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RELATIONAL CONTRACTS: PUBLIC VERSUS PRIVATE SAVINGS
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Work on relational employment agreements often predicts low payments or termi-
nation for poor performance. The possibility of saving can, however, limit the effec-
tiveness of monetary incentives in motivating an employee with diminishing marginal
utility for consumption. We study the role of savings and their observability in opti-
mal relational contracts. We focus on the case where players are not too patient, and
hence the constant first-best effort cannot be implemented. If savings are hidden, the
relationship eventually deteriorates over time. In particular, both payments and effort
decline. On the other hand, if savings are public, consumption is initially high, so the
agent’s savings fall over time, and effort and payments to the agent increase. The find-
ings thus suggest how tacit agreements on consumption can forestall the deterioration
of dynamic relationships in which the agent can save.

KEYWORDS: Relational contracts, consumption smoothing preferences, private sav-
ings.

1. INTRODUCTION

WORK ON RELATIONAL CONTRACTS has examined the role of commitment in employ-
ment relationships. Yet, the role of employee savings in this context is still not well un-
derstood. From the perspective of incentive provision, the possibility that the employee
accumulates wealth creates a potential difficulty. If the employee can become wealthy, he
will be less reliant on the employer’s pay, as his options outside the relationship are then
more attractive. We study how this difficulty is managed in optimal relational contracts,
focusing on the role of the observability of savings and consumption.

In our model, an employer (the principal) is in a repeated relationship with a worker
(the agent). The agent provides effort determining output and also chooses how much to
consume and to save. The principal has linear preferences over money, and the agent has
concave utility for consumption implying a preference for smooth consumption streams.
The agent cannot commit to future effort or consumption and the principal cannot com-
mit to future pay. Effort and pay are publicly observable, and we contrast the situation
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where savings/consumption are private to the agent with that in which these decisions
are public information. We characterize relational contracts that maximize the principal’s
discounted payoff.

Private Savings. We begin by considering the case where the agent can privately con-
sume and save. The “private savings problem” has by now a long tradition in work on
dynamic contracting where the principal commits to the contract. Particularly relevant
to our paper is work on private savings in dynamic moral hazard, where there is im-
perfect monitoring of effort (see a detailed discussion of the literature in Section 6).1
There is little work, however, on agreements with private savings but without commit-
ment. To our knowledge, the main exception is Ábrahám and Laczó (2018) who study
constrained-efficient agreements between two risk-averse agents in a setting of mutual
insurance (without effort) when there is both private and public savings, and which we
discuss below.

We contribute to the understanding of relationships with private savings and without
commitment by characterizing optimal relational contracts in the employment setting de-
scribed above. It is without loss to consider punishments for public deviations that involve
autarky; this means the cessation of effort and pay. Two types of incentive compatibility
conditions are then relevant. The first is standard in work on relational contracts: the prin-
cipal’s payment cannot be larger than the continuation value the relationship has to her.
This sets a limit on how much the principal can credibly pay to the agent. The second type
of compatibility condition is new and concerns the incentive of the agent to follow the
consumption and effort specified in the agreement. While there are many ways in which
the agent can deviate jointly in effort and consumption, we identify the critical deviations
to be those where the agent (a) follows the agreed effort up to any given date and then
shirks by supplying zero effort forever, and (b) reduces consumption from the beginning
so that he perfectly smooths over his lifetime the income derived up to the date at which
he begins to shirk. These deviations thus involve the agent secretly saving more in antici-
pation of a public defection on the agreement. Such deviations represent the optimal ones
for the agent: provided they are not profitable, agent incentive compatibility is assured.

Now consider the principal’s optimal contract and in particular the role of the con-
straints preventing the agent’s critical deviations. If the principal was able to commit to
payments, she would ask for a constant (first-best) level of effort and pay to the agent
would rise over time. The reason the agent’s pay must be increasing is the following.
As the agent obediently works more periods, he values additional payments less. This is
because the agent can smooth his earnings over his lifetime and because of diminishing
marginal utility for consumption. It follows that the agent must be paid more at later dates
to induce the same level of effort.

Returning to the case without commitment, when the players are sufficiently patient,
the first-best effort can be sustained. Otherwise, we find that effort is initially constant,
and then eventually declines over time. The reason is related to the need to compensate
the agent more at later dates for any given level of effort, as identified above. As time
passes, the agent’s higher pay relative to effort reduces the profits of the principal. Be-
cause future profits are lower, the principal can then only credibly promise lower levels

1Contributions include Werning (2002), Kocherlakota (2004), Ábrahám and Pavoni (2005), Mitchell and
Zhang (2010), Ábrahám, Koehne, and Pavoni (2011), Edmans, Gabaix, Sadzik, and Sannikov (2012), He
(2012), and Di Tella and Sannikov (2021).
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of pay. This in turn depresses the sustainable effort and profits, which creates a feedback
loop.

The effects described above are new. The dynamics of the optimal contract are driven
by the constraints ensuring the agent does not engage in the “double deviations” of se-
cretly increasing savings and later publicly defecting. This is not the case in Ábrahám
and Laczó (2018). They solve a relaxed problem that omits constraints related to double
deviations where agents secretly increase savings and then later quit the agreement for au-
tarky. They then check numerically that this is justified when the return on savings is not
too high, concluding that private savings in the constrained-efficient agreements are zero
in this case. They therefore argue that the “characteristics of the constrained-efficient
allocations� � � are the same” (p. 17) whether or not the agent can privately save. When
the return on savings is higher, however, agents’ double deviations cannot be ignored,
and so no results are provided.

Due to the forces explained above, pay to the agent is eventually strictly declining with
time whenever the principal cannot achieve the first-best payoff. Because equilibrium
consumption is constant, the agent’s savings are eventually increasing. These predictions
contrast with what occurs in the dynamic moral hazard literature with private savings
where the players fully commit. In particular, in situations where the agent can borrow
as well as save, the principal is unconstrained in the timing of payments and the optimal
timing of pay is indeterminate. For instance, the principal can always delay payments,
effectively “saving for the agent.” Given the indeterminacy in pay, the convention has
been to consider pay that requires the agent to have zero savings in equilibrium. Papers
where pay is indeterminate and this convention is invoked include Ábrahám, Koehne, and
Pavoni (2011), Edmans et al. (2012), and Williams (2015) (an early reference is Cole and
Kocherlakota (2001), although this studies an insurance setting).

Public Savings. We compare our results with the case where consumption and savings
by the agent are observable by the principal. This case is also new to the principal-agent
literature. For the public-consumption case, first-best effort and consumption is again
sustainable when the players are sufficiently patient. Otherwise, the dynamics of the re-
lationship stand in sharp contrast to what occurs for private savings. First, the agent’s
consumption is distorted: it is high in the initial periods and lower in later ones. Also, the
relational contract induces the agent to dissave, worsening his outside option from exit-
ing the contract. As the agent becomes poorer, he is more willing to trade high effort for
pay and the relationship becomes more profitable for the principal. The level of pay and
effort that can be sustained increases with time. The advantage of a relationship in which
the agent becomes impoverished with time is that the principal’s higher profitability at
later dates relaxes her credibility constraint in early periods. This increases the pay that is
credible early on and increases the sustainable level of effort. Impoverishment is shown
to continue indefinitely, with the balance on the agent’s account approaching a level at
which the first best is sustainable. That is, we obtain convergence to efficiency in the long
run.

The fact that the agent becomes poorer over time is reminiscent of immiseration re-
sults such as Thomas and Worrall (1990) where the agent’s utility declines without bound
with probability one. However, note that the classical immiseration results are driven by
the provision of incentives for information revelation, rather than the absence of commit-
ment, which is responsible for the agent’s impoverishment in our paper.
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Broader Implications. The contrast between private and public savings may have
broader implications for settings with limited commitment where agents can invest in
their outside options. Savings is one possible investment, but other possibilities include
physical capital accumulation, for example, Kehoe and Perri (2002), or investment in hu-
man capital, for example, Voena (2015). In such settings, lower outside options tend to
enhance the efficiency of the relationship, and optimal investments must be determined in
light of such effects. As noted, the role of private investment in outside options has been
explored little to date. With private investments, optimal relationships can be shaped by
agents’ abilities to gradually and secretly invest from the beginning. In this sense, what
can matter is agents’ potential outside options, that is, the ones they can access if investing
more from the beginning than they do on path. We demonstrate this in our setting where
the possibility of private investment in outside options hampers efficiency and causes the
relationship to deteriorate over time. To our knowledge, we are the first to establish such
effects.

The organization of the rest of the paper is as follows. Section 2 introduces the setting.
Section 3 solves the case where both principal and agent can commit. Section 4 addresses
the case with limited commitment where savings are private, and Section 5 the case with
limited commitment where savings are public. Section 6 provides a review of the litera-
ture. Appendix contains proofs of key results. The Appendix in the Online Supplementary
Material (Dilmé and Garrett (2023)) discusses anecdotal evidence suggesting the impor-
tance of high consumption for the efficiency of principal-agent relationships.

2. SETTING

Environment and Preferences. A principal and agent meet in discrete time at dates
t = 1�2� � � � . Letting r > 0 be the interest rate that will apply to the balance on the agent’s
savings account, we suppose the players have a common discount factor δ= 1

1+r . In every
period t, first the agent exerts an effort et and consumes an amount ct . Then the principal
makes a discretionary payment wt to the agent. These variables are all restricted to be
nonnegative.

The agent has initial savings balance b1 > 0 as well as access to a savings technology
(with the interest rate r as specified above). Throughout, the initial balance is common
knowledge between the principal and agent. The agent’s balance at time t + 1 > 1 then
satisfies

bt+1 = bt +wt − ct
δ

= b1δ
−t +

t∑
s=1

δs−t−1(ws − cs)� (1)

Balances can, in principle, be negative (i.e., the agent can borrow). We say that the agent’s
intertemporal budget constraint is satisfied in case

∞∑
t=1

δt−1ct ≤ b1 +
∞∑
t=1

δt−1wt� (2)

The agent’s felicity from consumption ct in any period t is denoted v(ct), where v :
R+ → R ∪ {−∞}. We assume that v(c) is real-valued for c > 0, and takes value −∞ at
c = 0. We further assume that v, when evaluated on positive consumption values, is twice
continuously differentiable, strictly increasing, and strictly concave. In addition, v is onto
all of R, implying limc↘0 v(c) = −∞.
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The agent’s disutility of effort et is ψ(et). We assume that ψ is continuously differ-
entiable, strictly increasing, strictly convex, and such that ψ(0) = ψ′(0) = 0, and that
lime→∞ψ′(e) = ∞.

The agent’s period-t payoff is v(ct) −ψ(et), while the principal’s is et −wt ; hence, we
interpret effort as equal to the output enjoyed by the principal.

Relational Contracts. We focus for tractability on deterministic relational contracts. We
identify relational contracts with their outcomes; denote them (ẽt� w̃t� c̃t� b̃t)t≥1. We re-
strict attention to contracts that satisfy the following feasibility constraints.

DEFINITION 2.1: A feasible relational contract is a sequence (ẽt � w̃t� c̃t� b̃t)t≥1 satisfying
the following conditions:

1. Positivity: ẽt � w̃t� c̃t ≥ 0 for all t.
2. Balance dynamics and constraint: Conditions (1) and (2) hold.
3. Boundedness: The sequences of consumption, pay and effort ((c̃t)t≥1, (w̃t)t≥1, and

(ẽt)t≥1) are bounded.

While the first and second conditions reflect features of the environment introduced
above, the third condition guarantees that the players’ payoffs are well-defined in a feasi-
ble contract.

3. FIRST BEST AND FULL COMMITMENT TO THE CONTRACT

Consider first the problem of maximizing the principal’s payoff by choice of a feasible
relational contract subject only to the constraint that the agent is initially willing to partic-
ipate. If the agent does not participate, a possibility we describe as “autarky,” we stipulate
that he consumes (1 − δ)b1 per period. This is the optimal consumption for the agent
among consumption streams satisfying the intertemporal budget constraint in equation
(2) given that all payments are set to zero. Therefore, we consider maximizing the princi-
pal’s payoff over feasible relational contracts (ẽt � w̃t� c̃t� b̃t)t≥1 such that the payoff of the
agent

∞∑
t=1

δt−1
(
v(c̃t) −ψ(ẽt)

)
(3)

is no lower than his autarky value, 1
1−δv((1 − δ)b1).

PROPOSITION 3.1: Consider maximizing the principal’s discounted payoff by choice of fea-
sible contract (ẽt � w̃t� c̃t� b̃t)t≥1, subject to ensuring the agent a payoff at least his autarky value

1
1−δv((1 − δ)b1). In any optimal feasible contract, effort and consumption are constant at
eFB(b1) > 0 and cFB(b1) > (1 − δ)b1, respectively, being the unique solutions to:

1. First-order condition: ψ′(eFB(b1)) = v′(cFB(b1)), and
2. Agent’s indifference condition: v(cFB(b1)) −ψ(eFB(b1)) = v((1 − δ)b1).

Furthermore, the payoff of the principal is V FB(b1) ≡ 1
1−δ (eFB(b1) − (cFB(b1) − (1 − δ)b1)),

which is a strictly decreasing function of b1.

Note that the first-best policies depend on both b1 and δ, since they depend on the value
of autarky consumption (1 − δ)b1 (see Condition 2). However, we reduce the notational
burden by making dependence only on b1 explicit. Note also that the proposition does not
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specify the timing of payments. The only requirement on payments is that they are feasible
and satisfy the agent’s budget constraint (2) with equality. Payments may be constant, in
which case they equal cFB(b1) − (1−δ)b1 in each period. Sections 4.1 and 5.1 discuss how,
when the principal fully commits but the agent cannot, sufficient backloading of payments
is enough to ensure the agent’s continued obedience to a first-best contract.

4. UNOBSERVABLE CONSUMPTION

We now suppose the principal can observe the agent’s effort, but not the consumption
choices nor the agent’s balance. Given the absence of commitment, we are interested to
determine feasible relational contracts (ẽt � w̃t� c̃t� b̃t)t≥1, which coincide with outcomes of
a perfect Bayesian equilibrium (PBE) of a dynamic game. These represent the outcomes
that are sustainable by a relational contract, and among which we can consider optimizing
the principal’s payoff.

We begin by defining the histories in our game. For t ≥ 0, a t-history for the agent is
hAt = (es�ws� cs)1≤s<t , which gives the observed effort, payments and consumption up until
time t − 1. The set of such histories at date t ≥ 1 is HA

t = R
3(t−1)
+ (with the convention

that R0
+ = ∅). Note that, given hAt and the agent’s initial balance b1, we can completely

determine the evolution of the balance up to date t using equation (1). We denote the
date-t balance by b(hAt ). A t-history for the principal is hPt = (es�ws)1≤s<t . The set of such
histories at date t ≥ 1 is HP

t =R
2(t−1)
+ .

A strategy for the agent is then a collection of functions

αt :HA
t → R

2
+� t ≥ 1�

and a strategy for the principal is a collection of functions

σt :HP
t ×R+ →R+� t ≥ 1�

Here, αt maps the t-history of the agent to a pair (et� ct) of effort and consumption. Also,
σt maps the t-history of the principal, together with the agent’s effort choice et , to a
payment wt .

As noted above, we will restrict attention to equilibria whose outcomes coincide with a
feasible relational contract. However, we do not restrict the strategies that are available
to the players. Certain strategies imply, for instance, the violation of the agent’s intertem-
poral budget constraint in equation (2). To ensure that the agent finds it optimal to satisfy
this constraint, we make the following assumption on payoffs. While the principal’s pay-
off is as specified above (and so given by

∑∞
t=1 δ

t−1(et −wt)), the agent obtains the payoff∑∞
t=1 δ

t−1(v(ct) − ψ(et)) if the constraint in equation (2) is satisfied, and obtains payoff
−∞ otherwise.

To obtain the set of feasible relational contracts (ẽt � w̃t� c̃t� b̃t)t≥1 that are PBE out-
comes, it suffices to consider PBE where publicly observed deviations from the agreed
outcomes are punished by “autarky.” This means that, if the agent deviates from the
agreed effort ẽt , or if the principal deviates from the agreed payment w̃t , the principal
makes no payments and the agent exerts no effort from then on; the agent perfectly
smoothing the balance of his account over the infinite future.2 If the agent’s balance is

2The reason we can consider autarky punishments is that they deliver the lowest possible individually ratio-
nal payoffs for the players.
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negative when autarky begins, the intertemporal budget constraint in equation (2) is nec-
essarily violated (as the agent receives no further payments), the agent must earn payoff
−∞, and so we can specify for instance that the agent consumes zero in every period.
Note that deviations by the agent from the specified consumption, provided they are not
accompanied by any deviation in effort, go unpunished (i.e., the principal continues to
adhere to the payments specified by the agreement).

If the agent plans to always choose effort in accordance with the contract, he optimally
consumes

c̄∞ ≡ (1 − δ)

(
b1 +

∞∑
s=1

δs−1w̃s

)

in every period. Clearly, any contract to which the agent is willing to adhere must then
specify c̃t = c̄∞ for all t. To conclude that the agent does not want to deviate from the
contract, it is then enough to show that he does not gain by planning to shirk on effort for
the first time at any given date t, while making all other choices optimally. Suppose then
that the agent plans to shirk for the first time at some date t, and so puts effort equal to
ẽs for all s < t, and then optimally sets it equal to zero at all later dates. Then the agent
optimally sets consumption equal to

c̄t−1 ≡ (1 − δ)

(
b1 +

t−1∑
s=1

δs−1w̃s

)
(4)

at all dates, so as to completely smooth consumption and exhaust lifetime earnings. Note
that this corresponds to the double deviation mentioned in the Introduction.

Given the above, the maximum payoff the agent achieves when deviating in choice of
effort for the first time at date t is

1
1 − δv(c̄t−1) −

t−1∑
s=1

δs−1ψ(ẽs)�

Hence, the agent does not want to deviate from the agreement if and only if, for all t ≥ 1,

1
1 − δv(c̄t−1) −

t−1∑
s=1

δs−1ψ(ẽs) ≤ 1
1 − δv(c̄∞) −

∞∑
s=1

δs−1ψ(ẽs)� (ACun
t )

The principal remains willing to continue abiding by the agreement if and only if, at
each time t, the payment w̃t that is due is less than her continuation payoff in the agree-
ment. The exact requirement is that, for all t ≥ 1,

w̃t ≤
∞∑

s=t+1

δs−t(ẽs − w̃s)� (PCt)

The following result states that the above constraints determine whether a feasible re-
lational contract is the outcome of a PBE.

PROPOSITION 4.1: Fix a feasible contract (ẽt � w̃t� c̃t� b̃t)t≥1. It is the outcome of a PBE if
and only if, for all t ≥ 1, Conditions (ACun

t ) and (PCt) are satisfied, and c̃t = c̄∞.
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Necessity of the conditions in the proposition follow for the reasons described above.
To obtain sufficiency, we completely specify PBE strategies and beliefs in the proof.

From now on, we refer to a contract (ẽt � w̃t� c̃t� b̃t)t≥1 that satisfies the conditions of
Proposition 4.1 as “self-enforceable.” Our task reduces to characterizing feasible con-
tracts (ẽt � w̃t� c̃t� b̃t)t≥1 that maximize the principal’s payoff subject to the requirement of
being self-enforceable. We term such contracts “optimal.”

To determine the properties of optimal contracts, we first show that we can restrict at-
tention to contracts with a particular pattern of payments over time. This pattern involves
paying the agent as early as possible, subject to satisfying the agent’s incentive constraints.
This requires that the agent’s obedience constraints in Condition (ACun

t ) hold with equal-
ity for all t ≥ 1. Inspired by the terminology of Board (2011), we refer to this condition as
“fastest payments.”

LEMMA 4.1: For any optimal contract, there is another optimal contract (ẽt � w̃t� c̃t� b̃t)t≥1

with the same sequence of efforts and consumption such that, for all t ≥ 1,3

v(c̄t−1)
1 − δ −

t−1∑
s=1

δs−1ψ(ẽs) = v
(
(1 − δ)b1

)
1 − δ � (FPun

t )

An explanation for the result is as follows. First, note that it is optimal to hold the agent
to his outside option, and hence

v(c̄∞)
1 − δ −

∞∑
t=1

δt−1ψ(ẽt) = v
(
(1 − δ)b1

)
1 − δ � (5)

If Condition (5) does not hold, ẽ1 can be slightly increased while keeping the rest of the
contract the same so that the constraints (ACun

t ) and (PCt) continue to hold for all t. Sec-
ond, when (FPun

t ) holds for all t, the agent is paid as early as possible while preserving
the constraints (ACun

t ). The agent cannot be paid earlier, otherwise he will prefer to work
obediently for a certain number of periods, save his income at a higher rate than spec-
ified in the agreement, and then quit by exerting no effort. It is easily seen that moving
payments earlier in time only relaxes the “principal’s constraints” (PCt).

Concerning “fastest payments,” we have the following result.

LEMMA 4.2: Consider a feasible relational contract (ẽt � w̃t� c̃t� b̃t)t≥1 that satisfies Condi-
tion (FPun

t ) at all dates. For any t, if ẽt > 0, then

w̃t ∈
(
ψ(ẽt)
v′(c̄t−1)

�
ψ(ẽt)
v′(c̄t)

)
� (6)

Since c̄t is increasing in t, the lemma implies that the ratio w̃t
ψ(ẽt )

increases with t. This
result translates the agent’s incentive constraints (ACun

t ) into the conclusion that the agent
becomes more expensive to compensate with time. One explanation is as follows. The

3The conclusion of Lemma 4.1 also follows if we permit the agent to make payments to the principal, along-
side his choice of effort. The same argument as for Lemma 4.1 then establishes that, in an optimal contract,
the agent never makes any payment to the principal, so results on optimal contracts are unaffected.
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longer the agent obediently works, the more he is paid in total. Since he can smooth his
consumption of these payments over his entire lifetime, and since he has concave utility
of consumption, he values additional payments less. Therefore, the payments needed to
keep the agent obediently in the relationship, relative to the disutility of effort incurred,
increase with time.

Apart from the observation in Lemma 4.2, the usefulness of Lemma 4.1 is that it per-
mits the design of the relational contract to be reduced to the choice of an effort se-
quence (ẽt)t≥1. From (ẽt)t≥1, we can obtain (c̄t)t≥1 using (FPun

t ) (so the corresponding
consumption c̃t = c̄∞ is also pinned down). Then (w̃t)t≥1 is obtained from equation (4),
and (b̃t)t≥1 from equation (1). We next discuss the implementation of first-best contracts
(Section 4.1), before moving to optimal contracts when there is no first-best contract that
is self-enforceable (Section 4.2).

4.1. Implementing the First-Best Outcome

Lemma 4.1 is also useful for understanding the conditions under which the principal
obtains the first-best payoff. For instance, we can observe that the first-best effort and
consumption, which are constant over time and equal to eFB(b1) and cFB(b1), can be im-
plemented when the principal can commit to the agreement, but the agent cannot commit.
For this, we simply suppose the principal agrees to payments satisfying the conditions in
equation (FPun

t ), provided the agent chooses effort obediently. Any deviation by the agent
from the required effort is met with zero payments from then on. Because first-best effort
is constant, and by Lemma 4.2, the payments determined by equation (FPun

t ) are increas-
ing over time. Since these represent the earliest payments that satisfy the agent’s incentive
constraints, the result makes clear that backloading of pay is essential to achieving first-
best outcomes when the principal can fully commit.4

Now consider whether the principal can attain the first-best payoff when neither the
principal nor agent can commit; that is, whether there is a first-best contract that is self-
enforceable. We can restrict attention to payments that satisfy the conditions in equation
(FPun

t ). As mentioned, Lemma 4.2 then implies that these payments increase over time.
In the long run, payments approach ψ(eFB(b1))/v′(cFB(b1)). Because the principal’s con-
straints (PCt) tighten over time, verifying they are always satisfied amounts to verifying
that

ψ
(
eFB(b1)

)
v′(cFB(b1)

) ≤ δ

1 − δ
(
eFB(b1) − ψ

(
eFB(b1)

)
v′(cFB(b1)

))
� (7)

The right-hand side is the limiting value of the principal’s future discounted profits in the
agreement, while the left-hand side is the limiting value of the payment to the agent. We
have the following result.

PROPOSITION 4.2: Suppose that neither the principal nor agent can commit to the terms of
the agreement and that consumption is unobservable. Then the principal attains the first-best
payoff in an optimal contract if and only if Condition (7) is satisfied.

4Delaying payments relative to the ones determined by equation (FPun
t ), while holding their NPV constant,

only relaxes the agent’s constraints (ACun
t ). Given the principal is assumed able to commit to these payments,

such delayed payments also constitute an optimal implementation of first-best outcomes.



1034 F. DILMÉ AND D. F. GARRETT

While understanding the parameter range for which Condition (7) holds is clearly im-
portant for understanding optimal contracts, this is complicated by the dependence of the
first-best policy on both b1 and δ. Nonetheless, if we vary δ while allowing b1 to adjust,
holding b1(1 − δ) constant, then the first-best consumption and effort remain constant.
There is then a threshold value of δ above which Condition (7) is satisfied, and below
which it fails.

4.2. Main Characterization for Unobservable Consumption

We now state our main result for the unobservable consumption case, which is a char-
acterization of optimal effort when the first-best effort cannot be sustained.

PROPOSITION 4.3: An optimal relational contract exists. Suppose the principal cannot at-
tain the first-best payoff in a self-enforceable contract (i.e., Condition (7) is not satisfied).
Then, for any optimal contract, there is a date t̄ ≥ 1 such that effort is constant up to this date,
and is subsequently strictly decreasing.5 Effort converges to a value ẽ∞ > 0 in the long run.

The dynamics of optimal effort when the principal cannot attain the first-best payoff
can be explained as follows. There may be some initial periods when the effort is con-
stant. This occurs if the principal’s constraint (PCt) is initially slack. Given that we con-
sider “fastest payments,” the payments rise over these periods for the reasons discussed
in relation to Lemma 4.2. Given the principal cannot achieve the first-best payoff, it turns
out that the principal’s constraint eventually binds, and so payments must be reduced.
This is only possible by reducing the level of effort. Note that how much effort can be
asked without violating the principal’s constraint depends on the future profitability of
the relationship. Profitability declines over time, both because higher payments must be
made relative to the agent’s disutility of effort (see Lemma 4.2), and because the effort
that can be requested is less. The fact that profitability declines contributes to the decline
in effort, which creates a feedback loop.

Our approach to proving Proposition 4.3 relies on variational arguments. For contracts
that fail to exhibit the dynamics described in the proposition, we construct more profitable
contracts satisfying all the constraints in Proposition 4.1. We demonstrate some of these
arguments below.

One useful result toward establishing Proposition 4.3 links the dynamics of effort to the
dates at which the principal’s constraint (PCt) is slack (rather than holding with equality).

LEMMA 4.3: Suppose that (ẽt � c̃t� w̃t� b̃t)t≥1 is an optimal relational contract. Suppose that
the principal’s constraint is slack at t∗, that is, w̃t∗ <

∑∞
s=t∗+1 δ

s−t∗ (ẽs − w̃s). Then ẽt∗+1 ≤ ẽt∗ ;
also, if t∗ > 1, then ẽt∗−1 ≤ ẽt∗ .

The proof (in the Appendix) proceeds by showing that, if the conclusion of the lemma
fails, then effort can be smoothed raising the principal’s profits. Such smoothing is prof-
itable given that the disutility of effort is strictly convex (so that differences in effort across
periods are inefficient). An immediate implication of the lemma is that effort is constant
over any sequence of periods for which the principal’s constraint is slack, explaining why
effort may be constant in the initial periods.

5There are indeed cases where the value t̄ is strictly greater than one. See Lemma A.9 in the Appendix.
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A further key part of the proof of Proposition 4.3 is to show that effort strictly decreases
from a finite date t̄ onwards. The main steps of this argument can be explained as follows.
Building on Lemma 4.3, we are able to show (in Lemma A.5 in the Appendix) that effort is
weakly decreasing with time. Lemma A.6 then establishes that, if the principal’s constraint
(PCt) holds with equality at some date t̂, then ẽt̂+1 < ẽt̂ and the constraint holds with
equality also at t̂ + 1. Hence effort strictly decreases from t̂ onwards.

The argument for Lemma A.6 can be summarized as follows. By assumption, the prin-
cipal’s constraint (PCt) at date t̂ holds as an equality, that is,

w̃t̂ =
∞∑

s=t̂+1

δs−t̂(ẽs − w̃s)�

We are able to show that ẽt̂+1 − w̃t̂+1 > ẽs − w̃s for all s > t̂ + 1. This follows because
ψ′(ẽt) ≤ v′(c̄∞) for all t (as established in Lemma A.1), because effort is weakly decreasing
over time (as noted above), and making use of Lemma 4.2 (which recall implies that the
ratio of payments to disutility of effort increases with time). Therefore,

w̃t̂ =
∞∑

s=t̂+1

δs−t̂ (ẽs − w̃s) >
∞∑

s=t̂+2

δs−t̂−1(ẽs − w̃s) ≥ w̃t̂+1�

where the second inequality is the principal’s constraint (PCt) at date t̂+ 1. Hence, (again
using Lemma 4.2) effort is strictly lower in period t̂ + 1 (i.e., ẽt̂+1 < ẽt̂). In turn, using
Lemma 4.3, the principal’s constraint must hold again with equality at t̂ + 1. So, we have
shown that, if the principal’s constraint holds with equality at a given date, it must hold
with equality from then on, and so effort strictly decreases with time.

The above argument assumes that the principal’s constraint (PCt) holds with equality
at some date. To show this must in fact be the case when the principal cannot attain
the first-best payoff, assume to the contrary that these constraints are always slack. Then
Lemma 4.3 implies that optimal effort is constant at all dates, say at a value ẽ∞ (using the
notation of the proposition). Letting the payments and the equilibrium consumption c̄∞
be determined by equation (FPun

t ), payments increase over time, and converge to ψ(ẽ∞)
v′(c̄∞) .

The principal’s constraint (PCt) is then satisfied at all dates if and only if

ψ(ẽ∞)
v′(c̄∞)

≤ δ

1 − δ
(
ẽ∞ − ψ(ẽ∞)

v′(c̄∞)

)
�

where the left-hand side can be read as the limiting payment to the agent, while the right-
hand side is the limiting NPV of future profits to the principal. For the most profitable
choice of a constant effort ẽ∗

∞, this inequality holds as equality. The principal’s constraints
(PCt) tighten over time, but never hold with equality.

Because effort is below the first-best level, we have ψ′(ẽ∗
∞) < v′(c̄∗

∞), with c̄∗
∞ the level of

agent consumption that corresponds to a contract with constant effort ẽ∗
∞. It follows that

any sufficiently small adjustment to the effort policy that raises the NPV of effort, together
with a change in payments and consumption that leaves the agent’s payoff in the contract
unchanged, raises profits. We therefore suggest a perturbation to the constant-effort con-
tract (see Lemma A.7 in the Appendix) that increases the NPV of effort, but (assuming
that payments continue to satisfy (FPun

t )) leaves the principal’s constraints (PCt) intact. To
be more precise, we consider increasing effort by a little at date one and lowering it by a
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constant amount in future periods. If we only raise effort at date one, leaving other effort
values unchanged and assuming that payments are adjusted to satisfy (FPun

t ) at all dates,
the principal’s constraint (PCt) is eventually violated (since v is strictly concave and total
pay increases, it becomes more costly to compensate the agent for his effort; in particular,
payments must increase in all periods). Therefore, the reduction in effort at future dates
is a “correction” intended to relax the principal’s constraint (PCt) when it is tightest.

We have established then that, when the first-best payoff is not attainable, the princi-
pal’s constraint (PCt) holds with equality from some date onwards. At these dates, the
principal is indifferent between paying the agent and reneging. This feature is the same
as in the optimal contracts of Ray (2002) (although his model is quite general, it does not
include the possibility of savings or investments).

It remains to translate the findings of Proposition 4.3 into predictions for payments
and the agent’s balance. Note, however, that while Lemma 4.1 tells us it is optimal for
Condition (FPun

t ) to hold at all dates, other contracts with a different timing for payments
may be optimal. We therefore provide a partial converse for Lemma 4.1.

PROPOSITION 4.4: Suppose the principal cannot attain the first-best payoff in a self-
enforceable contract. Fix any optimal contract (ẽt� c̃t� w̃t� b̃t)t≥1 and let t̄ be the date from
which effort is strictly decreasing (see Proposition 4.3). Then Condition (FPun

t ) holds for all
t > t̄. Payments to the agent strictly decrease from date t̄ + 1 onwards, while the agent’s bal-
ances strictly increase.

The reason payments satisfying Condition (FPun
t ) are strictly decreasing from date t̄+ 1

is explained above. The fact that the agent’s balance increases over time then follows
straightforwardly from equation (1) and from equation (2) taken to hold with equality. In
particular, note that

b̃t = c̄∞
1 − δ −

∞∑
τ=t
δτ−t w̃τ�

which strictly increases with t when payments fall over time.
Note that, when t̄ > 1, the principal’s constraint (PCt) is initially slack. In this case,

Condition (FPun
t ) need not hold at t < t̄, and so payments before date t̄ are not uniquely

determined. When this “fastest payments” condition is nonetheless taken to hold, pay-
ments in fact increase over time up to date t̄ (as was mentioned above).

5. OBSERVED CONSUMPTION

We now study the case where, at each time t, before making the payment wt , the prin-
cipal can observe the agent’s past and present-period effort choices (es)ts=1 as well as past
and present-period consumption choices (cs)ts=1. Since payments and consumption are
commonly observed, the balance bt at the beginning of each period t is also commonly
known (as deduced from equation (1)).

The game is now one of complete information, and we consider subgame perfect Nash
equilibrium (SPNE). Both players observe at date t the history ht = (es�ws� cs)1≤s<t . The
set of such histories at each date t is Ht = R

3(t−1)
+ . Reusing notation from Section 4 intro-

duces no confusion, so we describe a strategy for the agent as a collection of functions

αt :Ht →R
2
+� t ≥ 1�
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and a strategy for the principal as a collection of functions

σt :Ht ×R
2
+ → R+� t ≥ 1�

Here, αt maps the public t-history to a pair (et� ct) of effort and consumption. Also, σt
maps the public t-history, together with the observed effort and consumption choices
(et� ct) of the agent, to a payment wt . We assume that payoffs are as specified in Sec-
tion 4 (i.e., the agent earns a payoff −∞ in case his intertemporal budget constraint (2) is
violated).

Again we identify a relational contract with the equilibrium outcomes, and we want to
characterize contracts that maximize the principal’s payoff. A first step is then to deter-
mine equilibrium outcomes (ẽt � c̃t� w̃t� b̃t)t≥1 that are feasible relational contracts. Analo-
gous to the arguments made in the previous section, we begin supposing deviations from
the agreed outcomes are punished by “autarky.” That is, when either player deviates from
the contract, all future effort and payments cease, and the agent perfectly smooths his bal-
ance over time. In autarky, the agent consumes bt (1 − δ) when his balance is bt > 0, and
we specify zero consumption in case the balance is bt ≤ 0 (in the latter case, the agent
can only obtain a payoff of −∞ since violating the intertemporal budget constraint in
equation (2) implies this payoff; hence we might as well set consumption to zero). Now,
autarky follows not only deviations in effort and payments, but also in consumption.

Suppose that the agreed contract is (ẽt � c̃t� w̃t� b̃t)t≥1, and deviations are punished by
autarky. The agent’s payoff, if complying until date t − 1 and optimally failing to comply
from t onwards, is now

t−1∑
s=1

δs−1
(
v(c̃s) −ψ(ẽs)

) + δt−1 v
(
max

{
0� (1 − δ)b̃t

})
1 − δ �

This takes into account that the agent who deviates at date t optimally exerts no effort
from then on, and consumes max{0� (1 − δ)b̃t} per period as explained above. Thus, the
agent is willing to follow the prescription of the contract if and only if, at all dates t,

v
(
max

{
0� (1 − δ)b̃t

})
1 − δ ≤

∞∑
s=t
δs−t

(
v(c̃s) −ψ(ẽs)

)
� (ACob

t )

The reason for the difference to Condition (ACun
t ) is that publicly honoring the agreement

up to date t− 1 ensures that the agent begins period t with the specified balance b̃t , which
in turn determines the wealth he has available to spend in autarky. Condition (ACun

t ), on
the other hand, takes into account that the agent who plans to publicly deviate at date
t (by shirking on effort) can save in advance for this event, because consumption is not
observed.

We can characterize equilibrium outcomes as follows.

PROPOSITION 5.1: Fix a feasible contract (ẽt � w̃t� c̃t� b̃t)t≥1. It is the outcome of an SPNE
in the environment where consumption is observed if and only if, for all t ≥ 1, Conditions
(ACob

t ) and (PCt) are satisfied.

Notice here that the principal’s constraint (PCt) is the one in Section 4. A feasible con-
tract (ẽt� w̃t� c̃t� b̃t)t≥1 satisfying the conditions in the proposition is again termed “self-
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enforceable” and a self-enforceable contract that maximizes the principal’s payoff is “op-
timal.” We can now state a result similar to Lemma 4.1.

LEMMA 5.1: For any optimal contract, there exists another optimal contract (ẽt� c̃t� w̃t�
b̃t)t≥1 with the same effort and consumption, with b̃t > 0 for all t, and where the timing of
payments ensures that agent constraints hold with equality in all periods; that is, for all t ≥ 1,

v
(
b̃t (1 − δ)

)
1 − δ =

∞∑
s=t
δs−t

(
v(c̃s) −ψ(ẽs)

)
� (8)

Lemma 5.1 implies that we can focus on relational contracts where, for all t ≥ 1,

1
1 − δv

(
(1 − δ)b̃t

) = v(c̃t) −ψ(ẽt) + δ

1 − δv
(
(1 − δ)b̃t+1

)
� (FPob

t )

This says that the agent is indifferent between quitting at date t (i.e., ceasing to exert ef-
fort) and smoothing the balance b̃t optimally over the infinite future, and instead working
one more period, exerting effort ẽt and consuming c̃t , before quitting at date t + 1 and
smoothing the balance b̃t+1 over the infinite future.

5.1. Implementing the First-Best Outcome

Let us turn now to the question of when the principal can attain the first-best payoff in
a self-enforceable relational contract. As for the case with private savings, we can begin
by asking how the principal implements the first-best outcomes if she can fully commit
to payments (but the agent cannot commit). We can again answer this question by fo-
cusing on the earliest payments, where equation (8) is satisfied at all dates, noting that
delayed payments (with the same NPV) will also do the job. Any deviation in effort or
consumption leads to a cessation of pay. Given effort and consumption constant at the
first-best levels eFB(b1) and cFB(b1), the agent’s balance under the specified payments
is constant and equal to b1. Therefore, the payment is constant over time and equal to
wFB(b1) ≡ cFB(b1) − (1 − δ)b1. This shows an important difference between the solutions
to the principal’s full-commitment problem when the agent’s consumption is observed
rather than unobserved. With observed consumption, payments can be made earlier with-
out the agent quitting the agreement; in particular, they are constant rather than rising
over time. This is because agent deviations of secretly saving and then quitting are not
available as any deviation in consumption is observed and so punished by a cessation of
pay.

Now turn to the question of when the principal is able to obtain the first-best payoff
when she cannot commit. Note that the principal’s continuation payoff in a first-best con-
tract with the earliest payments is V FB(b1) = (eFB(b1)−wFB(b1))/(1−δ). Using the above
observations, we have the following result.

PROPOSITION 5.2: Suppose that consumption is observable. Then the principal attains the
first-best payoff in an optimal relational contract if and only if

wFB(b1) ≤ δ

1 − δ
(
eFB(b1) −wFB(b1)

)
� (9)
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FIGURE 1.—Payments for optimal relational contracts satisfying fastest payments when equation (7) holds
(and so the principal obtains her first-best payoff), in the unobservable case (crosses) and observable case
(circles).

Condition (9) is more easily satisfied than Condition (7) (the condition for the unob-
servable consumption case). This follows immediately from showing that

wFB(b1) <
ψ

(
eFB(b1)

)
v′(cFB(b1)

) � (10)

Here, wFB(b1) is the constant payment to the agent in the observed-consumption case, as
specified above. On the other hand, ψ(eFB(b1))

v′(cFB(b1)) is the limiting payment for the unobserved-
consumption case (assuming that payments satisfy the “fastest payments” condition in
equation (FPun

t )).
The key insight is that, in the observed-consumption case, the principal’s constraints

(PCt) are identical in every period, since payments remain constant. In contrast, in the
unobserved-consumption case, we saw that they tighten over time. After enough time,
the payments in the unobserved-consumption case exceed the constant payments in the
observed-consumption case (note that the NPV of payments in both cases is the same),
which makes the principal’s constraints more difficult to satisfy. Figure 1 illustrates the
payments in optimal contracts achieving the first-best payoff for the principal in the un-
observed and observed consumption cases.

To derive the inequality (10) formally, observe that by concavity of v, and because
cFB(b1) > (1 − δ)b1, we have

v
(
cFB(b1)

) − v((1 − δ)b1

)
> v′(cFB(b1)

)(
cFB(b1) − (1 − δ)b1

) = v′(cFB(b1)
)
wFB(b1)�

The result then follows because the first-best effort and consumption satisfy v(cFB(b1)) −
v((1 − δ)b1) =ψ(eFB(b1)) by Condition 2 of Proposition 3.1.

5.2. Optimal Contract With Observed Consumption

Now consider the problem of characterizing an optimal contract when the principal’s
first-best payoff is not attainable. We restrict attention to “fastest payments” as given in
Lemma 5.1 and show that this timing of payments is necessary for optimality in Proposi-
tion 5.4 below.

Under fastest payments, we can write the problem of finding the principal’s optimal
contract recursively, with the balance b̃t as the state variable for the relationship. Since
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an optimal contract maximizes the principal’s continuation profits, an optimal contract
(ẽt � w̃t� c̃t� b̃t)t≥1 must solve a sequence of subproblems with value V (b̃t) given by

V (b̃t) = max
et �bt+1�ct∈R+

(
et − (δbt+1 − b̃t + ct) + δV (bt+1)

)
(11)

subject to the agent’s indifference condition (8), which can be written as

v(ct) −ψ(et) + δ

1 − δv
(
(1 − δ)bt+1

) = 1
1 − δv

(
(1 − δ)b̃t

)
� (12)

and to the principal’s constraint (PCt), which can be written as

δbt+1 − b̃t + ct ≤ δV (bt+1)� (13)

The left-hand side of (13) can be understood as the date-t payment wt , which is divided
into date-t consumption ct ∈ R+ and savings δbt+1 − b̃t ∈R. Nonnegativity of the payment
δbt+1 − b̃t + ct is assured by the equality (12) and the concavity of v. The same equality
ensures that, given b̃t is strictly positive, optimal ct and bt+1 must be strictly positive also.

We show that any optimal policy for the principal can be characterized as follows.

PROPOSITION 5.3: An optimal contract exists. Suppose that an optimal contract (ẽt� w̃t� c̃t�
b̃t)t≥1 fails to obtain the first-best payoff V FB(b1) (i.e., equation (9) does not hold). Then the
agent’s balance b̃t and consumption c̃t decline strictly over time, with b̃t → b̃∞ for some
b̃∞ > 0. Effort ẽt and the payments w̃t increase strictly over time. We have V (b̃t) → V FB(b̃∞)
as t → ∞, and effort and consumption converge to first-best levels for the balance b̃∞.

A heuristic account of the forces behind this result is as follows. When the principal’s
constraint ((PCt) or equivalently (13)) binds, effort is suppressed. That is, if the princi-
pal could increase effort and credibly increase payments to keep the agent as well off,
she would gain by doing so. Also, the principal’s value function V (·) is strictly decreas-
ing; intuitively, because a lower balance makes the agent cheaper to compensate to keep
him in the agreement. Therefore, for any date t, reducing the balance bt+1 increases the
principal’s continuation payoff V (bt+1) and relaxes the principal’s date-t constraint (13).
It follows that the principal asks the agent to consume earlier than he would like, driving
the balance down over time. This continues to a point where, given the revised balance,
the contract is close to first best, and so the value of continuing to distort consumption
vanishes.

It is worth pointing out here that the dynamics of V (b̃t) are determinative of both the
dynamics of effort and payments. When there is no self-enforceable first-best contract,
V (b̃t) strictly increases with t, and moreover, the principal’s constraint (13) binds. The
latter implies that, for all t, both w̃t = δV (b̃t+1) and V (b̃t) = ẽt − w̃t + δV (b̃t+1) = ẽt .

A further part of our analysis worth highlighting is a Euler equation

1 − v′((1 − δ)b̃t+1

)
v′(c̃t)

= v′(c̃t+1)
ψ′(ẽt+1)

(
1 − v′((1 − δ)b̃t+1

)
v′(c̃t+1)

)
� (14)

which must hold for an optimal contract at all dates t, and which we use to derive sev-
eral key properties. This condition is derived (in Lemma A.11) by fixing the contract
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at and before t − 1, and from date t + 2 onwards, and then requiring the contractual
variables at t and t + 1 to be chosen optimally. The equation captures the relationship
between a static distortion in effort and a dynamic distortion in consumption. In partic-
ular, when the principal’s first-best payoff cannot be attained, we are able to show that
ψ′(ẽt+1) < v′(c̃t+1) for all t (reflecting a static (downward) distortion in effort), and cor-
respondingly (1 − δ)b̃t+1 < c̃t+1 < c̃t (i.e., consumption strictly decreases over time, which
is a dynamic distortion). A trade-off between the static and dynamic distortions should
be anticipated, since asking the agent to consume excessively early in the relationship in-
creases the agent’s marginal utility of consumption later on, which makes him easier to
motivate and permits higher effort and profits at later dates. In turn, this relaxes the prin-
cipal’s credibility constraint (PCt), permitting higher payments and, therefore, effort also
early in the relationship. As b̃t → b̃∞, consumption falls to its lower bound, becoming al-
most constant, so v′(c̃t+1)

ψ′(ẽt+1) → 1, which accords with convergence of effort and consumption
to first-best levels.

Finally, analogous to Proposition 4.4, we provide a result on the uniqueness of the
timing of payments.

PROPOSITION 5.4: Suppose the principal cannot attain the first-best payoff in a self-
enforceable relational contract. Then, in any contract that is optimal for the principal, Con-
dition (FPob

t ) holds at all dates.

The logic of this result is that, if the Condition (FPob
t ) fails, then payments can be made

earlier in time, while maintaining the agent constraints (ACob
t ). This induces slack in the

principal’s constraint (PCt), which can then be exploited by increasing payments, con-
sumption and effort, increasing profits. As noted for the case of unobservable consump-
tion, such an observation is related to arguments in Ray (2002).

6. LITERATURE REVIEW

There is by now a large literature on relational contracts (see MacLeod (2007), and
Malcomson (2015), for a review). Much of it involves settings with exogenous uncertainty,
while our environment is deterministic. Our model is similar to the principal-agent model
of Bull (1987), where overlapping generations of short-lived agents have concave utility
for money. A key difference is that we examine inefficient equilibria, whereas Bull pro-
vides only conditions for efficiency.

Though not principal-agent models, other set-ups where agents face a consump-
tion/storage decision, and where there is limited commitment, are studied by Kehoe and
Perri (2002), Ligon, Thomas, and Worrall (2000), Wahhaj (2010), and Voena (2015).6

Storage is public in all these settings, while an important part of our focus has been on
the case of hidden savings. Also, these papers feature noise in the environment. While this
introduces mutual insurance among agents, it restricts tractability and limits the availabil-
ity of analytic results. Ábrahám and Laczó (2018) is closely related to these works, but
like our paper includes an analysis of hidden savings (the Introduction explained how our
analysis differs). In all these papers, when there are public consumption/storage decisions,

6All these papers have the feature that agents’ outside options are determined through accumulated storage
or savings. Other papers with this feature include Thomas and Worrall (1994, Section 4) and Garicano and
Rayo (2017).
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optimal agreements resolve trade-offs on the level of storage or savings. Notably, Wahhaj
provides conditions under which savings are distorted downwards and links these effects
to social pressure toward low savings in tribal societies. Our findings for the public savings
case are related to this point as they show how reduced savings can enhance the efficiency
of the relationship over time. It is worth noting that similar ideas have been suggested in
the law literature. Henderson and Spindler (2004) have argued through a range of exam-
ples that social norms limiting employee savings tend to make them more dependent on
employment relationships, and in turn make them easier to incentivize (see the Appendix
in the Online Supplementary Material for further discussion).

Savings in our model can be viewed as a kind of investment in the agent’s outside op-
tion. Our paper therefore connects to work on outside options in relational contracts
more generally. We can compare to settings where outside options are either private but
exogenous or endogenous but public. With respect to the former, Halac (2012) considers
a model where the principal’s outside option is her private information and is exogenous
and persistent. Examples of the latter include Englmaier and Fahn (2019) and Malcom-
son (2021), where initial one-time public investments affect payoffs both inside and out-
side the agreement (see also Halac (2015), for a related model). Similarly, Fahn, Merlo,
and Wamser (2019) consider a setting where the up-front one-shot decision is the capital
structure of the firm and this decision influences payoffs when the relational agreement
breaks down.

Our work on private savings is related to the literature on moral hazard with private
savings where the principal has commitment power; see footnote 1 for references. A ma-
jor difference is that monitoring of effort is perfect in our model. This contrasts with work
on imperfect monitoring where there is a trade-off between incentives for more efficient
effort and the additional riskiness of pay. Another crucial difference is that dynamics in
our model are driven by limited commitment on both sides of the relationship.

A key goal of the literature on moral hazard with private savings has been to obtain
analytic characterizations of optimal contracts. This has been challenging, however, be-
cause of the complexity of potential agent deviations involving saving more and shirking.
Most of the papers that characterize contracts analytically do so via a first-order approach
where complex deviations can at first instance be ignored in the study of a “relaxed op-
timization program” that addresses only local deviations in effort and consumption (ex-
amples include Ábrahám, Koehne, and Pavoni (2011), Edmans et al. (2012), Williams
(2015), and Di Tella and Sannikov (2021)). An exception is Mitchell and Zhang (2010)
where, similar to our paper, the binding constraints relate to global deviations of shirk-
ing and saving. A key simplification in our optimization program is that relevant agent
deviations involve pairing public deviations in effort with a choice of consumption that
is optimal in light of the agent’s reduced pay. This simplification is not available when
effort is imperfectly observed. The tractability of our model permits predictions on the
optimal contract without strong restrictions on model primitives such as functional form
assumptions on preferences, which have been common in the literature.

Similar to our paper, an objective of the moral hazard literature with private savings
has been comparison to the case where savings are public. Given full commitment, if the
principal observes consumption/savings, then there is no loss in taking pay to equal con-
sumption and having the principal in this sense “save for the agent.” It has then been
understood since Rogerson (1985) that optimal contracts in repeated moral hazard force
the agent to consume more up front than privately optimal; if the agent could save pri-
vately and consume later, he would do so. Early consumption is driven here by the optimal
provision of incentives for imperfectly monitored effort, rather than the absence of com-
mitment as in our paper.
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APPENDIX: PROOFS

PROOF OF PROPOSITION 3.1: We maximize the principal’s payoff over feasible con-
tracts (ẽt� w̃t� c̃t� b̃t)t≥1 satisfying

∑
t≥1

δt−1
(
v(c̃t) −ψ(ẽt)

) ≥ 1
1 − δv

(
b1(1 − δ)

)
� (15)

Considering this maximization, we may assume that equation (2) holds with equality.
For any feasible contract (ẽt � w̃t� c̃t� b̃t)t≥1, let

c̃ ≡ (1−δ)
∑
t≥1

δt−1c̃t � ẽ≡ψ−1

(
(1−δ)

∑
t≥1

δt−1ψ(ẽt)
)
� and w̃≡ (1−δ)

∑
t≥1

δt−1w̃t �

It is optimal for the principal to use “stationary” contracts with constant effort, pay, and
consumption. Indeed, any feasible contract (ẽt � w̃t� c̃t� b̃t)t≥1 satisfying the inequality in
equation (15) can be weakly improved (while satisfying all constraints) by the contract
(ẽ′
t � w̃

′
t � c̃

′
t � b̃

′
t)t≥1 with, for all t, ẽ′

t = ẽ, w̃′
t = w̃, c̃′

t = c̃ and b̃′
t = b1. Moreover, using the

strict convexity of ψ and strict concavity of v, effort and consumption must be constant in
any optimal contract.

Now consider the optimal specification of the stationary contract. Because equation (2)
holds with equality, w̃= c̃− (1−δ)b1. Also, optimality implies v(c̃)−ψ(ẽ) = v(b1(1−δ)).
Using this, we may write

c̃ = v−1
(
ψ(ẽ) + v(b1(1 − δ)

))
� (16)

The principal’s payoff can then be written as

ẽ− (
c̃ − (1 − δ)b1

) = ẽ− v−1
(
ψ(ẽ) + v(b1(1 − δ)

)) + (1 − δ)b1�

This is strictly concave in ẽ and an optimum corresponds to the first-order condition
1 − ψ′(ẽ)

v′(c̃) = 0 (with c̃ given by equation (16)), giving Condition 1. By the assumption that
ψ′(0) = 0, we have ẽ > 0, and hence c̃ > b1(1 − δ).

To see that the principal’s payoff is strictly decreasing in b1, consider the optimal (sta-
tionary) contract specified above, and reduce the initial balance b1 by ε ∈ (0� b1). Re-
ducing per-period consumption by ε(1 − δ), leaving payments unchanged, yields a new
feasible contract. The agent’s balance remains constant at b1 − ε and the inequality in
equation (15) holds strictly. A strict improvement to the contract then comprises increas-
ing date-1 effort by a small amount (without a violation of equation (15)). Q.E.D.

A.1. Proofs of the Results in Section 4

PROOF OF PROPOSITION 4.1: Necessity. Follows from arguments in the main text.
Sufficiency. We fix some feasible contract (ẽt � c̃t� w̃t� b̃t)t≥1 satisfying the conditions of

the proposition and we provide strategies and beliefs that constitute a PBE with outcome
(ẽt � c̃t� w̃t� b̃t)t≥1.

We specify a PBE as follows. On the principal’s side, put σt (hPt � et) = w̃t if (es�ws) =
(ẽs� w̃s) for all s ≤ t − 1 and et = ẽt , and put σt (hPt � ẽt) = 0 otherwise. For the agent’s
strategy, put αt (hAt ) = (ẽt � c̃t) if (es� cs�ws) = (ẽs� c̃s� w̃s) for all s < t. Put αt (hAt ) =
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(0�max{0� (1 − δ)b(hAt ))}) whenever (es�ws) 
= (ẽs� w̃s) for some s ≤ t − 1. This speci-
fication of the agent’s strategy will guarantee its sequential optimality at date-t histories
where (es�ws) 
= (ẽs� w̃s) for some s < t.7

Now consider the agent’s equilibrium strategy for the remaining possible histories hAt ,
where (es�ws) = (ẽs� w̃s) for all s ≤ t − 1, and yet cs 
= c̃s for some values s ≤ t − 1. First,
in case

b
(
hAt

) +
∑
τ≥t
δτ−t w̃τ (17)

is nonpositive, the agent’s payoff is necessarily −∞ and we might as well put et = ẽt and
ct = 0. If (17) is instead strictly positive, then an optimal continuation strategy for the
agent, given the principal’s strategy, should induce a continuation outcome of the follow-
ing form. There should be some t ′ ≥ t so that effort is es = ẽs for all s ∈{t� t+1� � � � � t ′ −1},
and so that effort is es = 0 for s ≥ t ′ (we allow t ′ = +∞, in which case es = ẽs for all s ≥ t).
Consumption should be specified optimally. In the absence of deviation by the principal,
this means that, for all s ≥ t, cs = max{0� (1 − δ)(b(hAt ) + ∑t′−1

τ=t δ
τ−t w̃τ)}.

Note that the existence of an optimal “public deviation” time t ′ (possibly +∞) follows
because, for all t, all histories hAt for which there is, as yet, no public deviation,

v

(
max

{
0� (1 − δ)

(
b
(
hAt

) +
t′−1∑
τ=t
δτ−t w̃τ

)})

1 − δ −
t′−1∑
τ=t
δτ−tψ(ẽτ)

−→
v

(
(1 − δ)

(
b
(
hAt

) +
∞∑
τ=t
δτ−t w̃τ

))

1 − δ −
∞∑
τ=t
δτ−tψ(ẽτ)

as t ′ → ∞. In determining the agent’s continuation strategy at date t and private history
hAt , we take t ′ to be the largest value that attains the optimal payoff for the agent (it could
be +∞). Hence, the strategy specifies that, at private history hAt for the agent, effort is
et = ẽt if t ′ > t and et = 0 if t ′ = t, and consumption is ct = (1 − δ)(b(hAt ) + ∑t′−1

τ=t δ
τ−t w̃τ).

Finally, let us specify (degenerate) principal beliefs on the agent’s previous consump-
tion choices. Denote believed consumption up to date t by (ĉs)ts=1. Absent public deviation
by date t, ĉs = c̃s at each date s ≤ t. If instead (es�ws) 
= (ẽs� w̃s) for some s ≤ t − 1, or if
et 
= ẽt , let t ′ be the first date of such a public deviation. If et′ 
= ẽt′ (so the agent is first to
publicly deviate),

ĉs = (1 − δ)

(
b1 +

t′−1∑
τ=1

δτ−1w̃τ

)

for all s ∈{1� � � � � t ′ − 1}, while, for all s ∈{t ′� � � � � t}, ĉs = (1 −δ)b̂s, where b̂s are beliefs on
the agent’s balance determined recursively from the principal’s payments and the agent’s

7This is because, at time t after a public deviation, there are two possibilities. If b(hAt ) < 0, then the agent’s
payoff is −∞ independently of the strategy he uses, because the feasibility constraint (2) is violated (as he
no receives any further payment by the principal). If, instead, b(hAt ) ≥ 0, the agent smooths consumption by
consuming (1 − δ)b(hAt ) in all subsequent periods.
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believed consumption (i.e., b̂s = (b̂s−1 + ws−1 − ĉs−1)/δ, with b̂1 = b1). If et′ = ẽt′ (so the
principal is first to publicly deviate), then ĉs = c̃s for all s ≤ t ′ and ĉs = max{0� (1 − δ)b̂s}
for all s = t ′ + 1� � � � � t (again, the values of b̂s are determined recursively by b̂s = (b̂s−1 +
ws−1 − ĉs−1)/δ, with b̂1 = b1). These beliefs are consistent with updating of the principal’s
prior beliefs according to the specified strategy of the agent whenever there is no public
evidence the agent’s strategy has not been followed.

Now let us verify the sequential optimality of the above strategies, given beliefs. First,
at any information set at which the principal has not yet observed a deviation, satisfaction
of Condition (PCt) implies the principal optimally sets wt = w̃t . If instead the principal
has observed a deviation, she obtains at most zero, since the agent exerts no effort, and
hence paying wt = 0 is optimal. Finally, observe that the agent’s strategy is constructed to
be sequentially optimal. Q.E.D.

PROOF OF LEMMA 4.1: Fix a contract (ẽt � c̃t� w̃t� b̃t)t≥1, which is optimal, and hence re-
spects the conditions of Proposition 4.1. Then Condition (5) holds, as explained in the
main text. We cannot have

v(c̄t−1)
1 − δ −

t−1∑
s=1

δs−1ψ(ẽs) (18)

exceed v(b1(1−δ))
1−δ at any date t, as otherwise the inequality (ACun

t ) fails.
Finally, suppose that (18) is strictly less than v(b1(1−δ))

1−δ at some increasing sequence of
dates (tn)Nn=1, where N may be finite or infinite. For each n, there is εn > 0 such that

1
1 − δv

(
c̄tn−1 + δtn−2εn(1 − δ)

) −
tn−1∑
s=1

δs−1ψ(ẽs) = v
(
b1(1 − δ)

)
1 − δ �

Increase w̃tn−1 by εn, and reduce w̃tn by εn
δ

; note that this leads to a change in c̄tn−1, but
does not affect c̄t for t 
= tn. Making the adjustment for each n yields a contract for which
Condition (FPun

t ) holds at all t. Because ψ is nonnegative, c̄t is a nondecreasing sequence,
and hence all payments in the new contract are nonnegative. Hence, the new contract is
feasible, and the agent’s constraints (ACun

t ) are satisfied. Also, the principal’s constraints
(PCt) are satisfied (moving payments forward only relaxes the principal’s constraints).

Q.E.D.

PROOF OF LEMMA 4.2: Observe from Condition (FPun
t ) evaluated at consecutive dates,

we have

v
(
c̄t−1 + (1 − δ)δt−1w̃t

) − v(c̄t−1) = (1 − δ)δt−1ψ(ẽt)�

By the fundamental theorem of calculus, we have∫ w̃t

0
v′(c̄t−1 + (1 − δ)δt−1x

)
dx=ψ(ẽt)�

and hence kw̃t =ψ(ẽt) for some k ∈ (v′(c̄t)� v′(c̄t−1)), which proves the result. Q.E.D.

PROOF OF LEMMA 4.3: Proof that ẽt∗+1 ≤ ẽt∗ . Suppose, for the sake of contradiction,
that ẽt∗+1 > ẽt∗ . We can choose a new contract with efforts (ẽ′

t)t≥1, and payments (w̃′
t)t≥1
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chosen to satisfy equation (FPun
t ), such that they coincide with the original policy except

in periods t∗ and t∗ +1. In these periods, ẽ′
t∗ and ẽ′

t∗+1 are such that ẽt∗ < ẽ′
t∗ ≤ ẽ′

t∗+1 < ẽt∗+1

and

ψ
(
ẽ′
t∗
) + δψ(

ẽ′
t∗+1

) =ψ(ẽt∗) + δψ(ẽt∗+1)�

which implies (by convexity of ψ) that ẽ′
t∗ + δẽ′

t∗+1 > ẽt∗ + δẽt∗+1. We then have also that
w̃t∗ < w̃

′
t∗ and w̃′

t∗ + δw̃′
t∗+1 = w̃t∗ + δw̃t∗+1 (since the NPV of payments does not change,

equilibrium consumption does not change in any period t; so the balance at date t∗ + 1 is
larger under the new contract). Provided the changes are small, the principal’s constraint
(PCt) at t∗ remains satisfied. The above observations imply w̃′

t∗+1 < w̃t∗+1, so the principal’s
constraint is relaxed at date t∗ + 1. Since the NPV of output goes up, the principal’s
constraint is relaxed at all periods before t∗.8 The contract after date t∗ + 1 is unaffected.
The modified contract is thus self-enforceable, and it is strictly more profitable than the
original, establishing a contradiction.

Proof that ẽt∗−1 ≤ ẽt∗ . Analogous and omitted. Q.E.D.

PROOF OF PROPOSITIONS 4.2 AND 4.3: The proof of Proposition 4.3 is divided into
nine lemmas. The proof of Proposition 4.2 is provided in the process, in Lemma A.7.
Throughout, we restrict attention to payments determined under the restriction to
“fastest payments,” that is, satisfying Condition (FPun

t ).
The following result provides a bound on effort in an optimal contract.

LEMMA A.1: In an optimal contract, ψ′(ẽt) ≤ v′(c̄∞) for all t.

PROOF: Take a contract satisfying Condition (FPun
t ) for all t, and let t∗ be the first

date at which ψ′(ẽt∗) > v′(c̄∞). We can adjust such a contract by reducing date t∗ effort
by some η ∈ (0� ẽt∗) (holding effort at other dates fixed). This determines a new contract,
with adjusted consumption and payments, again satisfying (FPun

t ) for all t. Let us index the
revised effort policy by the date-t∗ adjustment η, writing ẽt (η) for all t. Correspondingly,
write

c̄∞(η) ≡ (1 − δ)
(
b1 +

∑
s≥1

δs−1w̃s(η)
)
�

where (w̃s(η))s≥1 are the payments determined from the adjusted effort policy. Then

v
(
c̄∞(0)

) − v(c̄∞(η)
)

1 − δ = δt∗−1
(
ψ

(
ẽt∗ (0)

) −ψ(
ẽt∗ (η)

))
�

Differentiating with respect to η,

c̄′
∞(η)
1 − δ = −δt∗−1ψ′(ẽt∗ (η)

)
v′(c̄∞(η)

) �

8Note that, for the new contract, the principal’s constraint at any date t̂ may be written as∑∞
t=t̂ δ

t−t̂ w̃′
t ≤

∑∞
t=t̂+1 δ

t−t̂ ẽ′
t . For t̂ < t∗, this inequality is satisfied strictly since

∑∞
t=t̂ δ

t−t̂ w̃′
t =

∑∞
t=t̂ δ

t−t̂ w̃t , while∑∞
t=t̂+1 δ

t−t̂ ẽ′
t >

∑∞
t=t̂+1 δ

t−t̂ ẽt .
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This expression coincides with the derivative of the NPV of payments to the agent with
respect to η. The derivative of the principal’s profits is therefore

−δt∗−1 + δt
∗−1ψ′(ẽt∗ (η)

)
v′(c̄∞(η)

) �

which is strictly positive for η ∈ [0� η̄), with η̄ satisfyingψ′(ẽt∗ (η̄)) = v′(c̄∞(η̄)). The effect
on profit from reducing date t∗ effort by η̄ is therefore to strictly increase it. Note (from
(FPun

t )) that payments w̃t (η̄) are reduced for all t ≥ t∗, with the implication that the prin-
cipal’s constraints (PCt) are relaxed for all t. Hence, the new contract is self-enforceable.
Note then that ψ′(ẽt (η̄)) < v′(c̄∞(η̄)) for all t < t∗. We can therefore continue iteratively,
by proceeding to the next date t > t∗ at which v′(c̄∞(η̄)) <ψ′(ẽt (η̄)), if any, and reducing
effort precisely as for at t∗. Proceeding sequentially, we obtain a self-enforceable con-
tract for which ψ′(ẽt) ≤ v′(c̄∞) at all dates t, and which is strictly more profitable than the
original. Q.E.D.

This observation is used to prove existence of an optimal contract.

LEMMA A.2: An optimal relational contract exists.

PROOF: As we already observed, assuming “fastest payments,” the relational contract is
determined solely by the effort policy (ẽt)t≥1. Hence, the payoff obtained by the principal
can be written

W
(
(ẽt)∞

t=1

) =
∞∑
t=1

δt−1ẽt −
∞∑
t=1

δt−1w̃t�

where each w̃t is recursively obtained from (FPun
t ). Note that, from Lemma A.1, we can

restrict attention to effort policies in [0� z(v′(b1(1 − δ)))]∞, where z denotes the inverse
of ψ′.

Now, let W sup be the supremum of W (·) over effort policies (ẽt)t≥1 in [0� z(v′(b1(1 −
δ)))]∞ for which the implied contract (ẽt� c̃t� w̃t� b̃t)t≥1 (i.e., the one implied by (FPun

t ))
satisfies the principal’s constraints (PCt) (such contracts are feasible and satisfy all the
conditions of Proposition 4.1). Note the set is nonempty; for instance, because effort con-
stant at zero is in the set.

Consider then a sequence of policies ((ẽnt )
∞
t=1)∞

n=1 in [0� z(v′(b1(1 − δ)))]∞ and with
W ((ẽnt )

∞
t=1) >W sup − 1/n for all n, and for which the contract defined by each effort pol-

icy (using (FPun
t )) satisfies the principal’s constraints (PCt). There then exists a sequence

(ẽ∞
t )t≥1 ∈ [0� z(v′(b1(1 − δ)))]∞ and a subsequence ((ẽnkt )t≥1)k≥1 convergent pointwise to

(ẽ∞
t )t≥1. Let (w̃∞

t )t≥1 be the payments corresponding to (ẽ∞
t )t≥1 determined using (FPun

t ).
Note that, for any policy (ẽt)t≥1 in [0� z(v′(b1(1−δ)))]∞, using that the payments (w̃t)t≥1

determined by (FPun
t ) are bounded, as well as continuity of v,

v

(
(1 − δ)b1 + (1 − δ)

∞∑
s=1

δs−1w̃s

)

1 − δ −
∞∑
t=1

δt−1ψ(ẽt) = v
(
b1(1 − δ)

)
1 − δ � (19)

Notice also that
∑∞

t=1 δ
t−1ψ(ẽnkt ) → ∑∞

t=1 δ
t−1ψ(ẽ∞

t ) as k→ ∞ (by continuity of ψ and
discounting). Therefore, we have (by equation (19), using that v is strictly increasing) that
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∑∞
t=1 δ

t−1w̃
nk
t → ∑∞

t=1 δ
t−1w̃∞

t . Since, also,
∑∞

t=1 δ
t−1ẽ

nk
t → ∑∞

t=1 δ
t−1ẽ∞

t , we can conclude
that W ((ẽ∞

t )t≥1) =W sup.
Our result will then follow if we can show that the contract defined by (ẽ∞

t )t≥1 satisfies
the principal’s constraints (PCt). Suppose with a view to contradiction that there is some
t∗ at which the principal’s constraint does not hold, and so w̃∞

t∗ >
∑∞

s=t∗+1 δ
s−t∗ (ẽ∞

s − w̃∞
s ).

It is easily verified, from (FPun
t ) and the pointwise convergence of (ẽnkt )t≥1 to (ẽ∞

t )t≥1 and
(w̃nk

t )t≥1 to (w̃∞
t )t≥1, that for large enough k, w̃nk

t∗ >
∑∞

s=t∗+1 δ
s−tnk (ẽnks − w̃nk

s ), contradicting
that the contract determined by (ẽnkt )t≥1 satisfies the principal’s constraints (PCt). Q.E.D.

We next establish the following regarding the nondegeneracy of optimal contracts.

LEMMA A.3: The principal obtains a strictly positive payoff in any optimal contract
(ẽt � c̃t� w̃t� b̃t)t≥1. Moreover, ẽt and w̃t are strictly positive at all dates t.

PROOF: Consider effort set constant to some level ẽ > 0. Let g(ẽ) = ∑∞
t=1 δ

t−1w̃t be
the NPV of payments that must be made to the agent when satisfying the indifference
conditions (FPun

t ), given that effort is constant at ẽ. This satisfies

v
(
(1 − δ)b1 + (1 − δ)g(ẽ)

) =ψ(ẽ) + v((1 − δ)b1

)
�

Differentiating with respect to ẽ yields

g′(ẽ) = ψ′(ẽ)
(1 − δ)v′((1 − δ)b1 + (1 − δ)g(ẽ)

) �
Since the principal’s payoff is 1

1−δ ẽ − g(ẽ), and since ψ′(0) = 0, it follows that the prin-
cipal’s payoff is strictly positive for small positive ẽ. Moreover, by Lemma 4.2, payments
determined by the conditions (FPun

t ) rise over time approaching

ψ(ẽ)
v′((1 − δ)b1 + (1 − δ)g(ẽ)

)
which is o(ẽ) as ẽ→ 0 (i.e., vanishes much faster than ẽ). Hence, when ẽ is small enough,
all the principal constraints (PCt) are satisfied. Hence, the contract determined from spec-
ifying constant effort ẽ, for small ẽ, is self-enforceable and generates a strictly positive
payoff.

Now we show that, in an optimal contract, effort is strictly positive in every period.
Suppose that payments w̃t are determined from effort using (FPun

t ). First, note that the
principal’s continuation profits

∑∞
s=t δ

s−t (ẽs − w̃s) must be strictly positive at all dates.
Otherwise, this expression is zero at some date t, and so w̃t−1 = 0. Condition (FPun

t ) then
implies that ẽt−1 = 0. Iterating backwards, the optimal profit is zero in contradiction with
the previous claim. Suppose then that effort is zero at some date, and consider a date
t such that effort is zero at this date but strictly positive at the subsequent date. Then
w̃t = 0 and so the principal’s constraint (PCt) is slack at date t. However, this contradicts
Lemma 4.3. The restriction to “fastest payments” then implies that all payments are also
strictly positive, as stated in the lemma. Q.E.D.

We now establish an important property of relational contracts: they become (approxi-
mately) stationary in the long run.
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LEMMA A.4: Suppose that (ẽt� c̃t� w̃t� b̃t)t≥1 is an optimal relational contract satisfy-
ing (FPun

t ). Then there exists an effort/payment pair (ẽ∞� w̃∞) such that limt→∞(ẽt� w̃t) =
(ẽ∞� w̃∞).

PROOF: Step 0. We observe first that, for an optimal contract (ẽt � c̃t� w̃t� b̃t)t≥1 satisfying
(FPun

t ),

lim
t→∞

(
w̃t − ψ(ẽt)

v′(c̄∞)

)
= 0�

This follows from Lemma 4.2, recalling that (ẽt)t≥1 is bounded.
Step 1. Define ē ≡ lim supt→∞ ẽt , which we know from Lemma A.1 is no greater than

z(v′(c̄∞)), where z is the inverse of ψ′. We now show that, for any e ∈ [0� ē],

ψ(e)
v′(c̄∞)

≤ δ

1 − δ
(
e− ψ(e)

v′(c̄∞)

)
� (20)

Note, by convexity of ψ, if the inequality (20) is satisfied at ē, then it is satisfied for all
e ∈ [0� ē].

Assume now for the sake of contradiction that the inequality (20) is not satisfied for
some e ∈ [0� ē]. Then we must have

ψ(ē)
v′(c̄∞)

>
δ

1 − δ
(
ē− ψ(ē)

v′(c̄∞)

)
� (21)

Observe then that there is a sequence (εt)∞
t=1 convergent to zero such that, for all t ≥ 1,

ẽt − w̃t ≤ ē− ψ(ē)
v′(c̄∞)

+ εt�

This follows because w̃t − ψ(ẽt )
v′(c̄∞) → 0 as t → ∞ (by Step 0), because e − ψ(e)

v′(c̄∞) increases
over effort levels e in [0� ē] (since ψ′(ē) ≤ v′(c̄∞) by Lemma A.1), and by definition of ē
as lim supt→∞ ẽt .

We therefore have that

lim sup
t→∞

∑
s≥t+1

δs−t(ẽs − w̃s) ≤ δ

1 − δ
(
ē− ψ(ē)

v′(c̄∞)

)
<
ψ(ē)
v′(c̄∞)

�

where the last inequality holds by equation (21). However, Step 0 implies that the superior
limit of payments to the agent must be ψ(ē)

v′(c̄∞) , which implies that the principal’s constraint
(PCt) is not satisfied at some time t. This is a contradiction.

Step 2. We complete the proof by showing that lim inft→∞ ẽt = ē. This is immediate if
ē = 0, so assume ē > 0. Assume, for the sake of contradiction, that lim inft→∞ ẽt < ē. In
this case, there exists some t ′ > 1 such that ẽt′ <min{ē� ẽt′+1}.

Step 2a. We have

w̃t′ ≤ δ

1 − δ
(
ẽt′+1 − ψ(ẽt′+1)

v′(c̄∞)

)
� (22)

This follows because (i) w̃t′ ≤ ψ(ẽt′ )
v′(c̄∞) by Lemma 4.2 and the assumption that payments

satisfy condition (FPun
t ); (ii) ψ(ẽt′ )

v′(c̄∞) ≤ δ
1−δ (ẽt′ − ψ(ẽt′ )

v′(c̄∞) ), by assumption that ẽt′ < ē and by
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Step 1; and (iii) ẽt′ − ψ(ẽt′ )
v′(c̄∞) ≤ et′+1 − ψ(ẽt′+1)

v′(c̄∞) because z(v′(c̄∞)) ≥ ẽt′+1 > ẽt′ (recall that the
inequality z(v′(c̄∞)) ≥ ẽt′+1 is established in Lemma A.1).

Step 2b. We now obtain a contradiction to Lemma 4.3 by showing that the principal’s
constraint (PCt) is slack at t ′. Note first that, for any t ≥ 1, we have

w̃t+1 − w̃t = c̄t+1 − c̄t
δt (1 − δ)

− c̄t − c̄t−1

δt−1(1 − δ)
≥ v(c̄t+1) − v(c̄t)
δt (1 − δ)v′(c̄t)

− v(c̄t) − v(c̄t−1)
δt−1(1 − δ)v′(c̄t)

= ψ(ẽt+1) −ψ(ẽt)
v′(c̄t)

�

where we used that v is concave and equation (FPun
t ). Hence, ẽt+1 > ẽt implies w̃t+1 > w̃t .

Since t ′ was chosen so that ẽt′+1 > ẽt′ , we have w̃t′+1 > w̃t′ . Hence,

w̃t′ < (1 − δ)w̃t′ + δw̃t′+1 ≤ δ
(
ẽt′+1 − ψ(ẽt′+1)

v′(c̄∞)

)
+ δ

∑
s≥t′+2

δs−t
′−1(ẽs − w̃s)

≤
∑
s≥t′+1

δs−t
′
(ẽs − w̃s)�

where the second inequality uses (i) equation (22) from Step 2a, and (ii) the principal’s
constraint (PCt) in period t ′ + 1. The third inequality uses that w̃t′+1 ≤ ψ(ẽt′+1)

v′(c̄∞) , which fol-
lows from Lemma 4.2. Q.E.D.

The following lemma determines that, in an optimal contract, effort is weakly decreas-
ing.

LEMMA A.5: In an optimal contract, the effort policy (ẽt)t≥1 is a weakly decreasing se-
quence. Therefore, for all t, ẽt ≥ ẽ∞ ≡ lims→∞ ẽs.

PROOF: By Lemma A.4, (ẽt)∞
t=1 is a convergent sequence, so using the notation in its

proof, we have ẽ∞ = ē. Step 2 in the proof of Lemma A.4 proves that there is no time t ′
such that ẽt′ <min{ē� ẽt′+1}. Hence, there is no t ′ such that ẽt′ < ẽ∞.

Now suppose, for the sake of contradiction, that (ẽt)∞
t=1 is not a weakly decreasing se-

quence. Thus, there exists a date t ′ where maxt>t′ ẽt > ẽt′ (the maximum exists by the first
part of this proof, and because limt→∞ ẽt = ẽ∞ by Lemma A.4). Let t∗(t ′) be the smallest
value t > t ′ where the maximum is attained, that is, ẽt∗(t′) = maxt>t′ ẽt .

For any s > t∗(t ′),

ẽt∗(t′) − w̃t∗(t′) > ẽt∗(t′) − ψ(ẽt∗(t′))
v′(c̄t∗(t′))

≥ ẽt∗(t′) − ψ(ẽt∗(t′))
v′(c̄s−1)

≥ ẽs − ψ(ẽs)
v′(c̄s−1)

> ẽs − w̃s� (23)

The first inequality follows from Lemma 4.2; the second inequality follows because c̄s−1 ≥
c̄t∗(t′) . The third inequality follows because e− ψ(e)

v′(c̄s−1) is increasing in e over [0� z(v′(c̄∞))],
and because ẽs ≤ ẽt∗(t′) for s > t∗(t ′) by definition of t∗(t ′). The fourth inequality follows
because w̃s >

ψ(ẽs)
v′(c̄s−1) by Lemma 4.2.
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Equation (23) implies that

ẽt∗(t′) − w̃t∗(t′) > (1 − δ)
∑

s≥t∗(t′)+1

δs−t
∗(t′)−1(ẽs − w̃s)�

so that∑
s≥t∗(t′)

δs−t
∗(t′) (ẽs − w̃s) = ẽt∗(t′) − w̃t∗(t′) + δ

∑
s≥t∗(t′)+1

δs−t
∗(t′)−1(ẽs − w̃s)

> (1 − δ)
∑

s≥t∗(t′)+1

δs−t
∗(t′)−1(ẽs − w̃s) + δ

∑
s≥t∗(t′)+1

δs−t
∗(t′)−1(ẽs − w̃s)

=
∑

s≥t∗(t′)+1

δs−t
∗(t′)−1(ẽs − w̃s)� (24)

Recall from Lemma 4.3 that the principal’s constraint must hold with equality at t∗(t ′) −1
(since ẽt∗(t′) > ẽt∗(t′)−1 by the definition of t∗(t ′)). The inequality (24) then implies (given
satisfaction of the principal’s constraint (PCt)) that w̃t∗(t′)−1 > w̃t∗(t′) . But then, recalling
Lemma 4.2, we have

ψ(ẽt∗(t′)−1)
v′(c̄t∗(t′)−1)

> w̃t∗(t′)−1 > w̃t∗(t′) >
ψ(ẽt∗(t′))
v′(c̄t∗(t′)−1)

�

Hence, ẽt∗(t′)−1 > ẽt∗(t′) , contradicting the definition of t∗(t ′). Q.E.D.

Having shown that the effort is weakly decreasing in an optimal relational contract
(Lemma A.5), we now show that it is strictly decreasing when the principal’s constraint
holds with equality.

LEMMA A.6: If the principal’s constraint (PCt) holds with equality at some date t∗, then
ẽt∗ > ẽt∗+1. Hence, by Lemma 4.3, the principal’s constraint also holds with equality at t∗ + 1.

PROOF: The same arguments we used in Lemma A.5 to establish the inequalities in
(23) imply that ẽt∗+1 − w̃t∗+1 > ẽs − w̃s for all s > t∗ + 1. In turn, this means that, if the
principal’s constraint (PCt) holds with equality at t∗, then w̃t∗ > w̃t∗+1. Indeed, because
the principal’s constraint holds with equality at t∗,

w̃t∗ = δ
(
ẽt∗+1 − w̃t∗+1 + δ

∑
s≥t∗+2

δs−t
∗−2(ẽs − w̃s)

)

> δ

(
(1 − δ)

∑
s≥t∗+2

δs−t
∗−2(ẽs − w̃s) + δ

∑
s≥t∗+2

δs−t
∗−2(ẽs − w̃s)

)

=
∑
s≥t∗+2

δs−t
∗−1(ẽs − w̃s)

≥ w̃t∗+1�

The final inequality follows from the principal’s constraint (PCt) at date t∗ + 1. Using
Lemma 4.2, we have ẽt∗+1 < ẽt∗ . Q.E.D.
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Lemma A.6 implies that, given payments satisfy condition (FPun
t ), if the principal’s con-

straint (PCt) holds with equality at some date, then effort is strictly decreasing forever
after (and the principal’s constraints (PCt) hold with equality forever after). Our next
goal is therefore to establish when the principal attains the first-best payoff. Also, when
the first-best payoff is unattainable, establish that there is necessarily a date at which the
principal’s constraint is satisfied with equality.

LEMMA A.7: The principal attains her first-best payoff if and only if Condition (7) holds.
If this is not satisfied, there is a time t∗ ∈ N such that the principal’s constraint is slack if and
only if t < t∗. Hence, effort is constant up to date t∗ − 1 and strictly decreases from date t∗.

PROOF: Consider payments satisfying (FPun
t ), for all t, determined given first-best ef-

fort. By Lemma 4.2, payments rise over time to ψ(eFB(b1))
v′(cFB(b1)) . Per-period profits fall over time

to eFB(b1) − ψ(eFB(b1))
v′(cFB(b1)) . So, Condition (7) is necessary and sufficient for implementation of

the first-best.
Assume now that Condition (7) fails, and fix an optimal contract that is not first-best.

We want to show that the principal’s constraint (PCt) holds with equality at some t∗. This
requires ruling out that it holds as a strict inequality at all dates, so suppose for a con-
tradiction that it does. Effort is then constant over all periods (by Lemma 4.3), but not
first-best. Letting ẽ∞ be the constant effort level and c̄∞ equilibrium consumption, Propo-
sition 3.1 then implies that v′(c̄∞) 
=ψ′(ẽ∞). By Lemma A.1, we have v′(c̄∞) >ψ′(ẽ∞). By
Lemma A.3, we have ẽ∞ > 0.

Note that w̃t increases over time to ψ(ẽ∞)
v′(c̄∞) (from Lemma 4.2). We claim then that

ψ(ẽ∞)
v′(c̄∞)

= δ

1 − δ
(
ẽ∞ − ψ(ẽ∞)

v′(c̄∞)

)
� (25)

If instead ψ(ẽ∞)
v′(c̄∞) >

δ
1−δ (ẽ∞ − ψ(ẽ∞)

v′(c̄∞) ), the principal’s constraint is violated for large enough t.

If instead ψ(ẽ∞)
v′(c̄∞) <

δ
1−δ (ẽ∞ − ψ(ẽ∞)

v′(c̄∞) ), we have w̃t remains bounded below
∑∞

s=t+1 δ
s−t (ẽ∞ −

w̃t). Without violating (PCt), effort can be increased by a small constant amount across
all periods (with payments adjusted to satisfy (FPun

t )). This increases profits. Note then
that Condition (25) can be written as ψ(ẽ∞)

v′(c̄∞) = δẽ∞. Because ψ is strictly convex, we have
ψ′(ẽ∞)
v′(c̄∞) > δ.

Now consider a contract with effort increased at date 1 by ε > 0 and reduced from
date 2 onwards by κ(ε) > 0 to be determined. Payments are adjusted to satisfy Condition
(FPun

t ).
We let c̄∞(ε�κ(ε)) denote equilibrium consumption under the new plan (naturally,

c̄∞(0�0) is consumption under the original plan). The new consumption satisfies

1
1 − δv

(
c̄∞

(
ε�κ(ε)

)) − 1
1 − δv

(
c̄∞(0�0)

)
=ψ(ẽ∞ + ε) −ψ(ẽ∞) − δ

1 − δ
(
ψ(ẽ∞) −ψ(

ẽ∞ − κ(ε)
))
�

We aim to choose κ(ε) so that the principal’s constraint (PCt) is just satisfied. Define

f (ε�k) ≡ ψ(ẽ∞ − k)
v′(c̄∞(ε�k)

) − δ(ẽ∞ − k)� (26)
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We then define κ(ε) by f (ε�κ(ε)) = 0 for positive ε in a neighborhood of 0. We will use
the implicit function theorem to show that such a local solution κ(ε) exists.

To apply the implicit function theorem, note that f (ε�k) is continuously differentiable
in a neighborhood of (ε�k) = (0�0). The derivative of f (ε�k) with respect to k, evaluated
at (ε�k) = (0�0), is

f2(0�0) = δ− ψ′(ẽ∞)
v′(c̄∞(0�0)

) + v′′(c̄∞(0�0)
)( δψ′(ẽ∞)

v′(c̄∞(0�0)
)3

)
ψ(ẽ∞)�

This is strictly negative, using that ψ′(ẽ∞)
v′(c̄∞(0�0)) > δ. The derivative f (ε�k) instead with re-

spect to ε, evaluated at (ε�k) = (0�0), is

f1(0�0) = −v′′(c̄∞(0�0)
)( (1 − δ)ψ′(ẽ∞)

v′(c̄∞(0�0)
)3

)
ψ(ẽ∞)�

The implicit function theorem then gives us that κ is locally well-defined by f (ε�κ(ε)) = 0
on some interval around 0, unique, and continuously differentiable, with derivative ap-
proaching

κ′(0) = −f1(0�0)
f2(0�0)

=
v′′(c̄∞(0�0)

)( (1 − δ)ψ′(ẽ∞)

v′(c̄∞(0�0)
)3

)
ψ(ẽ∞)

δ− ψ′(ẽ∞)
v′(c̄∞(0�0)

) + v′′(c̄∞(0�0)
)( δψ′(ẽ∞)

v′(c̄∞(0�0)
)3

)
ψ(ẽ∞)

<
1 − δ
δ

(27)

as ε→ 0 (the strict inequality follows because ψ′(ẽ∞)
v′(c̄∞(0�0)) > δ).

For small enough ε, the adjusted contract satisfies the principal’s constraints (PCt).
Indeed, when ε is small, the constraint (PCt) remains slack at date t = 1. For all other
dates, the constraint (PCt) holds because f (ε�κ(ε)) = 0, and by Lemma 4.2.

For small enough ε, the principal’s profits strictly increase. The NPV of effort increases
by

ε− δ

1 − δκ(ε) =
(

1 − δ

1 − δκ
′(0)

)
ε+ o(ε)

(o(ε) represents terms that vanish faster than ε as ε→ 0). From inequality (27), we have
1 − δ

1−δκ
′(0) > 0, and so the increase in effort is strictly positive for ε small enough. Using

that payments continue to satisfy Condition (FPun
t ), a marginal increase in the NPV of

effort is compensated by an increase in the NPV of payments to the agent by ψ′(ẽ∞)
v′(c̄∞(0�0)) .

Therefore, the principal’s payoff under the new contract increases by(
1 − ψ′(ẽ∞)

v′(c̄∞(0�0)
))(

1 − δ

1 − δκ
′(0)

)
ε+ o(ε)�

which is strictly positive for small enough ε, recalling that v′(c̄∞(0�0)) >ψ′(ẽ∞). Q.E.D.

We have established that, when the principal cannot attain the first-best payoff, effort is
eventually strictly decreasing to a value ẽ∞ (identified in the proposition). We now show
that ẽ∞ > 0, which requires only ruling out ẽ∞ = 0.
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LEMMA A.8: Suppose the principal cannot attain the first-best payoff. In any optimal con-
tract, the limiting value of effort ẽ∞ ≡ limt→∞ ẽt is strictly positive.

PROOF: Consider any optimal contract (ẽt � c̃t� w̃t� b̃t)t≥1 that does not achieve the prin-
cipal’s first-best payoff, and suppose for a contradiction that ẽ∞ ≡ limt→∞ ẽt is equal to
zero.

Because ψ′(0) = 0, there exists a value ê ∈ (0� ẽ1) satisfying ψ(ê)
v′(c̄∞) ≤ δê. Note that

limt→∞(ẽt − w̃t) = 0. Hence, there is T satisfying that (i) δT−1

1−δ ψ(ê) < ψ(ẽ1) − ψ(ê), (ii)
ẽt < ê for all t ≥ T , and (iii) ẽt − w̃t < ê− ψ(ê)

v′(c̄∞) for all t ≥ T .

Now, let m≡ ∑∞
t=T δ

t−1(ψ(ê) −ψ(ẽt)) > 0, and define a new contract (ẽ′
t � c̃

′
t � w̃

′
t � b̃

′
t)t≥1

by specifying ẽ′
1 to satisfy ψ(ẽ′

1) = ψ(ẽ1) −m, ẽ′
t = ẽt for all t ∈ {2� � � � �T − 1}, as well as

ẽ′
t = ê for all t ≥ T . Let effort determine the other variables, by satisfaction of Condition

(FPun
t ).

Note we have
∑∞

t=1 δ
t−1ψ(ẽ′

t) = ∑∞
t=1 δ

t−1ψ(ẽt), and hence c̄∞ and the NPV of the
payments are the same in the new contract. In addition, ψ(ẽ′

1) = ψ(ẽ1) −m > ψ(ẽ1) −
δT−1

1−δ ψ(ê) >ψ(ê). Hence, ẽ′
1 > ê. From strict convexity of ψ, the principal’s payoff is now

strictly higher. It remains to show self-enforceability, which will follow from satisfaction
of constraints (PCt).

Note that w̃′
t < w̃t for all t < T by concavity of v. This shows that per-period profits

satisfy ẽ′
t − w̃′

t > ẽt − w̃t for t ∈{2� � � � � T − 1}. In addition, profits ẽ′
t − w̃′

t at t ≥ T exceed
ê − ψ(ê)

v′(c̄∞) > ẽt − w̃t , since w̃′
t <

ψ(ê)
v′(c̄∞) for t ≥ T (this follows by Lemma 4.2). This shows

constraint (PCt) is satisfied at all t < T . To see this for t ≥ T , note that

w̃′
t <

ψ(ê)
v′(c̄∞)

≤ δ

1 − δ
(
ê− ψ(ê)

v′(c̄∞)

)
<

∞∑
s=t+1

δs−t
(
ẽ′
s − w̃′

s

)
�

Q.E.D.

We now show the claim in footnote 5: t̄ (defined in the proposition) may be greater
than 1.

LEMMA A.9: For any v and ψ admitted in the model set-up, there exists a discount factor
δ and initial balance b1 such that (i) the principal obtains less than the first-best payoff, and
(ii) for any optimal contract, the principal’s constraint (PCt) is satisfied strictly for t = 1�2.

PROOF: Fix v and ψ satisfying the properties in the model set-up, and fix a scalar γ > 0.
Define the function b1(δ) = γ

1−δ . As explained in Section 4.1, there is then a threshold
value δ∗ ∈ (0�1) such that δ≥ δ∗ and b1 = b1(δ) implies the principal can attain the first-
best payoff in a self-enforceable contract, while δ < δ∗ and b1 = b1(δ) implies this is not
the case. We aim to show that the principal’s constraint (PCt) is slack over some initial
periods when δ is below, but close enough to, δ∗, and when b1 = b1(δ). We do so in three
steps. In these steps, we let δ parameterize the environment, leaving b1 = b1(δ) implicit.

Step 1. First, by considering constant effort policies, it is easily seen that the principal’s
payoff in an optimal contract approaches that for parameter δ∗ as δ→ δ∗ from below.

Step 2. Next, let e∗ be the first-best effort for parameter δ∗. We show that, for any ε > 0
and period T , there exists δ̂(T�ε) such that, for δ ∈ (δ̂(T�ε)� δ∗), maxt≤T |ẽt − e∗| < ε,
where (ẽt)t≥1 is any optimal effort policy for parameter δ.

By Lemma A.1, any optimal effort policy is contained in [0� z(v′(γ))]∞. The principal’s
payoff for a self-enforceable contract with efforts (ẽt)∞

t=1 (and satisfying condition (FPun
t ))
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is

∞∑
t=1

δt−1ẽt −
v−1

(
(1 − δ)

∞∑
t=1

δt−1ψ(ẽt) + v(γ)

)

1 − δ + b1(δ)�

which varies continuously in δ, with the continuity uniform over δ≤ δ∗ and effort policies
contained in [0� z(v′(γ))]∞.

Fix δ = δ∗, and fix any ε > 0 and T ∈ N. There is then ν > 0 such that the fol-
lowing is true. For any effort policy (ẽt)t≥1 contained in [0� z(v′(γ))]∞ and satisfying
maxt≤T |ẽt − eFB(b1)| ≥ ε, and for payments satisfying condition (FPun

t ), the principal’s
payoff is less than that sustained by the first-best contract by at least ν. This follows from
uniqueness of the first-best policy and continuity of the principal’s objective in the effort
policy (ẽt)t≥1. However, the aforementioned continuity of the principal’s payoff in δ, to-
gether with Step 1, implies that, when δ is close enough to (but below) δ∗, any effort policy
satisfying maxt≤T |ẽt − eFB(b1)| ≥ ε cannot be optimal.

Step 3. For δ= δ∗, under the first-best policy, the principal’s constraint (PCt) is satisfied
strictly at all dates. Then, provided ε is small enough, and T large enough, the constraint
is satisfied strictly under an optimal contract for at least the first two dates when δ ∈
(δ̂(T�ε)� δ∗). Q.E.D.

(End of the proof of Propositions 4.2 and 4.3.) Q.E.D.

PROOF OF PROPOSITION 4.4: Fix an optimal relational contract (ẽt � w̃t� c̃t� b̃t)t≥1. We
want to show that condition (FPun

t ) holds at all dates t > t̄ (with t̄ identified in the propo-
sition). Suppose for a contradiction this is not the case, and so the condition fails at some
t ′ > t̄. Since the contract is optimal, the condition in equation (5) holds (by the arguments
in the main text). We therefore have

v

(
(1 − δ)

(
b1 +

t′−1∑
s=1

δs−1w̃s

))

1 − δ −
t′−1∑
s=1

δs−1ψ(ẽs)

<

v

(
(1 − δ)

(
b1 +

∞∑
s=1

δs−1w̃s

))

1 − δ −
∑
t≥1

δt−1ψ(ẽt)

= v
(
(1 − δ)b1

)
1 − δ � (28)

Now consider the relational contract with the same effort and consumption but where
payments ensure the satisfaction of condition (FPun

t ) at all dates. Denote the payments
by w̃′

t for all t, and note that equation (28) holds with equality when each w̃s is replaced
by w̃′

s. Therefore,
∑∞

s=t′ δ
s−t′w̃′

s <
∑∞

s=t′ δ
s−t′w̃s, and hence the principal’s constraint (PCt)

is slack at t ′ under the payments w̃′
t . Because t ′ > t̄, we have ẽt′ < ẽt′−1. This contradicts

Lemma 4.3.
The final part of the proposition concerns the observation that payments are strictly

decreasing from t̄ + 1 onwards. Considering the principal’s constraint (PCt) holds with
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equality at these dates, it is enough to observe that profits ẽt − w̃t are strictly decreasing
in t after date t̄ + 1. This follows by the same arguments that establish the inequalities in
equation (23). That the agent’s balances are strictly increasing from date t̄ + 1 is estab-
lished in the main text. Q.E.D.

A.2. Proofs of the Results in Section 5

PROOF OF PROPOSITION 5.1: Necessity. Immediate from the arguments in the main
text.

Sufficiency. Let (ẽt � c̃t� w̃t� b̃t)t≥1 be a feasible contract satisfying conditions (ACob
t ) and

(PCt). Specify strategies (αt)t≥1 and (σt)t≥1 for the agent and principal as follows. Provided
that (es� cs�ws) = (ẽs� c̃s� w̃s) for all s < t, the agent consumes c̃t and chooses effort ẽt .
Otherwise, the agent consumes max{0� (1 − δ)b(ht)}, with b(ht) the balance determined
recursively from b1, given the history ht = (es� cs�ws)t−1

s=1 and chooses effort zero (if b(ht) <
0, the agent violates his intertemporal budget constraint and earns payoff −∞). Provided
that (es� cs�ws) = (ẽs� c̃s� w̃s) for all s < t, and (et� ct) = (ẽt� c̃t), the principal pays w̃t .
Otherwise, she pays zero.

Now check the agent does not want to deviate at any history. Suppose there has
been no deviation by t. Given the principal’s strategy, the agent’s continuation pay-
off is

∑∞
s=t δ

s−t (v(c̃s) − ψ(ẽs)) by not deviating. By deviating at t, he gets paid zero
from t onwards and optimally consumes max{0� (1 − δ)b̃t} per period with continua-
tion payoff at most v(max{0�(1−δ)b̃t})

1−δ . So, the inequality (ACob
t ) implies no deviation is prof-

itable. At any other history, the agent anticipates no further payments, so consuming
max{0� (1 − δ)b(ht)} and ceasing effort is optimal.

Now check that the principal does not want to deviate at any history. This follows when
there has been no past deviation by condition (PCt) because the t+ 1 continuation payoff
from not deviating,

∑∞
s=t+1 δ

s−t (ẽs − w̃s), is larger than the date-t payment w̃t that could
be avoided. Also, when there has been a deviation, the principal clearly finds paying zero
optimal. Q.E.D.

PROOF OF LEMMA 5.1: Fix an optimal contract (ẽt � c̃t� w̃t� b̃t)t≥1 and suppose that Con-
dition (8) is not satisfied for some t. Since the contract is self-enforceable, the inequality
in equation (ACob

t ) holds for all t. First, note that because the contract is optimal, the
inequality in equation (ACob

t ) cannot hold as a strict inequality at date t = 1. Otherwise,
both c̃1 and w̃1 can be reduced by the same small amount, leaving all constraints intact
but increasing the principal’s payoff.

If the inequality in equation (ACob
t ) is strict at any t > 1, we can consider a new contract

with payment reduced at date t by ε > 0, and with payment increased at date t − 1 by
δε, keeping consumption and effort unchanged. The change increases b̃t by ε and, for
appropriately chosen ε, the constraint (ACob

t ) holds with equality. All the other agent
constraints (ACob

t ) are unaffected. The principal’s constraint (PCt) is slackened at date t,
and unaffected at all other dates. The new contract attains the principal’s optimal payoff.

Now note that the above adjustments can be applied sequentially at the dates for which
(ACob

t ) holds as a strict inequality starting with the earliest one, yielding a contract for
which equation (8) and the conditions (PCt) hold at all dates.

Finally, when equation (8) is satisfied for all t, all payments are nonnegative given that
disutility of effort is nonnegative (this can be seen from equation (FPob

t )). Hence, the
implied contract can be shown to be feasible. Also, balances b̃t remain strictly positive
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at all t, as the agent’s constraint (ACob
t ) for date 1 guarantees the agent earns a finite

equilibrium payoff. Q.E.D.

PROOF OF PROPOSITION 5.2: Follows from the arguments in the main text. Q.E.D.

PROOF OF PROPOSITION 5.3: It will be useful to write the recursive problem in the
main text by substituting out agent effort. To this end, define a function ê by

ê(ct� bt� bt+1) ≡ψ−1

(
v(ct) + δ

1 − δv
(
(1 − δ)bt+1

) − 1
1 − δv

(
(1 − δ)bt

))
(29)

for ct� bt� bt+1 > 0, and v(ct) + δ
1−δv((1−δ)bt+1) − 1

1−δv((1−δ)bt) ≥ 0. Given our assump-
tion of “fastest payments” (condition (FPob

t )), and given values c̃t , b̃t , and b̃t+1, the date-t
effort must be given by ẽt = ê(c̃t � b̃t� b̃t+1).

We can then write the principal’s optimal payoff given balance b̃t > 0 (which we estab-
lish in Lemma A.13 can be attained by a self-enforceable contract) as follows:

V (b̃t) = max
ct �bt+1>0

(
ê(ct� b̃t� bt+1) − (δbt+1 − b̃t + ct) + δV (bt+1)

)
(30)

subject to the principal’s constraint

δbt+1 − b̃t + ct ≤ δV (bt+1) (31)

and to the requirement that the implied effort is nonnegative, that is,

v(ct) + δ

1 − δv
(
(1 − δ)bt+1

) − 1
1 − δv

(
(1 − δ)b̃t

) ≥ 0� (32)

The proof of Proposition 5.3 will now consist of eight lemmas. These lemmas mainly
are concerned with the dynamics of an optimal contract. Lemma A.13 establishes the
existence of an optimal contract.

LEMMA A.10: In any optimal contract (ẽt � c̃t� w̃t� b̃t)t≥1, ẽt� c̃t� w̃t� b̃t > 0 for all t, and
V (b̃t) ∈ (0� V FB(b̃t)] for all t. Also, ψ′(ẽt) ≤ v′(c̃t) for all t, and ψ′(ẽt) < v′(c̃t) only if w̃t =
δV (b̃t+1).

PROOF: Proof that ẽt � c̃t� w̃t� b̃t > 0 for all t and that V (b̃t) ∈ (0� V FB(b̃t)] for all t. First,
note that c̃t � b̃t > 0 for all t follows immediately from our assumption that the conditions
(FPob

t ) hold at all dates t, and because b1 > 0.
Now consider the condition on V (b̃t). The principal can never do better than offering

the first-best contract; that is, V (b̃) ≤ V FB(b̃) for all b̃ > 0. That V (b̃) > 0 for all b̃ > 0
follows by considering a stationary (i.e., constant) contract with small but positive effort.

We now prove that w̃t > 0 for all t. Assume for a contradiction that w̃t = 0 for some t, so
that δb̃t+1 − b̃t + c̃t = 0. Then c̃t = (1−δ)b̃t and b̃t+1 = b̃t (the only possibility for condition
(32) to be satisfied), and so ẽt = ê((1 − δ)b̃t� b̃t� b̃t) = 0. Hence, V (b̃t) = δV (b̃t); that is,
V (b̃t) = 0. But this contradicts the claim that V (b̃t) > 0.
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To prove that ẽt > 0 for all t, suppose to the contrary that ẽt = 0 for some t. If w̃t <
δV (b̃t+1), we can raise effort to ět = ε at date t for ε > 0; raise date-t consumption to

čt = v−1

(
ψ(ε) − δ

1 − δv
(
(1 − δ)b̃t+1

) + 1
1 − δv

(
(1 − δ)b̃t

));

and raise the date-t payment to w̌t = w̃t+ čt− c̃t . Thus, the agent’s balance at t+1 remains
unchanged, and the only adjustments to the contract are at date t. For ε sufficiently small,
we have w̌t < δV (b̃t+1), so the principal’s constraints (PCt) are satisfied. By construction,
the agent’s constraints (ACob

t ) are satisfied. The principal’s payoff strictly increases, so the
original contract with effort ẽt = 0 was not optimal, a contradiction. The remaining case
is where w̃t = δV (b̃t+1). In this case V (b̃t) = 0, but this again contradicts the claim that
V (b̃t) > 0.

Proof that ψ′(ẽt) ≤ v′(c̃t) for all t, and ψ′(ẽt) < v′(c̃t) only if w̃t = δV (b̃t+1). Define

c(b̃t� b̃t+1) ≡ v−1

(
1

1 − δv
(
(1 − δ)b̃t

) − δ

1 − δv
(
(1 − δ)b̃t+1

))
�

interpreted as the lowest consumption level that permits the constraint (32) to be satisfied,
for fixed values of b̃t and b̃t+1. Consider the problem of maximizing

ê(ct� b̃t� b̃t+1) − (δb̃t+1 − b̃t + ct) + δV (b̃t+1) (33)

with respect to ct on [c(b̃t� b̃t+1)�+∞). Given that ê(·� b̃t� b̃t+1) is a continuously differen-
tiable and strictly concave function, and that limc→+∞ ê1(c� b̃t� b̃t+1) = 0,9 there is a unique
solution of the maximization problem, denoted c∗(b̃t� b̃t+1). Furthermore, since ψ′(0) = 0,
we have that c∗(b̃t� b̃t+1) > c(b̃t� b̃t+1), and the first-order condition establishes

ψ′(ê(c∗(b̃t� b̃t+1)� b̃t� b̃t+1

)) = v′(c∗(b̃t� b̃t+1)
)
�

If we have δb̃t+1 − b̃t + c∗(b̃t� b̃t+1) ≤ δV (b̃t+1), then it is clear that optimality requires
c̃t = c∗(b̃t� b̃t+1), and so ẽt = ê(c∗(b̃t� b̃t+1)� b̃t� b̃t+1). If instead δb̃t+1 − b̃t + c∗(b̃t� b̃t+1) >
δV (b̃t+1), given the concavity of (33) in ct , we must have

c̃t = δV (b̃t+1) − δb̃t+1 + b̃t < c∗(b̃t� b̃t+1)�

Note that in this case, w̃t = δb̃t+1 − b̃t + c̃t = δV (b̃t+1). Moreover,

ẽt = ê(c̃t � b̃t� b̃t+1) < ê
(
c∗(b̃t� b̃t+1)� b̃t� b̃t+1

)
�

and so we have ψ′(ẽt) < v′(c∗(b̃t� b̃t+1)) < v′(c̃t). Q.E.D.

We now establish the Euler equation in the main text and monotonicity of consumption.

LEMMA A.11: Any optimal contract (ẽt � c̃t� w̃t� b̃t)t≥1 satisfies the Euler equation (14) in
all periods. Furthermore, c̃t ≥ c̃t+1 > (1 − δ)b̃t+1 for all t.

9Here, ê1 denotes the derivative of ê with respect to the first argument.
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PROOF: We divide the proof in three steps:
Step 1. Fix an optimal contract (ẽt � c̃t� w̃t� b̃t)t≥1. Consider a contract (ět � čt� w̌t� b̌t)t≥1,

coinciding with the original contract in all periods except for periods t and t + 1 (so, also,
b̌t = b̃t). We specify the new contract to also satisfy equation (FPob

t ) at all dates. Hence,

v(čt) −ψ(ět) + δ

1 − δv
(

1 − δ
δ

(b̃t + w̌t − čt)
)

= 1
1 − δv

(
(1 − δ)b̃t

)
� (34)

v

(
1
δ

(b̃t + w̌t − čt) + w̌t+1 − δb̃t+2

)
−ψ(ět+1) + δ

1 − δv
(
(1 − δ)b̃t+2

)

= 1
1 − δv

(
1 − δ
δ

(b̃t + w̌t − čt)
)
� (35)

which uses that consumption in period t + 1 under the new contract is čt+1 = 1
δ
(b̃t + w̌t −

čt) + w̌t+1 − δb̃t+2 (guaranteeing the agent has savings b̃t+2 at date t + 2).
Fix ět = ẽt and w̌t+1 = w̃t+1. Equations (34) and (35) implicitly define ět+1 and w̌t as

functions of čt . Let these functions be denoted êt+1(·) and ŵt (·), respectively. We can use
the implicit function theorem to compute the derivatives at čt = c̃t :

ê′
t+1(c̃t) = v′(c̃t)

(
v′((1 − δ)b̃t+1

) − v′(c̃t+1)
)

δψ′(ẽt+1)v′((1 − δ)b̃t+1

) and ŵ′
t (c̃t) = 1 − v′(c̃t)

v′((1 − δ)b̃t+1

) �
Note that the original contract is obtained by setting čt = c̃t . If čt is changed from c̃t to
c̃t + ε, for some (positive or negative) ε small, the total effect on the continuation payoff
of the principal at time t is (−ŵ′

t (c̃t) + δê′
t+1(c̃t))ε+ o(ε). Hence, a necessary condition

for optimality is that −ŵ′
t (c̃t) + δê′

t+1(c̃t) = 0, which is equivalent to the Euler equation
(14).

The Euler equation implies that if v′(c̃t+1) =ψ′(ẽt+1), then c̃t = c̃t+1. From Lemma A.10,
if instead v′(c̃t+1) 
=ψ′(ẽt+1), then v′(c̃t+1) >ψ′(ẽt+1). There are then three possibilities:

1. If both sides of the Euler equation are strictly positive, then c̃t < c̃t+1 < (1 − δ)b̃t+1.
2. If both sides of the Euler equation are zero, then c̃t = c̃t+1 = (1 − δ)b̃t+1.
3. If both sides of the Euler equation are strictly negative, then c̃t > c̃t+1 > (1 − δ)b̃t+1.
Step 2. We now prove that if c̃t ≤ (1 − δ)b̃t then c̃s ≤ c̃s+1 < (1 − δ)b̃s+1 for all s ≥ t. As-

sume first that there is a period t such that c̃t ≤ (1−δ)b̃t . Hence, since ẽt = ê(c̃t � b̃t� b̃t+1) >
0 (recall Lemma A.10) we have b̃t+1 > b̃t . This shows that each side of the Euler equation
is strictly positive. Since v′(c̃t+1)/ψ′(ẽt+1) ≥ 1 (from Lemma A.10), (1 − δ)b̃t+1 > c̃t+1 ≥ c̃t .
The result then follows by induction.

Step 3. We prove that c̃t > (1 − δ)b̃t for all t > 1; it then follows immediately from
Step 1 that consumption is (weakly) decreasing in t. Assume then, for the sake of contra-
diction, that there is a t ′ > 1 such that c̃t′ ≤ (1 −δ)b̃t′ . We will construct a self-enforceable
contract that is strictly more profitable than the original, contradicting the optimality of
the original.

We first make some preliminary observations. From Step 2, we have that c̃s ≤ c̃s+1 <

(1 − δ)b̃s+1 for all s ≥ t ′. Also, since effort is always strictly positive (by Lemma A.10),

∑
s≥t′
δs−t

′
v(c̃s) >

1
1 − δv

(
(1 − δ)b̃t′

)
�
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Hence, there must be a period s ≥ t ′ where c̃s+1 > c̃t′ . Let t ′′ be the earliest such period,
and note that it satisfies c̃t′′+1 > c̃t′′ . Additionally, we can observe that, for all t,

b̃t +
∑
τ≥t
δτ−t w̃τ =

∑
τ≥t
δτ−t c̃τ� (36)

If this is not the case (the right-hand side is strictly smaller), then applying equation (1)
repeatedly, we have b̃t → ∞ and so the agent’s constraint (ACob

t ) must be violated for
large t.

Now let us construct the more profitable contract for the principal, given our assump-
tion that c̃t′ ≤ (1 − δ)b̃t′ . We first construct a self-enforceable contract (ẽnew

t � c̃new
t � w̃new

t �

b̃new
t )t≥1 in which the agent obtains a strictly higher payoff than in the original, while the

principal obtains the same payoff. We then show how that contract can be further ad-
justed to obtain one, which is strictly better for the principal. In the new contract that is
better for the agent, we maintain w̃new

t = w̃t and ẽnew
t = ẽt for all t, but specify different

consumption (c̃new
t ) and balances (b̃new

t ).
The change in agent consumption is to specify constant consumption c̄ in each period

from t ′′ onwards, where

c̄ ≡ (1 − δ)
∑
τ≥t′′

δτ−t
′′
c̃τ� (37)

That is, c̃new
t = c̄ for all t ≥ t ′′, while c̃new

t = c̃t for t < t ′′. Notice that, c̄ < (1 −δ)
∑∞

τ=t δ
τ−t c̃τ

for all t > t ′′.
Balances are determined by equation (1), so they are b̃new

t = b̃t for t ≤ t ′′, and

b̃new
t = δt′′−t b̃t′′ +

t−1∑
τ=t′′

δτ−t (w̃τ − c̄)

for all t > t ′′. Observe then that, for all t > t ′′,

b̃new
t +

∑
τ≥t
δτ−t w̃τ = δt′′−t b̃t′′ +

∑
τ≥t′′

δτ−t w̃τ −
t−1∑
τ=t′′

δτ−t c̄ =
∑
τ≥t′′

δτ−t c̃τ −
t−1∑
τ=t′′

δτ−t c̄ = c̄

1 − δ�

where the second equality uses equation (36) and the third equation (37). Hence, for all
t > t ′′,

b̃new
t +

∑
τ≥t
δτ−t w̃τ = c̄

1 − δ <
∑
τ≥t
δτ−t c̃τ = b̃t +

∑
τ≥t
δτ−t w̃τ�

where the second equality follows from equation (36). This implies that b̃new
t < b̃t for all

t > t ′′.
Now, we want to show that the contract (ẽnew

t � c̃new
t � w̃new

t � b̃new
t )t≥1 is self-enforceable.

Because effort and payments are unchanged relative to the original contract, the prin-
cipal’s constraints (PCt) remain intact. For all t ≤ t ′′, the agent obtains a strictly higher
continuation payoff in the new contract. This follows from concavity of v, and because
consumption from date t ′′ onwards is constant in the new contract, while its NPV is the
same as in the original. Since agent balances are also unchanged, constraints (ACob

t ) are
then satisfied at t ≤ t ′′ as strict inequalities.
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To see how the agent’s constraints change at each t > t ′′, define c̄(t) ≡ (1−δ)
∑∞

τ=t δ
τ−t c̃τ.

Consider the original contract, and suppose that the agent’s consumption is changed from
date t onwards, being set equal to c̄(t) in all such periods. The agent’s payoff increases from
the smoothing of consumption, and so

∑
τ≥t
δτ−t

(
v
(
c̄(t)

) −ψ(ẽτ)
) ≥

∑
τ≥t
δτ−t

(
v(c̃τ) −ψ(ẽτ)

) ≥ 1
1 − δv

(
b̃t (1 − δ)

)
� (38)

where the second inequality follows because the agent’s constraints (ACob
t ) are satisfied

in the original contract.
Equation (38) implies c̄(t) ≥ b̃t (1 − δ). Therefore, since v is concave, we have

v
(
c̄(t)

)−v(c̄(t) − (1−δ)
(
b̃t− b̃new

t

)) ≤ v(b̃t (1−δ)
)−v(b̃t (1−δ)− (1−δ)

(
b̃t− b̃new

t

))
� (39)

Note that c̄ = c̄(t) − (1 − δ)(b̃t − b̃new
t ). Combining equations (38) and (39), we therefore

have that, for all t > t ′′,

∑
τ≥t
δτ−t

(
v(c̄) −ψ(ẽτ)

) ≥ 1
1 − δv

(
b̃new
t (1 − δ)

)
�

This shows that, for the contract (ẽnew
t � c̃new

t � w̃new
t � b̃new

t )t≥1, the agent’s constraints (ACob
t )

are satisfied also at dates t > t ′′.
We have thus shown that (ẽnew

t � c̃new
t � w̃new

t � b̃new
t )t≥1 is a self-enforceable contract. More-

over, we saw that the constraints (ACob
t ) are satisfied strictly at all t ≤ t ′′. We can there-

fore further adjust the contract by raising effort at t ′′ by a small amount ε > 0 such that,
without other changes to the contract, all constraints remain intact. The principal earns
a strictly higher payoff than in the original contract, contradicting the optimality of the
original. Q.E.D.

We can then provide the key result that balances decrease over time toward b̃∞.

LEMMA A.12: In any optimal contract, (b̃t)t≥1 is weakly decreasing: it is constant if the
contract attains the first-best payoff, and strictly decreasing toward some b̃∞ > 0 otherwise.

PROOF: Step 0. If the first-best payoff is achievable at b1, then equilibrium consumption
and effort is uniquely determined by the conditions in Proposition 3.1. Because we assume
payments satisfy equation (8), balances (b̃t)t≥1 are constant. Suppose from now on that
V (b1) < V FB(b1).

Step 1. Proof that (b̃t)t≥1 is weakly decreasing. Consider an optimal contract (ẽt� c̃t� w̃t�
b̃t)t≥1. To show that the balance b̃t is weakly decreasing, we suppose for a contradiction
that b̃t̂+1 > b̃t̂ for some date t̂. We construct a self-enforceable contract that achieves
strictly higher profits for the principal.

Step 1a. First, denote a new contract by (ẽ′
t � c̃

′
t � w̃

′
t � b̃

′
t)t≥1, which is taken to coincide with

the original contract until t̂ − 1, with ẽ′
t̂
= ẽt̂ . For dates t ≥ t̂, let

c̃′
t = c̄ ≡ (1 − δ)

∑
τ≥t̂
δτ−t̂ w̃τ + (1 − δ)b̃t̂ = (1 − δ)

∑
τ≥t̂
δτ−t̂ c̃τ�
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where the last equality is for the same reason as equation (36). For dates t ≥ t̂ + 1, let
ẽ′
t = ē, where ē is defined by

ψ(ē) = (1 − δ)
∑
τ≥t̂+1

δτ−t̂−1ψ(ẽτ)�

Let also, for all t ≥ t̂, w̃′
t = w̄, where w̄ = (1 − δ)

∑
τ≥t̂ δ

τ−t̂ w̃τ. Thus, we must have b̃′
t =

b̄≡ b̃t̂ for all t ≥ t̂.
Step 1b. We now want to show that, for the new contract, the agent’s constraint (ACob

t )
is satisfied at all dates. Begin with dates t̂ + 1 onwards when the contract is stationary.
Note first that, by the previous lemma, we must have c̃t̂ ≥ c̄. Therefore,∑

τ≥t̂+1

δτ−t̂−1c̄ ≥
∑
τ≥t̂+1

δτ−t̂−1c̃τ�

Also, the NPV of disutility of effort from date t̂ + 1 onwards is the same for both the
original contract and the new contract. The fact that the original contract satisfies the
agent’s constraint (ACob

t ) at date t̂ + 1, plus the observation that b̄ < b̃t̂+1, then implies

∑
τ≥t̂+1

δτ−t̂−1v(c̄) −
∑
τ≥t̂+1

δτ−t̂−1ψ(ē) >
1

1 − δv
(
(1 − δ)b̄

)
� (40)

which means that the agent’s constraint is satisfied as a strict inequality from t̂+1 onwards.
Note then that ∑

τ≥t̂
δτ−t̂v(c̄) ≥

∑
τ≥t̂
δτ−t̂v(c̃τ)�

Also, the NPV of the disutility of effort is the same from t̂ onwards under both policies.
Therefore, constraint (ACob

t ) continues to be satisfied at t̂, and by the same logic all earlier
periods.

Step 1c. Now we show that the principal’s constraint (PCt) is satisfied in all periods.
Because the NPV of disutility of effort from date t̂ + 1 onwards is the same under both
contracts, and because ψ is convex, we have ē≥ (1 − δ)

∑
τ≥t̂+1 δ

τ−t̂−1ẽτ. Therefore,

∑
τ≥t̂+1

δτ−t̂ ẽ′
τ −

∑
τ≥t̂
δτ−t̂ w̃′

τ = δē

1 − δ −
∑
τ≥t̂
δτ−t̂ w̃τ ≥

∑
τ≥t̂+1

δτ−t̂ ẽτ −
∑
τ≥t̂
δτ−t̂ w̃τ

≥ 0� (41)

where the second inequality is by (PCt) in the original contract. Hence, the principal’s
constraint is satisfied under the new contract at date t̂. Because ẽ′

t is constant for t ≥
t̂ + 1, and because w̃′

t is constant for t ≥ t̂, the principal’s constraint holds also from t̂ + 1
onwards. It is then readily checked that the principal’s constraint is satisfied also for dates
before t̂.

Step 1d. Finally, the contract can be further (slightly) adjusted to a self-enforceable
contract with a strictly higher payoff for the principal. The original contract was taken to
satisfy

v(c̃t̂) −ψ(ẽt̂) = 1
1 − δ

(
v
(
(1 − δ)b̄

) − δv((1 − δ)b̃t̂+1

))
< v

(
(1 − δ)b̄

)
�
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Hence,

ψ(ẽt̂) > v(c̃t̂) − v((1 − δ)b̄
) ≥ v(c̄) − v((1 − δ)b̄

)
>ψ(ē)�

where the final inequality follows from (40). Hence, ẽt̂ > ē. Recall that ẽ′
t̂
= ẽt̂ , and ẽ′

τ = ē
for τ > t̂; so we have ẽ′

t̂
> ẽ′

τ for all τ > t̂.
Now, pick ẽ′′

t̂
and ẽ′′

t̂+1, with ẽ′
t̂+1 < ẽ

′′
t̂+1 < ẽ

′′
t̂
< ẽ′

t̂
and such that

ψ
(
ẽ′′
t̂

) + δ

1 − δψ
(
ẽ′′
t̂+1

) =ψ(
ẽ′
t̂

) + δ

1 − δψ
(
ẽ′
t̂+1

)
�

Substitute ẽ′′
t̂

for ẽ′
t̂

and ẽ′′
t̂+1 for ẽ′

τ, for all τ ≥ t̂+ 1, in the contract defined in Step 1a. The
agent’s value from remaining in the contract from t̂ onwards remains unchanged, so the
agent’s constraint (ACob

t ) remains satisfied at t̂, and at all earlier dates. Note that, due to
(40), the agent’s constraints (ACob

t ) at dates t̂ + 1 onwards are slack under the contract
defined in Step 1a, and hence continue to be satisfied under the contract with the further
modification, provided the adjustment in effort is small. Moreover, because ψ is strictly
convex, the NPV of effort from date t̂ onwards increases; so the principal’s payoff strictly
increases. Also, the principal’s constraints (PCt) clearly continue to be satisfied. Thus,
we have constructed a self-enforceable contract that is strictly more profitable for the
principal than the original, completing Step 1.

Step 2. Proof that if V (b̃1) < V FB(b̃1) then (b̃t)t≥1 is a strictly decreasing sequence.
Step 2a. Consider an optimal contract. We first prove that if b̃t̂ = b̃t̂+1 for some t̂ ≥ 1,

then V (b̃t̂) = V FB(b̃t̂). To do this, note that if b̃t̂ = b̃t̂+1 for some t̂, then it is optimal
to specify c̃τ = c̃t̂ , w̃τ = w̃t̂ , b̃τ = b̃t̂ , and ẽτ = ẽt̂ for all τ > t̂. The Euler equation (14)
then requires that ψ′(ẽτ) = v′(c̃τ) for all τ ≥ t̂ + 1,10 and so also ψ′(ẽt̂) = v′(c̃t̂). Then
ẽτ and c̃τ satisfy, for all τ ≥ t̂, the conditions in Proposition 3.1, given initial balance b̃t̂ .
Therefore, they are the first-best effort and consumption given this balance. This shows
that V (b̃t̂) = V FB(b̃t̂), as desired.

Step 2b. Now we consider any optimal contract, and show the following. If V (b̃1) <
V FB(b̃1), then V (b̃t) < V FB(b̃t) for all t ≥ 1, and in addition, (b̃t)t≥1 is strictly decreasing.

Suppose that, for some t̂, V (b̃t̂) < V FB(b̃t̂), which by Step 1 and Step 2a implies b̃t̂+1 <

b̃t̂ . The result will follow by induction if we can show that V (b̃t̂+1) < V FB(b̃t̂+1). Hence,
suppose for a contradiction that the contract achieves the first-best continuation payoff
for the principal at date t̂+1, given the balance is b̃t̂+1 (i.e., suppose V (b̃t̂+1) = V FB(b̃t̂+1)).
This implies that ẽτ = eFB(b̃t̂+1) and c̃τ = cFB(b̃t̂+1) for all τ > t̂. By assumption that equa-
tion (8) holds in all periods, we then have b̃τ = b̃t̂+1 for all τ > t̂ + 1. Hence, the contract
is stationary from t̂ + 1 onwards; in particular, the payment is constant at w̃τ = w̄ for
τ ≥ t̂ + 1, for some value w̄.

10To see this, note Lemma A.11 implies that c̃τ > b̃τ for all τ ≥ t̂ + 1.
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From the Euler equation (14) and the fact that v′(c̃t̂+1) = ψ′(ẽt̂+1), we have c̃t̂ = c̃t̂+1.
Hence, using b̃t̂+2 = b̃t̂+1 < b̃t̂ , we have (using (FPob

t ))

ψ(ẽt̂) = v(c̃t̂) + δ

1 − δv
(
(1 − δ)b̃t̂+1

) − 1
1 − δv

(
(1 − δ)b̃t̂

)
< v(c̃t̂+1) + δ

1 − δv
(
(1 − δ)b̃t̂+2

) − 1
1 − δv

(
(1 − δ)b̃t̂+1

) =ψ(ẽt̂+1)�

Consequently, ẽt̂ < ẽt̂+1, and so ψ′(ẽt̂ )
v′(c̃t̂ )

<
ψ′(ẽt̂+1)

v′(c̃t̂+1) = 1. We then know (from Lemma A.10)

that the principal’s constraint (PCt) binds at t̂, and so∑
s≥t̂+1

δs−t̂ ẽs =
∑
s≥t̂
δs−t̂ w̃s =

∑
s≥t̂
δs−t̂ c̃s − b̃t̂ �

where the second equality follows for the same reason as for equation (36). Using that
ẽτ = eFB(b̃t̂+1) for all τ ≥ t̂ + 1, and c̃τ = cFB(b̃t̂+1) for all τ ≥ t̂, we have

δeFB(b̃t̂+1) = cFB(b̃t̂+1) − (1 − δ)b̃t̂ < cFB(b̃t̂+1) − (1 − δ)b̃t̂+1 = w̄= w̃t̂+1�

That δeFB(b̃t̂+1) < w̃t̂+1 means the principal’s constraint (PCt) in period t̂ + 1 (as well as
at future dates) is violated, so we reach our contradiction. This completes Step 2.

Step 3. Proof that b̃∞ > 0. Consider an optimal contract, and suppose that V (b̃1) <
V FB(b̃1). We saw that (b̃t)t≥1 is a strictly decreasing sequence. By Lemma 5.1, b̃t > 0 for
all t, so the limit limt→∞ b̃t exists and is nonnegative. We want to show this limit, call it b̃∞,
is strictly positive.

We first show limb↘0
cFB(b)−(1−δ)b

eFB(b) = 0 and so, by Proposition 5.2, there exists some b̄ > 0

such that an optimal contract achieves the first-best payoff of the principal for all b ≤ b̄.
This follows after noting that v(cFB(b)) − v((1 − δ)b) = ψ(eFB(b)) > 0, so we have that
limb↘0 c

FB(b) = 0 or limb↘0 e
FB(b) = +∞. Since ψ′(eFB(b)) = v′(cFB(b)) we have, in fact,

that both limb↘0 c
FB(b) = 0 and limb↘0 e

FB(b) = +∞, which establishes the result. Next,
recall from Step 2 that, given V (b1) < V FB(b1), the sequence (b̃t)t≥1 of balances in the
optimal contract is strictly decreasing and such that V (b̃t) < V FB(b̃t) for all t. That is, b̃t
remains above b̄, and so converges to some value b̃∞ ≥ b̄. Q.E.D.

It is now convenient to prove the existence of an optimal contract.

LEMMA A.13: An optimal contract exists.

PROOF: The argument is related to Lemma 1 of Thomas and Worrall (1994), which ob-
tains the principal’s value function as a fixed point of an appropriate functional mapping.

If δ≥ cFB(b1)−(1−δ)b1
eFB(b1) ∈ (0�1), then there is a self-enforceable efficient contract (by Propo-

sition 5.2), and so existence is established. The remainder of the proof is needed for the
values b1 such that there is no self-enforceable first-best contract.

Given any sequence (cs� bs+1)∞
s=t , and assuming “fastest payments,” we can completely

define the continuation contract from date t, with effort given at each date s ≥ t by
ê(cs� bs� bs+1) (recall equation (29)), and the payment given by δbs+1 − bs + cs. We then
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denote by�(bt) the sequences (cs� bs+1)∞
s=t , which are part of feasible and self-enforceable

contracts beginning with balance bt . Note that these sequences satisfy, for all s ≥ t,

δbs+1 − bs + cs ≤
∞∑

τ=s+1

δτ−s
(
ê(cτ� bτ� bτ+1) − (δbτ+1 − bτ + cτ)

)
as well as

v(cs) + δ

1 − δv
(
(1 − δ)bs+1

) − 1
1 − δv

(
(1 − δ)bs

) ≥ 0�

Note also that �(bt) is not empty: for instance, it contains the “autarky” continuation
contract, where cs = (1 −δ)bt and bs = bt for all s ≥ t (recall that ê((1 −δ)bt� bt� bt) = 0).

Given any bt > 0, let the value of the principal’s problem of determining a feasible and
self-enforceable contract be given by

V (bt) ≡ sup
(cs�bs+1)∞s=t∈�(bt )

∞∑
s=t
δs−t

(
ê(cs� bs� bs+1) − (δbs+1 − bs + cs)

)
�

Note that V (bt) is no greater than the first-best value V FB(bt). Usual arguments imply
that the continuation payoff of the principal in an optimal contract (if it exists) is a fixed
point of an operator defined by

TW (bt) ≡ sup
ct>0�bt+1>0

(
ê(ct� bt� bt+1) − (δbt+1 − bt + ct) + δW (bt+1)

)
(42)

subject to the principal’s constraint

δbt+1 − bt + ct ≤ δW (bt+1) (43)

and to

v(ct) + δ

1 − δv
(
(1 − δ)bt+1

) − 1
1 − δv

(
(1 − δ)bt

) ≥ 0� (44)

Note that the operator T is monotone: if W1 ≥ W2, then TW1 ≥ TW2. Also, we have
TV FB ≤ V FB. Applying T to both sides, we have that (TnV FB(bt))n≥1 is a decreasing se-
quence for all bt > 0. Therefore, there is some pointwise limit of TnV FB, call it V̄ . Straight-
forward continuity arguments show that V̄ is a fixed point of T .

We now make four observations to be used in the completion of the proof.
Observation 1. First-best value is strictly decreasing. We now show that V FB is a strictly

decreasing function. First, notice that, for any bt > 0,

V FB(bt) = 1
1 − δ max

w

{
ψ−1

(
v
(
bt (1 − δ) +w) − v(bt (1 − δ)

)) −w}
� (45)

At the optimal choice of w (which is strictly positive), we have cFB(bt) = bt (1 − δ) + w,
and

eFB(bt) =ψ−1
(
v
(
bt (1 − δ) +w) − v(bt (1 − δ)

))
�

Therefore, by the envelope theorem,

d

dbt
V FB(bt) = v′(cFB(bt)

) − v′(bt (1 − δ)
)

ψ′(eFB(bt)
) = 1 − v′(bt (1 − δ)

)
ψ′(eFB(bt)

) �
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Using the theorem of the maximum and the fact that the objective in equation (45) is
strictly concave, eFB is a continuous function, so V FB is continuously differentiable.

Now note that, for any bt > 0, ψ′(eFB(bt)) = v′(cFB(bt)) < v′(bt (1 − δ)), and so
d

dbt
V FB(bt) < 0, which establishes the result.
Observation 2. Bounded choice variables. Consider the program (42) to (44) given

bt > 0 and W = V̄ . We show that (a) the values of bt+1 that satisfy the constraints of
this program are contained in a bounded interval [lb(bt)�ub(bt)] with lb(bt) > 0, and (b)
consumption choices ct are contained in a bounded interval [lc(bt)�uc(bt)] with lc(bt) > 0.

First, we show that bt+1 must be bounded above by some ub(bt). Observe that

lim
bt+1→∞

δ
(
V FB(bt+1) − bt+1

) = −∞�

because V FB is decreasing. Therefore, using V̄ ≤ V FB, we have

lim
bt+1→∞

δ
(
V̄ (bt+1) − bt+1

) = −∞� (46)

Satisfaction of (43) then implies that the choice of bt+1 must be bounded above.
We now show that, given bt , satisfaction of the constraints in equations (43) and (44)

implies that bt+1 must be no less than some lb(bt) > 0. In particular, given any bt > 0, we
show that at least one of these constraints is violated whenever bt+1 is taken sufficiently
close to zero.

The constraints in equations (43) and (44) are satisfied only if

v(ct) ≥ 1
1 − δv

(
(1 − δ)bt

) − δ

1 − δv
(
(1 − δ)bt+1

)
and ct ≤ bt + δ

(
V FB(bt+1) − bt+1

)
�

Combining these two equations, we have

V FB(bt+1) ≥ Ṽ (bt+1)

≡
v−1

(
1

1 − δv
(
(1 − δ)bt

) − δ

1 − δv
(
(1 − δ)bt+1

)) − bt
δ

+ bt+1� (47)

Now, notice that the right-hand side of equation (47) tends to +∞ as bt+1 → 0. Hence,
joint satisfaction of the constraints requires limbt+1→0 V

FB(bt+1) = +∞ and

lim
bt+1→0

Ṽ (bt+1)
V FB(bt+1)

≤ 1�

We will instead show that this limit is +∞.
From l’Hôpital’s rule, we have that

lim
bt+1→0

Ṽ (bt+1)
V FB(bt+1)

= lim
bt+1→0

d
dbt+1

Ṽ (bt+1)

d
dbt+1

V FB(bt+1)
�
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Let us first calculate the following limit:

lim
bt+1→0

d
dbt+1

Ṽ (bt+1) − 1

d
dbt+1

V FB(bt+1) − 1
= lim

bt+1→0

− v′((1 − δ)bt+1

)
v′

(
v−1

(
1

1 − δv
(
(1 − δ)bt

) − δ

1 − δv
(
(1 − δ)bt+1

)))

−v
′((1 − δ)bt+1

)
ψ′(eFB(bt+1)

)
= lim

bt+1→0

ψ′(eFB(bt+1)
)

v′
(
v−1

(
1

1 − δv
(
(1 − δ)bt

) − δ

1 − δv
(
(1 − δ)bt+1

)))

= +∞�

To see the last equality, note that limbt+1→0 V
FB(bt+1) = +∞ implies limbt+1→0 e

FB(bt+1) =
+∞. Also, the denominator takes positive values and has a finite limit as bt+1 → 0. Using
that d

dbt+1
V FB(bt+1) < 0, it is then readily seen that in fact

lim
bt+1→0

d
dbt+1

Ṽ (bt+1)

d
dbt+1

V FB(bt+1)
= +∞�

We have therefore shown that, given a date-t balance bt > 0, the choices of bt+1 that are
available in the program (42) to (44) come from some bounded set [lb(bt)�ub(bt)] with
lb(bt) > 0. It is then immediate (using equations (43) and (44)) that consumption ct must
be chosen from some bounded interval [lc(bt)�uc(bt)] with lc(bt) > 0 as well.

Observation 3. The function V̄ is continuous. We now show that V̄ is continuous. We
will use that there is a decreasing and strictly positive function κ(b) such that V̄ (b) ≥ κ(b)
for all b > 0. This can be seen by recalling that, for all b > 0, V̄ (b) is the limit of TnV FB(b),
and by verifying that the latter is, for all n, at least a positive payoff obtainable from
constant consumption and balances.

Suppose for a contradiction that there is a point of discontinuity in V̄ , call it b̌ > 0. Then
there is ε > 0 and a sequence (b̌n)∞

n=1 convergent to b̌ with |V̄ (b̌n) − V̄ (b̌)| ≥ ε for all n.
We will suppose first there is a subsequence (b̌nk)∞

k=1 along which V̄ (b̌nk) ≤ V̄ (b̌) − ε for
all k.

Denote č and b̌′ consumption and next-period balance that achieve within ε/2 of the
supremum in the program (42) to (44) when the initial balance is bt = b̌ and W = V̄ . We
may assume that ê(č� b̌� b̌′) is strictly positive, as otherwise δV̄ (b̌′) − (δb̌′ − b̌ + č) > 0
and č can be increased, so the payment δb̌′ − b̌ + č increases, and the implied effort
ê(č� b̌� b̌′) increases, yielding an increase in profit. To obtain a contradiction, we then note
that, for k sufficiently large, it is possible in the program given bt = b̌nk and W = V̄ to
choose subsequent balance bt+1 = b̌′ and consumption ct equal to č + b̌nk − b̌. Note that
the payment δbt+1 − bt + ct is the same as when the initial balance is b̌ (hence equal to
δb̌′ − b̌+ č) while, as k becomes large, effort ê(ct� bt� bt+1) is arbitrarily close to ê(č� b̌� b̌′).
This shows that V̄ (b̌nk) = T V̄ (b̌nk) > V̄ (b̌) − ε, a contradiction.
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The remaining case is where there is a subsequence (b̌nk)∞
k=1 for which V̄ (b̌) ≤

V̄ (b̌nk) − ε. For each k, consider the program (42) to (44) when bt = b̌nk and W = V̄ ,
and pick ct = čnk and bt+1 = b̌′

nk
satisfying the constraints and such that

ê
(
čnk� b̌nk� b̌

′
nk

) − (
δb̌′

nk
− b̌nk + čnk

) + δV̄ (
b̌′
nk

)
> V̄ (b̌nk) − |b̌− b̌nk |� (48)

Using equation (46), there exists ub > 0 such that, necessarily, b̌′
nk

≤ ub for all k. Using

(47) and the arguments from Observation 2, there exists lb > 0 such that b̌′
nk

≥ lb for all k.
From this, and using constraints (43) and (44), we conclude also that there are lc� uc > 0
with čnk ∈ [lc� uc] for all k.

Note we may assume that ê(čnk� b̌nk� b̌
′
nk

) remains bounded below by some ē > 0 for
all k sufficiently large. This follows from examining the program (42) to (44), and by
the existence of a strictly positive function κ(b) such that V̄ (b) ≥ κ(b) for all b > 0, as
mentioned above. In particular, if there is no such lower bound, we can find an ē > 0 small
enough that the following is true. For all large enough k, if ê(čnk� b̌nk� b̌

′
nk

) < ē, čnk can be

increased to yield effort ê(čnk� b̌nk� b̌
′
nk

) ≥ ē (preserving, in particular, the constraint (43),
as this must initially have sufficient slack). These changes can be made so as to increase
the payoffs in the program (42) to (44), so the inequality (48) continues to hold for all k.

Finally, for any large enough k, in the problem (42) to (44) with bt = b̌ and W = V̄ , we
may specify ct = čnk + b̌− b̌nk and bt+1 = b̌′

nk
(thus specifying the same payment δb̌′

nk
−

b̌nk + čnk and next-period balance b̌′
nk

as when the initial balance is b̌nk). As k→ ∞, we
have

ê
(
čnk + b̌− b̌nk� b̌� b̌′

nk

) − (
δb̌′

nk
− b̌nk + čnk

) + δV̄ (
b̌′
nk

) − V̄ (b̌nk) → 0�

But, for all large enough k,

V̄ (b̌) ≥ ê(čnk + b̌− b̌nk� b̌� b̌′
nk

) − (
δb̌′

nk
− b̌nk + čnk

) + δV̄ (
b̌′
nk

)
and it cannot be that V̄ (b̌) ≤ V̄ (b̌nk) − ε. This establishes the contradiction.

Observation 4. The function V̄ is strictly decreasing. To see that V̄ is decreasing, we
show that if W is a strictly positive and nonincreasing function with W ≤ V FB, then TW is
strictly decreasing. That V̄ is nonincreasing then follows because V̄ is the pointwise limit
of TnV FB as n→ ∞.

That it is strictly decreasing follows because V̄ = T V̄ . To see this, consider any strictly
positive and nonincreasing function W , with W ≤ V FB. Note that TW is continuous (the
argument is the same as for the continuity of V̄ above and so omitted). Also, TW ≤ V FB.
Furthermore, it is easy to see that if TW fails to be strictly decreasing, then there exists
a value b∗ > 0 such that, for every ε > 0, there is a b̌ ∈ (b∗ − ε�b∗) satisfying TW (b̌) ≤
V (b∗).

To establish the claim, note that given bt = b∗ in the optimization of equations (42) to
(44), the value TW (b∗) can be derived by considering choices of ct and bt+1 such that, for
some fixed η > 0, either ct > bt (1 − δ) + η or bt+1 > bt + η. Otherwise, the supremum
would be approached by choices such that ê(ct� bt� bt+1) and δbt+1 −bt +ct approach zero,
which is not the case as ct (and hence the payment ct + δbt+1 − bt) could be increased
achieving a higher payoff than the claimed supremum (that this would be possible follows
by the assumption that W is strictly positive).
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Now, considering the aforementioned values of (ct� bt+1) chosen when bt = b∗, there is
a strictly positive function κ(ν) such that the following is true. For all ν sufficiently small,
we have that if ct > bt (1 − δ) +η,

ê(ct − ν�bt − ν�bt+1) > ê(ct� bt� bt+1) + κ(ν)�

Also, if bt+1 > bt +η, then

ê

(
ct� bt − ν�bt+1 − ν

δ

)
+ δW

(
bt+1 − ν

δ

)
> ê(ct� bt� bt+1) + δW (bt+1) + κ(ν)�

In either case, this shows that given a choice (ct� bt+1) when the balance is bt = b∗, a payoff
that is greater by at least κ(ν) can be obtained when the balance is reduced by ν. This can
be achieved by keeping the payment δbt+1 − bt + ct unchanged and either decreasing
consumption by ν (keeping the next-period balance the same) or decreasing the next-
period balance by ν

δ
(keeping consumption the same). That the latter is possible given the

constraints follows because W is nonincreasing. This shows that indeed TW (b∗ − ν) ≥
TW (b∗) + κ(ν) whenever ν is sufficiently small, which establishes the result.

Completion of the proof. We now show that, for any b1 > 0, V̄ (b1) = V (b1). Also, this
payoff is attained by a feasible self-enforceable contract (ẽt� c̃t� w̃t� b̃t)t≥1, with b̃1 = b1.
The latter is sufficient for V̄ (b1) = V (b1) as V̄ (b1) ≥ V (b1) follows straightforwardly from
the definition of V̄ .

Given any date-1 balance b1 > 0, a sequence (ct� bt+1)∞
t=1 can be determined by itera-

tively solving the program given by equations (42) to (44) for W = V̄ . That a maximum
exists, given each balance bt , follows by Observations 2 and 3 above. We can then define
a contract (ẽt� c̃t� w̃t� b̃t)t≥1. For all t, we have c̃t = ct , b̃t = bt , w̃t = δb̃t+1 − b̃t + c̃t , and
ẽt = ê(c̃t � b̃t� b̃t+1). We now argue that this contract gives the principal a payoff V̄ (b1) and
that it is feasible and self-enforceable.

First, we argue that V̄ (b̃t) is bounded along the sequence of balances (b̃t)∞
t=1. To see this,

recall Observation 4 that V̄ is a decreasing function. Also, balances remain positive and
bounded away from zero. This follows because there is a b̄ > 0 such that, if the balance
b̃t is less than b̄, V̄ (b̃t) equals V FB(b̃t), and the balance necessarily remains constant from
then on (and effort and consumption from then on are equal to first-best values). (That
the first-best payoff is achievable when bt ≤ b̄, for some b̄ > 0, follows by the argument in
Step 3 of the proof of Lemma A.12.) We can then conclude that, for all t,

V̄ (b̃t) =
∞∑
τ=t
δτ−t (ẽτ − w̃τ)�

In particular, the contract (ẽt� c̃t� w̃t� b̃t)t≥1 attains the payoff V̄ (b̃1) and also the princi-
pal’s constraints (PCt) are satisfied (using equation (43)).

Now let us show that the agent’s constraints (ACob
t ) are satisfied. It will be enough to

show that, for all t,
∞∑
τ=t
δτ−t

(
v(c̃τ) −ψ(ẽτ)

) = v(b̃t (1 − δ)
)
� (49)

From the perspective of date t, the agent’s payoff from obediently working and con-
suming until date s > t and then “quitting” in the subsequent period and smoothing the
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available balance is
s∑
τ=t
δτ−t

(
v(c̃τ) −ψ(ẽτ)

) + δs+1−tv
(
b̃s+1(1 − δ)

)
�

By construction of the proposed contract, this is constant in s for any fixed t, and equal
to v(b̃t (1 − δ)). Equation (49) will follow if we can show that δs+1−tv(b̃s+1(1 − δ)) → 0 as
s→ ∞.

To establish our claim note that, for each date τ, c̃τ ≥ (1 −δ)b̃τ+1. This follows from the
optimality of cτ = c̃τ and bτ+1 = b̃τ+1 in the maximization (42) to (44), with W = V̄ and
initial balance bτ = b̃τ. If instead c̃τ < (1 −δ)b̃τ+1, cτ can be increased and bτ+1 decreased,
holding the payment δbτ+1 − bτ + cτ unchanged, increasing v(cτ) + δ

1−δv((1 − δ)bτ+1) (by
strict concavity of v), and hence increasing effort ê(cτ� bτ� bτ+1). Recalling again that V̄
is a decreasing function (Observation 4), the objective in equation (42) is increased, and
both constraints (43) and (44) remain intact.

Using equation (1) and the previous observation, we have that, for any date s, b̃s+1 ≤
b̃s + w̃s. Iterating, for any t ≤ s, we have b̃s+1 ≤ b̃t + ∑s

τ=t w̃τ. Recalling that V̄ (b̃τ+1) re-
mains bounded across dates τ, payments w̃τ must remain bounded (due to (43)), say by a
value w̄ > 0. Let also b̌= v−1(0). We then have, for any dates t and s, t ≤ s,

δs+1−tv
(
b̃s+1(1 − δ)

) ≤ δs+1−tv

(
(1 − δ)

(
b̃t +

s∑
τ=t
w̃τ

))

≤ δs+1−tv
(
(1 − δ)

(
b̃t + w̄(s+ 1 − t)))

≤ δs+1−tv′(b̌)(1 − δ)
(
b̃t + w̄(s+ 1 − t))� (50)

The right-hand side approaches zero as s → ∞ for fixed t. This, together with the fact
that balances are positive and bounded away from zero as noted above, establishes
δs+1−tv(b̃s+1(1 − δ)) → 0. This proves the equality in equation (49).

Finally, we check feasibility of (ẽt� c̃t� w̃t� b̃t)t≥1. Similar to the observations from equa-
tion (50), we have for fixed t that δs+1−t b̃s+1 → 0 as s→ ∞. This implies that the agent’s
intertemporal budget constraint (2) is satisfied as an equality. Equation (1) is satisfied by
choice of each w̃t given the sequence of balances and consumption. We have already ar-
gued that these payments remain bounded. Because balances b̃t are bounded away from
zero, bounded payments in turn imply bounded efforts ẽt .

It remains to check that consumption c̃t is bounded. Note that all of the arguments in
the proof of this lemma are unaffected if the feasibility requirement of bounded consump-
tion is dropped, so we have established that (ẽt � c̃t� w̃t� b̃t)t≥1 is optimal with the relaxed
feasibility condition. In addition, because the agent’s intertemporal budget constraint (2)
is satisfied as an equality, equation (36) in the proof of Lemma A.11 holds for all t. Given
this, the argument in Lemma A.11 continues to apply, implying that consumption c̃t is
weakly decreasing. Hence, consumption is in fact bounded, and all the original feasibility
conditions are satisfied. Q.E.D.

From the proof of Lemma A.13 we have that, in any equilibrium, V is continuous and
strictly decreasing. As a result, we have the following dynamics for the principal’s contin-
uation payoff.
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LEMMA A.14: Assume V (b1) < V FB(b1). Then (V (b̃t))t≥1 is a strictly increasing sequence.

PROOF: Recall from Lemma A.12 we have that, if V (b1) < V FB(b1), then (b̃t)t≥1 is
strictly decreasing. The result then follows from the fact that V (·) is strictly decreasing
(see Observation 4 in the proof of Lemma A.13). Q.E.D.

We then show that, if the first-best outcome is not attainable in a self-enforceable rela-
tional contract, effort is always downward distorted.

LEMMA A.15: Assume V (b1) < V FB(b1). Then, in any optimal contract (ẽt � c̃t� w̃t� b̃t)t≥1,
v′(c̃t) >ψ′(ẽt) for all t.

PROOF: We first show that, if there is a date ť with v′(c̃ť) = ψ′(ẽť), then v′(c̃ť+1) =
ψ′(ẽť+1). To do so, assume for a contradiction that v′(c̃ť) = ψ′(ẽť) and v′(c̃ť+1) 
= ψ′(ẽť+1)
for some date ť. Then, by Lemma A.10, we have v′(c̃ť+1) > ψ′(ẽť+1) and, therefore,
w̃ť+1 = δV (b̃ť+2). In turn, this implies

ẽť+1 = ẽť+1 − w̃ť+1 + δV (b̃ť+2) = V (b̃ť+1) > V (b̃ť) = ẽť − w̃ť + δV (b̃ť+1) ≥ ẽť �
where the strict inequality follows by the previous lemma, and the weak inequality follows
because the principal’s constraint is satisfied in an optimal contract at ť.

There are two cases: either w̃ť <
∑∞

s=ť+1 δ
s−ť(ẽs − w̃s) or w̃ť = ∑∞

s=ť+1 δ
s−ť (ẽs − w̃s). Con-

sider the first. Define a new contract (ẽ′
t � c̃

′
t � w̃

′
t � b̃

′
t)t≥1, which is identical to the original,

except that ẽ′
ť
= ẽť + ε and ẽ′

ť+1 = ẽť+1 − ν(ε), with ν(ε) defined by

ψ(ẽť + ε) + δψ(
ẽť+1 − ν(ε)

) =ψ(ẽť) + δψ(ẽť+1)�

Thus, ν′(0) = ψ′(ẽť )
δψ′(ẽť+1) , and so the change in the NPV of effort is

ε− δν(ε) =
(

1 − ψ′(ẽť)
ψ′(ẽť+1)

)
ε+ o(ε)�

which is strictly positive for ε sufficiently small. It is easy to see that the agent’s con-
straint (ACob

t ) is unchanged at all dates except ť + 1, when the constraint is relaxed. The
principal’s constraint (PCt) is unchanged from date ť + 1 onwards, relaxed at date ť − 1
and earlier (because the NPV of effort increases), but is tightened at date ť. Provided ε
is small enough, the date-ť constraint remains intact. Profits increase, contradicting the
optimality of the original contract.

Now suppose that w̃ť = ∑∞
s=ť+1 δ

s−ť(ẽs − w̃s), and note the above adjustment now leads
to a violation of the principal’s constraint (PCt) at date ť. In this case, we reduce slightly
the payment, effort, and consumption at date ť, keeping the agent’s payoff unchanged, but
ensuring the principal’s constraint (PCt) is satisfied. This has a negligible effect on profits
since v′(c̃ť) =ψ′(ẽť). Hence, we again contradict the optimality of the original contract.

Now let us demonstrate precisely an adjustment that yields a self-enforceable contract.
We further adjust the modified contract (ẽ′

t � c̃
′
t � w̃

′
t � b̃

′
t)t≥1 by reducing the date-ť payment

and consumption by an amount γ(ε), and reducing date-ť effort by an amount η(ε) to
leave agent payoffs unchanged. The date-ť principal constraint (PCt) will then hold as
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equality by setting γ(ε) = δν(ε). The requirement that the agent’s payoff is unaffected by
the adjustment is

v
(
c̃ť − γ(ε)

) −ψ(
ẽť + ε−η(ε)

) = v(c̃ť) −ψ(ẽť + ε)�

We then have v′(c̃ť)γ(0) = ψ′(ẽť)η′(0). Therefore, the overall increase in date-ť profits
from all changes to (ẽt � c̃t� w̃t� b̃t)t≥1 is

ε− δν(ε) − (
η(ε) − γ(ε)

) =
(

1 − ψ′(ẽť)
ψ′(ẽť+1)

)
ε− δν′(0)

(
v′(c̃ť)
ψ′(ẽť)

− 1
)
ε+ o(ε)

=
(

1 − ψ′(ẽť)
ψ′(ẽť+1)

)
ε+ o(ε)�

which is strictly positive for ε sufficiently small.
Hence, for small enough ε, the overall effect on profits of all changes to the original

contract (ẽt � c̃t� w̃t� b̃t)t≥1 is positive, with the continuation profits from date ť increasing.
The principal’s constraint (PCt) is relaxed at dates ť − 1 and earlier, it is satisfied by
construction at ť, and it is unchanged from date ť + 1 onwards. Again, the fact profits
strictly increase contradicts the optimality of (ẽt� c̃t� w̃t� b̃t)t≥1.

From the above, and by induction, we have that v′(c̃ť) = ψ′(ẽť) at some ť implies
v′(c̃t) = ψ′(ẽt) for all t ≥ ť. By the Euler equation (14), consumption and effort remain
constant from ť onwards. Moreover, the agent’s indifference condition in equation (8) is
presumed to hold at all dates. This shows that the agent’s balances b̃t remain constant
from date ť onwards, which given the assumption V (b1) < V FB(b1), contradicts the find-
ing of Lemma A.12 that balances strictly decrease. Hence, we cannot have v′(c̃ť) =ψ′(ẽť)
at any ť. Q.E.D.

We use the above results to shed light on the dynamics of effort, pay, and consumption.

LEMMA A.16: If V (b1) < V FB(b1), then in any optimal contract (ẽt � c̃t� w̃t� b̃t)t≥1, effort ẽt
and payments w̃t strictly increase over time, while consumption c̃t strictly declines over time.

PROOF: Suppose V (b1) < V FB(b1). By the previous lemma and Lemma A.10, the prin-
cipal’s constraint must bind at each date, which can be stated as w̃t = δV (b̃t+1) for all t.
Hence, payments are strictly increasing in t by Lemma A.14. We also have V (b̃t) = ẽt for
all t, so effort is strictly increasing as well. Now consider consumption. By Lemma A.11,
we know that c̃t−1 ≥ c̃t for all t ≥ 2. Hence, if consumption fails to be strictly decreas-
ing, we must have c̃t−1 = c̃t for some t. We then have, by equation (14) (and noting
that c̃t > (1 − δ)b̃t , also by Lemma A.11), that ψ′(ẽt) = v′(c̃t). However, this contradicts
Lemma A.15. Q.E.D.

We now prove convergence to efficiency.

LEMMA A.17: limt→∞ V (b̃t) = V (b̃∞), with V (b̃∞) = V FB(b̃∞), and where b̃∞ is the limit
of balances defined in Lemma A.12.

PROOF: Suppose that V (b1) < V FB(b1) and consider an optimal contract (ẽt� c̃t� w̃t�
b̃t)t≥1. By the continuity of V established in Observation 3 in the proof of Lemma A.13,
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we have that limt→∞ V (b̃t) = V (b̃∞). Lemma A.15 states that ψ′(ẽt) < v′(c̃t) for all t,
implying by Lemma A.10 that the principal’s constraint (PCt) binds for all t. Therefore,
V (b̃t) = ê(c̃t � b̃t� b̃t+1) for all t. By continuity of ê(·� ·� ·), we have

ẽ∞ ≡ lim
t→∞

ẽt = lim
t→∞

ê(c̃t � b̃t� b̃t+1) = ê(c̃∞� b̃∞� b̃∞)�

where c̃∞ ≡ limt→∞ c̃t , which exists because c̃t is decreasing and remains above (1 − δ)b̃∞
by Lemma A.11. Therefore,

V (b̃∞) = lim
t→∞

V (b̃t) = ê(c̃∞� b̃∞� b̃∞) =ψ−1
(
v(c̃∞) − v((1 − δ)b̃∞

))
�

Since V (b̃∞) > 0 (recall Lemma A.10), c̃∞ > (1 − δ)b̃∞. Therefore, the Euler equa-
tion (14) implies that, necessarily, limt→∞

v′(c̃t+1)
ψ′(ẽt+1) = 1 and, therefore, v′(c̃∞)

ψ′(ẽ∞) = 1. It is then

clear that both Conditions 1 and 2 of Proposition 3.1 hold for ẽ∞, c̃∞, and b̃∞ (instead
of eFB(b1), cFB(b1), and b1). Also, using that the principal’s constraint (PCt) binds for all
t, we can conclude that the limiting payments to the agent are c̃∞ − b̃∞(1 − δ) = δẽ∞,
which confirms V (b̃∞) = ẽ∞ is the principal’s first-best payoff (recall Proposition 3.1’s
expression for V FB). This establishes the result. Q.E.D.

(End of the proof of Proposition 5.3.) Q.E.D.

PROOF OF PROPOSITION 5.4: If the result does not hold, then there is a date t such that

1
1 − δv

(
b̃t (1 − δ)

)
<

∑
s≥t
δs−t

(
v(c̃s) −ψ(ẽs)

)
�

If this date is t = 1, then date-t effort can be increased to obtain another self-enforceable
contract that is more profitable for the principal, so we may assume t > 1. We can then
increase the payment to the agent at date t− 1 by εδ for ε > 0, and reduce the date-t pay-
ment by ε. All other variables are unchanged. Provided ε is small enough, all constraints
are preserved. Because the date-t payment is reduced, the principal’s constraint (PCt) is
then slack at date t.

Because the contract is optimal, but not first best, we have that effort strictly increases
over time. We can then change the date-t effort to a value ẽ′

t , and the date-t + 1 effort to
ẽ′
t+1, with ẽt < ẽ′

t < ẽ
′
t+1 < ẽt+1, and with

ψ
(
ẽ′
t

) + δψ(
ẽ′
t+1

) =ψ(ẽt) + δψ(ẽt+1)�

All other variables remain unchanged. This affects the agent constraints (ACob
t ) by in-

creasing the profitability of remaining in the contract from date t + 1 onwards (i.e., the
date-t + 1 constraint is slackened). It relaxes the principal’s constraint at date t − 1 and
earlier, because the NPV of effort increases (by convexity of ψ). It tightens the principal’s
constraint at date t, but provided the changes are small, it remains slack. The principal’s
constraints are unaffected from date t + 1 onwards. Because the NPV of effort increases,
profits strictly increase. This contradicts the optimality of the original contract, which es-
tablishes the result. Q.E.D.
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