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WE WOULD LIKE to express our appreciation to the discussants for their engaging and
astute comments. We will begin by briefly addressing Kei Hirano’s queries about links
to classical decision theory, then touch on several extensions suggested in the comment
by Pat Kline, and conclude with a brief excursion into data analysis to respond to the
comments of Mogstad, Romano, Shaikh, and Wilhelm.

1. WHAT IS BAYESIAN ABOUT EMPIRICAL BAYES?

We are happy to concede that our analysis “falls somewhere between conventional sta-
tistical inference and a full blown decision theoretic analysis of Wald or Savage.” This is
the inevitable fate of the empirical Bayesian. From its inception, Robbins’s intention, as
expressed in Robbins (1990), was to épater les bourgeois of statistical orthodoxy. Empirical
Bayes is neither Bayesian nor frequentist, and certainly not Neyman—-Pearsonian, but it
shares features of all of these. Our exposition in Section 2 was perhaps more Bayesian
than really necessary, so we would like to take this opportunity to redress this imbalance
with a somewhat more frequentist interpretation.

The example from Robbins (1951) that we sketch in our Section 2 can be made to look
very frequentist. We need not posit the existence of a prior distribution G from which
the 6 = (6,, ..., 6,) are drawn iidly; instead, we can take the 6,’s as a fixed, deterministic
binary sequence from ® = {—1, 1}". More important is that the Y; are assumed to have
identical conditional densities, ¢(y|6), and that loss is additively separable, L (0, &) =
n~'>" |6, — §;|. Robbins restricted attention to simple decision rules, §;, = 8(Y;); this seems
natural since we are faced with » identical, but independent problems. Compound risk can
then be written as

R.(0,8)=n""E, Xn:L(ei, 8(Y))

i=1

S B L (6, 5(Y)

= [ [ Le.00)¢016) dyac, o).

where G,(A) =n~')_1{6; € A} for any Borel set from . Thus, compound risk is equiva-
lent to the Bayes risk of a single component of the compound problem with prior, G, the
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empirical distribution function of the 6,’s. When the 6,’s take only two values, G, reduces
to a scalar parameter and risk becomes

R, (0,8) = p,(6) f L(1,5()) e (1) dy + 4,(8) / L(=1,5())¢(] — 1) dy,

where p,(0) =n"'> 1{0;, =1} and ¢,(0) =1 — p,(0). Were p, = p,(0) known, the op-
timal decision rule would be

8, (») = sgn<y + %log(pn/(l - pn)))

Of course we probably don’t “know” p,,; how could we? But many candidate estimators of
pn present themselves, of which Robbins’s method of moments choice p, = (y + 1)/2 is
simplest. But is it really a simple rule? We promised to use only simple rules of the form,
6; = 8(Y;) and &5, (y) is surely like that, but once we put a hat on p, the rabbit is poised
to make an appearance. Yet nothing is lost, as Hannan and Robbins (1955) showed that
the risk of &% (y) uniformly approximates the risk of &, (y).

How does this relate to Wald’s minimax proposal? Robbins proved that sup, R(8, ) is
minimized with the naive rule 5(y) = sgn(y), which is equivalent to & (). However, it is
easy to verify that for any p, # 1/2, R(87 5, 8) > R(5}, , ), and furthermore that for any
€ > 0, there exists n(e) such that for n > n(e), R(8}, 0) — R(87,, 0) < € for any 6. Thus,
although not an admissible rule—the naive rule is always superior when p, = 1/2—the
compound decision rule is only an asymptotically negligible bit worse at p, = 1/2, and
potentially much better elsewhere. See Hannan and Robbins (1955) and Samuel (1955)
for further formal details, and Gu and Koenker (2016) for some numerical comparisons.

The foregoing example may seem overly simplified; after all, our prior only required
estimation of a single parameter. However, similar structure arises in many other settings,
such as our ranking and selection problems where the prior can be much more complex.
The crucial feature of such compound decision problems is the permutation invariance
of both the probabilistic structure of the problem and the loss function being considered.
And as we have argued elsewhere, estimation of the mixing distribution, whether it is
viewed as G, or G, is often a relatively benign convex optimization problem.

Regarding our loss function, there is more than a whiff of Neyman—Pearson about our
a and vy. No doubt that it would be better to have loss defined on a more explicit action
space, but, like priors, loss functions are difficult to elicit. By accentuating the connection
to multiple testing, we have tried to highlight the balance that must be struck between
the intended size of the selected population and the accuracy of the selection. This trade-
off seems inherent in any ranking and selection problem. At a more fundamental level,
one may object to the nature of compound loss itself; why should component losses be
aggregated in such a symmetric fashion? To this, our only answer is: why not? If the model
is permutation invariant, shouldn’t the loss be as well?

The Le Cam limit experiment perspective has proven to be a powerful device in many
decision theoretic settings and could do so in ranking applications provided we adhere to
the Le Cam (1990) “Principle 7: If you need to use asymptotic arguments, don’t forget to
let your number of observations tend to infinity,” while maintaining the heterogeneity of
the latent structure of the problem. Whether it can be deployed effectively in the com-
pound decision framework to justify forms of shrinkage like those we have considered is,
indeed, a very intriguing open question.
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2. CHALLENGES AND OPPORTUNITIES

Pat Kline has raised many important issues that deserve an extended response; we are
only able to offer some superficial hints that might help qualify and guide their future
exploration.

e Testing, applied mechanically, has many drawbacks and Kline is totally justified in
questioning our interpretation of decision rules that may appear to be based on
rather arbitrary « and vy choices for capacity and FDR constraints, respectively. In
our defense, we would stress that, from its inception, the Neyman—Pearson testing
apparatus emphasized that choices of test levels and their associated cut-offs should
be based on careful consideration of the relative costs of mistakes. These costs would
usually be directly tied to the rating evaluations that have been used to generate the
rankings. Thus, for example, the choice of how many firms to prosecute for hiring dis-
crimination should depend upon the absolute magnitude of the severity of discrimi-
nation and the precision with which it is measured. Relative rankings come into play
only afterwards. This is in accord with the usual practice of assigning letter grades
in academic testing: first, one looks for gaps in the score distribution to determine
cut-offs, and only then are grades assigned according to the ranking of the scores.

e When rankings are determined by a scalar rating measurement with homogeneous
precision, there can be little controversy about ranking, but the cut-off for selection
may, as we have noted, be influenced by the estimation of ratings. In contrast, with
heterogeneous precision of the ratings, the rankings themselves are called into ques-
tion: should they be based on posterior mean ratings, posterior tail probabilities, or
some other criterion? Such heteroscedastic environments offer more opportunity for
introducing risk aversion into decision making; imagine selecting students for college
admission, for example. We have proposed posterior tail probability selection rules
as a way to balance capacity and FDR objectives, but we acknowledge that other loss
functions may find favor in some applications.

e Our cautionary remarks about the challenges of ranking and selection in settings with
Gaussian heterogeneity, G, should not be interpreted as an expression of the univer-
sal futility of the selection problem. On the contrary, we agree with Kline that the
advantage of nonparametric methods of G-modeling, like the Kline—Walters method
of moments approach to their paired binomial problem, or the Kiefer—Wolfowitz
NPMLE we have used, is that they are able to reveal more general mixing distribu-
tions and lead to more informative shrinkage rules than are typically employed in
parametric empirical Bayes applications.

e The use of variance stabilization transformations to achieve approximately Gaussian
behavior for Poisson settings like our dialysis center observations or binomials for
baseball batting averages is intended to alter only the base distribution of the mixture
and leave the mixing distribution, G, intact. To what extent this intention is realized
deserves further study, as Kline suggests. Clearly, it rests on reasonably large Poisson
intensities and binomial sample sizes to justify the approximation.

e When one observes only a few distinct frequencies, as with low-dimensional binomi-
als, identification becomes a paramount concern since only a few moments of G are
identified, not the entire distribution as noted by Lindsay. But as shown by Kline and
Walters, effective decision rules can still be crafted.

e Ranking is an inherently relative enterprise, while the legal system’s quest for ab-
solute standards may be quixotic in many circumstances. Raising awareness of the
uncertainties associated with rankings seems a more feasible objective. We hope that
nonparametric empirical Bayes methods can help achieve this.
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3. SOME COMPARATIVE DATA ANALYSIS

Mogstad, Romano, Shaikh, and Wilhelm, hereafter MRSW, have provided a very valu-
able comparison of the ranking methods they have proposed in their 2020 paper with our
empirical Bayes procedures. We will try to draw out a few more implications from these
comparisons. We have already noted that the distinction between fixed and random 6,’s
is perhaps not quite as essential as it might seem. More salient is the way ranks are con-
structed and their precision evaluated by the two approaches. Our empirical Bayes relies

on an estimate, G, of the distribution of the latent 6;’s to construct posterior distributions
of each 6;, and thereby posterior means and posterior tail probabilities. So the burden of
the ranking exercise is borne by the way that the observed Y;’s and their associated o;’s

get baked into the “prior” G pie. In contrast, MRSW employ resampling and multiple
testing methods to control family-wise error for the () pairs, resulting in a much more
stringent selection criterion.

As an initial comparison, consider the “correlational” estimates of intergenerational
mobility and their standard errors from Chetty, Friedman, Hendren, Jones, and Porter
(2018). Restricting to the top 100 commuting zones, as in Mogstad, Romano, Shaikh,
and Wilhelm (2020), we see that these effect sizes are very precisely estimated: point
estimates are all in the interval [0.325, 0.457], while standard errors are all the interval

[0.00035, 0.0025]. The consequence of this is that the NPMLE, G, assigns positive mass
to almost all of the initial estimates, and posterior mean and posterior tail probability
rankings are essentially the same as just ranking the initial estimates. FDR control is
non-binding and selection under our EB approach would confidently just take the top «
commuting zones as revealed by the raw estimates.

If we now consider the stricter “mover” design of Chetty and Hendren (2018) intended
to identify causal effects of mobility, we see that the point estimates are much less pre-
cisely estimated since they are based on much smaller sample sizes. Focusing on the most
populous 100 commuting zones and counties, the NPMLE, illustrated in Panel (a) of Fig-
ure 1, has only three distinct mass points. Unlike in the “correlational” design where the
Bayes rule did essentially no shrinkage, now there is considerable shrinkage as shown
in Panel (b) of the figure that plots the raw Y; estimates against their posterior means.
With these considerably more noisy estimates, FDR control becomes again relevant. For
the commuting zone data, setting capacity constraint at « = 0.10 and the FDR control
parameter y = 0.30, our posterior tail probability criterion selects no commuting zones
for “top 10” status. Similarly, the MRSW procedure with a = 0.10 places all 100 CZs
into an uninformative category covering all possible ranks from 1 to 100. The situation
changes somewhat when we consider counties rather than CZs. Maintaining the capacity
constraint at « = (.10, Table I reports the counties selected into the top 10 at several dif-
ferent FDR control levels. When v is set at 0.30, our posterior tail probability rule selects
four counties for the top 10; tightening y to 0.05 reduces the number selected to two. The
more stringent procedure of MRSW still produces intervals that cover the entire support
of the ranks from 1 to 100 for all the counties.

In this more uncertain setting, we can also see how variances play a role in our EB pro-
cedure. If we compare Bucks with Macomb, the two counties have almost identical point
estimates; however, Macomb is more precisely estimated. Given our G, or preferably a
smoothed version G, we can easily compute the whole posterior distribution of 6 updated
for any observed pair of (y, s). For Macomb, the updated posterior puts most of its weight
on the rightmost mode near 0.4. For Bucks, because its point estimate is less precise, most
of its weight is attracted to the mass point near 0. This reduces the likelihood that Bucks
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FIGURE 1.—The estimate G and E[6]y;, s;] from the county-level estimates with the movers’ design. The
solid line is the 45 degree line.

will have a posterior tail probability for its 6 to be in the upper 90% quantile, and helps
to explain why it is never selected in Table I even though it is ranked second by observed
y;’s. The posteriors for these two counties are illustrated in Figure 2.

The foregoing comparisons illustrate why it is difficult to construct reliable rankings
and make credible selection decisions. The information contained in the NPMLE, G,
can aid this process but it cannot help when the underlying data are too noisy, and it is
superfluous when the underlying data are too precise. In between these extremes, there
is room for improvement in current ranking and selection practices. In some settings,
like the county level mobility example we have described, balancing FDR control with
reasonable capacity constraint using our empirical Bayes procedures may prove useful. In
high-stakes situations like teacher evaluation, an even more stringent criterion like that
of MRSW may be preferred, at an inevitable cost of reduced power.

TABLE I

SELECTION OF THE TOP 10 COUNTIES BASED ON THE CAUSAL ESTIMATES FOR THE 100 MOST POPULOUS
COUNTIES WITH A MOVER’S DESIGN IN CHETTY AND HENDREN (2018). THE ORDER OF THE 10 COUNTIES
APPEARING HERE IS BASED ON THEIR RAW POINT ESTIMATES y.

County y s v=0.05 vy=0.1 v=0.2 v=0.3
Dupage 0.540 0.123 X X X X
Bucks 0.348 0.176

Macomb 0.347 0.109 X X X X
Hartford 0.325 0.182

Contra Costa 0.306 0.129 X X
Ventura 0.306 0.181

Bergen 0.302 0.186

Pinellas 0.276 0.127 X
Snohomish 0.251 0.154

Providence 0.239 0.153
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FIGURE 2.—The posterior distributions of § for Macomb (left) and Bucks (right) counties based on the
kernel smoothed G with biweight kernel and bandwidth 0.10.

REFERENCES

CHETTY, RAJ, AND NATHANIEL HENDREN (2018): “The Impacts of Neighborhoods on Intergenerational Mo-
bility i: Childhood Exposure Effects,” The Quarterly Journal of Economics, 133, 1107-1162. [64,65]

CHETTY, RAJ, JOHN N. FRIEDMAN, NATHANIEL HENDREN, MAGGIE R. JONES, AND SONYA R. PORTER
(2018): “The Opportunity Atlas: Mapping the Childhood Roots of Social Mobility,” Tech. rep, National
Bureau of Economic Research. [64]

GU, JIAYING, AND ROGER KOENKER (2016): “On a Problem of Robbins,” International Statistical Review, 84,
224-244.[62]

HANNAN, JAMES F, AND HERBERT ROBBINS (1955): “Asymptotic Solutions of the Compound Decision Prob-
lem for Two Completely Specified Distributions,” The Annals of Mathematical Statistics, 26, 37-51. [62]

LE CAM, LUCIEN (1990): “Maximum Likelihood: An Introduction,” International Statistical Review, 58, 153—
171. [62]

MOGSTAD, MAGNE, JOSEPH ROMANO, AZEEM SHAIKH, AND DANIEL WILHELM (2020): “Inferences for
Ranks With Applications to Mobility Across Neighborhoods and Academic Achievement Across Countries,”
Preprint. [64]

ROBBINS, HERBERT (1951): “Asymptotically Subminimax Solutions of Compound Statistical Decision Prob-
lems,” in Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, University
of California Press, Berkeley. [61]

(1990): “The Origins of Empirical Bayes: Butterflies, Oysters and Stars,” 10th Annual Pfizer Lecture
at the University of Connecticut, Available at https://www.youtube.com/watch?v=id6YSycD5lc. [61]

SAMUEL, ESTER (1955): “On Simple Rules for the Compound Decision Problem,” J. Royal Statistical Society
(B),27,238-244. [62]

Editor Guido Imbens handled this manuscript.

Manuscript received 28 January, 2022; final version accepted 31 January, 2022; available online 16 June, 2022.


https://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282023%2991%3A1%3C61%3ARTCOIC%3E2.0.CO%3B2-D
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/CH18&rfe_id=urn:sici%2F0012-9682%282023%2991%3A1%3C61%3ARTCOIC%3E2.0.CO%3B2-D
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/ProbRob&rfe_id=urn:sici%2F0012-9682%282023%2991%3A1%3C61%3ARTCOIC%3E2.0.CO%3B2-D
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/HR55&rfe_id=urn:sici%2F0012-9682%282023%2991%3A1%3C61%3ARTCOIC%3E2.0.CO%3B2-D
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/LeCam90&rfe_id=urn:sici%2F0012-9682%282023%2991%3A1%3C61%3ARTCOIC%3E2.0.CO%3B2-D
https://www.youtube.com/watch?v=id6YSycD5lc
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/Samuel&rfe_id=urn:sici%2F0012-9682%282023%2991%3A1%3C61%3ARTCOIC%3E2.0.CO%3B2-D
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/CH18&rfe_id=urn:sici%2F0012-9682%282023%2991%3A1%3C61%3ARTCOIC%3E2.0.CO%3B2-D
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/ProbRob&rfe_id=urn:sici%2F0012-9682%282023%2991%3A1%3C61%3ARTCOIC%3E2.0.CO%3B2-D
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/HR55&rfe_id=urn:sici%2F0012-9682%282023%2991%3A1%3C61%3ARTCOIC%3E2.0.CO%3B2-D
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/LeCam90&rfe_id=urn:sici%2F0012-9682%282023%2991%3A1%3C61%3ARTCOIC%3E2.0.CO%3B2-D
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/Samuel&rfe_id=urn:sici%2F0012-9682%282023%2991%3A1%3C61%3ARTCOIC%3E2.0.CO%3B2-D

	What Is Bayesian About Empirical Bayes?
	Challenges and Opportunities
	Some Comparative Data Analysis
	References

