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APPENDIX A: PROOF OF LEMMA 1

I START BY CHARACTERIZING THE SURPLUS FUNCTION st (x), which maps the breadth x
of a retailer’s variety into the surplus offered by the retailer to its customers. First, st (x) is
strictly decreasing in x for all x ∈ [x∗

t � x
∗
t exp(η)]. To see why this is the case, consider two

retailers with varieties x0 and x1, with x0 < x1. Let s0 denote the optimal surplus offered
by the retailer with x0 and let s1 denote the optimal surplus offered by the retailer with x1.
Since the retailer with x0 prefers s0 to s1 and the retailer with x1 prefers s1 to s0, it follows
that

e−λtXt (1−Ft (s0))
(
x−α

0 − s0

) ≥ e−λtXt (1−Ft (s1))
(
x−α

0 − s1

)
� (A.1)

e−λtXt (1−Ft (s1))
(
x−α

1 − s1

) ≥ e−λtXt (1−Ft (s0))
(
x−α

1 − s0

)
� (A.2)

Combining (A.1) and (A.2) yields

e−λtXt (1−Ft (s0))
(
x−α

0 − x−α
1

) ≥ e−λtXt (1−Ft (s1))
(
x−α

0 − x−α
1

)
� (A.3)

which implies that s0 ≥ s1. That is, st (x) is nondecreasing in x. If s0 = s1, any retailers
carrying a variety with breadth x ∈ [x0�x1] would offer the surplus s0, and hence, there
would be a mass point in the surplus distribution Ft (s) at s0. This, however, cannot be an
equilibrium, since a mass point in Ft (s) at s0 implies that a retailer could attain a strictly
higher profit by offering s0 + ε rather than by offering s0, for some arbitrarily small but
positive ε.

Second, st (x) is such that st (x∗
t exp(η)) = 0. To see why this is the case, suppose that the

lowest surplus offered by retailers is some s0 > 0. A retailer offering s0 only sells to those
b0 buyers who are not in contact with any other retailer carrying a variety that they like.
A retailer offering s0 enjoys a profit of x−α − s0 per unit sold. If the retailer were to offer
a surplus of 0, it would still sell only to those b0 buyers who are not in contact with any
other retailer carrying a variety that they like. However, the retailer would enjoy a profit
of x−α > x−α − s0 per unit sold. Therefore, the lowest surplus offered by retailers must be
equal to 0. Since retailers carrying a broader variety offer a lower surplus, it follows that
st (x∗

t exp(η)) = 0.
To complete the characterization of st (x), I use the optimality condition of the retailer’s

pricing problem and the properties of the surplus distribution. The optimality condition
of the retailer’s problem is

1 = λtXtF
′(st (x)

)(
x−α − st (x)

)
� (A.4)

The left-hand side of (A.4) is the retailer’s marginal cost of offering more surplus to its
customers, and it is equal to the retailer’s volume. The right-hand side of (A.4) is the
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retailer’s marginal benefit of offering more surplus to its customers, and it is equal to the
retailer’s increase in volume multiplied by its per-unit profit.

The surplus distribution is such that

Ft

(
st (x)

) =
[∫ x∗

t e
η

x

1
logx∗

t e
η − logx∗

t

dz

]
1
Xt

= x∗
t e

η − x

ηXt

� (A.5)

where the expression in (A.5) is obtained from (2.6) and the fact that st (x) is strictly
decreasing in x. Differentiating (A.5) with respect to x yields

F ′
t

(
st (x)

)
s′
t (x) = − 1

ηXt

� (A.6)

Combining (A.4) and (A.6) gives a differential equation for the surplus function

s′
t (x) = −λ

η

(
x−α − st (x)

)
� (A.7)

The unique solution to the differential equation (A.7) that satisfies the boundary condi-
tion st (x∗

t exp(η)) = 0 is

st (x0) = λ

η

∫ x∗
t e

η

x0

x−αe− λ
η (x−x0) dx� (A.8)

The expression in (A.8) describes the surplus function st (x) for x ∈ [x∗
t � x

∗
t exp(η)]. For

any x > x∗
t exp(η), the retailer carries the broadest variety in the market. It is easy to

check that such a retailer finds it optimal to offer a surplus of 0. For x < x∗
t , a retailer

carries the most specialized variety in the market. It is easy to check that such a retailer
finds it optimal to offer a surplus of st (x∗

t ).
I can now compute the maximized profit Rt (x) for a retailer carrying a variety with

breadth x, which is

Rt (x) =

⎧⎪⎨
⎪⎩
bλtx

(
x−α − st

(
x∗
t

))
for x < x∗

t �

bλtxe
− λt

η (x−x∗
t )(x−α − st (x)

)
for x ∈ [

x∗
t � x

∗
t e

η
]
�

bλtxe
− λt

η (x∗
t e

η−x∗
t )x−α for x > x∗

t e
η�

(A.9)

For x ∈ [x∗
t � x

∗
t exp(η)], the expression for Rt (x) is obtained using the fact that Ft (st (x))

is given by (A.6) and Xt is given by (2.3). For x > x∗
t exp(η), the expression for Rt (x) is

obtained by noting that the retailer offers to its buyers a surplus of 0, which is the lowest
in the market. For x < x∗

t , the expression for Rt (x) is obtained by noting that the retailer
offers a surplus of st (x∗

t ), which is the highest in the market.

APPENDIX B: PROOF OF LEMMA 2

Equation (2.13) implies that a firm’s marginal benefit from designing a more specialized
variety of the product is equal to the marginal cost from designing a more specialized
variety when the firm chooses x∗

t and all other firms choose x∗
t . If, in addition, the firm’s

marginal cost is lower than the marginal benefit for all xt > x∗
t and the firm’s marginal

cost exceeds the marginal benefit for all xt < x∗
t , then equation (2.13) also implies that x∗

t

maximizes the firm’s profit given that all other firms choose x∗
t .
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Let μ(xt) denote the derivative with respect to −xt of the first term on the right-hand
side of (2.11). Let ν(xt) denotes the derivative with respect to −xt of the second term
on the right-hand side of (2.11). That is, let μ(xt) denote the firm’s marginal benefit
from designing a more specialized variety of the product and let ν(xt) denote the firm’s
marginal cost from designing a more specialized variety of the product. Using (2.10), it is
easy to show that μ(xt) is such that

μ(xt) ≥ μ
(
x∗
t

) − bm
λt

η

(
x∗−α
t − x−α

t

)
� for xt > x∗

t � (B.1)

μ(xt) ≤ μ
(
x∗
t

) + bm
λt

η

(
x−α
t − x∗−α

t

)
� for xt < x∗

t � (B.2)

The breadth x∗
t maximizes the firm’s profit (2.11) as long as the firm’s marginal cost

ν(xt) is smaller than the lower bound on the marginal benefit on right-hand side of (B.1)
for xt > x∗

t , and the marginal cost ν(xt) is greater the upper bound on the marginal benefit
on the right-hand side of (B.2) for xt < x∗

t . There are many cost functions q such that ν(xt)
has these properties. For example, a cost function q such that

−q′(xt/x
∗
t−1

) = −q′(x∗
t /x

∗
t−1

) + q0

[(
xt/x

∗
t−1

)−β − (
x∗
t /x

∗
t−1

)−β]
� (B.3)

where β and q0 are parameters such that

β> α� and q0 >
λtx

∗
t

η

x∗−α
t−1

wt

� (B.4)

APPENDIX C: PROPERTIES OF THE FUNCTION 


The function 
(φ) is defined as


(φ) = φ

η

[
1 − φ

η

∫ eη

1
z−αe−φ

η (z−1) dz − e−φ
η (eη−1)e−(α−1)η

]
� (C.1)

I am going to establish some properties of 
(φ). In particular, I am going to establish
that 
′(φ) > 0, 
(0) is equal to 0, 
′(0) = [1 − e−(α−1)η]/η, and 
(∞) = α.

The derivative of 
(φ) with respect to φ is


′(φ) = 1
η

[
1 − φ

η

∫ eη

1
z−αe−φ

η (z−1) dz − e−φ
η (eη−1)e−(α−1)η

]

+ φ

η

[
− 1
η

∫ eη

1
z−αe−φ

η (z−1) dz + φ

η2

∫ eη

1
z−α(z − 1)e−φ

η (z−1) dz

]

+ φ

η

[
1
η

(
eη − 1

)
e−φ

η (eη−1)e−(α−1)η

]
� (C.2)

After collecting terms, I can rewrite (C.2) as


′(φ) = 1
η

[
1 − φ

η

∫ eη

1
z−α

(
2 − φ

η
(z − 1)

)
e−φ

η (z−1) dz

]

− 1
η
e−φ

η (eη−1)e−(α−1)η

(
1 − φ

η

(
eη − 1

))
� (C.3)
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Using the fact that η is small, and hence, exp(η) is close to 1, I can approximate z−α

with 1 − α(z − 1) inside the integral of (C.3). That is,

∫ eη

1
z−α

(
2 − φ

η
(z − 1)

)
e−φ

η (z−1) dz

≈
∫ eη

1

[
1 − α(z − 1)

](
2 − φ

η
(z − 1)

)
e−φ

η (z−1) dz

=
∫ eη

1

(
2 − φ

η
(z − 1)

)
e−φ

η (z−1) dz − α

∫ eη

1
(z − 1)

(
2 − φ

η
(z − 1)

)
e−φ

η (z−1) dz� (C.4)

The solution of the first integral in the third line of (C.4) is

∫ eη

1

(
2 − φ

η
(z − 1)

)
e−φ

η (z−1) dz = 1
φ/η

[
1 − e−φ

η (eη−1)

(
1 − φ

η

(
eη − 1

))]
� (C.5)

The solution of the second integral in the third line of (C.4) is

−α

∫ eη

1
(z − 1)

(
2 − φ

η
(z − 1)

)
e−φ

η (z−1) dz = −αe−φ
η (eη−1)(eη − 1

)2
� (C.6)

Substituting (C.5) and (C.6) into (C.4) yields


′(φ) ≈ 1
η

[
e−φ

η (eη−1)

(
1 − φ

η

(
eη − 1

))(
1 − e−(α−1)η

) + α
φ

η
e−φ

η (eη−1)(eη − 1
)2

]

= 1
η
e−φ

η (eη−1)

[(
1 − φ

η

(
eη − 1

))(
1 − e−(α−1)η

) + α
φ

η

(
eη − 1

)2
]

= 1
η
e−φ

η (eη−1)

[
1 − e−(α−1)η + φ

η

(
eη − 1

)(
αeη + e−(α−1)η − α− 1

)]
� (C.7)

where the last line in (C.7) is strictly positive because αeη + e−(α−1)η > α + 1. Hence,

′(φ) > 0.

For φ→ 0, 
′(φ) takes the value


′(0) = 1
η

[
1 − e−(α−1)η

]
� (C.8)

For φ → ∞, 
(φ) is such that


(∞) = lim
φ→∞

1 − φ

η

∫ eη

1
z−αe−φ

η (z−1) dz − e−φ
η (eη−1)e−(α−1)η

η/φ
� (C.9)
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Both the numerator and the denominator converge to 0. Applying de l’Hopital’s rule
yields


(∞) = lim
φ→∞

φ2

η2

[∫ eη

1
z−α

(
1 − φ

η
(z − 1)

)
e−φ

η (z−1) dz − e−φ
η (eη−1)e−(α−1)η

]

≈ lim
φ→∞

(
φ

η

)2[
e−φ

η (eη−1)(eη − 1
)(

1 − e−(α−1)η − α
(
eη − 1

))]

+ lim
φ→∞

α

[
1 − e−φ

η (eη−1)

(
1 + φ

η

(
eη − 1

))]

= α� (C.10)

APPENDIX D: PROPERTIES OF THE FUNCTION �

I now want to establish some properties of the function �(φ), which is defined as

�(φ) = φ

η

∫ eη

1
z−αe−φ

η (z−1) dz� (D.1)

Note that I can write (D.1) as

�
(
λx∗) = 1

x∗−α

λx∗

η

∫ eη

1

(
zx∗)−α

e− λ
η (zx∗−x∗) dz

= 1
x∗−α

λ

η

∫ x∗eη

x∗
x−αe− λ

η (x−x∗) dx� (D.2)

where the first line in (D.2) is obtained by defining x∗ as λ/φ, and the second line in (D.2)
is obtained by changing the variable of integration from z to x = zx∗.

Multiplying the left- and the right-hand side of (D.2) by x∗−α yields

�
(
λx∗)x∗−α = λ

η

∫ x∗eη

x∗
x−αe− λ

η (x−x∗) dx� (D.3)

Differentiating the left- and the right-hand side of (D.3) with respect to x∗ yields

�′(λx∗)x∗−αλ− α�
(
λx∗)x∗−α−1

= λ

η

[(
eηx∗)−α

e− λ
η (eηx∗−x∗)eη − x∗−α + λ

η

∫ x∗eη

x∗
x−αe− λ

η (x−x∗) dx

]

= −x∗−α λ

η

[
1 − λ

η

∫ x∗eη

x∗

(
x

x∗

)−α

e− λx∗
η ( x

x∗ −1) dx− e− λx∗
η (eη−1)e−η(α−1)

]
� (D.4)

Multiplying both sides of (D.4) by x∗/x∗−α yields

�′(λx∗)λx∗ − α�
(
λx∗)

= −λx∗

η

[
1 − λ

η

∫ x∗eη

x∗

(
x

x∗

)−α

e− λx∗
η ( x

x∗ −1) dx− e− λx∗
η (eη−1)e−η(α−1)

]
� (D.5)
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Using the fact that λx∗ = φ∗, I can rewrite (D.5) as

�′(φ)φ− α�(φ) = −φ

η

[
1 − φ

η

∫ eη

1
z−αe−φ

η (z−1) dz − e−φ
η (eη−1)e−η(α−1)

]
� (D.6)

Since the right-hand side of (D.6) is equal to −
(φ), it follows that


(φ) = α�(φ) − �′(φ)φ� (D.7)

Dividing both sides of (D.7) by �(φ), yields


(φ)
�(φ)

= α�(φ) − �′(φ)φ
�(φ)

= α− �′(φ)φ
�(φ)

� (D.8)

Let ε(φ) denote the elasticity of �(φ) with respect to φ. That is,

ε(φ) = �′(φ)φ
�(φ)

=

∫ eη

1
z−α

(
1 − φ

η
(z − 1)

)
e−φ

η (z−1) dz

∫ eη

1
z−αe−φ

η (z−1) dz

= 1 −
φ

η

∫ eη

1
z−α(z − 1)e−φ

η (z−1) dz

∫ eη

1
z−αe−φ

η (z−1) dz

� (D.9)

Let n(φ) the numerator of the fraction in the second line of (D.9), that is,

n(φ) = φ

η

∫ eη

1
z−α(z − 1)e−φ

η (z−1) dz

≈ φ

η

∫ eη

1

(
1 − α(z − 1)

)
(z − 1)e−φ

η (z−1) dz

= 1
(φ/η)2

[
e−φ

η (eη−1)

((
2α− φ

η

)(
1 + φ

η

(
eη − 1

))

+ α

(
φ

η

)2(
eη − 1

)2
)

+ φ

η
− 2α

]
� (D.10)

where the second line is obtained by approximating z−α with 1 − α(z − 1). Let d(φ) the
denominator of the fraction in the second line of (D.9), that is,

d(φ) =
∫ eη

1
z−αe−φ

η (z−1) dz

≈
∫ eη

1

(
1 − α(z − 1)

)
e−φ

η (z−1) dz

= 1
(φ/η)2

[
e−φ

η (eη−1)

(
α− φ

η
+ α

φ

η

(
eη − 1

)) + φ

η
− α

]
� (D.11)
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where the second line is obtained by approximating z−α with 1−α(z−1). From the above
expressions, it follows that limφ→∞ n(φ)/d(φ) = 1. From the above expressions and de
l’Hopital’s rule, it follows that limφ→0 n(φ)/d(φ) = 0. Hence, ε(0) = 1 and ε(∞) = 0 and

(φ)/�(φ) is equal to α− 1 for φ= 0 and equal to α for φ = ∞.

The derivative of ε(φ) with respect to φ has the opposite sign as

ε̃′(φ) =
[∫ eη

1
z−α(z − 1)

(
1 − φ

η
(z − 1)

)
e−φ

η (z−1) dz

][∫ eη

1
z−αe−φ

η (z−1) dz

]

+ φ

η

[∫ eη

1
z−α(z − 1)e−φ

η (z−1) dz

][∫ eη

1
z−α(z − 1)e−φ

η (z−1) dz

]
� (D.12)

A linear approximation of z−α(z − 1)(1 − (z − 1)φ/η), z−α and z−α(z − 1) around z = 1
yields

ε̃′(φ) =
[∫ eη

1
(z − 1)e−φ

η (z−1) dz

][∫ eη

1

(
1 − α(z − 1)

)
e−φ

η (z−1) dz

]

+ φ

η

[∫ eη

1
(z − 1)e−φ

η (z−1) dz

][∫ eη

1
(z − 1)e−φ

η (z−1) dz

]
� (D.13)

Since ε̃′(φ) > 0, it follows that the derivative of ε(φ) with respect to φ is strictly negative.
In turn, this implies that the ratio 
(φ)/�(φ) is strictly increasing in φ.
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