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THIS SUPPLEMENT IS ORGANIZED AS FOLLOWS. Section A.1 provides a review of AM
spaces. Section A.2 specializes the general results of Section 3 to three additional exam-
ples: (i) GMM, (ii) quantile treatment effects, and (iii) the Slutsky restriction in a partially
linear model. The proofs for all results can be found in the working paper Chernozhukov,
Newey, and Santos (2022).

A.1. AM SPACES

We provide a brief introduction to AM spaces and refer the reader to Chapters 8 and
9 of Aliprantis and Border (2006) for a more detailed exposition. Before proceeding, we
first recall the definitions of a partially ordered set and a lattice.

DEFINITION A.1.1: A partially ordered set (G�≥) is a set G with a partial order relation-
ship ≥ defined on it—that is, ≥ is a transitive (x ≥ y and y ≥ z implies x ≥ z), reflexive
(x≥ x), and antisymmetric (x≥ y implies the negation of y ≥ x) relation.

DEFINITION A.1.2: A lattice is a partially ordered set (G�≥) such that any pair x� y ∈ G
has a least upper bound (denoted x∨ y) and a greatest lower bound (denoted x∧ y).

Whenever G is both a vector space and a lattice, it is possible to define objects that
depend on both the vector space and lattice operations. In particular, for x ∈ G, we define
the positive part x+ ≡ x ∨ 0, the negative part x− ≡ (−x) ∨ 0, and the absolute value
|x| ≡ x ∨ (−x). It is also natural to demand that the order relation ≥ interact with the
algebraic operations in a manner analogous to that of R, that is, to have

x≥ y implies x+ z ≥ y + z for each z ∈ G� (A.1)

x≥ y implies αx≥ αy for each 0 ≤ α ∈ R� (A.2)

A complete normed vector space that shares these familiar properties of R under a given
order relation ≥ is referred to as a Banach lattice. Formally, we define the following:
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DEFINITION A.1.3: A Banach space G with norm ‖ · ‖G is a Banach lattice if (i) G is a
lattice under ≥, (ii) ‖x‖G ≤ ‖y‖G when |x|≤|y|, (iii) (A.1) and (A.2) hold.

An AM space is a Banach lattice in which the maximum of the norms of any two positive
elements is equal to the norm of the maximums of the two elements.

DEFINITION A.1.4: A Banach lattice G is called an AM space if, for any elements 0 ≤
x� y ∈ G, it follows that ‖x∨ y‖G = max{‖x‖G�‖y‖G}.

In certain Banach lattices, there may exist an element 1G > 0 called an order unit such
that, for any x ∈ G, there exists a 0 < λ ∈ R for which |x|≤ λ1G; for example, in Rd , the
vector (1� � � � �1)′ is an order unit. The order unit 1G can be used to define

‖x‖∞ ≡ inf
{
λ > 0 : |x| ≤ λ1G

}
� (A.3)

which is a norm on G. In principle, ‖ · ‖∞ need not be related to the original norm ‖ · ‖G.
However, if G is an AM space, then ‖ · ‖G and ‖ · ‖∞ are equivalent in that they generate
the same topology. Hence, we refer to G as an AM space with unit 1G if: (i) G is an AM
space, (ii) 1G is an order unit in G, and (iii) the norm of G equals ‖ · ‖∞.

A.2. ILLUSTRATIVE EXAMPLES

In this section, we examine special cases of our general analysis and illustrate both how
to implement our procedure and how to verify the assumptions in the main text.

A.2.1. Generalized Method of Moments

Our first example concerns the generalized method of moments (GMM) model of
Hansen (1982). We assume the parameter of interest θ0 is identified as the unique so-
lution to

EP
[
ρ(X�θ0)

] = 0� (A.4)

where X ∈ X is distributed according to P ∈ P and ρ : X × �→ RJ . This model maps
into our general framework by letting Zj = 1 for all 1 ≤ j ≤ J . Moreover, since we have
assumed θ0 is identified, the hypothesis testing problem simplifies to

H0 : θ0 ∈R� H1 : θ0 /∈R�
The set R is, as in the main text, defined by equality and inequality restrictions. In

particular, for known functions ϒF : Rdθ → RdF and ϒG : Rdθ → RdG , we set

R≡ {
θ ∈ Rdθ :ϒF (θ) = 0 and ϒG(θ) ≤ 0

}
� (A.5)

To verify Assumptions 3.1(ii),(iii), note Rd is a Banach space under any norm ‖ · ‖p with
1 ≤ p ≤ ∞, so for concreteness we set B = Rdθ , F = RdF , and ‖ · ‖B = ‖ · ‖F = ‖ · ‖2. The
space Rd is, in addition, a lattice under the standard pointwise partial order

a≤ b if and only if ai ≤ bi for all 1 ≤ i≤ d (A.6)

for any (a1� � � � � ad)′ = a and (b1� � � � � bd)′ = b in Rd , while the least upper bound equals

a∨ b= (
max{a1� b1}� � � � �max{ad�bd}

)′
�
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The vector (1� � � � �1)′ is an order unit in Rd under the partial order in (A.6). As discussed
in Section A.1 of this supplement, the order unit induces the norm{

infλ > 0 : |a| ≤ λ(1� � � � �1)′} = max
1≤i≤d

|ai|�

which corresponds to the usual ‖ · ‖∞ norm on Rd . Hence, by setting G = RdG , ‖ · ‖G =
‖ · ‖∞, and 1G = (1� � � � �1)′, we verify the requirements of Assumption 3.1(ii),(iii).

Since the parameter space � is finite dimensional and all moment restrictions are
unconditional, we may set �n = � and kn = J for all n. We base our test statistic on
quadratic forms in the moments (p= 2), which implies Qn(θ) is given by

Qn(θ) ≡
∥∥∥∥∥�̂n

{
1
n

n∑
i=1

ρ(Xi�θ)

}∥∥∥∥∥
2

�

In what follows, we consider tests based on both the un-centered statistic In(R) and the
re-centered statistic In(R) − In(�). To this end, we impose the following:

ASSUMPTION A.2.1: (i) {Xi}ni=1 is i.i.d. with Xi ∼ P ∈ P; (ii) for each P ∈ P0, there exists a
unique θ0 ∈� solving (A.4); (iii) � is convex and compact.

ASSUMPTION A.2.2: (i) The function ρ(x� ·) : � → RJ is twice differentiable for all x;
(ii) EP[supθ∈� ‖ρ(X�θ)‖3

2], EP[supθ∈� ‖∇θρ(X�θ)‖2
o�2], EP[supθ∈� ‖∇2

θρj(X�θ)‖1+δ
o�2 ] are fi-

nite and bounded uniformly in P ∈ P for some δ > 0.

ASSUMPTION A.2.3: (i) infP∈P0 infθ∈�:‖θ−θ0‖2≥ε ‖EP[ρ(X�θ)]‖2 > 0 for all ε > 0; (ii) the
singular values of EP[∇θρ(X�θ0)] are bounded away from zero in P ∈ P0.

ASSUMPTION A.2.4: (i) ‖�̂n −�P‖o�2 =OP (n−1/2) uniformly in P ∈ P; (ii) �P is invertible
and ‖�P‖o�2 and ‖�−1

P ‖o�2 are bounded uniformly in P ∈ P.

In Assumption A.2.2, we focus on differentiable moments for simplicity. Assump-
tion A.2.3 essentially imposes strong identification of θ0 and hence guarantees that θ0

can be consistently estimated uniformly in P ∈ P0—recall that θ0 depends on P through
(A.4), though the dependence is left implicit in the notation. Finally, Assumption A.2.4
states the requirements on the weighting matrix �̂n.

In what follows, we set the local parameter spaces Vn(θ�R|�) and Vn(θ��|�) to equal

Vn(θ�R|�) = {
h ∈ Rdθ : θ+ h/√n ∈�∩R and ‖h/√n‖2 ≤ �}�

Vn(θ��|�) = {
h ∈ Rdθ : θ+ h/√n ∈� and ‖h/√n‖2 ≤ �}�

Setting DP (θ0)[h] ≡ EP[∇θρ(X�θ0)]h and letting WP (θ0) ∼ N(0�VarP{ρ(X�θ0)}), we
then denote the variables to which In(R) and In(�) will be coupled to by

UP (R|�n) ≡ inf
h∈Vn(θ0�R|�n)

∥∥WP (θ0) +DP (θ0)[h]
∥∥
�P�2
�

UP (�|�n) ≡ inf
h∈Vn(θ0��|�n)

∥∥WP (θ0) +DP (θ0)[h]
∥∥
�P�2
�

Our distributional approximations follow immediately from Theorem 3.1(ii).
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THEOREM A.2.1: Let Assumptions A.2.1, A.2.2, A.2.3, and A.2.4 hold, ϒF and ϒG
be continuous, and set an = √

log(n)/n1/(10+5dθ) . Then, for any �n� �u
n ↓ 0 satisfying (�n ∨

�u
n)

√
log(1/�n ∨ �u

n) = o(an) and n−1/2 = o(�n ∨ �u
n), we have, uniformly in P ∈ P0,

In(R) =UP (R|�n) + oP (an)�

In(R) − In(�) =UP (R|�n) −UP

(
�|�u

n

) + oP (an)�

The rate of coupling an = √
log(n)/n1/(10+5dθ) obtained in Theorem A.2.1 suffices for

both the empirical process and bootstrap coupling. While the rate is adequate for our
purposes, it can be improved under additional moment restrictions. Here, we rely on
Yurinskii (1977) both to illustrate the diversity of coupling arguments that can be em-
ployed to verify Assumption 3.3(i) and to impose only the weak third moment restriction
of Assumption A.2.2(ii).

Our next goal is to obtain bootstrap approximations to the distributions of UP (R|�n)
and UP (�|�u

n). To this end, we write ϒF (θ) = (ϒF�1(θ)� � � � �ϒF�dF (θ))′ and ϒG(θ) =
(ϒG�1(θ)� � � � �ϒG�dG (θ))′, for any ε > 0 we define Bε ≡ ⋃

P∈P0
{θ : ‖θ − θ0‖2 ≤ ε} (where

recall θ0 implicitly depends on P through (A.4)), and impose the following:

ASSUMPTION A.2.5: For some ε > 0: (i) Bε ⊆�; (ii)ϒF andϒG are twice differentiable on
Bε; (iii) ‖∇ϒF (θ)‖o�2 and ‖∇ϒG(θ)‖o�2 are bounded on Bε; (iv) ‖∇2ϒF�j(θ)‖o�2 is bounded
on Bε for 1 ≤ j ≤ dF ; (v) ‖∇2ϒG�j(θ)‖o�2 is bounded on Bε for 1 ≤ j ≤ dG; (vi) ∇ϒF (θ) has
full row-rank on Bε.

ASSUMPTION A.2.6: Either (i) ϒF : Rdθ → RdF is affine, or (ii) there is an ε > 0 and M <
∞ such that the singular values of ∇ϒF (θ)′ are bounded away from zero uniformly in θ ∈
Bε, and for every P ∈ P0 there is an h ∈ N (∇ϒF (θ0)) with ‖h‖2 ≤M satisfying ϒG�j(θ0) +
∇ϒG�j(θ0)[h] ≤ −ε for all 1 ≤ j ≤ dG.

In order to describe our bootstrap procedure in this application, we let θ̂n and θ̂u
n denote

the minimizers of Qn over � ∩ R and �, respectively. Employing θ̂n and θ̂u
n, we obtain

estimators for the distribution of WP (θ0) and for DP (θ0) by evaluating

Ŵn(θ) ≡ 1√
n

n∑
i=1

ωi

{
ρ(Xi�θ) − 1

n

n∑
j=1

ρ(Xj�θ)

}
� (A.7)

D̂n(θ) ≡ 1
n

n∑
i=1

∇θρ(Xi�θ)� (A.8)

at θ = θ̂n and θ = θ̂u
n, where recall {ωi}ni=1 is an i.i.d. sample independent of {Xi}ni=1 with

ωi ∼N(0�1). We note that because moments are differentiable, we employ an analytical
derivative in (A.8) instead of the numerical derivative studied in Section 3.

With regard to the local parameter space, we note that the construction of V̂n(θ�R|�)
requires the bound Kg on the second derivative of ϒG (as specified in Assumption 3.8).
In particular, Assumption A.2.5(v) implies Assumption 3.8 is satisfied with

Kg ≡ max
1≤j≤dG

sup
θ∈Bε

∥∥∇2
θϒG�j(θ)

∥∥
o�2
�
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If an a priori bound on the second derivative is not available, then it is also possible to
simply substitute Kg with the data driven choice

K̂g ≡ max
1≤j≤dG

sup
θ∈�:‖θ−θ̂n‖2≤rn

∥∥∇2
θϒG�j(θ)

∥∥
o�2
�

where we discuss the choice of rn below. Given Kg (or K̂g), we set Gn(θ) to equal

Gn(θ) =
{
h ∈ Rdθ :ϒG�j

(
θ+ h√

n

)
≤ max

{
ϒG�j(θ) −Kgrn

∥∥∥∥ h√
n

∥∥∥∥
2

�−rn
}

for all j
}
�

In this application we may additionally specify �n to be infinite, and hence we set

V̂n(θ�R|+ ∞) =
{
h ∈ Rdθ : h ∈Gn(θ) and ϒF

(
θ+ h√

n

)
= 0

}
�

The approximations to the distributions of In(R) and In(�) are then given by the laws
of Ûn(R|+ ∞) and Ûn(�|+ ∞) conditional on the data, where

Ûn(R|+ ∞) ≡ inf
h∈V̂n(θ̂n�R|+∞)

∥∥Ŵn(θ̂n) + D̂n(θ̂n)[h]
∥∥
�̂n�2
�

Ûn(�|+ ∞) ≡ inf
h∈Rdθ

∥∥Ŵn

(
θ̂u
n

) + D̂n

(
θ̂u
n

)
[h]

∥∥
�̂n�2
�

The validity of these distributional approximations follows from Theorem 3.2.

THEOREM A.2.2: Let Assumptions A.2.1, A.2.2, A.2.3, A.2.4, A.2.5, and A.2.6 hold, set
an = √

log(n)/n1/(10+5dθ) , and let n−1/2 = o(rn). Then: there are sequences �n� �u
n ↓ 0 satisfying

(�n ∨ �u
n)

2
√

log(1/(�n ∨ �u
n)) = o(ann−1/2), �n = o(rn), and n−1/2 = o(�n ∧ �u

n) for which it
follows uniformly in P ∈ P0 that

Ûn(R|+ ∞) ≥U�
P (R|�n) + oP (an)�

Ûn(R|+ ∞) − Ûn(�|+ ∞) ≥U�
P (R|�n) −U�

P

(
�|�u

n

) + oP (an)�

Crucially, note that any sequences �n and �u
n satisfying the conditions of Theorem A.2.2

also satisfy the conditions of Theorem A.2.1. Therefore, Theorems A.2.2 and A.2.1 to-
gether establish the validity of employing the laws of Ûn(R|+ ∞) and Ûn(�|+ ∞) condi-
tional on the data to approximate the laws of In(R) and In(�). In particular, for a level α
test, we may compare the test statistic In(R) to the critical value

q̂1−α
(
Ûn(R|+ ∞)

) ≡ inf
{
c : P(

Ûn(R|+ ∞) ≤ c|{Xi}ni=1

) ≥ 1 − α}
�

Similarly, for the re-centered statistic In(R) − In(�), valid critical values are given by

q̂1−α
(
Ûn(R|+ ∞) − Ûn(�|+ ∞)

)
≡ inf

{
c : P(

Ûn(R|+ ∞) − Ûn(�|+ ∞) ≤ c|{Xi}ni=1

) ≥ 1 − α}
�

These approximations are valid under the requirement that rn satisfy rn
√
n→ ∞. Intu-

itively, the bandwidth rn is meant to reflect a bound on the distance between θ̂n and θ0.
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For a data driven choice of rn, we may therefore employ a bootstrap estimate of an up-
per quantile of the distribution of the unconstrained estimator. Specifically, for θ̂u�

n the
bootstrapped version of θ̂u

n, we may set r̂n to be given by

r̂n ≡ inf
{
c : P(∥∥θ̂u�

n − θ̂u
n

∥∥
2
≤ c|{Xi}ni=1

) ≥ 1 − γn
}

for γn → 0 as the sample size n tends to infinity, and employ r̂n in place of rn.

A.2.2. Consumer Demand

We base our next example on a longstanding literature aiming to replace parametric
assumptions with shape restrictions implied by economic theory (Matzkin (1994)). Specif-
ically, suppose that quantity demanded by individual i, denoted Qi, satisfies

Qi = g0(Si�Yi) +W ′
i γ0 +Ui�

where Si ∈ R+ denotes price, Yi ∈ R+ denotes income, and Wi ∈ Rdw is a set of covariates.
In addition, we assume there is an instrument Zi yielding the restriction

EP
[
Q− g0(S�Y ) −W ′γ0|Z

] = 0� (A.9)

For instance, under exogeneity of prices, we may let Z = (S�Y�W ′)′ as in Blundell,
Horowitz, and Parey (2012). Alternatively, if there is a concern that prices are endoge-
nous, then we may set Z = (I�Y�W ′)′ for I an instrument for S, as in Blundell, Horowitz,
and Parey (2017).

Our goal is to conduct inference on the level of demand at a particular price-income
pair (s0� y0) while imposing that the function g0 satisfies the Slutsky restriction

∂

∂s
g0(s� y) + g0(s� y)

∂

∂y
g0(s� y) ≤ 0� (A.10)

To map this problem into our framework, we assume that for some set�, (S�Y ) ∈�⊆ R2
+

with probability 1 for all P ∈ P and impose that g0 ∈C1
B(�), where

Cm
B (�) ≡ {

g :�→ R s.t. ‖g‖m�∞ <∞}
� ‖g‖m�∞ ≡ sup

0≤α≤m
sup

(s�y)∈�

∣∣∇αg(s� y)
∣∣�

Since θ0 ≡ (g0�γ0) with γ0 ∈ Rdw , we set B = C1
B(�) × Rdw and for any (g�γ) = θ ∈ B let

‖θ‖B = max{‖g‖1�∞�‖γ‖2}. We also note that X = (Q�S�Y�W ) and

ρ(X�θ) =Q− g(S�Y ) −W ′γ� (A.11)

We will assume θ0 ≡ (g0�γ0) is identified by (A.9). Hence, we can think of θ0 as a function
of P through (A.9), though we leave such dependence implicit in the notation.

In order to impose the Slutsky restriction in (A.10), we let G = C0
B(�) and ‖ · ‖G =

‖ · ‖∞, where with some abuse of notation we write ‖ · ‖∞ in place of ‖ · ‖0�∞. The space
C0
B(�) is a Banach lattice under the standard pointwise ordering given by

a≤ b if and only if a(s� y) ≤ b(s� y) for all (s� y) ∈� (A.12)
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for any a�b ∈C0
B(�). The constant function c ∈ C0

B(�) satisfying c(s� y) = 1 for all (s� y) ∈
� is an order unit under the partial ordering in (A.12). Its induced norm is{

infλ > 0 : |a| ≤ λc
} = sup

(s�y)∈�

∣∣a(s� y)
∣∣�

which coincides with the norm ‖ · ‖∞ on C0
B(�), and we therefore set 1G = c. To encode

the Slutsky restriction in (A.10), we then let the map ϒG : B → G equal

ϒG(θ)(s� y) = ∂

∂s
g(s� y) + g(s� y)

∂

∂y
g(s� y) (A.13)

for any θ = (g�γ) ∈ B. Finally, to test whether the level of demand at a prescribed price
s0 and income y0 equals a hypothesized value c0, we set F = R, ‖ · ‖F =| ·|, and

ϒF (θ) = g(s0� y0) − c0 (A.14)

for any θ= (g�γ) ∈ B. By setting R= {θ ∈ B : ϒG(θ) ≤ 0 and ϒF (θ) = 0} and conducting
test inversion (over different values of c0) of the null hypothesis

H0 : θ0 ∈R� H1 : θ0 /∈R�
we may obtain a confidence region for the level of demand at price s0 and income y0.

We set the parameter space to be a ball in B under ‖ · ‖B by letting � be equal to

�≡ {
(g�γ) ∈ C1

B(�) × Rdw : ‖g‖1�∞ ≤ C0 and ‖γ‖2 ≤ C0

}
(A.15)

for some C0 < ∞. Given a sequence of approximating functions {pj}
jn
j=1, we then let

pjn (s� y) ≡ (p1(s� y)� � � � �pjn (s� y))′ and set the sieve �n to equal

�n ≡ {(
pjn′β�γ

) : ∥∥pjn′β∥∥
1�∞ ≤ C0 and ‖γ‖2 ≤ C0

}
�

Similarly, for a sequence {qk}
kn
k=1 of transformations of the conditioning variable Z, we let

qkn (z) ≡ (q1(z)� � � � � qkn (z))′. We base our test statistic on the quadratic forms

Qn(θ) ≡
∥∥∥∥∥�̂n

{
1
n

n∑
i=1

(
Qi − g(Si�Yi) −W ′

i γ
)
qkn (Zi)

}∥∥∥∥∥
2

for some kn × kn weighting matrix �̂n and every (g�γ) = θ ∈�. The statistics In(R) and
In(�) simply equal the minimums of

√
nQn(θ) over �n ∩R and �n, respectively.

The next assumptions suffice for obtaining a strong approximation. In their statement,
the notation sing{A} denotes the smallest singular value of a matrix A.

ASSUMPTION A.2.7: (i) {Xi�Zi}ni=1 is i.i.d. with (X�Z) distributed according to P ∈
P; (ii) for � as in (A.15) and each P ∈ P0, there exists a unique θ0 ∈ � satisfying
EP[ρ(X�θ0)|Z] = 0; (iii) the support of (Q�W ) is bounded uniformly in P ∈ P.

ASSUMPTION A.2.8: (i) sup(s�y) ‖pjn (s� y)‖2 �
√
jn; (ii) sup(s�y) ‖∂apjn (s� y)‖2 � j3/2

n for
a ∈ {s� y}; (iii) the eigenvalues of EP[pjn (S�Y )pjn (S�Y )′] are bounded away from zero and
infinity uniformly in P ∈ P and jn; (iv) for each P ∈ P0, there is a �nθ0 = (gn�γ0) ∈�n ∩R
with supP∈P0

‖EP[(g0(S�Y ) − gn(S�Y ))qkn (Z)‖2 = o((n log(n))−1/2).
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ASSUMPTION A.2.9: (i) max1≤k≤kn ‖qk‖∞ �
√
kn; (ii) EP[qkn (Z)qkn (Z)′] has eigenval-

ues bounded uniformly in P ∈ P and kn; (iii) sn ≡ infP∈P sing{EP[qkn (Z)(pjn (S�Y )′�W ′)]}
satisfies 0 < sn = O(1); (iv) j2

nk
3
n log3(n) = o(n) and k2

njn log3/2(1 + kn)/(sn
√
n)(1 ∨√

log(sn
√
n/kn)) = o((log(n))−1/2).

ASSUMPTION A.2.10: (i) ‖�̂n − �P‖o�2 = oP ((kn
√
jn log3/2(n))−1) uniformly in P ∈ P;

(ii) �P is invertible and ‖�P‖o�2 and ‖�−1
P ‖o�2 are bounded in P ∈ P and kn.

Assumption A.2.7(iii) requires (Q�W ) to be bounded, which enables us to apply the re-
cent coupling results by Zhai (2018). Alternatively, Assumption A.2.7(iii) can be relaxed
under appropriate tail conditions. Assumptions A.2.8(i)–(iii) are standard requirements
on �n that can be satisfied by, for example, tensor product wavelets or B-splines (Newey
(1997), Chen (2007), Belloni, Chernozhukov, Chetverikov, and Kato (2015), Chen and
Christensen (2018)). Assumption A.2.8(iv) pertains to the approximating requirements
on the sieve; see Remarks A.2.1 and A.2.2 below. In turn, Assumptions A.2.9(i),(ii) im-
pose standard requirements on {qk}

kn
k=1. Assumptions A.2.9(iii),(iv) contain the required

rate conditions, which are governed by sn—a parameter that is proportional to ν−1
n (as in

Assumption 3.4) and is closely linked to the degree of ill-posedness; see Remark A.2.2
below. Finally, Assumption A.2.10 states the conditions on the weighting matrix �̂n.

In this application, we may set ‖θ‖E = supP∈P ‖g‖P�2 + ‖γ‖2 for any (g�γ) ∈�. Since, in
addition, any θ= (g�γ) ∈�n ∩R has the structure g= pjn′β, we have

Vn(θ�R|�) =
{(
pjn′βh�γh

) :
∥∥∥∥g+ pjn′βh√

n

∥∥∥∥
1�∞

≤ C0 and
∥∥∥∥γ+ γh√

n

∥∥∥∥
2

≤ C0� (A.16)

pjn (s0� y0)′βh = 0� (A.17)

∂

∂s

(
g+ pjn′βh√

n

)
+

(
g+ pjn′βh√

n

)
∂

∂y

(
g+ pjn′βh√

n

)
≤ 0� (A.18)

sup
P∈P

∥∥pjn′βh∥∥P�2 + ‖γh‖2 ≤ �√n
}
� (A.19)

where constraint (A.16) corresponds to (θ+ h/√n) ∈�n, constraints (A.17) and (A.18)
impose θ+ h/√n ∈R, and constraint (A.19) imposes ‖h/√n‖E ≤ �. Similarly,

Vn(θ��|�) =
{(
pjn′βh�γh

) :
∥∥∥∥g+ pjn′βh√

n

∥∥∥∥
1�∞

≤ C0 and
∥∥∥∥γ+ γh√

n

∥∥∥∥
2

≤ C0� (A.20)

sup
P∈P

∥∥pjn′βh∥∥P�2 + ‖γh‖2 ≤ �√n
}
� (A.21)

Finally, recall that WP (θ) ∼N(0�VarP{ρ(X�θ)qkn (Z)}) and define DP to be given by

DP[h] ≡ −EP
[
qkn (Z)

(
pjn (S�Y )′βh +W ′γh

)]
for any h= (pjn′βh�γh). Given these definitions, note that, for any �n, we have that

UP (R|�n) ≡ inf
h∈Vn(�nθ0�R|�n)

∥∥WP (�nθ0) +DP[h]
∥∥
�P�2
�

UP (�|�n) ≡ inf
h∈Vn(�nθ0��|�n)

∥∥WP (�nθ0) +DP[h]
∥∥
�P�2
�
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Theorem 3.1(ii) immediately yields the following distributional approximations.

THEOREM A.2.3: Let Assumptions A.2.7–A.2.10 hold, and an = (log(n))−1/2. Then,

for any �n� �u
n ↓ 0 satisfying kn

√
jn log(1 + kn)(�n ∨ �u

n)
√

log(
√
jn/(�n ∨ �u

n)) = o(an) and

kn
√
jn log(1 + kn)/sn√n= o(�n ∧ �u

n), it follows uniformly in P ∈ P0 that

In(R) =UP (R|�n) + oP (an)�

In(R) − In(�) =UP (R|�n) −UP

(
�|�u

n

) + oP (an)�

To obtain bootstrap estimates of the distributional approximations in Theorem A.2.3,
we let θ̂n and θ̂u

n denote the minimizers ofQn over�n∩R and�n, respectively. For ρ(·� θ)
as in (A.11), we approximate the law of WP (�nθ0) by evaluating

Ŵn(θ) ≡ 1√
n

n∑
i=1

ωi

{
qkn (Zi)ρ(Xi�θ) − 1

n

n∑
j=1

qkn (Zj)ρ(Xj�θ)

}
�

at θ = θ̂n and θ = θ̂u
n, where {ωi}ni=1 is an i.i.d. sample independent of the data satisfying

ωi ∼N(0�1). As our estimator for DP[h], for any h= (pjn′βh�γh), we let

D̂n[h] = −1
n

n∑
i=1

qkn (Zi)
(
pjn (Si�Yi)′βh +W ′

i γh
)
�

With regard to the local parameter space, we note that, in this application, Assumptions
3.8(i),(ii) are satisfied with Kg = 2. Therefore, we have

Gn(θ̂n)

=
{
h : ∂
∂s
pjn (s� y)′

(
β̂n + βh√

n

)
+pjn (s� y)′

(
β̂n + βh√

n

)
∂

∂y
pjn (s� y)′

(
β̂n + βh√

n

)

≤ max
{
∂

∂s
pjn (s� y)′β̂n +pjn (s� y)′β̂n

∂

∂y
pjn (s� y)′β̂n − 2rn

∥∥∥∥pjn′βh√
n

∥∥∥∥
1�∞
�−rn

}}
� (A.22)

Moreover, because ρ(X� ·) and ϒF are linear, we may set �n = +∞ and obtain that

V̂n(θ̂n�R|+ ∞) = {
h= (

pjn′βh�γh
) : h ∈Gn(θ̂n) and pjn (s0� y0)′βh = 0

}
�

Given the introduced notation, we define the statistics Ûn(R|+ ∞) and Ûn(�|+ ∞) by

Ûn(R|+ ∞) ≡ inf
h∈V̂n(θ̂n�R|+∞)

∥∥Ŵn(θ̂n) + D̂n[h]
∥∥
�̂n�2
�

Ûn(�|+ ∞) ≡ inf
h=(pjn ′βh�γh)

∥∥Ŵn

(
θ̂u
n

) + D̂n[h]
∥∥
�̂n�2
�

We impose one final assumption to establish the validity of the bootstrap. In the re-
quirements below, it is helpful to recall θ0 is implicitly a function of P through (A.9).
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ASSUMPTION A.2.11: (i) There is an ε > 0 such that ‖g0‖1�∞ ∨ ‖γ0‖2 ≤ C0 − ε for all
P ∈ P0; (ii) �nθ0 = (gn�γ0) ∈ �n ∩ R satisfies ‖gn − g0‖1�∞ = o(1) uniformly in P ∈ P0;
(iii) the sequence rn ↓ 0 satisfies knj2

n

√
log(1 + kn)/sn√n= o(rn/

√
log(n)); (iv) knj3/4

n (En ∨√
log(kn)) log1/4(1 +kn) = o(n1/4/

√
log(n)), where En ≡ ∫ ∞

0

√
log(ε�Cn�‖ · ‖2)dε and Cn ≡

{β : ‖pjn′β‖1�∞ ≤ C0}.

Assumptions A.2.11(i),(ii) suffice for verifying Assumption 3.12(ii). These require-
ments may be dropped at the expense of modifying V̂n(θ̂n�R| + ∞) to reflect the pos-
sible impact of �nθ0 being “near” the boundary of �n. Assumption A.2.11(iii) imposes
the rate conditions on rn. Finally, Assumption A.2.11(iv) controls the “size” of the set
of coefficients β corresponding to elements pjn′β ∈ �n and suffices for verifying the
bootstrap coupling requirement of Assumption 3.11. For instance, En � j1/4

n for tensor
product B-splines, which implies a sufficient condition for Assumption A.2.11(iv) is that
k4
nj

4
n log4(kn) = o(n/ log2(n)). The rate requirements for a bootstrap coupling can be

weakened if the test statistic is based on the ‖ · ‖∞-norm or under additional smoothness
assumptions.

Our next result characterizes the properties of the proposed bootstrap statistics.

THEOREM A.2.4: Let Assumptions A.2.7, A.2.8, A.2.9, A.2.10, A.2.11 hold, and an =
(log(n))−1/2. Then, there are sequences �n� �u

n ↓ 0 satisfying knj2
n log(1 + kn)/sn√n= o(�n ∧

�u
n), �n = o(rn), and kn

√
jn log(1 + kn)(�n ∨ �u

n)
√

log(
√
jn/(�n ∨ �u

n)) = o(an), for which it
follows that, uniformly in P ∈ P0, we have

Ûn(R|+ ∞) ≥U�
P (R|�n) + oP (an)�

Ûn(R|+ ∞) − Ûn(�|+ ∞) ≥U�
P (R|�n) −U�

P

(
�|�u

n

) + oP (an)�

Importantly, any sequences �n and �u
n satisfying the requirements of Theorem A.2.4 also

satisfy the requirements of Theorem A.2.3. Hence, we may employ

q̂1−α
(
Ûn(R|+ ∞)

) ≡ inf
{
c : P(

Ûn(R|+ ∞) ≤ c|{Vi}ni=1

) ≥ 1 − α}
as a critical value for In(R). Similarly, for the statistic In(R) − In(�), we may employ

q̂1−α
(
Ûn(R|+ ∞) − Ûn(�|+ ∞)

)
≡ inf

{
c : P(

Ûn(R|+ ∞) − Ûn(�|+ ∞) ≤ c|{Vi}ni=1

) ≥ 1 − α}
�

REMARK A.2.1: Suppose for notational simplicity that there are no covariates W and
let the marginal distribution of (S�Y�Z) be constant in P ∈ P. If Z = (S�Y ) (i.e., (S�Y )
is exogenous), we may set qkn (Z) = pkn (S�Y ) for some kn ≥ jn. The singular value sn can
then be assumed to be bounded away from zero, and a sufficient condition for Assump-
tion A.2.9(iv) is that k4

nj
2
n log5(n) = o(n). In order to appreciate the content of Assump-

tion A.2.8(iv), suppose {pj}∞
j=1 is an orthonormal basis such that

g0 =
∞∑
j=1

βjpj with |βj| =O
(
j−γβ

)
�
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Setting �u
ng0 = ∑jn

j=1pjβj , we obtain from a standard integral bound for a sum that

∥∥EP[(g0(S�Y ) −�u
ng0(S�Y )

)
qkn (Z)

]∥∥2

2
�

kn∑
j=jn+1

1
j2γβ

� 1

j
2γβ−1
n

− 1

k
2γβ−1
n

� (A.23)

For instance, if kn − jn = O(1), then the bound in (A.23) is of order 1/j2γβ
n . Hence,

provided the approximation errors by �u
ng0 and gn (as in Assumption A.2.8(iv)) are

of the same order when g0 ∈ R, we obtain that Assumption A.2.8(iv) is equivalent to√
n log(n)/jγβn = o(1) when kn − jn = O(1). This approximation requirement is compati-

ble with the condition k4
nj

2
n log5(n) = o(n) provided γβ > 3.

REMARK A.2.2: Building on Remark A.2.1, suppose again there are no covariates W
and the marginal distribution of (S�Y�Z) is constant in P ∈ P, but now let (S�Y ) be
endogenous. A standard benchmark for nonparametric models with endogeneity is to
assume the operator g �→EP[g(S�Y )|Z] is compact, in which case there are orthonormal
sequences of functions {φj}∞

j=1 of (S�Y ) and {ψj}∞
j=1 of Z satisfying

EP
[
φj(S�Y )|Z

] = λjψj(Z)� EP
[
ψj(Z)|S�Y

] = λjφj(S�Y )�

where λj > 0 tends to zero. In addition suppose g0 admits for an expansion satisfying

g0 =
∞∑
j=1

βjφj with |βj| =O
(
j−γβ

)
�

and let pjn = (φ1� � � � �φjn)′, qkn = (ψ1� � � � �ψkn)′ with kn ≥ jn and kn − jn = O(1), and
set �u

ng0 = ∑jn
j=1φjβj . Provided the approximation errors of �u

ng0 and gn (as in Assump-
tion A.2.8(iv)) are of the same order when g0 ∈R, we then obtain

∥∥EP[(g0(S�Y ) − gn(S�Y )
)
qkn (Z)

]∥∥
2
� λjn
j
γβ
n

�

Moreover, direct calculation shows sn, which is proportional to ν−1
n as in Assumption 3.4,

satisfies sn = λjn and hence equals the reciprocal of the sieve measure of ill-posedness
(Blundell, Chen, and Kristensen (2007)). It follows that if λj � j−γλ , and γβ > 3, then
Assumptions A.2.8(iv) and A.2.9(iv) can be satisfied by setting jn � nκ with (γλ + γβ)−1 <
2κ < (3 + γλ)−1 and kn − jn = O(1). Alternatively, if λj = exp{−γλj}, then Assumptions
A.2.8(iv) and A.2.9(iv) can be satisfied when γβ > 4 by setting, for example, jn = (log(n) −
κ log(log(n)))/2γλ with 7< κ< 2γβ − 1 and kn − jn =O(1).

A.2.3. Quantile Treatment Effects

For our next example, we study a nonparametric quantile treatment effect (QTE)
model. Specifically, for an outcome Y ∈ R, treatment D ∈ [0�1], instrument Z ∈ R, and
quantile τ ∈ (0�1), we assume the parameter of interest θ0 satisfies

P
(
Y ≤ θ0(D)|Z

) = τ� (A.24)
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If D is randomly assigned, then we may set D = Z and interpret ∇θ0 as the τth quan-
tile treatment effect (QTE). Alternatively, if D �= Z, then we obtain the QTE model of
Chernozhukov and Hansen (2005). To map (A.24) into our framework, we set

ρ(X�θ) = 1
{
Y ≤ θ(D)

} − τ� (A.25)

where X = (Y�D) ∈ X ≡ R × [0�1]. In order to illustrate our conditions in a number
of different settings, we focus on conducting inference on a nonlinear function of θ0.
Specifically, we conduct inference on the variance of the quantile treatment effects:∫ 1

0

(∇θ0(u)
)2
du−

(∫ 1

0
∇θ0(u) du

)2

�

while imposing that the QTE be increasing in treatment intensity (i.e., d �→ ∇θ0(d) is
increasing). To map this problem into our framework, we define

Cm
B

(
[0�1]

) ≡ {
θ : [0�1] → R s.t. ‖θ‖m�∞ <∞}

� ‖θ‖m�∞ ≡ sup
0≤α≤m

sup
d∈[0�1]

∣∣∇αθ(d)
∣∣�

and set B = C2
B([0�1]) and ‖ · ‖B = ‖ · ‖2�∞. We impose the restriction that the quantile

treatment effect be increasing in the intensity of treatment by letting G = C0
B([0�1]),

‖ · ‖G = ‖ · ‖∞ (where we write ‖ · ‖∞ in place of ‖ · ‖0�∞), and defining

ϒG(θ) ≡ −∇2θ� (A.26)

As shown in Section A.2.2, G is a lattice with order unit 1G = c for c the constant function
c(d) = 1 for all d ∈ [0�1]. Setting F = R with ‖ · ‖F =| ·|, we test whether the variance of
the quantile treatment effects equals a hypothesized value λ �= 0 by setting

ϒF (θ) =
∫ 1

0

(∇θ(u)
)2
du−

(∫ 1

0
∇θ(u) du

)2

− λ� (A.27)

For the parameter space for θ0, we employ a ball in B and we thus set � to equal

�≡ {
θ ∈ C2

B

(
[0�1]

)
s.t. ‖θ‖2�∞ ≤ C0

}
(A.28)

for some C0 <∞. For a sequence of approximating functions {pj}
jn
j=1 defined on [0�1], we

then let pjn (d) ≡ (p1(d)� � � � �pjn (d))′ and define �n to equal

�n ≡ {
pjn′β ∈ C2

B

(
[0�1]

) : ∥∥pjn′β∥∥
2�∞ ≤ C0

}
� (A.29)

Similarly, for a sequence {qk}
kn
k=1, we set qkn (z) ≡ (q1(z)� � � � � qkn (z))′ and define

Qn(θ) ≡
∥∥∥∥∥�̂n

{
1
n

n∑
i=1

(
1
{
Yi ≤ θ(Di)

} − τ)qkn (Zi)

}∥∥∥∥∥
p

for some 2 ≤ p ≤ ∞ and weighting matrix �̂n. The statistics In(R) and In(�) then equal
the minimums of

√
nQn over �n ∩R and �n, respectively.

In what follows, we will assume for simplicity that θ0 is identified. As a result, we may
think of θ0 as a function of P through (A.24), though we leave such dependence implicit
in the notation. We next impose the following assumptions:
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ASSUMPTION A.2.12: (i) {Yi�Di�Zi}ni=1 is i.i.d. with (Y�D�Z) ∈ R× [0�1]×R distributed
according to P ∈ P; (ii) for � as in (A.28) and each P ∈ P0, there exists a unique θ0 ∈ �
satisfying (A.24); (iii) the distribution of Y conditional on (D�Z) is absolutely continuous
with density fY|DZ�P (·|D�Z) that is bounded and Lipschitz uniformly in (D�Z) and P ∈ P.

ASSUMPTION A.2.13: (i) Every P ∈ P has a density fP w.r.t. Lebesgue measure with com-
pact support�P satisfying supP∈P ‖fP‖∞ <∞ and infP∈P infv∈�P fP (v) > 0; (ii) for each P ∈ P,
there is a continuously differentiable bijection TP : [0�1]3 → �P with Jacobian JTP and de-
terminant |JTP| satisfying infP∈P infv∈[0�1]3 |JTP (v)|> 0 and supP∈P supv∈[0�1]3 ‖JTP (v)‖o <∞.

ASSUMPTION A.2.14: (i) supd ‖pjn (d)‖2 �
√
jn; (ii) EP[pjn (D)pjn (D)′] has eigenvalues

bounded away from zero and infinity uniformly in P ∈ P and jn; (iii) for each P ∈ P0, there
is a �nθ0 ∈ �n ∩ R satisfying supP∈P0

‖EP[(1{Y ≤ �nθ0(D)} − 1{Y ≤ θ0(D)})qkn (Z)]‖p =
O((n log(n))−1/2) and supP∈P0

‖θ0 −�nθ0‖1�∞ = o(1).

ASSUMPTION A.2.15: (i) infP∈P0 infθ∈�:‖θ−θ0‖1�∞≥ε EP[(P(Y ≤ θ(D)|Z) −τ)2]> 0 for every
ε > 0; (ii) there are ε and sn > 0 satisfying, for all P ∈ P0 and ‖θ − �nθ0‖1�∞ ≤ ε, sn ≤
sing{EP[fY|D�Z(θ(D)|D�Z)qkn (Z)pjn (D)′]} and sn =O(1).

ASSUMPTION A.2.16: (i) max1≤k≤kn ‖qk‖∞ = O(1); (ii) max1≤k≤kn ‖qk‖1�∞ = O(kn);
(iii) EP[qkn (Z)qkn (Z)′] has eigenvalues bounded away from zero and infinity uniformly
in P ∈ P and kn; (iv) for each θ ∈ �, there is a πn(θ) ∈ Rkn with EP[(EP[ρ(X�θ)|Z] −
qkn (Z)′πn(θ))2] = o(1) uniformly in P ∈ P and θ ∈ �; (v) k1/p

n

√
jn log3/2(n)(n1/6 ∨

kn)/n1/3 = o(1) and jn log3/2(1 + kn)k2/p+1/2
n /sn

√
n= o((log(n))−2).

ASSUMPTION A.2.17: (i) ‖�̂n − �P‖o�p = oP ((k1/p
n log(n))−1) uniformly in P ∈ P; (ii) �P

is invertible and ‖�P‖o�p and ‖�−1
P ‖o�p are bounded in P ∈ P and kn.

Assumptions A.2.12 and A.2.13 impose regularity conditions on the distribution P that
enable us to apply an extension of the empirical process coupling results of Koltchin-
skii (1994). Assumption A.2.14 states the requirements on �n, including demanding
an asymptotically negligible bias in Assumption A.2.14(iii). Assumption A.2.15(i) holds
pointwise in P ∈ P0 due to � being compact under ‖ · ‖1�∞, and hence the uniformity
in P ∈ P0 demanded by Assumption A.2.15(i) corresponds to imposing strong identifi-
cation. Assumption A.2.15(ii) enables us to obtain a uniform rate of convergence under
‖ · ‖E = supP∈P ‖ · ‖P�2. As in Section A.2.2, sn can be shown to be related to the degree
of ill-posedness. Assumptions A.2.16(i)–(iv) impose conditions on {qk}

kn
k=1 including that

they be bounded; this requirement can be relaxed at the cost of more stringent rate re-
strictions to ensure a coupling of the empirical process. Finally, Assumption A.2.16(v)
states our rate restrictions, which we note are easier to satisfy for higher values of p.

For any θ= pjn′β ∈�n ∩R, in this application the local parameter space equals

Vn(θ�R|�) =
{
h= pjn′βh :

∥∥∥∥θ+ h√
n

∥∥∥∥
2�∞

≤ C0� sup
P∈P

‖h‖P�2 ≤ �√n�
∫ 1

0

(
∇θ(u) + ∇h(u)√

n

)2

du−
(∫ 1

0

{
∇θ(u) + ∇h(u)√

n

}
du

)2

= λ�
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− ∇2θ(d) − ∇2h(d)√
n

≤ 0 for all d ∈ [0�1]
}
� (A.30)

where the first two constraints impose that θ + h/
√
n ∈ �n and ‖h/√n‖E ≤ �, while the

final two constraints require that θ+ h/√n ∈R. Similarly, here

Vn(θ��|�) =
{
h= pjn′βh :

∥∥∥∥θ+ h√
n

∥∥∥∥
2�∞

≤ C0 and sup
P∈P

‖h‖P�2 ≤ �√n
}
�

Also recall that WP (θ) ∼N(0�VarP{ρ(X�θ)qkn (Z)}), and for any h= pjn′βh, define

DP (θ)[h] ≡EP
[
qkn (Z)fY|DZ�P

(
θ(D)|D�Z

)
pjn (D)′βh

]
� (A.31)

The random variables to which In(R) and In(�) will be coupled are then given by

UP (R|�n) ≡ inf
h∈Vn(�nθ0�R|�n)

∥∥WP (�nθ0) +DP (�nθ0)[h]
∥∥
�P�2
�

UP (�|�n) ≡ inf
h∈Vn(�nθ0��|�n)

∥∥WP (�nθ0) +DP (�nθ0)[h]
∥∥
�P�2
�

Our next result obtains distributional approximations by applying Theorem 3.1.

THEOREM A.2.5: Let Assumptions A.2.12, A.2.13, A.2.14, A.2.15, A.2.16, and A.2.17
hold, an = (log(n))−1/2, �n ↓ 0 satisfy k1/p

n

√
jn�n log(1 + kn) log(1/�n) = o((log(n))−1/2) and

�2
n

√
njn log(n) = o(1). Then: (i) Uniformly in P ∈ P0 it follows that

In(R) ≤UP (R|�n) + oP (an)�

(ii) If, in addition, kn log(1 + kn)
√
jn log(n)/s2

n

√
n = o(1), then for any �u

n ↓ 0 sat-
isfying k1/p

n

√
jn�u

n log(1 + kn) log(1/�u
n) = o((log(n))−1/2), (�u

n)
2
√
njn log(n) = o(1), and√

kn log(1 + kn)/sn√n= o(�u
n), it follows uniformly in P ∈ P0 that

In(R) − In(�) ≤UP (R|�n) −UP

(
�|�u

n

) + oP (an)�

Theorem A.2.5(i) obtains an upper bound for In(R) by relying on Theorem 3.1(i). In
order to approximate the re-centered statistic In(R) − In(�), we cannot rely on an upper
bound for In(�), as the resulting approximation could fail to control size. Therefore,
Theorem A.2.5(ii) instead relies on Theorem 3.1(ii). Applying Theorem 3.1(ii), however,
requires an additional rate condition in order to establish the linearization of the moment
conditions is asymptotically valid. We also note that the conclusion of Theorem A.2.5(ii)
in fact holds with equality if �n satisfies the same rate restrictions as �u

n.
In order to provide bootstrap estimates for these distributional approximations, we let

θ̂n and θ̂u
n denote minimizers of Qn over �n ∩R and �n, respectively. Our bootstrap ap-

proximation estimates the law of WP (θ0) and the derivative DP (θ0) by evaluating

Ŵn(θ) ≡ 1√
n

n∑
i=1

ωi

{
qkn (Zi)

(
1
{
Yi ≤ θ(Di)

} − τ)

− 1
n

n∑
j=1

qkn (Zj)
(
1
{
Yj ≤ θ(Dj)

} − τ)
}
�
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D̂n(θ)[h] ≡ 1√
n

n∑
i=1

qkn (Zi)
(

1
{
Yi ≤ θ(Di) + h(Di)√

n

}
− 1

{
Yi ≤ θ(Di)

})
�

at θ̂n and θ̂u
n. An unappealing feature of D̂n(θ) is that it is not linear in h, which com-

plicates computation. Alternatively, a plug-in estimator based on (A.31) could be used,
though at the expense of having to estimate the density fY|DZ�P .

With regard to the local parameter space, we note that in this application,

Gn(θ̂n) ≡
{
h= pjn′βh : −∇2θ̂n(d) − ∇2h(d)√

n
≤ max

{−∇2θ̂n(d) ∨ −rn
}

for all d ∈ [0�1]
}
�

Employing that ‖ · ‖B = ‖ · ‖2�∞ and the expression for ϒF in (A.27), we obtain that

V̂n(θ̂n�R|�n) =
{
h= pjn′βh : h ∈Gn(θ̂n)�

∥∥∥∥ h√
n

∥∥∥∥
2�∞

≤ �n
∫ 1

0

(
∇θ̂n(u) + ∇h(u)√

n

)2

du−
(∫ 1

0

(
∇θ̂n(u) + ∇h(u)√

n

)
du

)2

= λ
}
�

where �n is chosen to satisfy conditions stated below. The bootstrap statistics Ûn(R|�n)
and Ûn(�|+ ∞) for approximating the distributions in Theorem A.2.5 are then

Ûn(R|�n) ≡ inf
h∈V̂n(θ̂n�R|�n)

∥∥Ŵn(θ̂n) + D̂n(θ̂n)[h]
∥∥
�̂n�p
�

Ûn(�|+ ∞) ≡ inf
h=pjn ′βh

∥∥Ŵn

(
θ̂u
n

) + D̂n

(
θ̂u
n

)
[h]

∥∥
�̂n�p
�

The following final assumption will enable us to establish bootstrap validity. In the re-
quirements below, it is helpful to recall θ0 is implicitly a function of P through (A.24).

ASSUMPTION A.2.18: (i) The functions θ(d) = 1, θ(d) = d2 are in Bn; (ii) ‖θ0 −
�nθ0‖2�∞ = o(1) uniformly in P ∈ P0 and supP∈P0

‖θ0‖2�∞ <C0; (iii) kn satisfies k1/p+12/26
n =

o(n1/26/ log(n)); (iv) supd ‖∇2pjn (d)‖2 ∨ ‖∇pjn (d)‖2 � j5/2
n ; (v) rn, �n satisfy k1/p

n ×√
jn�n log(1 + kn) log(1/�n) = o((log(n))−1/2), j5/2

n

√
kn log(1 + kn)/sn√n = o(1 ∧ rn), and

�n(
√
jnn�n + j5/2

n

√
kn log(1 + kn)/sn) = o((log(n))−1/2).

Assumption A.2.18(i) requires that the quadratic functions belong to Bn—a condition
that holds if quadratic functions belong to the span of {pj}

jn
j=1. Assumption A.2.18(ii)

implies that θ0 and its approximation �nθ0 belong to the interior of �. Assump-
tion A.2.18(iii) enables us to verify the bootstrap coupling requirement of Assump-
tion 3.11. While condition A.2.18(iii) suffices for verifying Assumption 3.11 in both the
endogenous (Z �=D) and exogenous (Z =D) settings, we note that, in both cases, better
rate conditions can be obtained.1 Finally, Assumption A.2.18(iv) ensures Sn(B�E) � j5/2

n ,
while Assumption A.2.18(v) imposes the requirements on �n and rn.

The next theorem establishes the validity of the bootstrap procedure.

1For instance, under endogeneity, a better rate could be obtained by conducting a basis expansion using the
tensor product of a Haar Basis for (Y�D) and the functions {qk}

kn
k=1.
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THEOREM A.2.6: Let Assumptions A.2.12, A.2.13, A.2.14, A.2.15, A.2.16, A.2.17, and
A.2.18 hold and an = (log(n))−1/2. Then, there is a sequence �̃n � �n satisfying

Ûn(R|�n) ≥U�
P (R|�̃n) + oP (an)

uniformly in P ∈ P0. (ii) If, in addition, kn log(1 + kn)
√
jn log(n)/s2

n

√
n= o(1), then for any

�̃u
n satisfying the conditions of Theorem A.2.5(ii), we have, uniformly in P ∈ P0,

Ûn(R|�n) − Ûn(�|+ ∞) ≥U�
P (R|�̃n) −U�

P

(
�|�̃u

n

) + oP (an)�

Theorems A.2.5(i) and A.2.6(i) imply that as critical value for In(R), we may employ

q̂1−α
(
Ûn(R|�n)

) ≡ inf
{
c : P(

Ûn(R|�n) ≤ c|{Vi}ni=1

) ≥ 1 − α}
�

If, in addition, kn log(1 + kn)
√
jn log(n)/s2

n

√
n = o(1), then Theorems A.2.5(ii) and

A.2.6(ii) imply a valid test can be obtained by rejecting whenever In(R) − In(�) exceeds

q̂1−α
(
Ûn(R|�n) − Ûn(�|+ ∞)

) ≡ inf
{
c : P(

Ûn(R|�n) − Ûn(�|+ ∞) ≤ c|{Vi}ni=1

) ≥ 1 − α}
�

Our critical values depend on the choices of rn and �n. The slackness parameter rn again
measures sampling uncertainty in whether constraints “bind.” Following the discussion in
Section 2.1, for θ̂u�

n a “bootstrap” analogue to θ̂u
n, we may thus set

P
(

max
d∈[0�1]

∇2θ̂u
n(d) − ∇2θ̂u�

n (d) ≤ rn|{Vi}ni=1

)
= 1 − γn� (A.32)

with γn → 0. With regard to �n, we note that its main role in this application is to ensure
that V̂n(θ̂n�R|�n) is well approximated by the true local parameter space despite the non-
linearity of ϒF . To this end, the requirements on �n imposed in Assumption A.2.18 ensure√
n�n‖θ̂n −�nθ0‖B = oP (an) uniformly in P ∈ P0. Since ‖ · ‖B = ‖ · ‖2�∞ in this application,

we may select �n in a data driven way by setting it to satisfy

P

(
max
d∈[0�1]

∣∣∇2θ̂u
n(d) − ∇2θ̂u�

n (d)
∣∣ ≤ 1√

n�n
|{Vi}ni=1

)
= 1 − γn (A.33)

for some γn → 0. While we set γn in (A.32) and (A.33) to be the same, it is worth noting
they could be different. In fact, rn and �n do not “interact” in the requirements of Assump-
tion A.2.18(v) and, in this sense, can be set independently. We also note that in settings
in which the rate of convergence is sufficiently fast, (A.33) should deliver a “large” �n in
the sense that Ûn(R|�n) and Ûn(R|+ ∞) are asymptotically equivalent. Moreover, in ap-
plications in which we expect the rate of convergence of θ̂n to be sufficiently fast, we may
directly set �n = +∞.

REMARK A.2.3: To illustrate the role of �n, it is helpful to conduct a pointwise (in P)
analysis, set p= 2, and connect our assumptions to the literature on estimation of condi-
tional moment restriction models (Chen and Pouzo (2012)). We follow the literature in
imposing a local curvature assumption, which in our application corresponds to∥∥EP[(P(

Y ≤ h(D)|Z
) − τ)qkn (Z)

]∥∥
2

� ∥∥EP[fY|DZ�P

(
θ̄(D)|D�Z

)(
θ0(D) − h(D)

)
qkn (Z)

]∥∥
2

(A.34)



CONSTRAINED CONDITIONAL MOMENT RESTRICTION MODELS 17

for all h ∈ �n and θ̄ ∈ � that are in a neighborhood of θ0. We further suppose the lin-
ear operator h �→ EP[fY|DZ�P (θ0(D)|D�Z)h(D)|Z] is compact, in which case there exist
orthonormal bases {ψj} and {φk} and a sequence λj ↓ 0 satisfying

EP
[
fY|DZ�P

(
θ0(D)|D�Z

)
φj(D)|Z

] = λjψj(Z)� (A.35)

Setting kn ≥ jn with kn − jn =O(1), pjn = (φ1� � � � �φjn)′, qkn = (ψ1� � � � �ψkn)′, and �u
nθ0 =∑jn

j=1φjβj , we also suppose θ0 admits an expansion

θ0 =
∞∑
j=1

βjφj with |βj| =O
(
j−γβ

)
� (A.36)

Provided that the approximation error of �nθ0 (as in Assumption A.2.14(iii)) and �u
nθ0

are of the same order, it then follows from (A.34) and (A.35) that

∥∥EP[(1
{
Y ≤�nθ0(D)

} − 1
{
Y ≤ θ0(D)

})
qkn (Z)

]∥∥
2
� λjn
j
γβ
n

(A.37)

and sn � λjn—that is, sn is proportional to the reciprocal of the sieve measure of ill-
posedness (Chen and Pouzo (2012)). As a result, if λj � j−γλ and γβ >max{5/2�3 − γλ},
then Theorem A.2.5 may be applied to couple In(R) by setting jn � nκ with (2(γλ +
γβ))−1 < κ < min{(5 + 2γλ)−1�1/6}, while coupling In(R) − In(�) additionally requires
γβ > 3/2 + γλ and κ < (3 + 4γλ)−1. In contrast, in the severely ill-posed case in which
λj � exp{−γλj}, the conditions of Theorem A.2.5 for coupling In(R) − In(�) are not sat-
isfied. However, the conditions for coupling In(R) can still be met provided γβ > 4 by set-
ting jn = (log(n) − κ(log(log(n))))/2γλ with 7< κ< 2γβ − 1. Thus, while in the ill-posed
case the rate of convergence is too slow to apply Theorem A.2.5(ii), Theorem A.2.5(i) is
still able to deliver a coupling upper bound for suitable �n.
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