SUPPLEMENT TO "OPTIMAL PRODUCT DESIGN: IMPLICATIONS FOR COMPETITION AND GROWTH UNDER DECLINING SEARCH FRICTIONS" (Econometrica, Vol. 91, No. 2, March 2023, 605–639)

GUIDO MENZIO

Department of Economics, New York University and NBER

APPENDIX A: PROOF OF LEMMA 1

I START BY CHARACTERIZING THE SURPLUS FUNCTION $s_t(x)$, which maps the breadth x of a retailer's variety into the surplus offered by the retailer to its customers. First, $s_t(x)$ is strictly decreasing in x for all $x \in [x_t^*, x_t^* \exp(\eta)]$. To see why this is the case, consider two retailers with varieties x_0 and x_1 , with $x_0 < x_1$. Let s_0 denote the optimal surplus offered by the retailer with x_0 and let s_1 denote the optimal surplus offered by the retailer with x_1 . Since the retailer with x_0 prefers s_0 to s_1 and the retailer with x_1 prefers s_1 to s_0 , it follows that

$$e^{-\lambda_t X_t (1-F_t(s_0))} (x_0^{-\alpha} - s_0) \ge e^{-\lambda_t X_t (1-F_t(s_1))} (x_0^{-\alpha} - s_1),$$
(A.1)

$$e^{-\lambda_t X_t (1-F_t(s_1))} (x_1^{-\alpha} - s_1) \ge e^{-\lambda_t X_t (1-F_t(s_0))} (x_1^{-\alpha} - s_0).$$
(A.2)

Combining (A.1) and (A.2) yields

$$e^{-\lambda_t X_t (1-F_t(s_0))} \left(x_0^{-\alpha} - x_1^{-\alpha} \right) \ge e^{-\lambda_t X_t (1-F_t(s_1))} \left(x_0^{-\alpha} - x_1^{-\alpha} \right), \tag{A.3}$$

which implies that $s_0 \ge s_1$. That is, $s_t(x)$ is nondecreasing in x. If $s_0 = s_1$, any retailers carrying a variety with breadth $x \in [x_0, x_1]$ would offer the surplus s_0 , and hence, there would be a mass point in the surplus distribution $F_t(s)$ at s_0 . This, however, cannot be an equilibrium, since a mass point in $F_t(s)$ at s_0 implies that a retailer could attain a strictly higher profit by offering $s_0 + \epsilon$ rather than by offering s_0 , for some arbitrarily small but positive ϵ .

Second, $s_t(x)$ is such that $s_t(x_t^* \exp(\eta)) = 0$. To see why this is the case, suppose that the lowest surplus offered by retailers is some $s_0 > 0$. A retailer offering s_0 only sells to those b_0 buyers who are not in contact with any other retailer carrying a variety that they like. A retailer offering s_0 enjoys a profit of $x^{-\alpha} - s_0$ per unit sold. If the retailer were to offer a surplus of 0, it would still sell only to those b_0 buyers who are not in contact with any other retailer were not in contact with any other retailer were to offer a surplus of 0, it would still sell only to those b_0 buyers who are not in contact with any other retailer carrying a variety that they like. However, the retailer would enjoy a profit of $x^{-\alpha} > x^{-\alpha} - s_0$ per unit sold. Therefore, the lowest surplus offered by retailers must be equal to 0. Since retailers carrying a broader variety offer a lower surplus, it follows that $s_t(x_t^* \exp(\eta)) = 0$.

To complete the characterization of $s_t(x)$, I use the optimality condition of the retailer's pricing problem and the properties of the surplus distribution. The optimality condition of the retailer's problem is

$$1 = \lambda_t X_t F'(s_t(x)) (x^{-\alpha} - s_t(x)).$$
 (A.4)

The left-hand side of (A.4) is the retailer's marginal cost of offering more surplus to its customers, and it is equal to the retailer's volume. The right-hand side of (A.4) is the

Guido Menzio: gm1310@nyu.edu

GUIDO MENZIO

retailer's marginal benefit of offering more surplus to its customers, and it is equal to the retailer's increase in volume multiplied by its per-unit profit.

The surplus distribution is such that

$$F_t(s_t(x)) = \left[\int_x^{x_t^* e^{\eta}} \frac{1}{\log x_t^* e^{\eta} - \log x_t^*} dz\right] \frac{1}{X_t} = \frac{x_t^* e^{\eta} - x}{\eta X_t},$$
 (A.5)

where the expression in (A.5) is obtained from (2.6) and the fact that $s_t(x)$ is strictly decreasing in x. Differentiating (A.5) with respect to x yields

$$F'_t(s_t(x))s'_t(x) = -\frac{1}{\eta X_t}.$$
 (A.6)

Combining (A.4) and (A.6) gives a differential equation for the surplus function

$$s'_t(x) = -\frac{\lambda}{\eta} \left(x^{-\alpha} - s_t(x) \right). \tag{A.7}$$

The unique solution to the differential equation (A.7) that satisfies the boundary condition $s_t(x_t^* \exp(\eta)) = 0$ is

$$s_t(x_0) = \frac{\lambda}{\eta} \int_{x_0}^{x_t^* e^{\eta}} x^{-\alpha} e^{-\frac{\lambda}{\eta}(x-x_0)} dx.$$
 (A.8)

The expression in (A.8) describes the surplus function $s_t(x)$ for $x \in [x_t^*, x_t^* \exp(\eta)]$. For any $x > x_t^* \exp(\eta)$, the retailer carries the broadest variety in the market. It is easy to check that such a retailer finds it optimal to offer a surplus of 0. For $x < x_t^*$, a retailer carries the most specialized variety in the market. It is easy to check that such a retailer finds it optimal to offer a surplus of $s_t(x_t^*)$.

I can now compute the maximized profit $R_t(x)$ for a retailer carrying a variety with breadth x, which is

$$R_{t}(x) = \begin{cases} b\lambda_{t}x(x^{-\alpha} - s_{t}(x_{t}^{*})) & \text{for } x < x_{t}^{*}, \\ b\lambda_{t}xe^{-\frac{\lambda_{t}}{\eta}(x-x_{t}^{*})}(x^{-\alpha} - s_{t}(x)) & \text{for } x \in [x_{t}^{*}, x_{t}^{*}e^{\eta}], \\ b\lambda_{t}xe^{-\frac{\lambda_{t}}{\eta}(x_{t}^{*}e^{\eta} - x_{t}^{*})}x^{-\alpha} & \text{for } x > x_{t}^{*}e^{\eta}. \end{cases}$$
(A.9)

For $x \in [x_t^*, x_t^* \exp(\eta)]$, the expression for $R_t(x)$ is obtained using the fact that $F_t(s_t(x))$ is given by (A.6) and X_t is given by (2.3). For $x > x_t^* \exp(\eta)$, the expression for $R_t(x)$ is obtained by noting that the retailer offers to its buyers a surplus of 0, which is the lowest in the market. For $x < x_t^*$, the expression for $R_t(x)$ is obtained by noting that the retailer offers a surplus of $s_t(x_t^*)$, which is the highest in the market.

APPENDIX B: PROOF OF LEMMA 2

Equation (2.13) implies that a firm's marginal benefit from designing a more specialized variety of the product is equal to the marginal cost from designing a more specialized variety when the firm chooses x_t^* and all other firms choose x_t^* . If, in addition, the firm's marginal cost is lower than the marginal benefit for all $x_t > x_t^*$ and the firm's marginal cost exceeds the marginal benefit for all $x_t < x_t^*$, then equation (2.13) also implies that x_t^* maximizes the firm's profit given that all other firms choose x_t^* .

Let $\mu(x_t)$ denote the derivative with respect to $-x_t$ of the first term on the right-hand side of (2.11). Let $\nu(x_t)$ denotes the derivative with respect to $-x_t$ of the second term on the right-hand side of (2.11). That is, let $\mu(x_t)$ denote the firm's marginal benefit from designing a more specialized variety of the product and let $\nu(x_t)$ denote the firm's marginal cost from designing a more specialized variety of the product. Using (2.10), it is easy to show that $\mu(x_t)$ is such that

$$\mu(x_t) \ge \mu(x_t^*) - bm \frac{\lambda_t}{\eta} \left(x_t^{*-\alpha} - x_t^{-\alpha} \right), \quad \text{for } x_t > x_t^*, \tag{B.1}$$

$$\mu(x_t) \le \mu(x_t^*) + bm \frac{\lambda_t}{\eta} (x_t^{-\alpha} - x_t^{*-\alpha}), \quad \text{for } x_t < x_t^*.$$
(B.2)

The breadth x_t^* maximizes the firm's profit (2.11) as long as the firm's marginal cost $\nu(x_t)$ is smaller than the lower bound on the marginal benefit on right-hand side of (B.1) for $x_t > x_t^*$, and the marginal cost $\nu(x_t)$ is greater the upper bound on the marginal benefit on the right-hand side of (B.2) for $x_t < x_t^*$. There are many cost functions q such that $\nu(x_t)$ has these properties. For example, a cost function q such that

$$-q'(x_t/x_{t-1}^*) = -q'(x_t^*/x_{t-1}^*) + q_0[(x_t/x_{t-1}^*)^{-\beta} - (x_t^*/x_{t-1}^*)^{-\beta}],$$
(B.3)

where β and q_0 are parameters such that

$$\beta > \alpha$$
, and $q_0 > \frac{\lambda_t x_t^*}{\eta} \frac{x_{t-1}^{*-\alpha}}{w_t}$. (B.4)

APPENDIX C: PROPERTIES OF THE FUNCTION Ψ

The function $\Psi(\phi)$ is defined as

$$\Psi(\phi) = \frac{\phi}{\eta} \bigg[1 - \frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} dz - e^{-\frac{\phi}{\eta}(e^{\eta}-1)} e^{-(\alpha-1)\eta} \bigg].$$
(C.1)

I am going to establish some properties of $\Psi(\phi)$. In particular, I am going to establish that $\Psi'(\phi) > 0$, $\Psi(0)$ is equal to 0, $\Psi'(0) = [1 - e^{-(\alpha - 1)\eta}]/\eta$, and $\Psi(\infty) = \alpha$.

The derivative of $\Psi(\phi)$ with respect to ϕ is

$$\Psi'(\phi) = \frac{1}{\eta} \left[1 - \frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} dz - e^{-\frac{\phi}{\eta}(e^{\eta}-1)} e^{-(\alpha-1)\eta} \right] + \frac{\phi}{\eta} \left[-\frac{1}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} dz + \frac{\phi}{\eta^{2}} \int_{1}^{e^{\eta}} z^{-\alpha} (z-1) e^{-\frac{\phi}{\eta}(z-1)} dz \right] + \frac{\phi}{\eta} \left[\frac{1}{\eta} (e^{\eta} - 1) e^{-\frac{\phi}{\eta}(e^{\eta}-1)} e^{-(\alpha-1)\eta} \right].$$
(C.2)

After collecting terms, I can rewrite (C.2) as

$$\Psi'(\phi) = \frac{1}{\eta} \left[1 - \frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} \left(2 - \frac{\phi}{\eta} (z - 1) \right) e^{-\frac{\phi}{\eta} (z - 1)} dz \right] - \frac{1}{\eta} e^{-\frac{\phi}{\eta} (e^{\eta} - 1)} e^{-(\alpha - 1)\eta} \left(1 - \frac{\phi}{\eta} (e^{\eta} - 1) \right).$$
(C.3)

Using the fact that η is small, and hence, $\exp(\eta)$ is close to 1, I can approximate $z^{-\alpha}$ with $1 - \alpha(z - 1)$ inside the integral of (C.3). That is,

$$\int_{1}^{e^{\eta}} z^{-\alpha} \left(2 - \frac{\phi}{\eta} (z - 1) \right) e^{-\frac{\phi}{\eta} (z - 1)} dz$$

$$\approx \int_{1}^{e^{\eta}} \left[1 - \alpha (z - 1) \right] \left(2 - \frac{\phi}{\eta} (z - 1) \right) e^{-\frac{\phi}{\eta} (z - 1)} dz$$

$$= \int_{1}^{e^{\eta}} \left(2 - \frac{\phi}{\eta} (z - 1) \right) e^{-\frac{\phi}{\eta} (z - 1)} dz - \alpha \int_{1}^{e^{\eta}} (z - 1) \left(2 - \frac{\phi}{\eta} (z - 1) \right) e^{-\frac{\phi}{\eta} (z - 1)} dz. \quad (C.4)$$

The solution of the first integral in the third line of (C.4) is

$$\int_{1}^{e^{\eta}} \left(2 - \frac{\phi}{\eta} (z - 1) \right) e^{-\frac{\phi}{\eta} (z - 1)} dz = \frac{1}{\phi/\eta} \left[1 - e^{-\frac{\phi}{\eta} (e^{\eta} - 1)} \left(1 - \frac{\phi}{\eta} (e^{\eta} - 1) \right) \right].$$
(C.5)

The solution of the second integral in the third line of (C.4) is

$$-\alpha \int_{1}^{e^{\eta}} (z-1) \left(2 - \frac{\phi}{\eta} (z-1) \right) e^{-\frac{\phi}{\eta} (z-1)} dz = -\alpha e^{-\frac{\phi}{\eta} (e^{\eta} - 1)} \left(e^{\eta} - 1 \right)^{2}.$$
(C.6)

Substituting (C.5) and (C.6) into (C.4) yields

$$\Psi'(\phi) \approx \frac{1}{\eta} \bigg[e^{-\frac{\phi}{\eta}(e^{\eta}-1)} \bigg(1 - \frac{\phi}{\eta}(e^{\eta}-1) \bigg) (1 - e^{-(\alpha-1)\eta}) + \alpha \frac{\phi}{\eta} e^{-\frac{\phi}{\eta}(e^{\eta}-1)} (e^{\eta}-1)^2 \bigg]$$

$$= \frac{1}{\eta} e^{-\frac{\phi}{\eta}(e^{\eta}-1)} \bigg[\bigg(1 - \frac{\phi}{\eta}(e^{\eta}-1) \bigg) (1 - e^{-(\alpha-1)\eta}) + \alpha \frac{\phi}{\eta}(e^{\eta}-1)^2 \bigg]$$

$$= \frac{1}{\eta} e^{-\frac{\phi}{\eta}(e^{\eta}-1)} \bigg[1 - e^{-(\alpha-1)\eta} + \frac{\phi}{\eta}(e^{\eta}-1) (\alpha e^{\eta} + e^{-(\alpha-1)\eta} - \alpha - 1) \bigg], \quad (C.7)$$

where the last line in (C.7) is strictly positive because $\alpha e^{\eta} + e^{-(\alpha-1)\eta} > \alpha + 1$. Hence, $\Psi'(\phi) > 0$.

For $\phi \to 0$, $\Psi'(\phi)$ takes the value

$$\Psi'(0) = \frac{1}{\eta} \left[1 - e^{-(\alpha - 1)\eta} \right].$$
(C.8)

For $\phi \to \infty$, $\Psi(\phi)$ is such that

$$\Psi(\infty) = \lim_{\phi \to \infty} \frac{1 - \frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} dz - e^{-\frac{\phi}{\eta}(e^{\eta}-1)} e^{-(\alpha-1)\eta}}{\eta/\phi}.$$
 (C.9)

Both the numerator and the denominator converge to 0. Applying de l'Hopital's rule yields

$$\Psi(\infty) = \lim_{\phi \to \infty} \frac{\phi^2}{\eta^2} \left[\int_1^{e^{\eta}} z^{-\alpha} \left(1 - \frac{\phi}{\eta} (z - 1) \right) e^{-\frac{\phi}{\eta} (z - 1)} dz - e^{-\frac{\phi}{\eta} (e^{\eta} - 1)} e^{-(\alpha - 1)\eta} \right]$$

$$\approx \lim_{\phi \to \infty} \left(\frac{\phi}{\eta} \right)^2 \left[e^{-\frac{\phi}{\eta} (e^{\eta} - 1)} (e^{\eta} - 1) (1 - e^{-(\alpha - 1)\eta} - \alpha (e^{\eta} - 1)) \right]$$

$$+ \lim_{\phi \to \infty} \alpha \left[1 - e^{-\frac{\phi}{\eta} (e^{\eta} - 1)} \left(1 + \frac{\phi}{\eta} (e^{\eta} - 1) \right) \right]$$

$$= \alpha.$$
(C.10)

APPENDIX D: PROPERTIES OF THE FUNCTION Γ

I now want to establish some properties of the function $\Gamma(\phi)$, which is defined as

$$\Gamma(\phi) = \frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} dz.$$
 (D.1)

Note that I can write (D.1) as

$$\Gamma(\lambda x^*) = \frac{1}{x^{*-\alpha}} \frac{\lambda x^*}{\eta} \int_1^{e^\eta} (zx^*)^{-\alpha} e^{-\frac{\lambda}{\eta}(zx^*-x^*)} dz$$
$$= \frac{1}{x^{*-\alpha}} \frac{\lambda}{\eta} \int_{x^*}^{x^*e^\eta} x^{-\alpha} e^{-\frac{\lambda}{\eta}(x-x^*)} dx,$$
(D.2)

where the first line in (D.2) is obtained by defining x^* as λ/ϕ , and the second line in (D.2) is obtained by changing the variable of integration from z to $x = zx^*$.

Multiplying the left- and the right-hand side of (D.2) by $x^{*-\alpha}$ yields

$$\Gamma(\lambda x^*) x^{*-\alpha} = \frac{\lambda}{\eta} \int_{x^*}^{x^* e^{\eta}} x^{-\alpha} e^{-\frac{\lambda}{\eta}(x-x^*)} dx.$$
(D.3)

Differentiating the left- and the right-hand side of (D.3) with respect to x^* yields

$$\Gamma'(\lambda x^{*})x^{*-\alpha}\lambda - \alpha\Gamma(\lambda x^{*})x^{*-\alpha-1}$$

$$= \frac{\lambda}{\eta} \bigg[(e^{\eta}x^{*})^{-\alpha}e^{-\frac{\lambda}{\eta}(e^{\eta}x^{*}-x^{*})}e^{\eta} - x^{*-\alpha} + \frac{\lambda}{\eta} \int_{x^{*}}^{x^{*}e^{\eta}} x^{-\alpha}e^{-\frac{\lambda}{\eta}(x-x^{*})} dx \bigg]$$

$$= -x^{*-\alpha}\frac{\lambda}{\eta} \bigg[1 - \frac{\lambda}{\eta} \int_{x^{*}}^{x^{*}e^{\eta}} \bigg(\frac{x}{x^{*}}\bigg)^{-\alpha} e^{-\frac{\lambda x^{*}}{\eta}(\frac{x}{x^{*}}-1)} dx - e^{-\frac{\lambda x^{*}}{\eta}(e^{\eta}-1)}e^{-\eta(\alpha-1)} \bigg].$$
(D.4)

Multiplying both sides of (D.4) by $x^*/x^{*-\alpha}$ yields

$$\Gamma'(\lambda x^*)\lambda x^* - \alpha \Gamma(\lambda x^*)$$

$$= -\frac{\lambda x^*}{\eta} \bigg[1 - \frac{\lambda}{\eta} \int_{x^*}^{x^* e^\eta} \bigg(\frac{x}{x^*}\bigg)^{-\alpha} e^{-\frac{\lambda x^*}{\eta}(\frac{x}{x^*} - 1)} dx - e^{-\frac{\lambda x^*}{\eta}(e^\eta - 1)} e^{-\eta(\alpha - 1)} \bigg].$$
(D.5)

Using the fact that $\lambda x^* = \phi^*$, I can rewrite (D.5) as

$$\Gamma'(\phi)\phi - \alpha\Gamma(\phi) = -\frac{\phi}{\eta} \left[1 - \frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} dz - e^{-\frac{\phi}{\eta}(e^{\eta}-1)} e^{-\eta(\alpha-1)} \right].$$
(D.6)

Since the right-hand side of (D.6) is equal to $-\Psi(\phi)$, it follows that

$$\Psi(\phi) = \alpha \Gamma(\phi) - \Gamma'(\phi)\phi. \tag{D.7}$$

Dividing both sides of (D.7) by $\Gamma(\phi)$, yields

$$\frac{\Psi(\phi)}{\Gamma(\phi)} = \frac{\alpha \Gamma(\phi) - \Gamma'(\phi)\phi}{\Gamma(\phi)} = \alpha - \frac{\Gamma'(\phi)\phi}{\Gamma(\phi)}.$$
 (D.8)

Let $\epsilon(\phi)$ denote the elasticity of $\Gamma(\phi)$ with respect to ϕ . That is,

$$\epsilon(\phi) = \frac{\Gamma'(\phi)\phi}{\Gamma(\phi)} = \frac{\int_{1}^{e^{\eta}} z^{-\alpha} \left(1 - \frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} dz}{\int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} dz}$$
$$= 1 - \frac{\frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha}(z-1) e^{-\frac{\phi}{\eta}(z-1)} dz}{\int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} dz}.$$
(D.9)

Let $n(\phi)$ the numerator of the fraction in the second line of (D.9), that is,

$$n(\phi) = \frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} (z-1) e^{-\frac{\phi}{\eta}(z-1)} dz$$

$$\approx \frac{\phi}{\eta} \int_{1}^{e^{\eta}} (1-\alpha(z-1))(z-1) e^{-\frac{\phi}{\eta}(z-1)} dz$$

$$= \frac{1}{(\phi/\eta)^{2}} \bigg[e^{-\frac{\phi}{\eta}(e^{\eta}-1)} \bigg(\bigg(2\alpha - \frac{\phi}{\eta} \bigg) \bigg(1 + \frac{\phi}{\eta}(e^{\eta}-1) \bigg) + \alpha \bigg(\frac{\phi}{\eta} \bigg)^{2} (e^{\eta}-1)^{2} \bigg) + \frac{\phi}{\eta} - 2\alpha \bigg], \qquad (D.10)$$

where the second line is obtained by approximating $z^{-\alpha}$ with $1 - \alpha(z - 1)$. Let $d(\phi)$ the denominator of the fraction in the second line of (D.9), that is,

$$d(\phi) = \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} dz$$

$$\approx \int_{1}^{e^{\eta}} (1 - \alpha(z-1)) e^{-\frac{\phi}{\eta}(z-1)} dz$$

$$= \frac{1}{(\phi/\eta)^{2}} \bigg[e^{-\frac{\phi}{\eta}(e^{\eta}-1)} \bigg(\alpha - \frac{\phi}{\eta} + \alpha \frac{\phi}{\eta} (e^{\eta} - 1) \bigg) + \frac{\phi}{\eta} - \alpha \bigg], \quad (D.11)$$

where the second line is obtained by approximating $z^{-\alpha}$ with $1 - \alpha(z-1)$. From the above expressions, it follows that $\lim_{\phi \to \infty} n(\phi)/d(\phi) = 1$. From the above expressions and de l'Hopital's rule, it follows that $\lim_{\phi \to 0} n(\phi)/d(\phi) = 0$. Hence, $\epsilon(0) = 1$ and $\epsilon(\infty) = 0$ and $\Psi(\phi)/\Gamma(\phi)$ is equal to $\alpha - 1$ for $\phi = 0$ and equal to α for $\phi = \infty$.

The derivative of $\epsilon(\phi)$ with respect to ϕ has the opposite sign as

$$\tilde{\epsilon}'(\phi) = \left[\int_{1}^{e^{\eta}} z^{-\alpha}(z-1) \left(1 - \frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} dz \right] \left[\int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} dz \right] + \frac{\phi}{\eta} \left[\int_{1}^{e^{\eta}} z^{-\alpha}(z-1) e^{-\frac{\phi}{\eta}(z-1)} dz \right] \left[\int_{1}^{e^{\eta}} z^{-\alpha}(z-1) e^{-\frac{\phi}{\eta}(z-1)} dz \right].$$
(D.12)

A linear approximation of $z^{-\alpha}(z-1)(1-(z-1)\phi/\eta)$, $z^{-\alpha}$ and $z^{-\alpha}(z-1)$ around z=1 yields

$$\tilde{\epsilon}'(\phi) = \left[\int_{1}^{e^{\eta}} (z-1)e^{-\frac{\phi}{\eta}(z-1)} dz\right] \left[\int_{1}^{e^{\eta}} (1-\alpha(z-1))e^{-\frac{\phi}{\eta}(z-1)} dz\right] + \frac{\phi}{\eta} \left[\int_{1}^{e^{\eta}} (z-1)e^{-\frac{\phi}{\eta}(z-1)} dz\right] \left[\int_{1}^{e^{\eta}} (z-1)e^{-\frac{\phi}{\eta}(z-1)} dz\right].$$
(D.13)

Since $\tilde{\epsilon}'(\phi) > 0$, it follows that the derivative of $\epsilon(\phi)$ with respect to ϕ is strictly negative. In turn, this implies that the ratio $\Psi(\phi)/\Gamma(\phi)$ is strictly increasing in ϕ .

Co-editor Charles I. Jones handled this manuscript.

Manuscript received 9 April, 2021; final version accepted 9 December, 2022; available online 20 December, 2022.