SUPPLEMENT TO "OPTIMAL PRODUCT DESIGN: IMPLICATIONS FOR COMPETITION AND GROWTH UNDER DECLINING SEARCH FRICTIONS"

(Econometrica, Vol. 91, No. 2, March 2023, 605-639)

Guido Menzio

Department of Economics, New York University and NBER

APPENDIX A: Proof of Lemma 1

I START BY CHARACTERIZING THE SURPLUS FUNCTION $s_{t}(x)$, which maps the breadth x of a retailer's variety into the surplus offered by the retailer to its customers. First, $s_{t}(x)$ is strictly decreasing in x for all $x \in\left[x_{t}^{*}, x_{t}^{*} \exp (\eta)\right]$. To see why this is the case, consider two retailers with varieties x_{0} and x_{1}, with $x_{0}<x_{1}$. Let s_{0} denote the optimal surplus offered by the retailer with x_{0} and let s_{1} denote the optimal surplus offered by the retailer with x_{1}. Since the retailer with x_{0} prefers s_{0} to s_{1} and the retailer with x_{1} prefers s_{1} to s_{0}, it follows that

$$
\begin{align*}
& e^{-\lambda_{t} X_{t}\left(1-F_{t}\left(s_{0}\right)\right)}\left(x_{0}^{-\alpha}-s_{0}\right) \geq e^{-\lambda_{t} X_{t}\left(1-F_{t}\left(s_{1}\right)\right)}\left(x_{0}^{-\alpha}-s_{1}\right), \tag{A.1}\\
& e^{-\lambda_{t} X_{t}\left(1-F_{t}\left(s_{1}\right)\right)}\left(x_{1}^{-\alpha}-s_{1}\right) \geq e^{-\lambda_{t} X_{t}\left(1-F_{t}\left(s_{0}\right)\right)}\left(x_{1}^{-\alpha}-s_{0}\right) \tag{A.2}
\end{align*}
$$

Combining (A.1) and (A.2) yields

$$
\begin{equation*}
e^{-\lambda_{t} X_{t}\left(1-F_{t}\left(s_{0}\right)\right)}\left(x_{0}^{-\alpha}-x_{1}^{-\alpha}\right) \geq e^{-\lambda_{t} X_{t}\left(1-F_{t}\left(s_{1}\right)\right)}\left(x_{0}^{-\alpha}-x_{1}^{-\alpha}\right) \tag{A.3}
\end{equation*}
$$

which implies that $s_{0} \geq s_{1}$. That is, $s_{t}(x)$ is nondecreasing in x. If $s_{0}=s_{1}$, any retailers carrying a variety with breadth $x \in\left[x_{0}, x_{1}\right]$ would offer the surplus s_{0}, and hence, there would be a mass point in the surplus distribution $F_{t}(s)$ at s_{0}. This, however, cannot be an equilibrium, since a mass point in $F_{t}(s)$ at s_{0} implies that a retailer could attain a strictly higher profit by offering $s_{0}+\epsilon$ rather than by offering s_{0}, for some arbitrarily small but positive ϵ.

Second, $s_{t}(x)$ is such that $s_{t}\left(x_{t}^{*} \exp (\eta)\right)=0$. To see why this is the case, suppose that the lowest surplus offered by retailers is some $s_{0}>0$. A retailer offering s_{0} only sells to those b_{0} buyers who are not in contact with any other retailer carrying a variety that they like. A retailer offering s_{0} enjoys a profit of $x^{-\alpha}-s_{0}$ per unit sold. If the retailer were to offer a surplus of 0 , it would still sell only to those b_{0} buyers who are not in contact with any other retailer carrying a variety that they like. However, the retailer would enjoy a profit of $x^{-\alpha}>x^{-\alpha}-s_{0}$ per unit sold. Therefore, the lowest surplus offered by retailers must be equal to 0 . Since retailers carrying a broader variety offer a lower surplus, it follows that $s_{t}\left(x_{t}^{*} \exp (\eta)\right)=0$.

To complete the characterization of $s_{t}(x)$, I use the optimality condition of the retailer's pricing problem and the properties of the surplus distribution. The optimality condition of the retailer's problem is

$$
\begin{equation*}
1=\lambda_{t} X_{t} F^{\prime}\left(s_{t}(x)\right)\left(x^{-\alpha}-s_{t}(x)\right) \tag{A.4}
\end{equation*}
$$

The left-hand side of (A.4) is the retailer's marginal cost of offering more surplus to its customers, and it is equal to the retailer's volume. The right-hand side of (A.4) is the
retailer's marginal benefit of offering more surplus to its customers, and it is equal to the retailer's increase in volume multiplied by its per-unit profit.

The surplus distribution is such that

$$
\begin{equation*}
F_{t}\left(s_{t}(x)\right)=\left[\int_{x}^{x_{t}^{*} e^{\eta}} \frac{1}{\log x_{t}^{*} e^{\eta}-\log x_{t}^{*}} d z\right] \frac{1}{X_{t}}=\frac{x_{t}^{*} e^{\eta}-x}{\eta X_{t}} \tag{A.5}
\end{equation*}
$$

where the expression in (A.5) is obtained from (2.6) and the fact that $s_{t}(x)$ is strictly decreasing in x. Differentiating (A.5) with respect to x yields

$$
\begin{equation*}
F_{t}^{\prime}\left(s_{t}(x)\right) s_{t}^{\prime}(x)=-\frac{1}{\eta X_{t}} \tag{A.6}
\end{equation*}
$$

Combining (A.4) and (A.6) gives a differential equation for the surplus function

$$
\begin{equation*}
s_{t}^{\prime}(x)=-\frac{\lambda}{\eta}\left(x^{-\alpha}-s_{t}(x)\right) \tag{A.7}
\end{equation*}
$$

The unique solution to the differential equation (A.7) that satisfies the boundary condition $s_{t}\left(x_{t}^{*} \exp (\eta)\right)=0$ is

$$
\begin{equation*}
s_{t}\left(x_{0}\right)=\frac{\lambda}{\eta} \int_{x_{0}}^{x_{e}^{*} e^{\eta}} x^{-\alpha} e^{-\frac{\lambda}{\eta}\left(x-x_{0}\right)} d x \tag{A.8}
\end{equation*}
$$

The expression in (A.8) describes the surplus function $s_{t}(x)$ for $x \in\left[x_{t}^{*}, x_{t}^{*} \exp (\eta)\right]$. For any $x>x_{t}^{*} \exp (\eta)$, the retailer carries the broadest variety in the market. It is easy to check that such a retailer finds it optimal to offer a surplus of 0 . For $x<x_{t}^{*}$, a retailer carries the most specialized variety in the market. It is easy to check that such a retailer finds it optimal to offer a surplus of $s_{t}\left(x_{t}^{*}\right)$.

I can now compute the maximized profit $R_{t}(x)$ for a retailer carrying a variety with breadth x, which is

$$
R_{t}(x)= \begin{cases}b \lambda_{t} x\left(x^{-\alpha}-s_{t}\left(x_{t}^{*}\right)\right) & \text { for } x<x_{t}^{*} \tag{A.9}\\ b \lambda_{t} x e^{-\frac{\lambda_{t}}{\eta}\left(x-x_{t}^{*}\right)}\left(x^{-\alpha}-s_{t}(x)\right) & \text { for } x \in\left[x_{t}^{*}, x_{t}^{*} e^{\eta}\right] \\ b \lambda_{t} x e^{-\frac{\lambda_{t}}{\eta}\left(x_{t}^{*} e^{\eta}-x_{t}^{*}\right)} x^{-\alpha} & \text { for } x>x_{t}^{*} e^{\eta}\end{cases}
$$

For $x \in\left[x_{t}^{*}, x_{t}^{*} \exp (\eta)\right]$, the expression for $R_{t}(x)$ is obtained using the fact that $F_{t}\left(s_{t}(x)\right)$ is given by (A.6) and X_{t} is given by (2.3). For $x>x_{t}^{*} \exp (\eta)$, the expression for $R_{t}(x)$ is obtained by noting that the retailer offers to its buyers a surplus of 0 , which is the lowest in the market. For $x<x_{t}^{*}$, the expression for $R_{t}(x)$ is obtained by noting that the retailer offers a surplus of $s_{t}\left(x_{t}^{*}\right)$, which is the highest in the market.

APPENDIX B: Proof OF LEMMA 2

Equation (2.13) implies that a firm's marginal benefit from designing a more specialized variety of the product is equal to the marginal cost from designing a more specialized variety when the firm chooses x_{t}^{*} and all other firms choose x_{t}^{*}. If, in addition, the firm's marginal cost is lower than the marginal benefit for all $x_{t}>x_{t}^{*}$ and the firm's marginal cost exceeds the marginal benefit for all $x_{t}<x_{t}^{*}$, then equation (2.13) also implies that x_{t}^{*} maximizes the firm's profit given that all other firms choose x_{t}^{*}.

Let $\mu\left(x_{t}\right)$ denote the derivative with respect to $-x_{t}$ of the first term on the right-hand side of (2.11). Let $\nu\left(x_{t}\right)$ denotes the derivative with respect to $-x_{t}$ of the second term on the right-hand side of (2.11). That is, let $\mu\left(x_{t}\right)$ denote the firm's marginal benefit from designing a more specialized variety of the product and let $\nu\left(x_{t}\right)$ denote the firm's marginal cost from designing a more specialized variety of the product. Using (2.10), it is easy to show that $\mu\left(x_{t}\right)$ is such that

$$
\begin{array}{ll}
\mu\left(x_{t}\right) \geq \mu\left(x_{t}^{*}\right)-b m \frac{\lambda_{t}}{\eta}\left(x_{t}^{*-\alpha}-x_{t}^{-\alpha}\right), & \text { for } x_{t}>x_{t}^{*}, \\
\mu\left(x_{t}\right) \leq \mu\left(x_{t}^{*}\right)+b m \frac{\lambda_{t}}{\eta}\left(x_{t}^{-\alpha}-x_{t}^{*-\alpha}\right), & \text { for } x_{t}<x_{t}^{*} . \tag{B.2}
\end{array}
$$

The breadth x_{t}^{*} maximizes the firm's profit (2.11) as long as the firm's marginal cost $\nu\left(x_{t}\right)$ is smaller than the lower bound on the marginal benefit on right-hand side of (B.1) for $x_{t}>x_{t}^{*}$, and the marginal cost $\nu\left(x_{t}\right)$ is greater the upper bound on the marginal benefit on the right-hand side of (B.2) for $x_{t}<x_{t}^{*}$. There are many cost functions q such that $\nu\left(x_{t}\right)$ has these properties. For example, a cost function q such that

$$
\begin{equation*}
-q^{\prime}\left(x_{t} / x_{t-1}^{*}\right)=-q^{\prime}\left(x_{t}^{*} / x_{t-1}^{*}\right)+q_{0}\left[\left(x_{t} / x_{t-1}^{*}\right)^{-\beta}-\left(x_{t}^{*} / x_{t-1}^{*}\right)^{-\beta}\right] \tag{B.3}
\end{equation*}
$$

where β and q_{0} are parameters such that

$$
\begin{equation*}
\beta>\alpha, \quad \text { and } \quad q_{0}>\frac{\lambda_{t} x_{t}^{*}}{\eta} \frac{x_{t-1}^{*-\alpha}}{w_{t}} . \tag{B.4}
\end{equation*}
$$

APPENDIX C: Properties of the Function Ψ

The function $\Psi(\phi)$ is defined as

$$
\begin{equation*}
\Psi(\phi)=\frac{\phi}{\eta}\left[1-\frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} d z-e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)} e^{-(\alpha-1) \eta}\right] \tag{C.1}
\end{equation*}
$$

I am going to establish some properties of $\Psi(\phi)$. In particular, I am going to establish that $\Psi^{\prime}(\phi)>0, \Psi(0)$ is equal to $0, \Psi^{\prime}(0)=\left[1-e^{-(\alpha-1) \eta}\right] / \eta$, and $\Psi(\infty)=\alpha$.

The derivative of $\Psi(\phi)$ with respect to ϕ is

$$
\begin{align*}
\Psi^{\prime}(\phi)= & \frac{1}{\eta}\left[1-\frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} d z-e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)} e^{-(\alpha-1) \eta}\right] \\
& +\frac{\phi}{\eta}\left[-\frac{1}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} d z+\frac{\phi}{\eta^{2}} \int_{1}^{e^{\eta}} z^{-\alpha}(z-1) e^{-\frac{\phi}{\eta}(z-1)} d z\right] \\
& +\frac{\phi}{\eta}\left[\frac{1}{\eta}\left(e^{\eta}-1\right) e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)} e^{-(\alpha-1) \eta}\right] . \tag{C.2}
\end{align*}
$$

After collecting terms, I can rewrite (C.2) as

$$
\begin{align*}
\Psi^{\prime}(\phi)= & \frac{1}{\eta}\left[1-\frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha}\left(2-\frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} d z\right] \\
& -\frac{1}{\eta} e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)} e^{-(\alpha-1) \eta}\left(1-\frac{\phi}{\eta}\left(e^{\eta}-1\right)\right) . \tag{C.3}
\end{align*}
$$

Using the fact that η is small, and hence, $\exp (\eta)$ is close to 1 , I can approximate $z^{-\alpha}$ with $1-\alpha(z-1)$ inside the integral of (C.3). That is,

$$
\begin{align*}
& \int_{1}^{e^{\eta}} z^{-\alpha}\left(2-\frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} d z \\
& \quad \approx \int_{1}^{e^{\eta}}[1-\alpha(z-1)]\left(2-\frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} d z \\
& \quad=\int_{1}^{e^{\eta}}\left(2-\frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} d z-\alpha \int_{1}^{e^{\eta}}(z-1)\left(2-\frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} d z \tag{C.4}
\end{align*}
$$

The solution of the first integral in the third line of (C.4) is

$$
\begin{equation*}
\int_{1}^{e^{\eta}}\left(2-\frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} d z=\frac{1}{\phi / \eta}\left[1-e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)}\left(1-\frac{\phi}{\eta}\left(e^{\eta}-1\right)\right)\right] . \tag{C.5}
\end{equation*}
$$

The solution of the second integral in the third line of (C.4) is

$$
\begin{equation*}
-\alpha \int_{1}^{e^{\eta}}(z-1)\left(2-\frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} d z=-\alpha e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)}\left(e^{\eta}-1\right)^{2} \tag{C.6}
\end{equation*}
$$

Substituting (C.5) and (C.6) into (C.4) yields

$$
\begin{align*}
\Psi^{\prime}(\phi) & \approx \frac{1}{\eta}\left[e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)}\left(1-\frac{\phi}{\eta}\left(e^{\eta}-1\right)\right)\left(1-e^{-(\alpha-1) \eta}\right)+\alpha \frac{\phi}{\eta} e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)}\left(e^{\eta}-1\right)^{2}\right] \\
& =\frac{1}{\eta} e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)}\left[\left(1-\frac{\phi}{\eta}\left(e^{\eta}-1\right)\right)\left(1-e^{-(\alpha-1) \eta}\right)+\alpha \frac{\phi}{\eta}\left(e^{\eta}-1\right)^{2}\right] \\
& =\frac{1}{\eta} e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)}\left[1-e^{-(\alpha-1) \eta}+\frac{\phi}{\eta}\left(e^{\eta}-1\right)\left(\alpha e^{\eta}+e^{-(\alpha-1) \eta}-\alpha-1\right)\right] \tag{C.7}
\end{align*}
$$

where the last line in (C.7) is strictly positive because $\alpha e^{\eta}+e^{-(\alpha-1) \eta}>\alpha+1$. Hence, $\Psi^{\prime}(\phi)>0$.

For $\phi \rightarrow 0, \Psi^{\prime}(\phi)$ takes the value

$$
\begin{equation*}
\Psi^{\prime}(0)=\frac{1}{\eta}\left[1-e^{-(\alpha-1) \eta}\right] . \tag{C.8}
\end{equation*}
$$

For $\phi \rightarrow \infty, \Psi(\phi)$ is such that

$$
\begin{equation*}
\Psi(\infty)=\lim _{\phi \rightarrow \infty} \frac{1-\frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} d z-e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)} e^{-(\alpha-1) \eta}}{\eta / \phi} \tag{C.9}
\end{equation*}
$$

Both the numerator and the denominator converge to 0 . Applying de l'Hopital's rule yields

$$
\begin{align*}
\Psi(\infty)= & \lim _{\phi \rightarrow \infty} \frac{\phi^{2}}{\eta^{2}}\left[\int_{1}^{e^{\eta}} z^{-\alpha}\left(1-\frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} d z-e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)} e^{-(\alpha-1) \eta}\right] \\
\approx & \lim _{\phi \rightarrow \infty}\left(\frac{\phi}{\eta}\right)^{2}\left[e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)}\left(e^{\eta}-1\right)\left(1-e^{-(\alpha-1) \eta}-\alpha\left(e^{\eta}-1\right)\right)\right] \\
& +\lim _{\phi \rightarrow \infty} \alpha\left[1-e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)}\left(1+\frac{\phi}{\eta}\left(e^{\eta}-1\right)\right)\right] \\
= & \alpha . \tag{C.10}
\end{align*}
$$

APPENDIX D: Properties of the Function Γ

I now want to establish some properties of the function $\Gamma(\phi)$, which is defined as

$$
\begin{equation*}
\Gamma(\phi)=\frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} d z \tag{D.1}
\end{equation*}
$$

Note that I can write (D.1) as

$$
\begin{align*}
\Gamma\left(\lambda x^{*}\right) & =\frac{1}{x^{*-\alpha}} \frac{\lambda x^{*}}{\eta} \int_{1}^{e^{\eta}}\left(z x^{*}\right)^{-\alpha} e^{-\frac{\lambda}{\eta}\left(z x^{*}-x^{*}\right)} d z \\
& =\frac{1}{x^{*-\alpha}} \frac{\lambda}{\eta} \int_{x^{*}}^{x^{*} e^{\eta}} x^{-\alpha} e^{-\frac{\lambda}{\eta}\left(x-x^{*}\right)} d x \tag{D.2}
\end{align*}
$$

where the first line in (D.2) is obtained by defining x^{*} as λ / ϕ, and the second line in (D.2) is obtained by changing the variable of integration from z to $x=z x^{*}$.

Multiplying the left- and the right-hand side of (D.2) by $x^{*-\alpha}$ yields

$$
\begin{equation*}
\Gamma\left(\lambda x^{*}\right) x^{*-\alpha}=\frac{\lambda}{\eta} \int_{x^{*}}^{x^{*} e^{\eta}} x^{-\alpha} e^{-\frac{\lambda}{\eta}\left(x-x^{*}\right)} d x \tag{D.3}
\end{equation*}
$$

Differentiating the left- and the right-hand side of (D.3) with respect to x^{*} yields

$$
\begin{align*}
& \Gamma^{\prime}\left(\lambda x^{*}\right) x^{*-\alpha} \lambda-\alpha \Gamma\left(\lambda x^{*}\right) x^{*-\alpha-1} \\
& \quad=\frac{\lambda}{\eta}\left[\left(e^{\eta} x^{*}\right)^{-\alpha} e^{-\frac{\lambda}{\eta}\left(e^{\eta} x^{*}-x^{*}\right)} e^{\eta}-x^{*-\alpha}+\frac{\lambda}{\eta} \int_{x^{*}}^{x^{*} e^{\eta}} x^{-\alpha} e^{-\frac{\lambda}{\eta}\left(x-x^{*}\right)} d x\right] \\
& \quad=-x^{*-\alpha} \frac{\lambda}{\eta}\left[1-\frac{\lambda}{\eta} \int_{x^{*}}^{x^{*} e^{\eta}}\left(\frac{x}{x^{*}}\right)^{-\alpha} e^{\left.-\frac{\lambda x^{*}\left(\frac{x}{\eta}\left(\frac{x}{x^{*}}-1\right)\right.}{d} d x-e^{-\frac{\lambda x^{*}\left(e^{\eta}-1\right)}{\eta}} e^{-\eta(\alpha-1)}\right] .}\right. \tag{D.4}
\end{align*}
$$

Multiplying both sides of (D.4) by $x^{*} / x^{*-\alpha}$ yields

$$
\begin{align*}
& \Gamma^{\prime}\left(\lambda x^{*}\right) \lambda x^{*}-\alpha \Gamma\left(\lambda x^{*}\right) \\
& \quad=-\frac{\lambda x^{*}}{\eta}\left[1-\frac{\lambda}{\eta} \int_{x^{*}}^{x^{*} e^{\eta}}\left(\frac{x}{x^{*}}\right)^{-\alpha} e^{\left.-\frac{\lambda x^{*}\left(\frac{x}{\eta}-1\right)}{x^{*}}-1 x-e^{-\frac{\lambda x^{*}}{\eta}\left(e^{\eta}-1\right)} e^{-\eta(\alpha-1)}\right] .} .\right. \tag{D.5}
\end{align*}
$$

Using the fact that $\lambda x^{*}=\phi^{*}$, I can rewrite (D.5) as

$$
\begin{equation*}
\Gamma^{\prime}(\phi) \phi-\alpha \Gamma(\phi)=-\frac{\phi}{\eta}\left[1-\frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} d z-e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)} e^{-\eta(\alpha-1)}\right] \tag{D.6}
\end{equation*}
$$

Since the right-hand side of (D.6) is equal to $-\Psi(\phi)$, it follows that

$$
\begin{equation*}
\Psi(\phi)=\alpha \Gamma(\phi)-\Gamma^{\prime}(\phi) \phi \tag{D.7}
\end{equation*}
$$

Dividing both sides of (D.7) by $\Gamma(\phi)$, yields

$$
\begin{equation*}
\frac{\Psi(\phi)}{\Gamma(\phi)}=\frac{\alpha \Gamma(\phi)-\Gamma^{\prime}(\phi) \phi}{\Gamma(\phi)}=\alpha-\frac{\Gamma^{\prime}(\phi) \phi}{\Gamma(\phi)} . \tag{D.8}
\end{equation*}
$$

Let $\epsilon(\phi)$ denote the elasticity of $\Gamma(\phi)$ with respect to ϕ. That is,

$$
\begin{align*}
\epsilon(\phi) & =\frac{\Gamma^{\prime}(\phi) \phi}{\Gamma(\phi)}=\frac{\int_{1}^{e^{\eta}} z^{-\alpha}\left(1-\frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} d z}{\int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} d z} \\
& =1-\frac{\frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha}(z-1) e^{-\frac{\phi}{\eta}(z-1)} d z}{\int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} d z} \tag{D.9}
\end{align*}
$$

Let $n(\phi)$ the numerator of the fraction in the second line of (D.9), that is,

$$
\begin{align*}
n(\phi)= & \frac{\phi}{\eta} \int_{1}^{e^{\eta}} z^{-\alpha}(z-1) e^{-\frac{\phi}{\eta}(z-1)} d z \\
\approx & \frac{\phi}{\eta} \int_{1}^{e^{\eta}}(1-\alpha(z-1))(z-1) e^{-\frac{\phi}{\eta}(z-1)} d z \\
= & \frac{1}{(\phi / \eta)^{2}}\left[e ^ { - \frac { \phi } { \eta } (e ^ { \eta } - 1) } \left(\left(2 \alpha-\frac{\phi}{\eta}\right)\left(1+\frac{\phi}{\eta}\left(e^{\eta}-1\right)\right)\right.\right. \\
& \left.\left.+\alpha\left(\frac{\phi}{\eta}\right)^{2}\left(e^{\eta}-1\right)^{2}\right)+\frac{\phi}{\eta}-2 \alpha\right] \tag{D.10}
\end{align*}
$$

where the second line is obtained by approximating $z^{-\alpha}$ with $1-\alpha(z-1)$. Let $d(\phi)$ the denominator of the fraction in the second line of (D.9), that is,

$$
\begin{align*}
d(\phi) & =\int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} d z \\
& \approx \int_{1}^{e^{\eta}}(1-\alpha(z-1)) e^{-\frac{\phi}{\eta}(z-1)} d z \\
& =\frac{1}{(\phi / \eta)^{2}}\left[e^{-\frac{\phi}{\eta}\left(e^{\eta}-1\right)}\left(\alpha-\frac{\phi}{\eta}+\alpha \frac{\phi}{\eta}\left(e^{\eta}-1\right)\right)+\frac{\phi}{\eta}-\alpha\right] \tag{D.11}
\end{align*}
$$

where the second line is obtained by approximating $z^{-\alpha}$ with $1-\alpha(z-1)$. From the above expressions, it follows that $\lim _{\phi \rightarrow \infty} n(\phi) / d(\phi)=1$. From the above expressions and de l'Hopital's rule, it follows that $\lim _{\phi \rightarrow 0} n(\phi) / d(\phi)=0$. Hence, $\epsilon(0)=1$ and $\epsilon(\infty)=0$ and $\Psi(\phi) / \Gamma(\phi)$ is equal to $\alpha-1$ for $\phi=0$ and equal to α for $\phi=\infty$.

The derivative of $\epsilon(\phi)$ with respect to ϕ has the opposite sign as

$$
\begin{align*}
\tilde{\boldsymbol{\epsilon}}^{\prime}(\phi)= & {\left[\int_{1}^{e^{\eta}} z^{-\alpha}(z-1)\left(1-\frac{\phi}{\eta}(z-1)\right) e^{-\frac{\phi}{\eta}(z-1)} d z\right]\left[\int_{1}^{e^{\eta}} z^{-\alpha} e^{-\frac{\phi}{\eta}(z-1)} d z\right] } \\
& +\frac{\phi}{\eta}\left[\int_{1}^{e^{\eta}} z^{-\alpha}(z-1) e^{-\frac{\phi}{\eta}(z-1)} d z\right]\left[\int_{1}^{e^{\eta}} z^{-\alpha}(z-1) e^{-\frac{\phi}{\eta}(z-1)} d z\right] . \tag{D.12}
\end{align*}
$$

A linear approximation of $z^{-\alpha}(z-1)(1-(z-1) \phi / \eta), z^{-\alpha}$ and $z^{-\alpha}(z-1)$ around $z=1$ yields

$$
\begin{align*}
\tilde{\epsilon}^{\prime}(\phi)= & {\left[\int_{1}^{e^{\eta}}(z-1) e^{-\frac{\phi}{\eta}(z-1)} d z\right]\left[\int_{1}^{e^{\eta}}(1-\alpha(z-1)) e^{-\frac{\phi}{\eta}(z-1)} d z\right] } \\
& +\frac{\phi}{\eta}\left[\int_{1}^{e^{\eta}}(z-1) e^{-\frac{\phi}{\eta}(z-1)} d z\right]\left[\int_{1}^{e^{\eta}}(z-1) e^{-\frac{\phi}{\eta}(z-1)} d z\right] \tag{D.13}
\end{align*}
$$

Since $\tilde{\epsilon}^{\prime}(\phi)>0$, it follows that the derivative of $\epsilon(\phi)$ with respect to ϕ is strictly negative. In turn, this implies that the ratio $\Psi(\phi) / \Gamma(\phi)$ is strictly increasing in ϕ.

Co-editor Charles I. Jones handled this manuscript.
Manuscript received 9 April, 2021; final version accepted 9 December, 2022; available online 20 December, 2022.

