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INVIDIOUS COMPARISONS: RANKING AND SELECTION AS COMPOUND
DECISIONS
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There is an innate human tendency, one might call it the “league table mentality,”
to construct rankings. Schools, hospitals, sports teams, movies, and myriad other ob-
jects are ranked even though their inherent multi-dimensionality would suggest that—
at best—only partial orderings were possible. We consider a large class of elementary
ranking problems in which we observe noisy, scalar measurements of merit for # objects
of potentially heterogeneous precision and are asked to select a group of the objects
that are “most meritorious.” The problem is naturally formulated in the compound de-
cision framework of Robbins’s (1956) empirical Bayes theory, but it also exhibits close
connections to the recent literature on multiple testing. The nonparametric maximum
likelihood estimator for mixture models (Kiefer and Wolfowitz (1956)) is employed to
construct optimal ranking and selection rules. Performance of the rules is evaluated in
simulations and an application to ranking U.S. kidney dialysis centers.
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1. INTRODUCTION

IN THE WAKE OF WALD’S seminal monograph on statistical decision theory, there was a
growing awareness that the Neyman—Pearson testing apparatus was inadequate for many
important statistical tasks. Ranking and selection problems featured prominently in this
perception. Motivated by a suggestion of Harold Hotelling, Bahadur (1950) studied se-
lection of the best of several Gaussian populations. Assuming that sample means were
observed for each of K populations with means 6, and common variance, the problem of
selecting the best population, 6* = max;{6;, ..., 0k}, was formulated as choosing weights
Zi, ..., Zx to minimize

K K
L(0,2)=60"=> 260/ )_ z.
k=1 k=1

showed that among “impartial decision rules,” that is, permutation equivariant rules, it
was uniformly optimal to select only the population with the largest sample mean, that is,
to choose zf =1 if X; = max{X,, ..., Xk} and z; = 0 otherwise, thereby clearly demon-
strating that procedures that did preliminary tests of equality of means and then chose
z; > 0 for several or even all of the populations when tests failed to reject were inadmis-
sible. This finding was reinforced by Bahadur and Robbins (1950), who focused on the
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two-sample setting but relaxed the common variance assumption. In related work, Bech-
hofer (1954) and Gupta (1956) sought to optimize the number of selected populations as
well as their identities; see Gupta and Panchapakesan (1979) and Bechhofer, Kiefer, and
Sobel (1968) for extensive reviews of subsequent developments.

Goel and Rubin (1977) pioneered the hierarchical Bayesian approach to selection that
has been adopted by numerous authors in the ensuing decades, early on by Berger and
Deely (1988) and Laird and Louis (1989). Portnoy (1982) showed that rankings based
on best linear predictors were optimal in Gaussian multivariate variance components
models, but cautioned that departures from normality could easily disrupt this optimal-
ity. A notable feature of the hierarchical model paradigm is the recognition that sample
observations may exhibit heterogeneous precision; this is typically accounted for by as-
suming known variances for observed sample means. As ranking and selection methods
became increasingly relevant in genomic applications, there has been renewed interest in
loss functions and linkages to the burgeoning literature on multiple testing. Our perspec-
tive is informed by recent developments in the nonparametric estimation of mixture mod-
els and its relevance for a variety of compound decision problems. This approach seeks
to reduce the reliance on Gaussian distributional assumptions that pervades the earlier
literature. As we have argued elsewhere (Gu and Koenker (2016b) and Koenker and Gu
(2019)), nonparametric empirical Bayes methods offer powerful complementary methods
to more conventional parametric hierarchical Bayes for multiple testing and compound
decision problems. Our primary objective in this paper is to elaborate this assertion for
ranking and selection applications. Throughout, we try to draw parallels and contrasts
with the literature on multiple testing. We will restrict our attention to settings where we
observe a scalar estimate of an unobserved latent quality measure accompanied by some
measure of its precision, thereby evading more complex multivariate settings, as in Boyd,
Cortes, Mohri, and Radovanovic (2012), who employed quantile regression methods.

An important motivation for revived interest in ranking and selection problems in
econometrics has been the influential work of Chetty and his collaborators on teacher
evaluation and geographic mobility in the United States. This has stimulated the impor-
tant recent work of Mogstad, Romano, Shaikh, and Wilhelm (2020) proposing new re-
sampling methods for constructing confidence sets for ranking and selection for a finite
population. Armstrong, Kolesar, and Plagborg-Mgller (2020) proposed an innovative ap-
proach to the construction of confidence intervals for classical, linear shrinkage, empiri-
cal Bayes estimators of the type used by Chetty. Recent work by Andrews, Kitagawa, and
McCloskey (2020) and Guo and He (2020) proposed new confidence interval construc-
tions for highly ranked individuals or treatments influenced by recent contributions to the
“inference after model selection” literature. In contrast to these inferential approaches,
we focus instead on the complementary perspective of compound decision making, con-
structing decision rules for selecting the best, or worst, populations subject to control of
the expected number of elements selected, and among those selected, the expected pro-
portion of false discoveries. Rather than treating each selection decision in isolation, the
compound decision framework tries to exploit their common structure to produce im-
proved collective performance. Our approach is thus more closely aligned to that of Kline
and Walters (2021), who studied decision rules for assessing employer discrimination from
experiments involving fictitious job applications using closely related GMM methods for
binomial mixture models.

Gilraine, Gu, and McMillan (2020) studied teacher value-added estimation employing
nonparametric maximum likelihood methods for estimating Gaussian mixture models as
we advocate below. Their analysis of data from both North Carolina and Los Angeles
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illustrates the advantages of more flexible mixture models for latent value added. In con-
trast to the present work, they focused on Bayes rules for posterior means that are of-
ten used to study teachers’ influence on students’ future outcomes. These more flexible
nonparametric empirical Bayes methods improve upon traditional linear shrinkage rules
especially in the tails of the distribution where policy attention is usually focused. This
is a valuable, complementary perspective to the ranking and selection objectives of the
present work.

Before proceeding, it is important to acknowledge that despite its universal appeal and
application, there is something inherently futile about many ranking and selection prob-
lems, as intimated by our title. If the latent measure of true quality is Gaussian, as assumed
in virtually all of the econometric applications of the selection problem, and we wish to
select the top ten percent of individuals given that their true quality is contaminated by
Gaussian noise, accurate selection can be very challenging when the signal-to-noise ra-
tio is low. We will see that conventional linear shrinkage as embodied in the classical
James—Stein formula can improve performance considerably over naive maximum like-
lihood (fixed effects) procedures, and some further improvement is possible by carefully
tailoring the decision rules for tail probability loss. However, we find that even oracle
decision rules that incorporate complete knowledge of the precise distributional features
of the problem may not be able to achieve better than about even odds that selected in-
dividuals have latent ability above the selection thresholds when measurement error is
comparable in magnitude to Gaussian variability in latent ability. When the latent dis-
tribution of ability is heavier tailed, then selection becomes somewhat easier, and more
refined selection rules are more advantageous, but as we will show, the selection problem
still remains quite challenging.

Thus, a secondary objective of the paper is to add another cautionary voice to those
who have already questioned the reliability of existing ranking and selection methods.
A critical overview of the role of ranking and selection in public policy applications was
provided by Goldstein and Spiegelhalter (1996). It is widely acknowledged that league
tables as currently employed can be a pernicious influence on policy, a viewpoint under-
scored in Gelman and Price (1999). While much of this criticism can be attributed to
inadequate data collection and inherently low signal-to-noise ratios, we believe that there
is also room for methodological improvements.

Section 2 provides a brief overview of compound decision theory and describes non-
parametric methods for estimation of Gaussian mixture models. Section 3 introduces a
basic framework for our approach to ranking and selection in a setting with homogeneous
precision of the observed measurements. In Section 4, we introduce heterogeneous preci-
sion of known form, and Section 5 considers settings in which the joint distribution of the
observed measurements and their precision determines the form of the ranking and selec-
tion rules. Optimal ranking and selection rules are derived in each of these sections under
the assumption that the form of the mixing distribution of the unobserved, latent quality
of the observations is known. Section 6 introduces feasible ranking and selection rules
and conditions under which they attain the same asymptotic performance as the optimal
rules. Section 7 then compares several feasible ranking and selection methods, some that
ignore the compound decision structure of the problem, some that employ parametric
empirical Bayes methods, and some that rely on nonparametric empirical Bayes meth-
ods. Finally, Section 8 describes an empirical application on evaluating the performance
of medical dialysis centers in the United States. Proofs of all formal results are collected
in Appendix A of the Supplemental Material (Gu and Koenker (2023)).
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2. THE COMPOUND DECISION FRAMEWORK

Robbins (1951) posed a challenge to the nascent minimax decision theory of Wald
(1950): Suppose we observe independent Gaussian realizations, Y; ~ N(6;,1),i =
1, ..., n, with means 6; taking either the value +1 or —1. We are asked to estimate the
n-vector 6 = (64, ..., 6,) subject to mean absolute error loss,

L(6,0)=n">"16;— 6,l.
i=1

When n = 1, Robbins showed that the minimax decision rule is 6(y) = sgn(y); in the
least favorable variant of the problem, malevolent nature chooses £1 with equal proba-
bility, and the optimal response is to estimate 6; = 41 when Y; is positive, and 6, = —1
otherwise. Robbins went on to show that when n > 1, this rule remains minimax; each
coordinate is treated independently as if viewed in complete isolation. This is also the
maximum likelihood estimator, and may be viewed in econometrics terms as a classical
fixed-effects estimator. But is it at all reasonable?

Doesn’t our sample convey information about the relative frequency of 1 that might
potentially contradict the pessimistic presumption of the minimax rule? If we happened
to know the unconditional probability, p = P(6; = 1), then the conditional probability
that # =1 given Y; = y is given by

pe(y—1)

BO=1) = =D+ (A= per+ D)

where ¢ denotes the standard Gaussian density. We should guess 6; = 1 if this probability
exceeds 1/2, giving us the revised decision rule

3, =sen(y - 3loe((1 = p)/p) )

Each observed y; is modified by a simple logistic perturbation before computing the sign.
Our observed random sample, y = (y, ..., V), is informative about p. We have the log
likelihood

6,(ply) = log(pe(yi— 1) + (1 - ple( +1)),

i=1

which could be augmented by a prior of some form, if desired, to obtain a posterior mean
for p and a plug-in Bayes rule for estimating each of the 6;’s. The Bayes risk of this
procedure is substantially less than the minimax risk when p # 1/2 and is asymptotically
equivalent to the minimax risk when p = 1/2. This is the first principle of compound de-
cision theory: borrowing strength across an entire ensemble of related decision problems
yields improved collective performance.

What happens when we relax the restriction on the support of the 6’s and allow sup-
port on the whole real line? We now have a general Gaussian mixture setting where the
observed Y;’s have marginal density given by the convolution, f = ¢ * G, that is,

f) = / o(y — 0)dG(6),
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and instead of merely needing to estimate one probability, we need an estimate of an
entire distribution function, G. Kiefer and Wolfowitz (1956), anticipated by an abstract
of Robbins (1950), established that the nonparametric maximum likelihood estimator
(NPMLE),

A

G = argmin —Zlogf(yf)lf(yi)=/¢(yi—0)dG(0)},

Geg

where G is the space of probability measures on R, is a consistent estimator of G. This is
an infinite-dimensional convex optimization problem with a strictly convex objective sub-
ject to linear constraints. See Lindsay (1995) and Koenker and Mizera (2014) for further
details on the geometry and computational aspects of the NPMLE problem. Heckman
and Singer (1984) pioneered this approach in econometrics to argue that more flexible
models of heterogeneity were needed to get reliable estimates of duration dependence in
survival models.

A powerful consequence of the seemingly innocuous condition that G must be non-

decreasing is that G must be atomic, a discrete distribution with fewer than n atoms.
A secondary consequence is that the NPMLE is “self-regularizing,” that is, the number,
locations, and mass of the atoms are all determined jointly by the optimization without
any recourse to auxiliary tuning parameters. This is all a consequence of the classical
Carathéodory theorem, but until quite recently little was known about the precise growth
rate of the number of atoms characterizing the solutions, although empirical experience
suggested it was quite slow. Polyanskiy and Wu (2020) have recently established that, for
G with sub-Gaussian tails, the cardinality of its support, that is, the number of atoms,

of G grows like O(logn). Thus, without any further penalization, maximum likelihood

automatically selects a highly parsimonious G. This is in sharp contrast to the notori-
ous difficulties with maximum likelihood for finite-dimensional mixture models, or with
Gaussian deconvolution employing Fourier methods.

Having seen that the upper bound on the complexity of the NPMLE G was only
O(logn), one might wonder whether O(logn) mixtures are “complex enough” to ade-
quately represent the process that generated our observed data. Polyanskiy and Wu (2020)
also addressed this concern: they noted that for any sub-Gaussian G, there exists a dis-
crete distribution, G, with k = O(logn) atoms, such that for f;, = ¢ * G, the total varia-
tion distance TV (f, fi) = 0o(1/n), and consequently there is no statistical justification for
considering estimators of G whose complexity grows more rapidly than O(logn). This ob-
servation is related to recent literature on generative adversarial networks, for example,
Athey, Imbens, Metzger, and Munro (2019), that target models and estimators that, when
simulated, successfully mimic observed data.

Other nonparametric maximum likelihood estimators for G are potentially also of in-
terest. Efron (2016) has proposed an elegant log-spline sieve approach that yields smooth
estimates of G; this has advantages especially from an inferential perspective, at the cost
of reintroducing the task of selecting tuning parameters. An early proposal of Laird and
Louis (1991) merged parametric empirical Bayes estimation of G with an EM step that
pulled the parametric estimate back toward the NPMLE.

Given an estimate G, it is straightforward to compute posterior distributions for each
sample observation, or for that matter, for out-of-sample observations. In effect, we have
estimated the prior, as in the Robbins (1951) binary means problem, but we have ignored

the variability of G when we adopt plug-in procedures that use it. This may account for
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the improved performance of smoothed estimates of G in certain inferential problems,
as conjectured in Koenker (2020). In the sequel, we will compare ranking and selection
procedures based on various functionals of these posterior distributions. A leading exam-
ple is the posterior mean, but ranking and selection problems suggest other functionals
of potential interest. If we are asked to estimate the 6;’s subject to quadratic loss, and
assuming standard Gaussian noise, the Bayes rule is given by the posterior mean,

() =E0y)=y+ /). (2.1)

Efron (2011) referred to this as Twweedie’s formula; it appears in Robbins (1956) credited
to M.C.K. Tweedie. Appendix A of Gu and Koenker (2016a) provides an elementary
derivation. The nonlinear shrinkage term takes a particularly simple affine form when
G happens to be Gaussian, since in this case f is itself also Gaussian and the formula
reduces to well-known linear shrinkage variants of classical Stein rules.

We have focused in this brief overview on compound decision problems for Gaussian
location mixtures and posterior means; however, the NPMLE is adaptable to a wide va-
riety of other mixture problems and other loss functions that imply other posterior func-
tionals, as we will see in the next section. Efron (2019) and the discussion thereof offers
a broader perspective on related methods. Implementation of several NPMLE options
are described in Koenker and Gu (2017) and are available in the R package REBayes of
Koenker and Gu (2015-2021).

3. HOMOGENEOUS VARIANCES

Suppose that you are given real-valued measurements, y;: i = 1,2, ..., n, of some at-
tribute like test score performance for students or their teachers, survival rates for hos-
pital surgical procedures, etc., and are told that the measurements are exchangeable and
approximately Gaussian with unknown means 6; and known variances o assumed provi-
sionally to take the same value o*. Your task, should you decide to accept it, is to choose a
group of size not to exceed an of the elements with the largest 6,’s. One’s first inclination
might be to view each y; as the maximum likelihood estimate for the corresponding 6;,
and select the an largest observed values, but the compound decision framework suggests
that it would be better to treat the problems as an ensemble. A second natural inclination
might be to compute posterior means of the 6’s with some linear or nonlinear shrinkage
rule, rank them, and select the « best, but we will see that this, too, may be questionable.

3.1. Posterior Tail Probability

A natural alternative to ranking by the posterior means is to rank by posterior tail
probabilities. Let 6, = G~'(1 — a), and define v,(y) :=P(0 > 0,|Y = y); then ranking by
posterior tail probability gives the decision rule

8(y)= ]l{va(y) z /\a}’

where the threshold A, is chosen so that P(v,(Y) > A,) = a. This ranking criterion has
been proposed by Henderson and Newton (2016) motivated as a ranking device for a
fixed quantile level «. It can be interpreted in multiple testing terms: 1 — v, (y) is the local
false discovery rate of Efron, Tibshirani, Storey, and Tusher (2001) and Storey (2002), for
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testing the hypothesis Hy : 6 < 6, versus H, : 8 > 0,. To see this, let /; be a binary random
variable h; = 1{6; > 6,}; the loss function for observation i is

L(Si, 0,) = /\]]_{hl = 0, 8,‘ = 1) + ﬂ{hl = 1, 8,‘ = 0}

for a generic Lagrange multiplier, A. The compound Bayes risk is
E[ZL(&, Hf)} = n[a + / S[(1 = ) Mo(y) — efi(y)] dy},
i=1

where fy(y) = (1 — @) [*, ¢(y]6, 0% dG(0) and fi(y) = ™' [~ ¢(y]6, 0?) dG(6),
©(y|6, 0*) = ¢((y — 0)/0) /0. The Bayes rule for a fixed A is

300 =1{0.00 = 35 |

where v,(y) = afi(y)/f () = P(0 = 6u]Y = y) and f(y) = (1 =) fo(y) +f1(y). Provided
that v, (y) is monotone in y, a unique A* can be found such that P(6(Y) =1) =P(v,(Y) >

A1+ 1%)) =a.

LEMMA 3.1: For fixed a, assuming E,y[V,log ¢(y]6, 0*)|Y] < o0, v,(y) is monotone in
v, and the sets O, :={Y 1 v,(Y) > A./(1 + A,)} have a nested structure, that is, if a; > s,
then €, € Q,,.

Any implementation of such a Bayes rule requires an estimate of the mixing distribu-
tion, G, or something essentially equivalent that would enable us to compute the local
false discovery rates v,(y) and the cut-off 6,. The NPMLE, or perhaps a smoothed ver-

sion of it, will provide a natural G for this task.

3.2. Posterior Tail Expectation and Other Losses

Rather than assessing loss by simply counting misclassifications, we might consider
weighting such misclassifications by the magnitude of 6, for example,

L(8:,0,) =) (1= 8)1(6; > 6.)06.
i=1

This presumes, of course, that we have centered the distribution G in some reasonable
way, perhaps by forcing the mean or median to be zero. Minimizing with respect to &
subject to the constraint that P(6(Y) = 1) = « leads to the Lagrangian

min / / (1 - 5(y))140 = 0,306 (y]6, o) dG(0) dy

w4l [ [o0)e010.0% dG0)dy - a].
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which is equivalent to
min / / 140> 0,3(0 — Ao (y]0, o) dG(0) dy

— / 8(y) [/ 1{6 = 6.1(6 — N e (y]6, 0) dG(6) — / A1{6 < 0,10 ()]0, 0?) dG(H)} dy.

Ignoring the first term since it does not depend upon &, the oracle Bayes rule becomes:
choose 6(y) =1if

/ 1{0 > 0,}0¢(y]6, 0%) dG(6)

[ebmnaraco

=z A,

with A chosen so that P(6(Y) = 1) = a. Such criteria are closely related to expected short-
fall criteria appearing in the literature on risk assessment. Again, the NPMLE can be
employed to construct feasible posterior ranking criteria.

Several other loss functions were considered by Lin, Louis, Paddock, and Ridgeway
(2006), including some based on global alignment of the ranks. While intuitively appeal-
ing, such loss functions are considerably less tractable than those we consider in the re-
mainder of the paper.

3.3. False Discovery and the a-Level

Although our loss functions yield distinct criteria for ranking, their decision rules lead
to the same selections when the precision of the measurements is homogeneous. When
variances are homogeneous, there is a global cut-off, n,, and a decision rule, 6,(Y) =
1(Y > n,), determining a common selection for all decision rules.

LEMMA 3.2: For fixed o and homogeneous variance, posterior mean, posterior tail proba-
bility and posterior tail expectation all yield the same ranking and therefore the same selection.

The marginal false discovery rate for selection in our Gaussian mixture setting is

mFDR =P(6 < 6,/5,(Y)=1) =a™" /ga D((60 — m.)/0)dG(6).

—00

The marginal false non-discovery rate is
MENR = P(0 = 6,15,(Y) =0) = (1 — a) ! / & (1. — 0)/0) dG(6).
Oa

Figure 1 shows the false discovery rate and false non-discovery rate for a range of ca-
pacity constraints, &, when the mixing distribution, G, is standard Gaussian and ¢ = 1. In
this low signal-to-noise ratio case, the cut-off value 7, is the (1 — ) quantile of AV/(0, 2),
and it is very difficult to distinguish the meritorious from the merely lucky. For selecting
individuals at the top « quantile, the false discovery rate is alarmingly high especially for
smaller «, implying that the selected set may consist of a very high proportion of false
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FIGURE 1.—False discovery rates and false non-discovery rates for a standard Gaussian mixing distribution.

discoveries. When « = 0.10, the proportion of selected observations with 6 below the
threshold 6, is slightly greater than 50 percent.

When the variance of the 6’s, the signal-to-noise ratio, increases from 1 to 5, the selec-
tion problem becomes somewhat easier. This is reflected not only by the false discovery
rate decreasing from above one half to about a third, but is also reflected in results in Ta-
ble I that show that the wrongly selected individuals have their true values of 6 clustered
closer to the thresholding value 6, measured in terms of standard deviation.

When o2 = 1, we have about 50% falsely selected, and the 6’s among the correctly-
selected and the wrongly-selected individuals are roughly symmetrically distributed
around the thresholding value. In such a case, even oracle decision rules that incorpo-
rate complete knowledge of the precise distributional features of the problem may not be
able to achieve better than about even odds that selected individuals have latent ability
above the selection thresholds when measurement error is comparable in magnitude to
Gaussian variability in latent ability. As variance of alpha increases to 5, then selection be-
comes somewhat easier; only 1/3 among the selected are falsely selected, and most (80%)
of these 6 values are within 0.5 standard deviations away from the selection threshold.

TABLE I

FDR IMPROVES AS THE SIGNAL BECOMES MORE DISPERSED. IN SETTINGS WITH STANDARD GAUSSIAN
MEASUREMENT ERROR AND GAUSSIAN DISTRIBUTION, G, FOR THE 6’S, THE VARIANCE OF G CAN BE
INTERPRETED AS A SIGNAL-TO-NOISE RATIO. AS THE VARIANCE OF G INCREASES, SELECTION BECOMES
EASIER AND FDR IS REDUCED. THE WRONGLY SELECTED UNITS BECOME MORE CONCENTRATED NEAR THE
SELECTION THRESHOLD. COLUMNS 2-6 OF THE TABLE REPORT QUANTILES OF THE WRONGLY SELECTED
UNITS MEASURED IN STANDARD DEVIATIONS FROM THE THRESHOLD. COLUMNS 7-11 REPORT
CORRESPONDING QUANTILES FOR THE CORRECTLY SELECTED UNITS.

FDR Wrongly Selected Correctly Selected
20% 40% 50% 60% 80% 20% 40% 50% 60% 80%

[ O I S

0.526  0.205 0.414 0531 0.658 0990 0.188 0.391 0.504 0.632  0.966
0421 0.146 0302 0391 0486 0.743 0.197 0394 0503 0.625 0.951
0361 0.120 0.248 0320 0.402 0.620 0.197 0.393  0.500 0.618 0.931
0.319 0.103 0.212 0275 0347 0540 0.198 0.392 0.495 0.609 0.915
0296  0.093 0.192 0247 0313 0487 0.196 0383 0484 0.596 0.897

9999 9
RS S )
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It is perhaps worth stressing that at the margin, near the decision boundary, it will
always be difficult to distinguish true from false discoveries, but FDR measures the pro-
portion of all selections that are incorrect, not just those near the threshold. Other loss
functions that penalize in a more continuous way may be considered to reflect informa-
tion in Table 1. For example, losses that weight the classification error by the magnitude
of the discrepancy between the latent effect and the threshold could be considered. Such
losses, however, make it more difficult to incorporate conventional forms of error control.

Thus far, we have implicitly assumed that the size of the selected set is predetermined
by the parameter «. Having established a ranking based on a particular loss function, we
simply select a subset of size [an] consisting of the highest ranked observations. In the
next subsection, we begin to consider modifying this strategy by constraining the probabil-
ity of false discoveries. This will allow the size of the selected set to adapt to the difficulty
of the selection task.

3.4. Guarding Against False Discovery

Recognizing the risk of false “discoveries” among those selected, we will consider an
expanded loss function,

L(5,0) = ihi(l — &)+ (i{(l — )8 — 'y8,-}> + 1 (Z 8 — an), 3.1)

i=1 i=1

where h; = 1{6; > 0,}. If we set 7| to zero, then minimizing the expected loss leads to the
Bayes rule discussed in Section 3.1. On the other hand, if we set 7, to zero, then minimiz-
ing expected loss leads to a decision rule that is equivalent to a multiple testing problem
with null hypothesis Hy; : 6; < 6,; the goal is to minimize the expected number of over-
looked discoveries subject to the constraint that the marginal FDR rate is controlled at
level v, thatis, E[> ", (1 — h;)8;]/E[> ., 6;] < y. When 7, =0, the risk can be expressed
as

E0|y[L(6, 0)] = Xn:(l — Si)va(Yl‘) —+ 7 (X”: 6,‘ — an) 5

where v,(y;) = P(6; > 0,|Y; = y;). Taking another expectation over Y and minimizing
over both & and 7, leads to the decision rule

5 — 1 ifv.(y) =75,
o ifu.(y) < T

The Lagrange multiplier is chosen so that the constraint P(5; = 1) < « holds with equality:
TS = min{Tz Pva(y) = 1) < a}.

Each selection improves the objective function by v,(y;), but incurs a cost of 7,. Since all
selections incur the same cost, we may rank according to v,(y;), selecting units until the
capacity constraint an is achieved. Selection of the last unit may need to be randomized
to exactly satisfy the constraint, as we note below.

When 1, =0, the focus shifts to the marginal FDR, the ratio of the expected number of
false discoveries to the expected number of selections. This is slightly different from the
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original FDR as defined in Benjamini and Hochberg (1995). However, when # is large,
the two concepts are asymptotically equivalent as shown by Genovese and Wasserman
(2002). Our objective becomes

Eoy[L(8,0)] =Y (1 -8)v.(Y) +m (Z{a,-(l — v, (Y})) — ysi}).

i=1 i=1

Taking expectations again over Y and minimizing over both é and 7 yields

5 — 1 ifve(y) > 71(1 = va(3) — 7).
! 0 ifv.(y) =75 (1—va(m) — ),

and the Lagrange multiplier takes a value 7} to make the marginal FDR constraint hold
with equality.

When both constraints are incorporated, we must balance the power gain from more
selections and the cost that occurs from both the capacity constraint and FDR control.
The Bayes rule solves

mﬁinE|:2n:(1 - Si)va(yi)} +7 (E[Xn:{(l —v(1))8; — )/85}:|> + 7 (E[; 8,} - an).

i=1 i=1

Given the discrete nature of the decision function, this problem appears to take the form
of a classical knapsack problem; however, following the approach of Basu, Cai, Das, and
Sun (2018), we will consider a relaxed version of the problem in which units are selected
sequentially until one or the other constraint would be violated, with the final selection
randomized to satisfy the constraint exactly.

EXAMPLE: Given the Lagrangian form of our loss function, it is natural to consider an
optimization perspective for the selection problem. Minimizing the expectation of the loss
defined in (3.1) is equivalent to minimizing P[5, = 0, 6; > 6, ] subject to the constraint that
P[6; =1, 6; < 6,]/P[6; =1] < v, and P[8; = 1] < a. So we are looking for a thresholding
rule that minimizes the expected number of missed discoveries subject to the capacity
constraint and the constraint that the marginal FDR rate of the decision rule is below
level y. This minimization problem is also easily seen, from a testing perspective, to be
equivalent to maximizing power of the decision rule 8, P[8; = 1|6; > 6,], subject to the
same two constraints.

PROPOSITION 3.3: For any pair (a, y) such that y < 1 — «a, the optimal Bayes rule takes
the form &F = 1{v,(y;) > A*(a, )}, where X*(a, y) = v, (¢*) with t* = max{t;], t;},

/“@((z— 0)/0) dG(0)

ff=min{t:

_750 )

/ (- 0)/0) dG(6)

o0

£; =min t:/_+m(i)((t— 6)/0) dG(6) —afO} ,

9]

and ® denoting the survival function of a standard normal random variable.
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REMARK: The optimal cutoff #* depends on the data generating process and also the
choice of « and y. When data are noisy, the FDR control constraint may be binding
before the capacity constraint is reached, and consequently the selected set may be strictly
smaller than the pre-specified « proportion. On the other hand, when the signal is strong,
the FDR control constraint is unlikely to bind before the capacity constraint is reached.

We have seen that when variances are homogeneous, the optimal selection rule thresh-
olds on Y, so it is clear then that any ranking that is based on a monotone transformation
of Y will lead to an equivalent selected set. We should also stress that we have focused
on a null hypothesis that depends on «, while the multiple testing literature, for example
Efron et al. (2001), Sun and Tony Cai (2007), and Basu et al. (2018), typically focuses on
the null hypothesis of Hy; : §; = 0. When variances are homogeneous, it does not matter
whether we use an « dependent null or the conventional zero null, because the transfor-
mation based on the conventional null, P(6 > 0|Y = y), is also a monotone function of Y,
and therefore yields an equivalent decision rule. However, when variances are heteroge-
neous, this invariance no longer holds; different transformations of the pair (y, o) lead to
distinct decision rules that lead to distinct performance, and using the conventional null
hypothesis is no longer advisable for the ranking and selection problem, as we will show
in the next section.

4. HETEROGENEOUS KNOWN VARIANCES

The homogeneous variance assumption of the preceding section is unsustainable in
most applications. Batting averages are accompanied by a number of “at bats” and mean
test score performances are accompanied by student sample sizes. In this section, we will
consider the expanded model,

KNN(Gl,UZ) and eiA’G, O'l"\’H, (Tl'J_LBi.

L

We will assume that we observe ¢;, an assumption that will be relaxed in the next section.

4.1. Posterior Tail Probability

With the same alternative hypothesis as H 4 : 8 > 6,, it is natural to consider the poste-
rior tail probability again, now as a function of the pair (y;, o;):

/+OO‘P(}’1'|9’ a7)dG(9)

Oa

va(yh Ui) = IP7(6i = Halyi’ Ui) = Tt .
/ (316, %) dG(6)

o0

Solving the same decision problem with the loss function specified in (3.1), we have the
conditional risk,

Eoy.o[L(8,0)] = Z(l —8)va(Yi, 0)) + 7 (Z{Si(l —v,(Yi, 07)) — 3/5[})

i=1

(S0

i=1
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Taking another expectation with respect to the joint distribution of the (Y}, g7)’s, the
Bayes rule solves

mainE|:Z(1 — 8)va (¥, O’i):| + 7 (E[Z{(l — v, (i, 7)) 8; — y8,~}j|>

i=1 i=1

The optimal selection rule can again be characterized as a thresholding rule on v, (y;, o).
PROPOSITION 4.1: For a pre-specified pair (o, y) such that y < 1 — «, the Bayes rule takes
the form &*(y, o) = 1{v.(y, o) > A*(a, y)}, where A*(a, y) = max{A;(a, v), A5 (@)},

// " O((1.(A, 0) — 0)/0) dG(8) dH (o)
A —

Al (o, y) =min

: Too —y=<0¢,
/ / ®((t.(A, o) — 6)/0) dG(6) dH (o)

As(o) =min{A: //+Oo(i>((ta()\, o) —6)/0)dG(0)dH (o) — a < 0} ,

and t,(\, o) is defined as v,(t,(A, o), o) = A forall A € [0, 1].

REMARK: Note that although the thresholding value A* does not depend on the value
of o, the ranking does depend on . One way to see this is that since v,(y, o) is mono-
tone in y for all o > 0, the optimal rule is equivalent to 1{y; > #,(A*, o)}, where #,(A, o)
is a function of o. For a fixed value of A*, the selection region for Y depends on o in
a nonlinear way. Comparing individuals i and j, it may be the case that y; > y;, but y;
belongs to the selection region while y; does not. An example to illustrate this appears be-
low. It should also be emphasized that when variances are heterogeneous, different loss
functions need not lead to equivalent selections.

4.2. The Conventional Null Hypothesis

The posterior tail probability criterion is motivated by viewing the ranking and selec-
tion problems as hypothesis testing while allowing the null hypothesis to be @ dependent.
The particular construction of the null hypothesis turns out to be critical for the ranking
exercise. In this subsection, we present a simple example to illustrate that tail probabil-
ity based on the conventional null hypothesis of zero effect does not lead to a powerful
ranking device. Consider data generated from a three-component normal mixture model,

Yiloi ~0.85N (=1, 07) + 0.1N (0.5, 02) + 0.05N (5, 07), 0~ U[0.5,4].  (4.1)

Instead of transforming the data by v,, we consider the transformation
+o00
/ o010, 07) dG(0)
0

[ oo a1y ac0)

oo

T(yi’ (le) = ]P)(gl > Olyi’ 0"2) =
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= = zeroNull
— tailNull

15
|

10

Threshold

FIGURE 2.—Selection boundaries based on the model (4.1) with « = 0.05 and y = 0.1. The solid black
curve corresponds to the boundary of the selection region based on transformation v,. The dashed red curve
corresponds to the boundary of the selection region based on transformation 7". Density of ¢ is assumed to be
uniform on the interval [0.5, 4].

and rank individuals accordingly. This transformation corresponds to the procedure pro-
posed in Sun and McLain (2012), and is motivated for multiple testing problems under
the conventional null hypothesis H : 6 < 0. The decision rule 67 = 1{T(y;, ;) > A} then
chooses the cutoff value A that respects both the capacity constraint and the FDR control
constraint for selecting the top « proportion.

Figure 2 compares the selection region for the two ranking procedures with o = 5%
and marginal FDR control at level 10%. The solid black line corresponds to the selection
boundary using ranking based on transformation v, and the dashed red line corresponds
to the selection boundary using ranking based on the transformation T. The black high-
lighted area below the black selection boundary corresponds to a region where the rank-
ing method based on T will select but the ranking method based on v, does not. On the
other hand, the blue highlighted area corresponds to a region selected by v,,, but not for T.
The transformation T ranks those in the black region higher than those in the blue region
because although they have a relatively smaller mean effect y, their associated variances
are also smaller, indicating stronger evidence that such individuals have a positive 6 than
those located in the blue area. However, our task is to find individuals with true effects,
0;, in the upper tail. For & = 5%, we aim to select all individuals with # = 5; individuals in
the black region present strong evidence that their true effect cannot be too large because
their observed effect y is small and their associated variance is also small, while those in
the blue region, although their observed mean effects are associated with larger variances,
offer reasonable evidence that their associated true effect 6 may be large. This evidence
is not apparent in transformation T, but is captured in the transformation v,,.

Indeed, the average power of ranking based on the two different transformations v,
and T differs significantly. Defining the power of the selection rule as B(6) := P(6; >
6., 6; =1)/P(6; > 6,), the proportion of true top « cases selected based on decision rule
8, then B(8%) =39% and B(8%) = 69%. Thus, although much of the literature relies
on ranking and selection rules based on some form of posterior means and conventional
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hypothesis testing apparatus, we would caution that such methods can be quite misleading
and inefficient.

4.3. Nestedness of Selection Sets

If we were to relax the capacity constraint to allow a larger proportion, a; > a, to
be selected, while maintaining our initial false discovery control, we would expect that
members selected under the more stringent capacity constraint should remain selected
under the relaxed constraint. We now discuss sufficient conditions under which we obtain
this nestedness of the selection sets when using the posterior tail probability rule. This is
a natural condition in applications like our analysis of ranking and selection of dialysis
centers especially because we would like to assign “letter grades” to several subgroups of
the centers.

The optimal Bayes rule defines the selection set for each pair of («, ) as

Qoy = {1y, 0) 1 0a(y, 0) = M (a, )},

and when o is known, v,(y, o) is monotone in y as shown in Lemma 3.2 for each fixed o;
hence the selection set can also be represented as

Quy = {0, 0) 1y = (X (@, 7), o) }.

It is also convenient for later discussion to define

QPR =A{(y, 0) 10y, 0) = A, Y) } ={(y, 0) 1 y = ta(A[ (@, ¥), 0) },
QS ={(y, 0) 1 va(y, 0) = (@)} ={(, 0) 1 y = t(X5(@), 7) },

which are respectively the selection sets when the false discovery rate constraint or the
capacity constraint is binding. It is easy to see that Q,,, = Q[°* N QF.

LEMMA 4.2: Let the density function of v,(y:, 0;) be denoted as f,(v; «), and let

[/_a(i)((ta()\,a)—9)/a)dG(6)dH(cr)

Aj(e,y)=min { A: —v<0

/ /_ +Ooci>((ta()\, o) —0)/0)dG(0)dH (o)

with t,(A, ) defined as v, (t,(A, 0), o) = A and ® be the survival function of the standard
normal random variable. If V,1og f,(v; ) is non-decreasing in v, then for fixed v, if oy > s,
we have X (o, 7y) < Aj(az, y).

REMARK: The density function f,(v; @) can be viewed as a function of v indexed by the
parameter «. An explicit form for f,(v; @) appears in Section 4.4 for the normal-normal
model. The condition imposed in Lemma 4.2 is equivalent to a monotone likelihood ratio
condition, that is, that the likelihood ratio f,(v; a1)/f,(v; @) is non-decreasing in v if
o) > 0.

COROLLARY 4.3: Ifthe condition in Lemma 4.2 holds, then Q2% € QFP% forany a; > as.
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REMARK: The condition in Lemma 4.2 is sufficient but not necessary for nested-
ness of /PR, Even when Aj(a;,y) > Aj(az, ), we can still have £, (Aj(a, ), 0) <
to, (A (2, y) o) because the function v,(Y, o) depends on «, as does its inverse func-
tion £,.

LEMMA 4.4: Let A5(a) be defined as in Proposition 4.1. If, for any a; > a,, t, (A5(a),
0) < to,(X5(2), 0) for each o, then QF < QF .

REMARK: The monotonicity here coincides with the condition in Theorem 3 of Hen-
derson and Newton (2016), who demonstrated that it holds when G is Gaussian. However,
it need not hold, as shown in our counterexample in Appendix C of the Supplemental Ma-
terial.

LEMMA 4.5: If V,log f,(v; @) is non-decreasing in v and the condition in Lemma 4.4
holds, then for a fixed vy, the selection region has a nested structure: if o, > o, then (), , C
Q

ay,y*

4.4. Examples

In this section, we consider several examples beginning with the simplest classical case
in which the 6; constitute a random sample from the standard Gaussian distribution. This
Gaussian assumption on the form of the mixing distribution G underlies almost all of the
empirical Bayes literature in applied economics; it is precisely what justifies the linear
shrinkage rules that are typically employed.

EXAMPLE—Gaussian G: Consider the normal-normal model, where y|6, o ~ N (8,
o?) and 6 ~ N 0, 07) and o ~ H with density function /(o). The marginal distribution
of y given o is N'(0, o + o72) and the joint density of (y, o) takes the form

2

1 y
,O) = ——— 537 2 h(o).
0. ) 277(0.2 + 0.5) eXp: 2(0' + 0'9) } (@)

Given the normal conjugacy, the posterior distribution of 6|y, a* follows A (py, paz)
where p = ¢2/(07 + o). The random variable v is thus a transformation of the pair
(Y, 0?), defined as

=(y, 0%) :=P(6 = buly, 07) = D((py — 6.)/v/p5?).

For fixed o?, ¢ is monotone increasing in y and ¢~'(v) = 0,/p + o2/pP~'(v) with
V, i~ (v) = /0?/p/e(P~'(v)). The joint density of v and o is thus
g, o) =f(y'(v), o) Vo (v)]
I {_ (0/p + V@' (v))’ } Vo /p

2(0* + ;) e(P7'(v))

h(o).
27 (0% + 0})
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Integrating out o, we have the marginal density of v:

(6a/p + 02/ p®7 (v))’ } Vo /p
¢

1
fo(v; @) = f m eXp{— 2(0_2 + 0.;) ((I)*l (f)))

dH (o).

The capacity constraint is P(v > A}) = «, with cutoff value A; satistying

2
Ty

a=F@zn)=1- [ cp(eaLz”g (1 Aj)@) dH(0).

To find A}, we can use the formula provided in Proposition 4.1. A more direct approach
is to recognize (see Section 6) that the FDR control constraint is defined as y = E[(1 —
v)1{v > A7}]/P(v > A}), where the cutoff value Aj is defined through

1 1
v= / 1 =v)f,(v; @) dv// fo(v; @) dv.
AT AT
Let A* = max{Aj, A%}; the selection region is then {(y, o) : y > £,(X*, o)} with

ta()\*, 0') =0./p— CI)_l(l — A*)\/ o?/p.

Suppose we use the posterior mean of 6 as a ranking device, so 8/ = 1{yp > w*} for
some suitably chosen w* that guarantees both capacity and FDR control. For the capacity
constraint, the thresholding value solves

1—a=/IP’(yp<w§)dH(a')

zfcp(w;/(a;m)) dH (),

while FDR control requires a thresholding value that solves
y= /P(y > wi/p, 0 < 0.) dH(G)//IP’(y > wi/p)dH (o)

fo[wT/p’+oo)(1—a)fo(y) dde(U)/-/l—@(wT/(ggm) dH (o),

with

denoting the density of y under the null § < 6,. Setting w* = max{w}, w3}, the selection
region is then {(y, o) : y > w*/p}.

Figure 3 plots the selection boundaries for both constraints with 6 ~ A/(0,1) and
o ~ UJ0.5,1]. With @ = 0.05 and y = 0.2, the FDR constraint is binding, but not the
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FIGURE 3.—The left panel plots the selection boundaries for the normal-normal model with o7 = 1 and
a =0.05 and y = 0.2. The density of o is assumed to be uniform on the range [0.5, 1]. Selected units must
have (y;, 0;) above the curves. The red curves correspond to the selection region boundaries with FDR con-
trolled at level 0.2; solid lines for posterior mean ranking and dashed line for posterior tail probability ranking.
The black curves correspond to the selection boundaries with capacity control at level 0.05. The middle and
right panels illustrate the selected set from a realized sample of size 10,000. The gray circles correspond to
individuals selected by both the posterior tail probability rule and the posterior mean rule. The green crosses
depict individuals selected by the posterior mean rule but not the tail probability, and the red crosses indicate
individuals selected by the tail probability rule but not by the posterior mean rule.

capacity constraint. In this example, if we only impose the capacity constraint to be 5 per-
cent, even an oracle totally aware of G will face a false discovery rate of nearly 52 percent.
In other words, more than half of those selected to be in the right tail will be individuals
with 6 < 6, rather than from the intended 6 > 6, group. This fact motivates our more
explicit incorporation of FDR into the selection constraints. We may recall that in the
homogeneous variance Gaussian setting, we saw in Figure 1 that FDR was also very high
when « is set at 0.05. Figure 3 also depicts the selected set with a realized sample of 10,000
from the normal-normal model. With capacity constraint alone, the posterior mean crite-
rion favors individuals with smaller variances. When the FDR constraint is implemented,
with y = 0.2, it becomes the binding constraint in this setting, both criteria become more
stringent and only a much smaller set of individuals are selected, and there is less con-
flict in the selections. The corresponding selected sets are plotted in the right panel of
Figure 3. When the variance parameter o}, in G is not observed, we can estimate it via
the MLE based on the marginal likelihood of Y. This leads to a generalized James—Stein
estimator of the type proposed in Efron and Morris (1973).

EXAMPLE—Discrete G: Suppose 6 ~ 0.856_; +0.15,+0.0585. Then the marginal den-
sity of y given o takes the form

Flo?) = / o(y16, 0?) dG(6)

= (0.85¢(y|1, o) + 0.1¢(y|2, 0%) + 0.05¢(y|5, 7).
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FIGURE 4.—The left panel plots the selection boundaries for the normal-discrete model with
0~G=0.856_1 4+ 0.16, + 0.0585 and a = 0.05 and y = 0.2. The density of o is uniform on the range [0.5, 4].
The red curves correspond to the selection region with FDR controlled at level 0.2, solid lines for posterior
mean ranking and dashed lines for posterior tail probability ranking. The black curves correspond to the selec-
tion region with capacity control at level 0.05. The other panels are structured as in the previous figure.

And the random variable v is a transformation of the pair (y, o), defined as

/+°° (p(y|(9, 02) dG(6)
v=1(y, 0?) :=P(0 > 0,]y, 0?) =~ i
/ e(y]0, 0%)dG()

The capacity constraint leads to a thresholding rule on v such that P(v > A}) = «, while
the FDR control leads to a cutoff value A}, defined through y = E[(1 —v)1{v > Aj}]/P(v >
A7). Let A* = max{A}, A}}; the selection region is then defined by {(y, o) : y > £,(A*, o)},
and can be found easily numerically.

Figure 4 plots the selection boundaries for both constraints when 6 follows this discrete
distribution. We again set &« = 0.05 and y = 0.2, so we would like to select all the individ-
uals associated with the largest effect size, {6 = 5}, while controlling the FDR rate below
20%. The red curves again correspond to FDR control with the two ranking procedures,
while the black curves correspond to capacity control. For the two regions to overlap with
«a fixed at 0.05, we must be willing to tolerate y ~ 37%. In this case, we see that the pos-
terior probability ranking procedure prefers individuals with larger variances, while the
posterior mean ranking procedure prefers smaller variances. Based on a realized sample
of 10,000, Figure 4 again shows the selected observations, and once more we see that the
posterior mean criterion favors individuals with smaller variances, under both the capac-
ity constraint and the FDR constraint. In contrast to the normal-normal setting, now the
FDR constraint is much less severe and allows us to select considerably more individuals.

5. HETEROGENEOUS UNKNOWN VARIANCES

Assuming that the o;’s are known, up to a common scale parameter, may be plausible
in some applications such as baseball batting averages, but it is frequently more plausible
to adopt the view that we are simply confronted with estimates of scale available perhaps



20 J. GU AND R. KOENKER

from longitudinal data. In such cases, we need to consider the pairs, (y;, S;) as potentially
jointly dependent random variables arising from the longitudinal model,

Y, =0, + o€, €ir ~iid N(O, 1)7 (91', 0'2) ~G,

l

with sufficient statistics, Y; = 7,' Y.1', Y;, and S; = (T, — 1) ' 3.1, (Y, — Y;)?, for (6;, ?).
Conditional on (6;, 0?), we have Y;|6;, o7 ~ N(6;,07/T;) and S;|o? is distributed as
Gamma with shape parameter r; = (T; — 1)/2, scale parameter, o2/r;, and density func-
tion denoted as I'(S;|r;, o7/r;).

Given the loss function (3.1) and defining 6, as @ =P(6; > 0,) = ff;;oo dG(6, o?), the
conditional risk is

Eow,s[L(Sa 0)] = Z(l —8,)Va(Yi, Si)

+ 71 (Z{(Si(l — (Y5, Si)) - ’)’&‘}) + Tz(Z o — an),

i=1
with
Vo(i, 8:) =P(0; > 0,|Y:i =y, Si = 5)
+00
// F(s,-|r,-, (riz/ri)qo(yiw, 0'2/T,-) dG(B, 0'2)
J— Oa

- //F(s,»|r,~,a'iz/r,-)go(yi|0,Uz/ﬂ)dG(ﬂ,Uz) .

Taking expectations with respect to (Y, S), the Bayes rule solves

mﬁin]E|:Xn:(1 — 8:)va(Vis si)} +7 (E[i{(l — v (¥, 1)) 8 — v&»}D

i=1 i=1

Before characterizing the Bayes rule any further, we should observe that when vari-
ances o are not directly observed, the tail probability v, (Y, S) may no longer have the
monotonicity property we have described above.

LEMMA 5.1: Consider the transformation v, (Y, S) =P(0 > 6,|Y, S]; then for fixed S = s,
the function v, (Y, s) may not be monotone in Y'; and for fixed Y =y, the function v,(y, S)
may not be monotone in S.

PROPOSITION 5.2: For pre-specified (e, y) such that v <1 — a, the Bayes selection rule
takes the form

87 = 1{va(Y, 5) = A" (e, )},
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where A*(a, v) = max{A;(a, v), A ()} with
Xi(a, y) =min{A: E[(1 — v, (Y, S) — v)1{v.(Y, ) > A}] <0}
and
Ay (a) =min{A : P(v, (Y, S) > A) —a <0}.
Based on the Bayes rule, the selected set is defined as
Qoy = {(Y, 8) : 0a(Y, S) = A (e, ) }.

REMARK: Note that for each pre-specified pair («,y), Q,, is just the A*(a, y)-
superlevel set of the function v,(Y, S). For any «; > a,, nestedness of the selected sets
would mean that the A*(a,, y)-superlevel set of the function v,, must be a subset of the
A (ay, v)-superlevel set of the function v,,. The construction and the form of the optimal
selection rule may appear to be very similar to the case where o7 is observed. However,
the crucial difference is that we no longer require the independence between 6 and o in
this section. In contrast, when o7 is assumed to be directly observed, the independence
assumption is critical for all the derivations. For instance, the non-null proportion, de-
fined as P(6; > 6,), must change for different values of o; if we allow the distribution of 0
to depend on o.

5.1. A Conjugate Gaussian Example

Suppose we have balanced panel data y;, ..., yir ~ N(6, 0®) with sample means Y; =
+ >, ¥u and sample variances S; = 75 >, (y: — Y;)*. Further, suppose that G(6, o) takes
the normal-inverse-chi-squared form, NIX(6y, ko, v, 03) = N (660, 0%/ ko) x> (*|v0,
o7). Integrating out ¢, the marginal distribution of 6 becomes a Student ¢-distribution,

6— 0,
(To/x/K_O

where 1, is the ¢-distribution with degree of freedom »,. Therefore, the 1 — a quantile of
0, denoted 6,, is simply

t

Voo

_ 90 g1 _
ea_eo+mFty()(1 a),

where F;OI denotes the quantile function of ¢,,.

Conjugacy of the distribution G implies that the posterior distribution of (6, o?|Y, S)
follows NIX(0r, k7, vr, 02) = N (6|67, 02/k1r) x> (0?|vr, 02) with

VT:V0+T,
KT:K0+T,

K000+TY
O = ———i,

Kt

1 Tk
2= — (o2 + (T -1)S C (6y—Y)?).
7t = (4 (T = DS+ (60— )
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FIGURE 5.—The left panel shows level curves of the posterior mean (marked as red dashed lines) and the
posterior tail probability (marked as black solid lines) for the normal model with (6, o?) ~ NIX(0, 1, 6, 1) and
panel time dimension 7" = 9. The right plot shows the boundary of the selection region based on posterior
mean ranking (marked as the red dashed line) and the posterior tail probability ranking (marked as the solid
black line) with @ = 5% and y = 10%.

Integrating out o2, the marginal posterior of § again follows a ¢-distribution,
60— 6r

O'T/x/K_TN

It is thus clear that the posterior mean of 6 is simply a linear function of Y and indepen-
dent of S,

Ly -

6 TY
E[0]Y, ] = 6 = 0t 1T

Kt

and the posterior tail probability is given by

00— 0r 6, — 0r ) <0a—07)
(Y, ) =P(0=>06,Y,5)=P > Y,S)=1-F, [ ——|.
(Y.8)=B(0= 6,]7,5) (UT/ Ly (o

To illustrate this case, suppose 6y =0, kg =1, o7 =1 and vy =6 and T = 9. It can
be verified that v,(Y,S) is in fact a monotone function of Y for each fixed § and any
a > 0; hence, in this example, we can invert the function v,(y, s) to obtain the level curves.
The left panel of Figure 5 shows the level curves for v, (Y, S) and E(6|Y, S) for a = 5%.
It is clear that the posterior mean is a constant function of S, while the posterior tail
probability exhibits more exotic behavior with respect to S, especially for more extreme
values of Y. If we fix § = s, then v,(Y, s9) is an increasing function of Y. On the other
hand, fixing Y = y, for small y, implies that v, (y, ) is an increasing function of S, while
for y, large, v, (, S) becomes a decreasing function of S.
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FIGURE 6.—Selection set comparison for one sample realization from the normal model with
(0, 0*) ~ NIX(0, 1,6, 1) and panel time dimension 7 = 9. The left panel shows in gray circles the agreed
selected elements by both the posterior mean and the posterior tail probability criteria under the capacity con-
straint; extra elements selected by the posterior mean are marked in green and extra elements selected by the
posterior tail probability rule are marked in red. The right panel shows the comparison of the selected sets
under both the capacity and the FDR constraint with &« = 5% and y = 10%.

A capacity constraint of size « implies the thresholding rule,
P(va(Y,8) = A3) =«,
while FDR control at level y leads to a cutoff value A} defined as
Y =E[(1 - vu(Y, ) 1{va(Y, §) 2 A}]/P(va(Y, $) = A7)

The larger of the two thresholds, denoted A* = max{A}, A}}, defines the selection region
based on posterior tail probability ranking €, , ={(Y, S) : v.(Y,S) > A*}. For a = 5%
and y = 10%, the selection region based on the tail probability rule is {(Y, §) : v, (Y, S) >
0.72}. The posterior mean ranking is defined as {(Y, S) : E[0]|Y, S] > 2.2}. These selection
boundaries are depicted as the red dashed line and black solid line respectively in the right
panel of Figure 5. In this case, the FDR constraint binds. If only the capacity constraint
were in place, we would have a cutoff for tail probability at 0.40 and the cutoff for the
posterior mean at 1.84. Figure 6 further shows the comparison of the selected set based
on a sample realization from the model.

In Appendix B of the Supplemental Material, we consider a more complex bivariate dis-
crete example that illustrates somewhat more exotic behavior of the decision boundaries
and compares performance of several different ranking and selection rules.

5.2. Variants of the Unknown Variance Model

We have assumed that the only scale heterogeneity is driven by o; in the above model,
but often there may be more heteroscedasticity that should be allowed in €;. Here we
consider a variant where

Y, =0, + o€i, €ir NN(Oa 1/wi), (01" 0_l2) ~G.



24 J. GU AND R. KOENKER

We will assume that w;, ~ H are known quantities and are independent from (6;, o?).

Denoting w; = Z,T;'l w;,, the sufficient statistics now take the form Y; = ZIT;I w;, Y/ w;
and S, = (T, — 1)! Z,TLI(Y,», — Y;)% In Gu and Koenker (2017), we have illustrated
this formulation for predicting baseball batting averages; in that setting, “at bats” for
player i in year ¢ are given by the w;,, but there is still some player-specific heterogene-
ity in the o;’s representing consistency of batting performance. It is easy to show that
Yi|6:, 0 ~ N(6;, o?/w;) and S;|o? follows Gamma distribution with shape parameter
r; = (T; — 1)/2 and scale parameter o7 /r;. The decision rules now become a function of
the tuple (Y3, S;, w;); for instance, the tail probability can be specified as

/+wf(yi|0, o /w)L(s|ri, /1) dG(6, 07)

0o

va(yiysiawi):]:[»(eiz oalyi’si’wi)z +00 ’
/ £ (6, 0> /w)T (s /1) dG(8, o)

o]

and the posterior mean takes the form
E[0i|y,~, Si, wi] = / Of(yl, s,-|9, 0'2, wi) dG(G, 0'2).

The threshold values under either the capacity or the FDR constraint can be worked out
in a similar fashion. For any ranking statistics (Y, S;, w;) together with a decision rule
1{6(Y;, S;, w;) > A}, the capacity constraint requires choosing a thresholding value Aj(«)
such that

a://l{S(y, s, w) = As(@)} (v, 516, 07, w) dG(6, 0?) dH (w),

while the thresholding value to control in addition the FDR rate under size y requires
solving for Af(a, ) such that

_ P(3(y, s, w) = A (a, y); 0 < 6,)
P(3(y, s, w) = Aj(e, 7))

which can be further represented as

b

/ / 1{8(y, 5, w) = A (e Y) V(1 — @) fo (9, 516, 02, w) dG(9, 0°) dH (w)
/ f 1{8(t, s, w) = Aj(a, )} f (v, 516, 07, w) dG(6, 0*) dH (w)

Y

2

where fy(y, 5|0, o, w) is the density of (y, s) under the null hypothesis 6 < 6,.

We can again consider selection regions as those plotted in Figure 5 and Figure S.1 to
appreciate how different decision criteria determine the selection. As soon as the ranking
statistics depend on w, the selection region of the thresholding rule 1{&(y, s, w) > A*} will
also depend on the magnitude of w.

6. ASYMPTOTIC ADAPTIVITY

The previous sections propose Bayes rules for minimizing the expected number of
missed discoveries subject to both capacity and FDR constraints under several modeling
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environments. In each of these environments, the Bayes rule takes the form 6* = 1{v, >
A*}, where v, is defined as the posterior probability of 6 > 6, conditional on the data.
The thresholding value A* is defined to satisfy both the capacity and FDR constraints.
The Bayes rule involves several unknown quantities, in particular the v,’s and the optimal
thresholding value, A*, that require knowledge on the distribution of 6; or the joint distri-
bution of (6;, o7) when the variances are latent variables. For estimating this distribution
of the latent variables, we propose a plug-in procedure that is very much in the spirit of
empirical Bayes methods pioneered by Robbins (1956). In this section, we also establish
that the resulting feasible rules achieve asymptotic validity and asymptotically attain the
same performance as the infeasible Bayes rule.

We begin by discussing properties of the oracle procedure assuming that v, is known
and we only need to estimate the optimal thresholding value. We establish asymptotic
validity of this oracle procedure and then propose a plug-in method for both v, and the
thresholding value thereby establishing the asymptotic validity of the empirical rule. Be-
fore presenting the formal results, we introduce regularity conditions that will be required.
We distinguish two cases depending on whether the o?’s are observed.

ASSUMPTION 1: 1. (Variances observed) {Y;, o2, 0;} are independent and identically dis-
tributed with a joint distribution with o} and 6, independent. The random variables 0;
and o? have positive densities with respect to Lebesgue measure on a compact set ® C R
and [a?, 7] respectively for some o* > 0 and G* < +o0.

2. (Variance unobserved) Let S; be an individual sample variance based on T re-
peated measurements and Y; be the sample means with T > 4. Suppose further that
{Y;, Si, 0;, 0:} are independent and identically distributed and that the random variables
{6:, o2} have a joint distribution G with a joint density positive everywhere on its support.

6.1. Optimal Thresholding

Whether o7 is observed or estimated, the optimal thresholding value can be defined in
a unified manner by A* = max{A}, A5} with

A =inf{r € (0,1), H,(t) > 1 —a},
A3 =inf{r € (0,1), Q(r) < v},

where H, denotes the cumulative distribution of either v,(y;, 0;) or v.(y;, s:), induced
by the marginal distribution of the data, either as the pair {y;, o;} when variances are
observed or the pair {y;, 5;} otherwise. Hence A} is the 1 — o quantile of H,.

The function Q(¢) is defined as Q(t) = E[(1 — v,)1{v, > £}]/E[1{v, > t}]. Its formula-
tion recalls Proposition 5.2 and the existence of A} is guaranteed as long as a < 1 — .
The thresholding value is also equivalent to those defined in Proposition 3.3 and Propo-
sition 4.1. In particular, the thresholding values # and ¢; in Proposition 3.3 are cast in
terms of Y directly and it is easy to see A} = v,(#;) for j = 1,2 when variances are ho-
mogeneous. In a similar spirit, the explicit formulae for A} and A} in Proposition 4.1 are
a result of invoking the monotonicity of v,(y, o) with respect to y for each fixed value of
o. The function Q(#) is the mFDR of the procedure 6 = 1{v,, > ¢} for any « € (0, 1), and
is monotonically decreasing in ¢. Monotonicity of Q(¢) is crucial to justify this threshold-
ing procedure insuring that either the capacity constraint or the mFDR constraint must
be binding. Cao, Sun, and Kosorok (2013) have observed that a sufficient condition for
monotonicity for a broad class of multiple testing procedures is that the ratio of densities
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under the null and alternative of the test statistics employed for ranking be monotone
and they discussed the consequences of the violation of this condition. For the posterior
tail probability criterion, this monotone likelihood ratio condition, as we will see, can be
verified directly.

Recall that mFDR is defined as ) ., P[§; =1, 6; < 0,]/ Y, P(6; = 1). It suffices to
show that ]P)[Sl = 1, 91' < Ha] = E[(l — Ua,,-)5,-]. Since Vo,i = P[Ol > 0L¥|Dl] = af1 (Dl)/f(Dl),
where D; is the individual data being either {y;, o;} or {y;, s;} depending on the model and
fi1 is the marginal density of the data when 6, > 6, and f is the marginal density of D;,
then it is clear that P[8; =1, 0, < 0,] = (1 — @) [ W{v,; > 1}fo(D;)dD; = [ 1{v,; > t}(1 —
V) f(D;)dD; = E[(1 — v, )1{v,; > t}]. Then O(¢) = [ (1 — v)h,dv/ [ h,dv, where h,
is the density function of v,. Monotonicity of Q(#) can be easily verified by showing that
the derivative with respect to ¢ of the right-hand-side quantity is nonpositive.

6.2. Oracle Procedures

The only unknown quantity in the oracle procedure is the thresholding value and we
now discuss how to estimate it to achieve asymptotic validity. H, and O can be estimated
by the following quantities:

1 n
Hn(t) = ; Zﬂ{va,i < t}y
i=1

Z(l - va,i)]]-{va,i Z t}
O.(t) = =— :

Y e > 1}
i=1

and the associated thresholding values are then defined as A, = max{A,,, A,,}, with

A, =inf{z €[0,1], H,(t) > 1 — o},
Ay = inf{t € [0’ 1]’ Qn(t) = ’Y}

THEOREM 6.1—Asymptotic Validity of the Oracle Procedure: Under Assumption 1, the
procedure 6; = 1{v,; > A,} asymptotically controls the false discovery rate below vy and the
expected proportion of rejections below a for any (a, y) € [0, 1]* and y < 1 — a when n — oo;
more specifically,

Z 1{01 < 011’ Ua,i Z An}—
limsupE|: = <,
o PELONEPHAVE IS

i=1

1< 1
li E| - H{ve;i = A3 <.
imsup |:n; {Va,i = A} @

h— 00
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6.3. Adaptive Procedures

In practise, the posterior tail probability also involves the unknown quantity 6, =
G7'(1 — @) that needs to be estimated. We propose a plug-in estimator in the spirit of
the empirical Bayes method: estimating G by its nonparametric maximum likelihood es-
timator G, and estimating 6, as its 1 — « quantile.

Consistency of the nonparametric maximum likelihood estimator, G,, was first proven
by Kiefer and Wolfowitz (1956) using Wald type arguments. A Hellinger risk bound for
the associated marginal density estimate and adaptivity of G, and a self-regularization
property have been recently established in Saha and Guntuboyina (2020) and Polyanskiy
and Wu (2020). In particular, the following established result, stated here as an assump-
tion, is crucial for establishing the asymptotic validity of the adaptive procedure.

ASSUMPTION 2: The nonparametric maximum likelihood estimator G, is strongly consis-

tent for G. That is, for all continuity points k of G, én(k) — G(k) almost surely as n — oo.
Furthermore, the estimated marginal (mixture) density converges almost surely in Hellinger
distance.

When variances are homogeneous or when variances are unknown but we have longitu-
dinal data so that we have a mixture model for the pair {Y;, S;}, the Hellinger convergence
is established in van de Geer (1993). When variances are heterogeneous but known, the
Hellinger bound for marginal density has been established recently in Jiang (2020).

The plug-in estimators for the posterior tail probability, v,(y;, o;) when variances are
known or v,(y;, s;) when variances are unknown, are then defined respectively as

+00 +oo
ﬁa(yho-i):ﬁ (P(yi|07 o-lz)dGn(e)// QD(yile’ 0-12) dGn(0)7
O —00

+00 +oo
i)a(yis Si) = /: f(yh Sila’ 0-) dGn(67 0-2)// f(yi: Silea 0-) dGn(Ga 0-2)1
0, —00

o

where f is the density function for (y;, s;) which is a product of Gaussian and gamma
densities. Abbreviating the estimated posterior tail probability by 9, ;, we mimic the oracle

procedure and estimate the thresholding value by 5\,, = max{fxln, 5\2”}, where

) 1
Alnzinf{te [O, 1] . _Z]l{ﬁa,is t}Z 1 —0[},
n

i=1

Z(l - i)a,i)]]-{i)a,i 2 t}
Ay, =inflref0,1]: = >y

i ]]-{{)oz,i Z t}
i=1

THEOREM 6.2—Asymptotic Validity of Adaptive Procedure: Under Assumptions 1 and
2, the adaptive procedure &; = 1{D,; > A,} asymptotically controls the false discovery rate
below vy and the expected proportion of rejections below « for any («, y) € [0, 1)* with a <
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1 — y when n — oo; more specifically,

D 1{6; < Oa, i = A} -
lim supE|: = =7
o PRECNED WAV T

i=1

1 <]
li E| - Wi, > A} | <a.
1msup |:n; {Voi > A} | S

n—0o0

It is clear that given the Lagrangian formulation of the compound decision problem,
it can be viewed equivalently as a constrained optimization problem. See also the discus-
sion in Remark 3.4. We seek to maximize power defined as B(¢) :=P(6; > 0,, 6, =1)/«a
subject to two constraints: the first is the marginal FDR rate and the other is the se-
lected proportion. For each fixed pair of {«, y}, the Bayes rule achieves the best power
among all thresholding procedures that respect the two constraints. The next theorem
establishes that our feasible, adaptive procedure achieves the same power as the oracle
rule asymptotically. It is supported by the simulation evidence presented in the next sec-

tion. In practice, we suggest convolution smoothing of the discrete G with a bandwidth
slowly tending to zero with n. The resulting smoothed mixing distribution is also consis-
tent, hence fulfilling Assumption 2 and therefore all our adaptivity results.

THEOREM 6.3: Under Assumptions 1 and 2, the adaptive procedure 8; = 1{0,,; > )A\n} at-
tains the same power as the optimal Bayes rule asymptotically. In particular, as n — oo,

Z]]-{Hl 2 001, i)a,i 2 Xn}
i=1

> 16 > 6.}
i=1

7. SIMULATION EVIDENCE

In this section, we describe two small simulation exercises designed to illustrate per-
formance of several competing methods for ranking and selection. As a benchmark for
evaluating performance, we consider several oracle methods that presume knowledge of
the true distribution, G, generating the 6’s as well as several feasible methods that rely
on estimation of G. These are contrasted with more traditional methods that are based
on linear shrinkage rules of the Stein type. The linear shrinkage rule is the posterior
mean of 6 under the assumption that G follows a Gaussian distribution with unknown
mean and variance parameters. This is the commonly used estimator for ranking and
selection in applied work, notably Chetty, Friedman, and Rockoff (2014a, 2014b) for
teacher evaluation and Chetty and Hendren (2018) for studying intergenerational mo-
bility.

Typically the linear shrinkage estimator is used in the context of heterogeneous known
variances; this will be the model we focus on in our simulation experiments. The linear
shrinkage formula defined in (2.1) easily adapts to the heterogeneous variances case and
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leads to the James—Stein shrinkage rule with heterogeneous known variances. Efron and
Morris (1973) introduced some further modifications. As we have already demonstrated,
when variances are heterogeneous, the linear shrinkage estimator provides a different
ranking than the posterior tail probability rules. Further complications arise when we
seek procedures that also control false discovery. To estimate the false discovery rate for
different thresholding values, we requires knowledge of G. If the Gaussian assumption on
G underlying the linear shrinkage rules is misplaced, it may lead to an inaccurate estimate
of FDR, and consequently to procedures that fail to control for false discovery.

Performance will be evaluated primarily on the basis of power, which we define as the
proportion of individuals whose true 6; exceeds the cutoff 6, = G'(1 — @), who are ac-
tually selected. This is the sample counterpart of P(5; =1, 6; > 6,,)/P(6; > 6,). FDR is
calculated as the sample counterpart of P(6;, =1, 6; < 6,)/P(8; = 1), that is, the propor-
tion of selected individuals whose true 0; falls below the threshold. While our selection
rules are intended to constrain FDR below the vy threshold, as in other testing problems,
they are not always successful in this objective in finite samples so empirical power com-
parisons must be interpreted cautiously in view of this. Nonetheless, asymptotic validity is
assured by the results in Section 6. We compare performance for three distinct « levels,
{0.05, 0.10, 0.15}, and three vy levels, {0.05, 0.10, 0.15}.

7.1. The Student t Setting

Our first simulation setting focuses on the effect of tail behavior of the distribution on
performance of competing rules. For these simulations, we take G to be a discrete ap-
proximation to Student ¢ distributions with degrees of freedom in the set {1, 2, 3, 5, 10},
and supported on the interval [—20, 20]. The scale parameters of the Gaussian noise con-
tribution are independent and uniformly distributed on the interval [0.5, 1.5]. We report
power performance for several alternative ranking and selection rules:

OTP Oracle Tail Probability Rule

OPM Oracle Posterior Mean Rule

Efron Efron Tail Probability Rule

KWs Kiefer—Wolfowitz Smoothed Tail Probability Rule
EM Efron and Morris (1973) Linear Shrinkage Rule

The KWs rule uses G = G % K, 1, with biweight kernel K and bandwidth 4 equal to half the

mean absolute deviation from the median of G. The Efron rule uses his suggested default
of a natural spline basis with five degrees of freedom and penalty parameter 0.1.

We illustrate the results in Figure 7, where we plot empirical power against degrees
of freedom of the ¢ distribution for a selected set of values for the capacity constraint,
a € {0.05,0.10, 0.15}, and FDR constraint, y € {0.05, 0.10, 0.15}, as indicated at the top
of each panel of the figure. The most striking conclusion from this exercise is the dramatic
decrease in power as we move toward the Gaussian distribution. At the Cauchy, ¢, power
is quite respectable for all choices of @ and vy, but power declines rapidly as the degrees of
freedom increases, reinforcing our earlier conclusion that the Gaussian case is extremely
difficult. We would stress, in view of this finding, that classical linear shrinkage procedures
designed for the Gaussian setting are poorly adapted to heavy tailed settings in which the
reliability of selection procedures is potentially greatest.

Careful examination of this figure also reveals that there is a slight advantage to the
posterior tail probability rules over the posterior mean procedures, both for the oracle
rules and for our feasible procedures. There is surprisingly little sacrifice in power in
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FIGURE 7.—Power performance for several selection rules with Student ¢ signal. Capacity and FDR con-
straints are indicated at the top of each panel in the figure.

moving from the oracle methods to the Efron or Kiefer—Wolfowitz rules. The Efron and
Morris selection rule is very competitive in the almost Gaussian, #;, setting but sacrifices
considerable power in the lower degrees of freedom settings due to the misspecification
of the distribution G and consequent inaccurate estimation of the false discovery rate.

7.2. A Teacher Value-Added Setting

Our second simulation setting is based on a discrete approximation of the data structure
employed in Gilraine, Gu, and McMillan (2020) to study teacher value-addded methods.
Several longitudinal waves of student test scores from the Los Angeles Unified School
District were combined in this study. Here we abstract from many features of the full lon-
gitudinal structure of these data, and focus instead on comparing performance of several
selection methods. We maintain our standard known variance model in which we observe
Y: ~ N (6;, o) with 6,’s drawn iidly from a distribution G estimated by Gilraine, Gu, and
McMillan (2020). This distribution was estimated from the full longitudinal LA sample
using the nonparametric maximum likelihood estimator of Kiefer and Wolfowitz and then
smoothed slightly by convolution with a biweight kernel and illustrated in the left panel of
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FIGURE 8.—Densities of “latent” (mean) ability and standard deviation for the teacher value-added simu-
lations.

Figure 8. Variances, in keeping with our hypothesis in Section 4, are drawn from a distri-
bution with density illustrated in the right panel of Figure 8. We focus on selection from
the left tail of the resulting distribution since it is those teachers whose jobs are endan-
gered by recent policy recommendations in the literature (see, for instance, Hanushek
(2011)).

We draw samples of size 10,000 from the foregoing distribution and compute perfor-
mance measures based on 100 replications. The fitted densities for this simulation exercise
are based on a sample of roughly 11,000 teachers, so the simulation sample size is chosen
to be commensurate with this. In Table II, we report power, FDR, and the proportion
selected by ten selection rules. The oracle rules, OTP and OPM, based ranking by the tail
probability, and posterior mean criteria can be considered benchmarks for the remaining
feasible procedures. Only the oracle procedures can be considered reliable from the per-
spective of adhering to the capacity and FDR constraints. Consequently, some caution
is required in the interpretation of the power comparisons since feasible procedures can
exhibit good power at the expense of violating these constraints. This is analogous to the
common difficulty in interpreting power in testing problems when different procedures
have differing size. When FDR is constrained to 5%, even the oracle is only able to select
about half of the deserving individuals; OTP is consistently preferable to OPM as ex-
pected and power performance improves somewhat as the capacity constraint is relaxed.
Among the feasible G-modeling selection procedures, the Efron rules have good power
performance, but fail to meet the FDR constraints. We conjecture that somewhat less
aggressive smoothing than the default, df =5, ¢y = 0.1, might help to rectify this. In con-
trast, the smoothed Kiefer—Wolfowitz rules are somewhat overly conservative in meeting
the FDR constraints and might benefit from somewhat more aggressive smoothing.

Among the other procedures, the linear posterior mean rule, LPM, as employed by
Chetty, Friedman, and Rockoff (2014a, 2014b), and the linear posterior mean rule, EM,
of Efron and Morris (1973) behave identically and exhibit somewhat erratic FDR control
due to the misspecified Gaussian assumption on G; this leads to weaker power perfor-
mance. As a further comparison, when the linear shrinkage rules are implemented with-
out any FDR constraint, denoted LPM* and EM* in the table, as they typically would be
used in practice, the false discovery proportion is considerably higher than the targeted vy.
We also report the performance of MLE and P-value rules, implemented without FDR
control; again, both yield a higher FDR rate, making it difficult to evaluate their power
performance.
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TABLE 11
COMPARISON OF PERFORMANCE OF SEVERAL SELECTION RULES FOR THE TEACHER VALUE-ADDED
SIMULATION.
y=5% vy=10%
a=1% a=3% a=5% a=10% a=1% a=3% a=5% a=10%
Power
OTP 0.394 0.520 0.554 0.626 0.494 0.625 0.661 0.733
OPM 0.365 0.492 0.521 0.599 0.484 0.620 0.654 0.731
ETP 0.435 0.540 0.580 0.657 0.540 0.647 0.688 0.759
KWTP 0.355 0.477 0.521 0.614 0.452 0.583 0.631 0.723
EPM 0.398 0.511 0.552 0.632 0.528 0.642 0.683 0.758
KWPM 0.325 0.447 0.492 0.588 0.440 0.576 0.624 0.719
LPM 0.162 0.341 0.418 0.689 0.246 0.460 0.542 0.805
LPM* 0.726 0.781 0.796 0.829 0.726 0.781 0.796 0.829
EM 0.162 0.341 0.418 0.689 0.246 0.460 0.542 0.805
EM* 0.726 0.781 0.796 0.829 0.726 0.781 0.796 0.829
MLE 0.699 0.768 0.787 0.824 0.699 0.768 0.787 0.824
P-val 0.374 0.478 0.535 0.635 0.374 0.478 0.535 0.635
FDR
oTP 0.050 0.050 0.051 0.051 0.103 0.103 0.100 0.101
OPM 0.047 0.050 0.051 0.053 0.103 0.101 0.101 0.102
ETP 0.070 0.059 0.061 0.064 0.128 0.115 0.117 0.119
KWTP 0.035 0.037 0.041 0.048 0.082 0.081 0.085 0.096
EPM 0.063 0.057 0.059 0.062 0.129 0.115 0.116 0.118
KWPM 0.038 0.040 0.045 0.051 0.081 0.084 0.087 0.097
LPM 0.016 0.025 0.033 0.083 0.031 0.048 0.061 0.151
LPM* 0.276 0.226 0.207 0.172 0.276 0.226 0.207 0.172
EM 0.016 0.025 0.033 0.083 0.031 0.048 0.061 0.151
EM* 0.276 0.225 0.207 0.172 0.276 0.225 0.207 0.172
MLE 0.304 0.238 0.216 0.177 0.304 0.238 0.216 0.177
P-val 0.627 0.526 0.467 0.365 0.627 0.526 0.467 0.365
Selected
OTP 0.004 0.016 0.029 0.066 0.006 0.021 0.037 0.082
OPM 0.004 0.015 0.027 0.063 0.005 0.021 0.036 0.081
ETP 0.005 0.017 0.031 0.070 0.006 0.022 0.039 0.086
KWTP 0.004 0.015 0.027 0.064 0.005 0.019 0.034 0.080
EPM 0.004 0.016 0.029 0.067 0.006 0.022 0.038 0.086
KWPM 0.003 0.014 0.026 0.062 0.005 0.019 0.034 0.080
LPM 0.002 0.010 0.022 0.075 0.003 0.014 0.029 0.095
LPM* 0.010 0.030 0.050 0.100 0.010 0.030 0.050 0.100
EM 0.002 0.010 0.022 0.075 0.003 0.014 0.029 0.095
EM* 0.010 0.030 0.050 0.100 0.010 0.030 0.050 0.100
MLE 0.010 0.030 0.050 0.100 0.010 0.030 0.050 0.100
P-val 0.010 0.030 0.050 0.100 0.010 0.030 0.050 0.100

8. RANKING AND SELECTION OF U.S. DIALYSIS CENTERS

Motivated by important prior work on ranking and selection by Lin, Louis, Paddock,
and Ridgeway (2006, 2009) illustrated by applications to ranking U.S. dialysis centers, we
have chosen to maintain this focus to illustrate our own approach. Kidney disease is a
growing medical problem in the United States and considerable effort has been devoted
to data collection and evaluation of the relative performance of the more than 6000 dial-
ysis centers serving the afflicted population. Centers are evaluated on multiple criteria,
but the primary focus of center ranking is their standardized mortality rate, or SMR, the
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ratio of observed deaths to expected deaths for center patients. Allocating patients to
centers is itself a complex task since patients may move from one center to another in the
course of a year. Centers also vary considerably in the mix of patients they serve. Predic-
tions from an estimated Cox proportional hazard model that attempts to account for this
heterogeneity are employed to estimate expected deaths for each center.

Our analysis focuses exclusively on the SMR evaluation of centers using longitudinal
data from 2004-2018 as reported in University of Michigan Kidney Epidemiology and
Cost Center (2009-2019). We restrict attention to 3230 centers that have consistently
reported SMR data over this sample period. Observed deaths, denoted y;, for center i
in year ¢, are conventionally modeled as Poisson,

Vie ~ Pois(pipir),

where u;, is center i’s expected deaths as predicted by the Cox model in year ¢ and p;
is the center’s unobserved mortality rate. We view u;, as the effective sample size for the
center, after adjustment for patient characteristics of the center. Center characteristics are
explicitly excluded from the Cox model. The classical variance stabilizing transformation
for the Poisson brings us back to the Gaussian model,

Zip = v/ Yie/ Wi ’VN(ei, 1/wit),

where 0; = ,/p; and w;, = 4u;,. Exchangeability of the centers yields a mixture model in
which the parameter 6; is effectively assumed to be drawn iidly from a distribution, G.
The predictions of expected mortality, u;,, are assumed to be sufficiently accurate that we
treat w;, as known, and independent of 6; ~ G.

Over short time horizons like 3 years, we assume that centers have a fixed draw of 6;
from G, and thus we have sufficient statistics for 6, as

’Ti = Zwitz,-t/wi NN(@,‘, 1/wi)7

teT

where the set 7 is the corresponding 3-year window and w; = ), w;,. Given these ingre-
dients, it is straightforward to construct a likelihood for the mixing distribution, G, and
proceed with estimation of it.

Our objective is then to select centers based on the posterior distributions of their 6;’s.
For example, the posterior tail probability of center i is given by

+00
Vo (ti, wi) =P(0; = 0,]t;, w) = =

+o00

F(616.w) dG(8)

—00

where f is the density function of 7; conditional on 6; and w;. The capacity constraint
requires choosing a thresholding value A}(«) such that

a://ll{va(t, w) > A3 (@)} (116, w) dG(6) dH (w),

which can be approximated by + Y, 1{v.(;, w;) > A3(a)}, and inverted to obtain the
threshold. Based on the discussion in Section 6, for the FDR constraint we choose a
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thresholding value Aj (e, ) such that
/ f v (2, w) = A (e, ¥) }(1 = va (2, w)) f(£]6, w) dG(6) dH (w)
’y =
/ / 1{v,(t, w) = A(as v) ) £(116, w) dG(6) dH (w)

RENCEY

where H is the marginal distribution of the observed portion of the variance effect. The
numerator can be approximated by 1 " .(1 — va(#;, w;))I{va (t;, wi) > A;(a, y)} and the
denominator can be approximated by + 3, 1{v. (;, w;) > Aj(a, y)}.

The posterior mean ranking, in contrast, is based on

6(1‘,‘, w,-) = E[0i|ti, u)l‘] = / 9f(t,|6, w,-) dG(B)
For the capacity constraint, we choose a thresholding value C;(«) such that
a= / / 1{8(r, w) = C5 () } £ (2|6, w) dG(6) dH (w).

For FDR constraint, we pick a thresholding value C;(«, ) such that

_ P(8(t,w) = Ci(a, 7); 0 < 6.)
P8t w) = Ci(a, 7))

The right-hand side of the FDR constraint can be approximated by

% Z]l{S(t,-, si, w) > Cr(a, y) (1 — va(t, wi))/% > {8t w) = Ci (e, 1)}

i

while the right-hand side of the capacity constraint can be approximated by
1
- > 1{8(t, w) = G ()},

so C;(«) is simply the empirical quantile of the 6(#;, w;).

We will compare the foregoing ranking and selection rules with more naive rules based
upon the Poisson and Gaussian MLEs, >, .- v/ > _,.; i, and T;, respectively, a variant
of the much maligned P-value, as well as a linear shrinkage procedure. For these rules,
we do not attempt to control for FDR since this is how they are typically implemented in
practice.

To help appreciate the difficulty of the selection task, Table III reports estimated FDR
rates for several selection rules under a range of capacity constraints « for both right and
left tail selection based on the data from 2004 to 2006. Right tail selection corresponds
to identifying centers whose mortality rate is higher than expected; left tail selection to
centers with mortality lower than expected. To estimate FDR, we require an estimate
of the distribution of distribution, G. For this purpose, we use the smoothed version of
the Kiefer—Wolfowitz NPMLE introduced in Section 2. The biweight bandwidth for the
smoothing was chosen as the mean absolute deviation from the median of the discrete
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TABLE III
FDR ESTIMATES: 2004-2006.

a=4% a=10% a=15% a=20% a=25%

Right Selection

MLE 0.544 0.481 0.436 0.403 0.352
Poisson-MLE 0.545 0.485 0.440 0.406 0.355
P-value 0.532 0.475 0.432 0.399 0.349
Efron-Morris 0.521 0.473 0.429 0.398 0.349
James-Stein 0.521 0.473 0.429 0.398 0.349
PM 0.517 0.472 0.428 0.398 0.349
TP 0.517 0.471 0.428 0.397 0.349
Left Selection

MLE 0.611 0.565 0.481 0.449 0.393
Poisson-MLE 0.600 0.561 0.478 0.448 0.393
P-value 0.620 0.565 0.477 0.450 0.393
Efron—Morris 0.595 0.552 0.472 0.445 0.391
James—Stein 0.595 0.552 0.472 0.445 0.391
PM 0.592 0.552 0.473 0.445 0.391
TP 0.589 0.550 0.471 0.444 0.390

NPMLE, G. The assessment of FDR reported in Table III reflects the considerable un-
certainty associated with the selected set of centers deemed by the capacity constraint to
be in the upper (or lower) « quantile based upon our estimate of the distribution, G, of
unobserved quality.

The MLE rule ranks centers based on their Gaussian MLE, T;, while the Poisson-MLE
rule rankson ), y;,/ Y, i, which is the MLE of p; from the Poisson model. P-value ranks
centers based on the variance stabilizing transformation from the Poisson model under
the null hypothesis p, = 1 and p; > 1 as the alternative hypothesis for right selection and
p: < 1 for the left selection. All these rules ignore the compound decision perspective of
the problem entirely.

Among the compound decision rules, we consider the linear (James—Stein) shrinkage
rule, iy + (T; — fu9) 02/ (67 + 1/w;), which is the posterior mean of ; based on the model
T; ~ N(6;, 1/w;) assuming that the latent variable 6; follows a Gaussian distribution with
mean p, and variance o2. We also consider the Efron and Morris (1973) estimator, which
is a slight modification of the James—Stein estimator.

Finally, PM and TP are the posterior mean of 6 and posterior tail probability of 6 > 6,,
for right selection, and 6 < 6, for left selection based on our estimated G. For both left
and right tail selection, as « increases, the FDR rate decreases, indicating the selection
task becomes easier. All rules that account for the compound decision perspective of the
problem have slightly lower FDRs than those that consider each center individually.

The Kidney Epidemiology and Cost Center (2018) assigns ratings of five stars down to
one star to centers in the proportions {0.22, 0.30, 0.35, 0.09, 0.04}, respectively. We will
abbreviate these ratings to the conventional academic scale of A—F. To illustrate the con-
flict between the selection criteria, we plot in Figure 9 the centers selected for the grade A
(five stars, which consists of 22% of the centers that suppose to have their true mortality
rate being the lowest) category with and without FDR control. Centers are characterized
by pairs, (7;, w;), consisting of their weighted mean standarized mortality, 7;, and their
estimate of the precision, w;, of these mortality estimates. In each plot, the solid curves
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FIGURE 9.—Contrasting selections for A-rated centers: The two upper panels compare posterior tail
probability selection with MLE (fixed effects) selection, while the lower panels compare TP selection with
James-Stein (linear shrinkage) selection. Left panels impose capacity control only, while the right panels im-
pose 20 percent FDR control for the TP rule. The estimated FDR rate for both the MLE and James—Stein
selection under capacity constraint, using the smoothed NPMLE estimator for G, is 0.431. Comparisons are
based on the 2004-2006 data.

represent the decision boundaries of the selection rule under comparison. Centers with
low mortality and relatively high precision appear toward the northwest in each figure.
Panel (a) of the figure compares the posterior tail probability selection with the MLE,
or fixed effect, selection. The selection boundary for the MLE is the (red) vertical line,
since the MLE ignores the precision of the estimates entirely. The selection boundary for
the tail probability rule is indicated by the (blue) curve. A few centers with high precision
excluded by the MLE rule are selected by the TP rule, and on the contrary, a few centers
with low precision are selected by the MLE rule but excluded by the TP criterion. Panel
(b) imposes FDR control with y = 0.20 on the TP selection with an estimated threshold-
ing value implied by the FDR constraint using the smoothed NPMLE. The MLE selec-
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FIGURE 10.—Histogram of estimated AR(1) coefficients for 3230 dialysis centers based on annual data
2004-2017.

tion is the same as in Panel (a) without the FDR control. We see that under TP rule with
FDR control, the number of selected centers is reduced considerably. Instead of selecting
711 centers allowed by the capacity constraint, it selects only 230 centers. In compari-
son, the MLE rule under capacity constraint has an estimated FDR rate at 0.431. Panel
(c) compares centers selected by the TP rule with those selected by a James—Stein linear
shrinkage rule. Now the TP rule tolerates a few more low precision centers, while it is
the James—Stein rule that demands higher precision to be selected. Finally, in Panel (d),
we again subject the TP rule to FDR control of 20 percent, while the James—Stein rule
continues to adhere only to the capacity constraint. The TP boundary scales back sub-
stantially, suggesting that a large proportion of the extra selections made by James—Stein
linear shrinkage rules are likely to be false discoveries. In fact, the estimated FDR rate of
the James—Stein rule under just capacity constraint is also 0.431, the same as that of the
MLE rule.

Given the longtitudinal structure of the dialysis data, it would be possible to consider
the models in Section 5 that allow for unobserved variance heterogeneity. We refrain
from doing so partly due to space considerations and because we are reluctant to assume
stationarity of random effects over longer time horizons.

8.1. Temporal Stability, Ranking, and Selection

Given the longitudinal nature of the data, it is natural to ask, “How stable are rankings
over time, and isn’t there some temporal dependence in the observed data that should
be accounted for?” Perhaps surprisingly, the year-to-year dependence in the observed
mortality is quite weak. In Figure 10, we plot a histogram of estimated AR(1) coefficients
for the 3230 centers; it is roughly centered at zero and slightly skewed to the left. We do
not draw the conclusion from this that there is no temporal dependence in the observed
Vi, but only that there is considerable heterogeneity in the nature of this dependence,
with roughly as many centers exhibiting negative serial dependence as those with positive
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TABLE IV

ESTIMATED FIRST-ORDER MARKOV TRANSITION MATRIX: ENTRY i, j OF THE MATRIX ESTIMATES THE
PROBABILITY OF A TRANSITION FROM STATE i TO STATE j BASED ON POSTERIOR TAIL PROBABILITY
RANKINGS FOR 3-YEAR LONGITUDINAL GROUPING OF THE CENTER DATA.

A B C D F
A 0.441 0.328 0.201 0.024 0.006
B 0.247 0.360 0.327 0.059 0.007
C 0.122 0.286 0.440 0.112 0.040
D 0.062 0.181 0.441 0.210 0.106
F 0.021 0.085 0.346 0.219 0.329

dependence. Our approach of considering brief, 3-5-year, windows of presumed stability
in center performance is consistent with the procedures of the official ranking agency.
In each of these windows, we can compute a ranking according to one of the criteria
introduced above, and it is of interest to see how much stability there is in these rankings.

To address this question, we consider rankings based on the posterior tail probability
criterion for 3-year windows. In each of the five 3-year windows, we assign centers letter
grades, A-F, with proportions {0.22, 0.30, 0.35, 0.09, 0.04}, respectively. Table IV reports
the estimated transition matrix between these categories, so entry i, j in the matrix repre-
sents the estimated probability of a center in state i moving to state j in the next period.

It is obviously difficult to maintain an “A” rating for more than a couple of periods, but
centers with poor performance are also likely to move into the middle of the rankings.
Although, as we have seen, there is no guarantee that the posterior tail probability crite-
rion yields a nested ranking, nestedness does hold in this particular application. Posterior
mean ranking yields similar transition behavior. The high degree of mobility between rat-
ing categories reinforces our conclusion that ranking and selection into rating categories
is subject to considerable uncertainty.

9. CONCLUSIONS

Robbins’s compound decision framework is well suited to ranking and selection prob-
lems, and nonparametric maximum likelihood estimation of mixture models offers a pow-
erful tool for implementing empirical Bayes rules for such problems. Posterior tail prob-
ability selection rules perform better than posterior mean rules when precision is hetero-
geneous. Ranking and selection is especially difficult in Gaussian settings where classical
linear shrinkage methods are most appropriate. Nonparametric empirical Bayes methods
can substantially improve upon selection methods based on linear shrinkage and tradi-
tional p-values when the latent mixing distribution is not Gaussian in terms of both power
and false discovery rate.
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