgame following i passing and j clinching x at its first move, we add the
possibility of i clinching z′. In this way, we assure that i can then clinch any possible and
not previously clinchable object.38

(ii) In the subgame following i and j passing and � clinching a at its first move, we add
the possibility of i clinching z′ (following which j can clinch x and x̃). In this way, we
assure that i can clinch any possible and not previously clinchable object.

(iii) Following i’s pass at its second move on the focal path, we add a node at which �
can clinch two new objects a′ and ã′ (following the clinching of a′, agent i can clinch any
possible not previously clinchable object, and then j can clinch any previously clinchable
object; following the clinching of ã′, agent j can clinch any previously clinchable object,
and then following the clinching of x, agent i can clinch any possible but not previously
clinchable objects, while following the clinching of x̃, agent i can clinch any previously
clinchable object).

(iv) Following the pass at the added node for �, we add a node at which i can clinch an
additional object z′. Following i clinching z′, � and then j can clinch any object they could
clinch previously.

To prove the theorem for arbitrary k ≥ 2, we recursively create game �(k) by adding to
game �(k−1) further objects z(k) , a(k) , and ã(k) , and then adding the analogues of subgames
(i)–(iv). In the analogues of subgames (i)–(ii), we now allow i to additionally clinch z(k);
in the analogue of (iii), a(k) and ã(k) play the roles of a and ã, and in the analogue of (iv),
z(k) plays the role of z.

38This property and the property in (ii) were also true in game � in Figure 4 and these two modifications
simply reestablish these properties for the game �(2) in Figure 5, in which z′ becomes possible for i.
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It is straightforward to check that (�(k)� S
(k)
N �H) is (k + 1)-step simple but not k-step

simple, where S
(k)
N �H is a profile of greedy strategic collections. Showing that no equivalent

mechanism is k-step simple is done similarly to the k = 1 case. The details can be found
in Appendix B.1 of the Supplemental Material.

LEMMA A.2: For any k ≥ 2, no k-step-simple mechanism is equivalent to (�(k)� S
(k)
N �H).

Lemmas A.1 and A.2 establish the result for k≥ 1.

A.3. Proof of Theorem 3

The proof develops the proof of the similar result for OSP in Li (2017b). For one di-
rection of implication, suppose the strategic plan Si�I∗ is simply dominant from the per-
spective of I∗ ∈ Ii in �. Then any outcome that is possible after playing Si�I∗ at all infor-
mation nodes I ∈ Ii�I∗ is weakly better than any outcome that is possible after playing
S′
i(I

∗) 	= Si�I∗ (I∗) in �, and hence the analogue of this “weakly better” comparison applies
to the counterparts of these actions in any game �′ that is indistinguishable from � from
the perspective of i at I∗ (by condition (3) of indistinguishability). Hence, in any such
�′, every strategy S′

i that calls for playing the counterparts of actions Si�I∗ (I) for counter-
parts of all I ∈ Ii�I∗ weakly dominates any strategy S′′

i that does not call for playing the
counterpart of Si�I∗ (I∗) at the counterpart of I∗.

For the other direction of implication, fix information set I∗ at which i moves, prefer-
ence ranking �i of agent i, and a partial strategic plan Si�I∗ such that in every game �′ that
is indistinguishable from � from the perspective of agent i at I∗, any strategy S′

i that plays
counterparts of Si�I∗ (I) for all counterparts of I ∈ Ii�I∗ weakly dominates any strategy S′′

i

that plays at the counterpart of I∗ another action than the counterpart of Si�I∗ (I∗). Our
goal is to show that any outcome that is possible when i follows Si�I∗ at information sets
Ii�I∗ is �i-weakly preferred to any outcome that is possible after i plays any a 	= Si�I∗ (I∗)
at I∗ in game �. To prove it, consider �′ which differs from � only in that all moves of
agent i and other agents that follow history h∗ but are not in Ii�h∗ are made by Nature
instead of the party making them in � and that Nature puts positive probability on all its
possible moves. Notice that such �′ is indistinguishable from � from the perspective of i
at I∗. As in �′ any strategy that selects counterparts of Si�I∗ at any counterpart of I ∈ Ii�I∗
weakly dominates any strategy S′′

i that selects a at the counterpart of I∗, we conclude from
condition (3) of indistinguishability that, in �, any outcome that is possible after i follows
Si�I∗ at information sets in Ii�I∗ is weakly better than any outcome that is possible following
a.

A.4. Proof of Theorem 5

Section 4 introduces the notions of possible and clinchable payoffs at a history h, and
the sets of such payoffs, denoted Pi(h) and Ci(h), respectively. For the proof, we also
need the notion of a guaranteeable payoff: a payoff x is guaranteeable for i at h if there is
some continuation strategy Si such that i receives payoff x at all terminal histories h̄ ⊇ h
that are consistent with i following Si. We use Gi(h) to denote the set of payoffs that are
guaranteeable for i at history h.

The proof is broken down into five steps, stated as Lemmas A.3–A.7 below. The proofs
of these lemmas can be found in Appendix B.2 of the Supplemental Material. First, we
check there that all millipede games with greedy strategies are OSP, establishing one di-
rection of the theorem.
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LEMMA A.3: Millipede games with greedy strategies are obviously strategy-proof.

Given Li’s pruning principle (see Section A.1), the converse implication of Theo-
rem 5—that all OSP mechanisms are equivalent to millipedes—follows from the remain-
ing four lemmas.39 Lemma A.4 develops Theorem 4 (see this theorem for a discussion):

LEMMA A.4: Every OSP game is equivalent to an OSP game with perfect information in
which Nature moves at most once, as the first mover.

Lemma A.5 shows that if a game is OSP, then at every history, for all actions a with the
exception of possibly one special action a∗, all payoffs that are possible following a are
also guaranteeable at h.40

LEMMA A.5: Let � be an obviously strategy-proof game of perfect information that is
pruned with respect to the obviously dominant strategy profile (Si(�i))i∈N . Consider a his-
tory h where agent ih = i is called to move. There is at most one action a∗ ∈ A(h) such that
Pi((h�a∗)) �Gi(h).

The above lemma leaves open the possibility that there are several actions that can
ultimately lead to multiple final payoffs for i, which can happen when different payoffs
are guaranteeable for i by following different strategies in the future of the game. The
next lemma shows that if this is the case, we can always construct an equivalent OSP
game such that all actions except for possibly one are clinching actions.

LEMMA A.6: For any OSP game �, there exists an equivalent OSP game �′ such that the
following hold at each h ∈H (where i is the agent called to move at h):

(i) At least |A(h)|− 1 actions at h are clinching actions.
(ii) For every payoff x ∈Gi(h), there exists an action ax ∈A(h) that clinches x for i.
(iii) If Pi(h) =Gi(h), then all a ∈ A(h) are clinching actions and ih′ 	= i for any h′ � h.

The final lemma of the proof establishes the payoff guarantees in the game constructed
in the previous lemmas.

LEMMA A.7: Let (��SN ) be an obviously strategy-proof mechanism that satisfies the con-
clusions of Lemmas A.4 and A.6. At all h, if there exists a previously unclinchable payoff z
that becomes impossible for agent ih at h, then C⊂

ih
(h) ⊆ Ci(h).

This lemma concludes the proof of Theorem 5.

A.5. Proof of Theorem 7

We first prove the second statement. Let � be a monotonic millipede game. Fix an agent
i, and, for any history h∗ at which i moves, let x̄h∗ = Top(�i� Pi(h∗)) and ȳh∗ = Top(�i

�Ci(h∗)). Let Hi�h∗ = {h ∈ Hi|h∗ � h′ � h =⇒ h′ /∈ Hi} be the set of one-step simple
nodes. Consider the following strategic plan for any h∗:

39We actually prove a slightly stronger statement, which is that every OSP game is equivalent to a millipede
game that satisfies the following additional property: for all i, all h at which i moves, and all x ∈ Gi(h), there
exists an action ax ∈A(h) that clinches x (see Lemma A.6 below).

40We emphasize the distinction between a payoff x being “guaranteeable” versus “clinchable”: the latter
means the agent receives x at all terminal histories, while the former means there is a continuation strategy Si

such that she receives x at all terminal histories consistent with Si .
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• If x̄h∗ ∈ Ci(h∗), then Si�h∗ (h∗) = ax̄h∗ , where ax̄h∗ ∈ A(h∗) is a clinching action for x̄h∗ .
• If x̄h∗ /∈ Ci(h∗), then Si�h∗ (h∗) = a∗ (i passes at h∗), and, for any other h ∈Hi�h∗ :

– If Pi(h∗) \Ci(h∗) ⊆ Ci(h), then Si�h∗ (h∗) = ax̄h∗ .
– Else, we have Ci(h∗) ⊆ Ci(h) (by monotonicity) and we set Si�h∗ (h∗) = aȳh∗ .

It is straightforward to verify that this strategic plan is one-step dominant at any h∗, and
thus the corresponding strategic collection (Si�h∗)h∗∈Hi

is also one-step dominant.
In order to prove the first statement, let (��SN �H) be a millipede mechanism with a

profile of one-step dominant strategic collections SN �H. Begin by constructing an equiva-
lent millipede mechanism that satisfies Lemma A.6. Note that the transformations used
in the proof to construct the equivalent millipede mechanism are one-step dominance
preserving—that is, if (��SN �H) was an OSS millipede mechanism before the transfor-
mation, then the transformed game (�′� S′

N �H) is another OSS millipede mechanism that
satisfies Lemma A.6. It remains to show the following:

LEMMA A.8: Any OSS millipede mechanism that, at each h ∈ H, satisfies conditions (i),
(ii), and (iii) of Lemma A.6 is monotonic.

We prove this lemma in Appendix B.4 of the Supplemental Material.

A.6. Proof of Theorem 8

That sequential choice mechanisms are SOSP is immediate from the definition, and
so we focus on proving that every SOSP mechanism is equivalent to a sequential choice
mechanism. Following the same reasoning as in the proof of Lemma A.4, given any SOSP
mechanism, we can construct an equivalent SOSP mechanism of perfect information in
which Nature moves at most once, as the first mover. It remains to analyze the subgame
after a potential move by Nature and to show that every perfect-information SOSP mech-
anism in which there are no moves by Nature is equivalent to a sequential choice mecha-
nism.

Let (��SN ) be such a mechanism. In line with the discussion in Section A.1, we can
assume that � is pruned. By Lemma 1, each agent i can have at most one payoff-relevant
history along any path of �, and this history (if it exists) is the first time i is called to play.
Consider any such history hi

0. If there is some other history h′ ⊃ hi
0 at which i is called to

play, then history h′ must be payoff-irrelevant for i; in other words, there is some payoff
x such that Pi((h′� a′)) = {x} for all a′ ∈ A(h′). Using the same technique as in the proof
of Lemma A.6, we construct an equivalent pruned game in which at history hi

0, i is asked
to also choose her actions for all successor histories h′ ⊃ hi

0 at which she might be called
to play, and then is not called to play again after hi

0. Since all of these future histories
were payoff-irrelevant for i, the new game continues to be strongly obvious dominant for
i. Strong obvious dominance is also preserved for all j 	= i, since having i make all of her
choices earlier only shrinks the set of possible outcomes any time j is called to move,
and thus, if some action was strongly obviously dominant in the old game, the analogous
action(s) will be strongly obviously dominant in the new game. Repeating this for every
agent and every history, we construct a pruned SOSP game �′ that is equivalent to � and
in which each agent is called to move at most once along any path of play. It remains to
show the following:

LEMMA A.9: �′ with greedy strategies is a sequential choice mechanism.

We prove this lemma in Appendix B.6 of the Supplemental Material.
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