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GRAPHON GAMES: A STATISTICAL FRAMEWORK FOR NETWORK GAMES
AND INTERVENTIONS
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In this paper, we present a unifying framework for analyzing equilibria and design-
ing interventions for large network games sampled from a stochastic network formation
process represented by a graphon. To this end, we introduce a new class of infinite pop-
ulation games, termed graphon games, in which a continuum of heterogeneous agents
interact according to a graphon, and we show that equilibria of graphon games can be
used to approximate equilibria of large network games sampled from the graphon. This
suggests a new approach for design of interventions and parameter inference based on
the limiting infinite population graphon game. We show that, under some regularity
assumptions, such approach enables the design of asymptotically optimal interventions
via the solution of an optimization problem with much lower dimension than the one
based on the entire network structure. We illustrate our framework on a synthetic data
set and show that the graphon intervention can be computed efficiently and based solely
on aggregated relational data.

KEYWORDS: Network games, aggregative games, large population games, Nash
equilibrium, targeted interventions.

1. INTRODUCTION

RECENT DECADES have witnessed tremendous progress in the theory of network games,
which have been used widely to model, understand, and predict behavior in a range of
settings involving strategic interactions of agents embedded in networked environments.
Despite this progress, several issues remain when considering interventions or regulation
of economic behavior over large scale networks. First, in this case, the optimization prob-
lem that the central planner needs to solve for determining the optimal intervention is
very high dimensional, often scaling with the size of the network. Second, assuming that
the central planner has access to detailed information about the network structure is not
a good approximation of reality since collection of exact network data is either extremely
costly or, in many settings, not at all possible due to proprietary and privacy concerns.1

To overcome these issues, in this paper we define a new class of infinite population
games, termed graphon games, which can approximate a wide variety of complex strate-
gic interactions in large network environments. Graphon games involve a continuum of
agents whose payoff depends on their own action as well as a weighted average of other
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agents’ actions, with heterogeneous weights specified by a graphon model. We stress that
graphons have two interpretations in relation to networks. First, as shown in Lovász and
Szegedy (2006), Lovász (2012), Borgs, Chayes, Lovász, Sós, and Vesztergombi (2008),
they can be seen as the limit of a graph when the number of agents tends to infinity and
can thus be used to capture heterogeneous interaction among a continuum of agents,
as discussed above. Second, they can be used as a flexible representation of stochastic
network formation models (that generalizes, e.g., Erdős–Rényi and stochastic block mod-
els).2 To connect our infinite population analysis to finite network games, we consider this
second interpretation of graphons and study large network games in which agents interact
according to a finite network sampled from such a stochastic model. Our first key result
shows that the equilibrium in such large sampled network games can be well approxi-
mated by the equilibrium of the corresponding graphon game. We provide bounds on the
distance between sampled and graphon equilibria as a function of the network size and
prove that it vanishes as the number of agents grows. This convergence result enables the
study of large network games by considering their limit: the graphon game.

To illustrate why this is important, we turn to intervention design and show that the
graphon approximation significantly reduces both the amount of data and the compu-
tational burden required to design interventions. In particular, we show that, under a
finite-rank assumption on the graphon—leading to a low dimensional stochastic network
formation model—the optimization problem faced by the central planner can be approxi-
mated by a low dimensional problem (with size corresponding to the rank of the graphon
instead of the number of agents). Furthermore, under the same assumptions, graphon
interventions can be designed with much less information than the entire network struc-
ture. To illustrate this second point, we show through a synthetic case study that easily
collectable aggregated relational data are sufficient to estimate the parameters of network
games sampled from a stochastic block model (a widely used type of graphon in which
agents are partitioned into a finite number of communities).3 For this case study, graphon
interventions can be planned by solving an optimization problem with dimension equal to
the number of blocks (communities) instead of number of agents, leading to an asymp-
totically optimal yet computationally tractable procedure for intervention design.

We discuss further applications of our framework to parameter estimation and incom-
plete information games in the Appendix, suggesting how our main convergence result
can be exploited to derive an alternative approach to a number of classic network games
problems beyond targeted intervention, by focusing on the limiting graphon game.

1.1. Detailed Contributions

We define a graphon game in terms of a continuum of agents indexed in [0�1] and
a graphon, represented by a symmetric measurable function W : [0�1]2 → [0�1] with
W (x� y) denoting the influence of agent y ’s strategy on agent x’s payoff function. We

2By the Aldous–Hoover theorem, any exchangeable infinite random graph is obtained as a mixture of
graphons; Diaconis and Janson (2007).

3Aggregated relational data, as introduced in Breza et al. (2020), are collected through questions such as
how many of the agents you interact with have trait k?, instead of questions of the form what is the identity of all
the agents you interact with?. For villages in Karnataka, India, Breza et al. (2020) showed using J-PAL South
Asia cost estimates that collecting aggregated relational data leads to a 70–80% cost reduction with respect
to the cost of the exact network data collected for the study in Banerjee, Chandrasekhar, Duflo, and Jackson
(2013).
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assume that agent x’s payoff function depends on his strategy s(x) as well as a weighted
average of other agents’ strategies computed according to the graphon W .

Our first main contribution is to show that, beyond the natural interpretation of
graphon games as a model for strategic heterogeneous interactions among a continuum of
nonatomic agents, equilibria of graphon games can also be used to approximate strategic
behavior in large but finite populations of agents. To this end, we build on the interpre-
tation of graphons as stochastic network formation models and show that equilibria of
finite network games, in which agents interact according to a network sampled from a
graphon, converge almost surely to the equilibrium of the corresponding graphon game.
For simplicity of exposition, we first present our convergence result for the case of dense
undirected networks, in which the number of neighbors grows linearly with the population
size and the local aggregate is defined as the sum of neighbors’ actions (normalized by
the network size). We then show in Section 5 that our results can be generalized from
undirected to directed networks and from games in which the sum of neighbors’ actions
is normalized by the population size to games in which it is normalized by each agent’s
degree. Additionally, we show that our results can be extended to classes of networks in
which the number of neighbors grows sublinearly in the population size so that the edge
density converges to zero. We stress that for our convergence result to hold, the number
of neighbors still needs to increase at least logarithmically. This condition is used in our
technical results to ensure that concentration inequality bounds apply (see also Jackson
and Storms (2019)). Nonetheless, we show within our case study that, in practice, the
graphon approach leads to useful insights even when the average degree in a network
of 1000 agents is around 20, illustrating the applicability of our framework to realistic
networks.

As a second main contribution, we show how our main convergence result can be ex-
ploited to suggest an alternative approach for design of targeted interventions. To this
end, we formulate a novel optimization problem in the graphon space which, through
sampling, provides interventions for finite sampled network games. We show that such
graphon-based interventions are asymptotically optimal and that, for finite rank graphons,
the graphon optimization problem is a tractable finite dimensional problem. We apply our
results to both linear quadratic network games, as studied in Galeotti, Golub, and Goyal
(2020), and to a class of nonlinear and non-monotone network games considered in Parise
and Ozdaglar (2019).

To illustrate the computational and informational gains obtained with the graphon ap-
proach, we perform a case study on a simulated data set of 80 different networks, drawn
as independent realizations of a stochastic block model with four communities. For this
case study, the graphon approach results in a near optimal solution and reduces to a
four-dimensional optimization problem (whereas designing the optimal intervention or
a network heuristic suggested in Galeotti, Golub, and Goyal (2020) would necessitate
solving a problem of dimension equal to the size N of the network which we set to
N = 300�600�1200 in our simulations). We also stress that our procedure can be applied
based on aggregated data (the graphon model) instead of requiring exact network data.
Finally, within this case study, we suggest how to estimate peer effects under partial net-
work data. This is a topic of recent interest, as discussed, for example, in Chandrasekhar
and Lewis (2016), De Paula, Rasul, and Souza (2018), Boucher and Houndetoungan
(2019), Lewbel, Qu, and Tang (2019). Estimating peer effects is not the subject of our
work, hence we do not develop this aspect beyond the intuition given in the case study
and a preliminary analysis given in Appendix C of the Supplemental Material (Parise and
Ozdaglar (2023)).
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The results discussed so far are derived under the assumption that agents have perfect
information about the sampled network. In Appendix B of the Supplemental Material,
we analyze an incomplete information version of sampled network games and develop
a close relation between the corresponding Bayesian Nash equilibrium and the graphon
equilibrium discussed above. In particular, we show that, under suitable regularity condi-
tions and under the assumption that the agents know the graphon generating the sampled
network (but not the realization), the graphon equilibrium is an ε-Bayesian Nash equilib-
rium for the incomplete information game.

1.2. Related Literature

The idea of dimensionality reduction via stochastic network modeling is a key concept
of statistical network analysis and has been successfully applied in the previous litera-
ture to specific instances of network games and specific instances of network models. For
example, Golub and Jackson (2012a,b) used stochastic block models to achieve dimen-
sionality reduction in opinion dynamic models. In more recent work, contagion processes
have been considered in Akbarpour, Malladi, and Saberi (2018) (which focuses on ran-
dom seeding in a generalized Erdős–Rényi model), Jackson and Storms (2019) (which
focuses on the effect of behavioral communities in stochastic block models), and Sadler
(2020) (which studies the Bayesian equilibrium of a game-theoretic model of diffusion).
The present paper adds to this literature by (i) bringing the idea of dimensionality reduc-
tion via stochastic network modeling to a general class of strategic interactions (moving
beyond opinion dynamics and contagion processes),4 (ii) focusing on how to exploit such
dimensionality reduction to derive computationally tractable methods, based on the lim-
iting graphon game, to design targeted interventions and to perform parameter inference,
and (iii) using graphons as a broad description of the generating process to unify several
different stochastic models.

Our results on incomplete information network games, reported in Appendix B of
the Supplemental Material, are related to two previous works: Galeotti, Goyal, Jackson,
Vega-Redondo, and Yariv (2010) and Kalai (2004). Galeotti et al. (2010) focused on finite
network games over a specific random network model in which agents only know their de-
gree and did not discuss dimensionality reduction. Kalai (2004) proved that the Bayesian
Nash equilibrium of a game with anonymous payoffs is an almost Nash equilibrium of the
complete information game when the number of agents tends to infinity. Two points are
noteworthy in relating this paper to the network game literature and our paper in partic-
ular. First, network games capture heterogeneous interactions, hence do not satisfy the
anonymity assumption in Kalai (2004). Second, Kalai (2004) showed that the Bayesian
Nash equilibrium is an ε-Nash equilibrium; instead, we prove that the Bayesian Nash
equilibrium converges (in strategies) to the equilibrium of the corresponding graphon
game, thus providing a characterization of the limiting behavior which is, under suitable
assumptions, low dimensional.

While our goal is to use graphon games to approximate equilibria of sampled network
games, we note that graphon games can also be of independent interest as a model of

4While contagion models have discrete (typically 0-1) strategies, we focus here on games with continuous
strategies. The type of continuous games considered in our framework has been broadly used in the literature,
in both theoretical and empirical works, for example to model applications in which agents need to decide on
their level of effort or investment in a certain activity (see Vives (2005), Ballester, Calvó-Armengol, and Zenou
(2006), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Bramoullé and Kranton (2007), Bramoullé, Kranton,
and D’Amours (2014), Allouch (2015)).
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nonatomic games. In this context, our work complements results derived for finite popu-
lation network games (see, e.g., Ballester, Calvó-Armengol, and Zenou (2006), Bramoullé
and Kranton (2007), Bramoullé, Kranton, and D’Amours (2014), Jackson and Zenou
(2014), Bramoullé and Kranton (2016), Galeotti, Golub, and Goyal (2020)) as well as
previous infinite population models by incorporating heterogeneous local effects in infi-
nite population games (see, e.g., Lasry and Lions (2007), Huang, Caines, and Malhamé
(2007), Sandholm (2010), Kukushkin (2004), Jensen (2010), Cornes and Hartley (2012),
Dubey, Haimanko, and Zapechelnyuk (2006), Ma, Callaway, and Hiskens (2013), Altman,
Boulogne, El-Azouzi, Jiménez, and Wynter (2006)).

We finally remark that the idea of using graphons as a support for large population
analysis has been successfully applied recently in different areas such as community de-
tection in Eldridge, Belkin, and Wang (2016), crowd-sourcing in Lee and Shah (2017),
signal processing in Morency and Leus (2017), and optimal control of dynamical systems
in Gao and Caines (2017). The concurrent work by Caines and Huang (2018) suggests the
use of graphons to extend the setup of mean-field games (which, differently from network
games, are dynamic and stochastic games) to heterogeneous settings. Moreover, the idea
of interpreting observed graphs as random realizations from an underlying random graph
model has recently been used in the study of centrality measures in Dasaratha (2020) for
stochastic block models and in Avella-Medina, Parise, Schaub, and Segarra (2018) for
graphon models. The authors of these papers studied, among others, Bonacich central-
ity, which is the equilibrium of a specific type of network games with scalar nonnegative
strategies, quadratic payoff functions, and strategic complements.

2. GRAPHON GAMES

2.1. Recap on Network Games

Network games capture settings in which agents make decisions while interacting with
others through a network; see, for example, Jackson and Zenou (2014). In the follow-
ing, we describe such a network with an adjacency matrix A[N] ∈ R

N×N , where N is the
population size and A[N]

ij denotes the level of interaction between agents i and j. For sim-
plicity, we start by assuming that the network is undirected so thatA[N] is symmetric. Each
agent i ∈{1� � � � �N} selects a strategy si ∈ R in its feasible set S i ⊆R to maximize a payoff
function

U
(
si� zi(s)� θi

)
� (1)

where s := [si]Ni=1 ∈ R
N , zi(s) := 1

N

∑N

j=1[A[N]]ijsj denotes the local aggregate5 (defined as
the weighted average of other agents’ strategies computed according to the heteroge-
neous weights of the network A[N]), and θi ∈ R is a parameter modeling heterogeneity in
the payoff functions of different agents.6 We denote compactly a network game with the
notation G [N]({S i}Ni=1�U�{θ

i}Ni=1�A
[N]) and we say a network game G [N] with network A[N]

if we need to stress the role of the network.

5In network games, typically there is no factor 1
N

in the definition of zi(s). Since we study the behavior when
N changes, we find it useful to consider this factor explicitly. A different normalization in terms of agents’
degree instead of population size is discussed in Section 5.

6For simplicity of exposition, in the main text we consider games in which both si and θi are scalars; the
extension to the vector case is immediate (as presented in the Appendix).
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2.2. Graphon Games: The Model

To extend network games to infinite populations, we consider a continuum of agents
indexed by the variable x ∈ [0�1] (instead of the finite index i ∈ {1� � � � �N}). As in the
finite population case, each agent selects a scalar strategy denoted by s(x) ∈ R (instead
of si ∈ R) under local constraints of the form s(x) ∈ S(x). In finite network games, each
agent computes its best response to the local aggregate zi(s) := 1

N

∑N

j=1A
[N]
ij s

j according
to the weights of the underlying graph A[N]. In the infinite population case, the natural
mathematical object to describe the network of interactions is a graphon. Graphons are
bounded symmetric measurable functionsW : [0�1]2 �→ [0�1] and can be used to formally
define the limit of a sequence of graphs when the number of nodes tends to infinity; see,
for example, Lovász (2012). The value W (x� y) can thus be interpreted as measuring the
level of interaction between two infinitesimal agents x and y belonging to the [0�1] inter-
val, exactly as A[N]

ij denotes the level of interaction between agents i and j in {1� � � � �N}.
For any graphonW , we can then define the network effects experienced by agent x as the
local aggregate of the other agents’ actions according to the graphon

z(x | s) :=
∫ 1

0
W (x� y)s(y) dy�

REMARK 1: For graphon games, a strategy profile s : [0�1] → R is a function. In the fol-
lowing, we require that any strategy profile is square integrable, that is, s(x) ∈ L2([0�1]),
where L2([0�1]) denotes the space of square integrable functions on [0�1].

Similarly to network games, we assume that the payoff function of agent x,

U
(
s(x)� z(x | s)� θ(x)

)
� (2)

depends on his strategy s(x), on his local aggregate z(x | s), and on a heterogeneity
parameter θ(x).

DEFINITION 1: A graphon game G is defined in terms of a continuum set of agents
indexed by [0�1], a graphonW , a payoff functionU as in (2), and, for each agent x ∈ [0�1],
a parameter θ(x) and a strategy set S(x).

Note that the payoff function for graphon games has the same structural form as in
network games. The difference in the two setups is the way in which the local aggregate
(zi(s) for network games and z(x | s) for graphon games) is evaluated. In the following,
we say a graphon game G with graphonW if we need to stress the role of the graphon, and
we explicitly write G(S�U�θ�W ) if we want to stress the role of all the game primitives.

2.3. Graphon Games: Equilibrium Properties

To derive properties of the Nash equilibrium in graphon games, we focus on smooth
and convex payoff functions (see, e.g., Rosen (1965)).

ASSUMPTION 1—Smooth and Convex Game: The function U (s� z�θ) in (2) is continu-
ously differentiable and strongly concave in s with uniform strong concavity constant αU for
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each value of z, θ.7 Moreover, ∇sU (s� z�θ) is uniformly Lipschitz in [z�θ] with constants �U ,
�θ for all s. For each x ∈ [0�1], the set S(x) is convex, closed, and there exist ẑ and M > 0
such that ‖arg maxs̃∈S(x)U (s̃� ẑ� θ(x))‖ ≤M for all x ∈ [0�1].

ASSUMPTION 2—Strategy Set: There exists a compact set S such that S(x) ⊆ S for all
x ∈ [0�1] so that smax := maxs∈S ‖s‖<∞.

Lipschitz continuity of ∇sU (s� z�θ) in Assumption 1 guarantees that the effect of the
network aggregate z and the heterogeneity parameter θ on the marginal payoff is con-
tinuous and bounded. Under Assumptions 1 and 2, it follows from standard fixed point
theory that a Nash equilibrium exists. Uniqueness in games can typically be guaranteed
if the best response mapping is a contraction. To specify such a contraction property in
the context of graphon games, we introduce the graphon operator; see also Lovász (2012,
Section 7.5).

DEFINITION 2: For a given graphon W , we define the associated graphon operator
W as the integral operator W : L2([0�1]) �→ L2([0�1]) given by f (x) �→ (Wf )(x) =∫ 1

0 W (x� y)f (y) dy . A complex number λ is an eigenvalue of the operator W if there exists
a nonzero function ψ ∈L2([0�1]), called the eigenfunction, such that (Wψ)(x) = λψ(x).

As summarized in Lemma 5 in the Supplemental Material, all the eigenvalues of the
graphon operator W are real and the operator norm, that is, |||W||| :=
supf∈L2([0�1])�‖f‖

L2 =1 ‖Wf‖L2 , coincides with the largest eigenvalue of W which we denote
by λmax(W). We next show that if λmax(W) is not too large, as formalized in Assumption 3,
then the best response operator is a contraction, guaranteeing uniqueness of the graphon
equilibrium.

ASSUMPTION 3—Contraction: Suppose that

�U

αU
· λmax(W) < 1�

where �U and αU are regularity constants related to the utility function, as defined in Assump-
tion 1, while λmax(W) is the largest eigenvalue of the graphon operator W.

REMARK 2: Assumption 3 is similar to assumptions used to obtain uniqueness in finite
network games (see, e.g., Ballester, Calvó-Armengol, and Zenou (2006)) and guarantees
that the effect of the neighbor’s aggregate on an agent’s marginal payoff, quantified by
�Uλmax(W), is not too large with respect to the effect of its own strategy, quantified by
αU . The only difference is that while in the network game literature the effect of the
network is captured by the maximum eigenvalue of the finite network A[N], in the case
of graphon games the corresponding role is played by the dominant eigenvalue of the
graphon, that is, λmax(W). In both cases, this quantity captures the maximum amount by
which the network/graphon can amplify a unitary vector/function.

7That is, (∇sU (s� z�θ) − ∇sU (s′� z�θ))�(s− s′) ≤ −αU‖s− s′‖2 for all s, s′, z, θ.
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THEOREM 1—Existence and Uniqueness: If the graphon game G(S�U�θ�W ) satisfies
Assumptions 1 and 2, then it admits at least one Nash equilibrium. If it satisfies Assumptions
1 and 3, then the Nash equilibrium exists and is unique.8

To illustrate this result, we consider the framework of linear quadratic games.

EXAMPLE 1—Linear quadratic graphon games: Consider a linear quadratic game in
which the strategy of each agent is scalar and nonnegative, so that S(x) = R≥0 for all
x ∈ [0�1] and the payoff function of an arbitrary agent playing strategy s and subject to
the local aggregate z is

U (s� z�θ) = −1
2
s2 + s[αz+ θ]� (3)

The parameter α ∈ R in (3) captures how much the local aggregate affects each agent’s
marginal return. The parameter θ > 0 represents the standalone marginal return that does
not depend on other’s actions. We refer to Jackson and Zenou (2014), Bramoullé and
Kranton (2016) for a detailed review of this utility model and its applications. The best
response for each agent x is

sbr(x | s) = max
{
0�
[
αz(x | s) + θ]}� (4)

Hence, the payoff function U satisfies Assumption 1 with αU = 1, �U =|α|. Consequently,
by Theorem 1, a unique graphon equilibrium exists if |α|< 1

λmax(W) , which is a similar
condition as the one derived in Ballester, Calvó-Armengol, and Zenou (2006) for finite
network games. If additionally α > 0, we can immediately see from (4) that the best re-
sponse of each agent is an increasing function of the local aggregate z(x | s), that is, this
is a game of strategic complements (Ballester, Calvó-Armengol, and Zenou (2006)) and
the unique Nash equilibrium s̄ is internal (i.e., it satisfies s̄(x) > 0 for all x ∈ [0�1]). For
θ(x) ≡ θ, from (4) we then have s̄(x) = αz(x | s̄) +θ⇒ s̄(x) = α(Ws̄)(x) +θ⇒ (Is̄)(x) =
α(Ws̄)(x) + θ⇒ ((I − αW)s̄)(x) = θ1[0�1](x). The condition |α|λmax(W) < 1 implies in-
vertibility of the operator (I− αW). Hence,

s̄(x) = θ((I− αW)−11[0�1]

)
(x) = θ

∞∑
k=0

αk
(
W

k1[0�1]

)
(x)� (5)

which corresponds to the Bonacich centrality of agent x in the graphon W , as defined in
Avella-Medina et al. (2018).

3. SAMPLED NETWORK GAMES: DEFINITION AND EXAMPLES

3.1. Graphons as a Stochastic Network Formation Model

A graphon describes a probability distribution over the space of networks and can thus
be used to construct sampled networks as discussed in Lovász (2012, Chapter 10) and
illustrated in Figure 1.

8Note that when Assumption 3 holds, the strategy sets S(x) do not need to be bounded (i.e., Assumption 2
is not needed). This is because for contraction mappings, existence and uniqueness of the fixed point can be
guaranteed under the sole assumption that the domain is closed and convex, without the need for compactness.
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FIGURE 1.—Illustration of the sampling procedure described in Definition 3 for N = 5. (a) The graphon.
(b) The weighted adjacency matrix A[5]

w associated with the random sample [t1� � � � � t5] = [0�03�0�31�0�69�
0�82�0�95]. (c) A realization of the 0-1 adjacency matrix A[5]

s . For the graphon, a linear grayscale colormap
is used with white associated to W = 0 and black to W = 1. For A[5]

w , the width of the line is proportional to
the weight of the edge. In A[5]

s , any edge has weight 1.

DEFINITION 3: Given any graphon W and any desired number N of nodes, a weighted
sampled network can be obtained by uniformly and independently sampling N points
{ti}Ni=1 from [0�1] and defining a weighted adjacency matrix A[N]

w as follows:

[
A[N]
w

]
ij
=
{
W
(
ti� tj

)
if i �= j�

0 if i= j�

Starting from A[N]
w , a simple sampled network can be obtained by defining the 0-1 adja-

cency matrixA[N]
s as the adjacency matrix corresponding to a graph withN nodes obtained

by randomly connecting nodes i� j ∈ [1�N] with Bernoulli probability [A[N]
w ]ij . In the fol-

lowing, we use the symbol A[N]
W for statements that hold for both weighted and simple

sampled networks and simply refer to A[N]
W as a sampled network.

REMARK 3: The random points {ti}Ni=1 can be thought of as agent types (an agent’s type
may, e.g., represent the community to which the agent belongs to or its geographical lo-
cation, as discussed in the following Examples 2 and 3). The graphon value W (ti� tj) is
thus encoding information about the level of interaction between two arbitrary agents of
type ti and tj . From here on, we are going to assume that the {ti}Ni=1 are ordered such that
ti ≤ ti+1 for all i ∈ {1� � � � �N − 1}. This is without loss of generality, since it simply corre-
sponds to a relabeling of the nodes. Figure 1 illustrates the sampling procedure described
in Definition 3. Note that both A[N]

w and A[N]
s are stochastic matrices. The difference be-

tween the two is that A[N]
w ∈ [0�1]N×N while A[N]

s ∈ {0�1}N×N . Finally, note that an agent
of type ti has an expected number of neighbors that grows as N

∫ 1
0 W (ti� tj) dtj . Hence,

networks sampled according to Definition 3 are dense.

To develop more intuition on the framework of graphons and its connection to other
well-known stochastic network formation models, we start by noting that for any p ∈
[0�1], the constant graphon W (x� y) ≡ p coincides with the Erdős–Rényi random graph
model in which each pair of agents is connected with probability p. In the next example,
we show how graphons can be used to represent stochastic block models, which are an
extension of Erdős–Rényi models to a setting with finitely many communities.
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FIGURE 2.—Left: The stochastic block model graphon of Example 2. Note that the agents in position x= 0�1
and x = 0�5 belong to the same community and are thus affected in the same way by the rest of the agents.
Right: The minmax graphon of Example 3. In both cases, W (x� ·) for three different values of x and W (x� y)
as a function of both x and y are shown. A linear grayscale colormap is used with white associated to W = 0
and black to W = 1.

EXAMPLE 2—Community Structure: Consider networks in which agents are divided
intoK communities and let πk be the probability that a random agent belongs to commu-
nity k, with

∑K

k=1πk = 1. Additionally, assume that agents belonging to the same commu-
nity form a link with Bernoulli probability gin, while agents from different communities
form a link with probability gout (typically smaller than gin).9 To generate such a commu-
nity structure from a graphon, one can partition [0�1] into K disjoint intervals {Ck}Kk=1,
with |Ck|= πk, and use the piecewise constant graphon

WSBM(x� y) =
{
gin if there exists k s.t. x ∈ Ck� y ∈ Ck�
gout otherwise�

We denote this graphon with the label SBM because of its relation to Stochastic Block
Models. Figure 2 (left) illustrates a stochastic block model graphon of this type withK = 2
communities (e.g., red and blue agents) of size [w1�w2] = [0�75�0�25] and with gin = 0�8,
gout = 0�1. In this case, we selected C1 = [0�0�75], C2 = (0�75�1].

Graphons can also be used to model situations in which agent types can take infinitely
many values. The next example illustrates one such case in which an agent’s type is given
by its location.

EXAMPLE 3—Location Model: Consider a model in whichN agents are independently
located uniformly at random along a line segment represented by the interval [0�1] (e.g.,
homeowners along a street) and assume that the level of interaction between agents i
and j is a decreasing function of their spatial distance, capturing the natural observation
that the cost of forming links increases with geographical distance, as motivated in John-
son and Gilles (2003). This type of interaction can be represented, for example, by using

9The parameters πk are exogenous and model the probability that agents are born with type k, for example,
male or female. The exogenous parameters gin and gout are instead a result of the different costs borne by each
agent when forming a link to someone from the same and from the other community (see, e.g., Jackson and
Rogers (2005)).
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the minmax graphon WMM(x� y) = min(x� y)(1 − max(x� y)), where x ∈ [0�1] denotes the
agent’s position along the line; see Figure 2 (right).

3.2. Sampled Network Games

We define a sampled network game as a network game in which agents interact over a
network sampled from a graphon.

DEFINITION 4: Consider a graphon W , a payoff function U , a set valued function S,
and a parameter function θ. LetA[N]

W be a network sampled fromW with types {ti}Ni=1. We
define a sampled network game as G [N]({S(ti)}Ni=1�U�{θ(ti)}Ni=1�A

[N]
W ).

Figures 3 and 4 show the equilibria of three realizations of sampled network games with
linear quadratic payoffs, when the networks are sampled from the graphons described in
Examples 2 and 3, for different values ofN . In both examples, one can observe similarities

FIGURE 3.—Three realizations of networks formed according to the two-community model described in Ex-
ample 2 (with πred = 0�25, πblue = 0�75, gin = 0�8, and gout = 0�1) for N = 10�100�250 and their corresponding
equilibria (for payoff as in (3) with α= 0�8, θ= 1).

FIGURE 4.—Three realizations of networks formed according to the location model described in Example 3
and their corresponding equilibria (for payoff as in (3) with α= 3 and θ= 1). The line along which agents are
located is represented as a semicircle for simplicity of visualization. The color of the nodes is associated to the
agent’s location along the line (blue being one extreme and red the other extreme). Edges between agents that
are further apart are in lighter color.
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between equilibria of different sampled network games. For instance, in Example 2, red
agents tend to exert lower efforts at equilibrium than blue agents, while in Example 3,
agents at more central locations exert higher efforts at equilibrium. This trend becomes
sharper and more deterministic as the population size increases. It is then natural to ask
whether equilibria of sampled network games converge with increasing population size
and whether we can provide a characterization of their limit. Graphon games provide the
answer.

4. SAMPLED NETWORK GAMES: CONVERGENCE

4.1. Network Games Are Graphon Games

In network games Nash equilibria are vectors of RN , while in graphon games they are
functions of L2([0�1]). To compare these two objects, we define a one-to-one correspon-
dence between vector and functions using a partition U [N] of [0�1] in equal intervals U [N]

k

for k ∈{1� � � � �N−1}, each of length 1/N . Using this partition, we pair each agent i in the
finite network with the interval U [N]

i . We can then define: (i) the step function equilibrium
s̄[N](x) ∈L2([0�1]) corresponding to any equilibrium s̄[N] ∈ R

N as

s̄[N](x) := s̄i[N]� ∀x ∈ U [N]
i � ∀i ∈{1� � � � �N}�

and (ii) the step function graphon W [N] corresponding to any graph A[N] ∈R
N×N as

W [N](x� y) :=A[N]
ij � ∀(x� y) ∈ U [N]

i ×U [N]
j � ∀i� j ∈{1� � � � �N}� (6)

We show in Lemma 1 in Appendix A that a vector s̄[N] ∈ R
N is a Nash equilibrium of

G [N]({S i}Ni=1�U�{θ
i}Ni=1�A

[N]) if and only if the corresponding step function equilibrium
s̄[N](x) ∈L2([0�1]) is a Nash equilibrium of the graphon game G(S[N]�U�θ[N]�W [N]) with
payoff function as in (2), set valued function S[N](x) := S i for all x ∈ U [N]

i , parameter
function θ[N](x) := θi for all x ∈ U [N]

i , and step function graphon W [N] corresponding to
A[N]. Using this equivalence, we can compare equilibria of sampled network games and
graphon games in L2([0�1]) by comparing equilibria of two graphon games: the original
graphon game and the one constructed from the sampled network game as discussed
above.

4.2. Equilibria in Sampled Network Games

To derive a bound on the distance between equilibria of sampled network and graphon
games, we impose the following additional regularity condition.10

ASSUMPTION 4—Lipschitz Continuity: The graphon W and the parameter function θ
are piecewise Lipschitz over the same partition of [0�1].11 Moreover, there exists θmax such
that ‖θ(x)‖ ≤ θmax for all x ∈ [0�1].

10A more general result that requires only Assumption 3 is given in Parise and Ozdaglar (2018). We here
focus on Lipschitz graphons to obtain simpler bounds.

11Rigorously, we assume that there exist a constant L > 0 and a sequence of non-overlapping intervals Ik,
k ∈ {1� � � � �� + 1}, such that for any pairs (x� y)� (x′� y ′) ∈ Ik1 × Ik2 , we have that |W (x� y) − W (x′� y ′)| ≤
L(|x− x′|+|y − y ′|) and |θ(x) − θ(x′)|≤L|x− x′| for any x�x′ ∈ Ik.
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Assumption 4 is satisfied by all graphons typically used in practice. For example, both
the minmax graphon and any stochastic block model graphon satisfy this assumption.

Since networks are sampled randomly from the graphon, our statement on convergence
of equilibria of sampled network games to equilibria of the corresponding graphon game
holds in probability.

THEOREM 2—Convergence of Equilibria: Consider a graphon game G in which each
player has homogeneous strategy sets, that is, S(x) = S for all x ∈ [0�1]. Suppose that G sat-
isfies Assumptions 1, 2, 3, 4, and let s̄ be its unique Nash equilibrium. Let s̄[N]

W be an arbitrary
step function equilibrium of the sampled network game G [N], as introduced in Section 3.2.
Then

1. ‖s̄[N]
W − s̄‖L2 → 0 almost surely when N → ∞;

2. for any 0< δ≤ e−1, with probability at least 1 − 2δ
N

, it holds that

∥∥s̄[N]
W − s̄∥∥

L2 =O
((

log
(
N2/δ

)
N

) 1
4
)
�

REMARK 4: Statement 1 in Theorem 2 proves almost sure convergence of equilibria
in sampled network games to the equilibrium of the limiting graphon game. Statement 2
further specifies the convergence rate and can be equivalently reformulated as a bound
on the probability of graphon and sampled network equilibria being more than ε apart
(i.e., for any ε > 0, ∃C > 0 s.t. for N large enough P[‖s̄[N]

W − s̄‖L2 > ε] ≤ 2N

exp( ε
4N
C )

).

In many practical contexts, it might also be of interest to quantify the distance between
the equilibria of two network games sampled from the same graphon. Such a result can
be used to judge the robustness of the equilibrium outcome to stochastic variations in
the realized links or in the number of players. Theorem 2 can be used to obtain such a
bound by triangular inequality. Finally, we note that Theorem 2 bounds the distance of
the equilibria of the sampled network game to the graphon equilibrium in ‖·‖L2 . This does
not directly imply that playing the graphon equilibrium strategy in the sampled network
game is an (approximate) Nash equilibrium; we show that this is the case under additional
regularity assumptions in Lemma 15 in Appendix D of the Supplemental Material.

5. EXTENSIONS

5.1. Sublinear Network Growth

The sampling procedure given in Definition 3 generates dense networks, that is, net-
works in which the number of neighbors per agent grows as N (thus implying that the
number of edges grows roughly as the square of the number of nodes). Our theory can be
generalized to a class of sparser networks for which the number of neighbors per agent

grows sublinearly with N so that
√

# edges

# nodes → 0. To this end, we introduce a sparsity param-
eter κN and consider the following (generalized) procedure to sample simple networks
from a graphon; see, for example, Borgs, Chayes, Cohn, and Zhao (2019).

DEFINITION 5: Given any graphonW , a sequence {κN}∞
N=1 with 0< κN ≤ 1, and any de-

sired numberN of nodes, a (generalized) sampled network can be constructed by uniformly
and independently samplingN points {ti}Ni=1 from [0�1] and constructing the (generalized)
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0-1 adjacency matrix A[N]
s as the adjacency matrix corresponding to a simple network ob-

tained by randomly connecting nodes i� j ∈ [1�N] with Bernoulli probability

κNW
(
ti� tj

)
�

REMARK 5: Definition 3 is a special case of Definition 5 obtained by setting κN = 1. It
is easy to see that the expected number of neighbors in A[N]

s is of order κNN . Hence, for

these sampled networks,
√

# edges

# nodes ≈ √
κN converges to zero if κN → 0. In the following, we

will require that limN→∞
log(N)
NκN

= 0. Hence, this generalized framework allows the number
of neighbors to grow sublinearly in N but still requires a growth faster than log(N). This
is a necessary condition for being able to use concentration inequalities guaranteeing
accumulation in the neighbors aggregate.

The new Definition 5 affects only how a sampled network is generated from the
graphon but has no repercussions on the limit for infinite number of agents. In other
words, the infinite population game is exactly the same graphon game described in Sec-
tion 2 and the same theorem on existence and uniqueness continues to hold. Instead, we
need to modify the definition of local aggregate in a sampled network game to account
for the fact that the number of neighbors may now be sublinear. In fact, if we were to
use as aggregate the quantity zi(s) = 1

N

∑N

j=1[A[N]
s ]ijsj as introduced in Section 3.2, then

we may have that zi(s) → 0 as N grows larger, leading to vanishing network effects. To
overcome this issue, we need to scale the local aggregate

∑N

j=1[A[N]
s ]ijsj by the expected

order of neighbors which, according to Definition 5, is κNN instead ofN . Overall, we can
define a sampled network game exactly as in Section 3.2, but using as aggregate

ziκ(s) = 1
κNN

N∑
j=1

[
A[N]
s

]
ij
sj� (7)

Our main convergence result can be extended to this broader class of sampled net-
works; the formal statements and proofs can be found in Appendix A.2.

5.2. Average Instead of Aggregate

In the results derived so far, we defined the local aggregate as zi(s) = 1
N

∑N

j=1[A[N]
s ]ijsj ,

that is, the sum of neighbors’ strategies normalized by the population size. While this
model is used widely in both theoretical and empirical works, for some applications, an
alternative model using a local average obtained by normalizing the network effect by the
agent’s degree may be favored (see Patacchini and Zenou (2012) and Ushchev and Zenou
(2020)). This corresponds to the choice

zid(s) :=
∑N

j=1

[
A

[N]
W

]
ij
sj∑N

j=1

[
A

[N]
W

]
ij

�

Our results can be extended to this setting. The first step is to define the local average

for a continuum of agents as zd(x | s) :=
∫ 1

0 W (x�y)s(y) dy∫ 1
0 W (x�y) dy

. For this quantity to be well defined,

we assume from here on that
∫ 1

0 W (x� y) dy ≥ dmin > 0 for all x ∈ [0�1]. This definition of
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local average leads to a graphon game as defined in Section 2, played over the normalized
graphon Wd(x� y) := W (x�y)∫ 1

0 W (x�y) dy
. One can then define the associated normalized graphon

operator Wd as the operator Wd : L2([0�1]) �→ L2([0�1]) given by f (x) �→ (Wdf )(x) =∫ 1
0 W (x�y)f (y) dy∫ 1

0 W (x�y) dy
. Under the assumption that

∫ 1
0 W (x� y) dy ≥ dmin, we show in Appendix D.2

of the Supplemental Material that all the results derived in Section 2 about existence and
uniqueness of the graphon equilibrium continue to hold.12 For example, uniqueness holds
if �U

αU
· λmax(W)

dmin
< 1. For the convergence result in Theorem 2, the key step is to show that the

distance between the normalized operators Wd and W
[N]
d (corresponding to the graphon

W and sampled network A[N]
W , respectively) converges to zero with high probability. We

provide a proof of this fact for Lipschitz continuous graphons in Appendix D.2 of the
Supplemental Material.

5.3. Directed Networks

So far, we assumed that the graphon is a symmetric function and we thus generated
undirected sampled networks. The results of Section 2 continue to hold even when the
generating graphon is not symmetric, with the only caveat that the eigenvalues of the
corresponding operator are not necessarily real, hence one needs to use |||W||| instead of
λmax(W ). The only place where symmetry is used in Theorem 2 is to prove that the matrix
A[N]
s accumulates around its expectation A[N]

w . To prove this fact, we used a matrix con-
centration result from Chung and Radcliffe (2011) which holds for symmetric matrices.
However, a similar result can be obtained for the directed case as well (see Lemma 9 in
Appendix D.3 of the Supplemental Material). Using such a result, one can obtain conver-
gence also for directed networks.

6. THEORY OF TARGETED INTERVENTIONS

The convergence results derived so far suggest a new approach for designing near op-
timal and computationally tractable interventions in sampled network games, by exploit-
ing knowledge of the graphon game limit. To illustrate this point, we assume that a cen-
tral planner aims at maximizing the average social welfare (defined as the average of the
agents’ payoffs at equilibrium) through targeted interventions that modify the payoff of
each agent i by changing the parameter θi to θi + θ̂i in (1), leading to the modified payoff
function

U
(
si� zi� θi + θ̂i)� (8)

The central planner is subject to the convex budget constraint
∑N

i=1(θ̂i)2 ≤ CN , captur-
ing the fact that interventions are increasingly costly, leading to the question of how to
optimally allocate the available budget among the agents to maximize welfare.13 Mathe-

12Since Wd is not symmetric, results need to be stated in terms of |||Wd||| instead of λmax(W). Note, however,
that the bound |||Wd||| ≤ λmax (W)

dmin
holds (see Appendix D.2 of the Supplemental Material).

13Note that we allow the budget to scale with the population size N to model the fact that networks with
more agents are allocated a proportionally higher budget.
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matically, the central planner aims at solving the following optimization problem:

T
[N]
opt := max

θ̂[N]∈RN
T [N]

(
θ̂[N]
)= 1

N

N∑
i=1

U
(
s̄

[N]
i � z̄

[N]
i � θ

[N]
i + θ̂[N]

i

)
s.t. s̄[N] = Nash equilibrium of G [N]

(
S�U�θ[N] + θ̂[N]�A[N]

)
� z̄[N] =A[N]s̄[N]

1
N

∥∥θ̂[N]
∥∥2 ≤ C�

(9)

where we added the apex [N] to stress the dependence on the population size.

6.1. Graphon Intervention

Problem (9) scales with the size of the network and becomes computationally chal-
lenging for networks with more than a few hundreds of agents. We therefore suggest an
alternative approach for sampled network games (i.e., for cases when A[N] = A

[N]
W is a

realization from an underlying graphon W and θ[N]
i = θ(ti)) based on the corresponding

optimization problem in the graphon space

θ∗ ∈ arg max
θ̂∈L2([0�1])

T (θ̂) =
∫ 1

0
U
(
s̄θ̂(x)� z̄θ̂(x)� θ(x) + θ̂(x)

)
dx

s.t. s̄θ̂ = Nash equilibrium of G(S�U�θ+ θ̂�W )� z̄θ̂(x) =Ws̄θ̂(x)

‖θ̂‖2
L2 ≤ C�

(10)

The solution θ∗ to Problem (10) is a function specifying the optimal allocation for the
infinite population graphon game. The proposed intervention for finite sampled network
games allocates to any sampled agent i (of type ti) an intervention proportional to θ∗(ti),
that is,

[
θ̂

[N]
graphon

]
i
= θ∗(ti)
η[N] �

where η[N] is a normalization to guarantee that the budget constraint is met with equality
(i.e., 1

N
‖θ̂[N]

graphon‖2 = C).

THEOREM 3: Consider a sampled network game G [N] as described in Definition 3. Suppose
that Assumptions 1, 2, 3, and 4 hold, that U (s� z�θ) is jointly Lipschitz in [s� z�θ], and
that θ∗ solution to (10) is piecewise Lipschitz and bounded. Then, for any 0< δ≤ e−1, with
probability at least 1 − 2δ

N
,

T
[N]
opt − T [N]

(
θ̂

[N]
graphon

)≤O
((

log
(
N2/δ

)
N

) 1
4
)
�

REMARK 6: Following Remark 4, Theorem 3 can be equivalently reformulated as a
bound on the probability of θ̂[N]

graphon being more than ε suboptimal with respect to the
optimal solution to Problem (10). In other words, Theorem 3 guarantees that, for any
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ε > 0, there exists C > 0 s.t. for N large enough, P[T [N]
opt − T [N](θ̂[N]

graphon) > ε] ≤ 2N

exp( ε
4N
C )

.
Such a bound vanishes with N , leading to asymptotically optimal performance.

The advantage of the graphon approach is that, to solve Problem (10), the central plan-
ner only needs information about the stochastic network formation model (the graphon
W ) and not about the exact network realization (A[N]

W ), thus overcoming the need for
acquisition of exact network information. Regarding computational tractability, we re-
mark that, while solving Problem (10) in general may be challenging, in many settings the
stochastic network formation model is a low dimensional object. In this case, Problem (10)
can be solved efficiently.

6.2. Tractability of Problem (10)

To obtain computational tractability, we restrict our attention to graphons in which
only a finite number R of eigenvalues {λr}Rr=1 are different from zero (i.e., finite-rank
graphons). For this class of graphons and for different structures of payoff functions, a
solution to Problem (10) can be obtained by solving a finite dimensional optimization
problem whose dimension is typically much smaller than the population size N . Before
proving this fact, we provide some examples of finite-rank graphons, illustrating the fact
that, while a refinement, finite-rank graphons are general enough to nest a large number
of random graph models.

EXAMPLE 4—Community structure: Consider a generalization of the community
model with K communities introduced in Example 2, in which we allow agents across dif-
ferent communities to interact with different probabilities. Specifically, let Q ∈ [0�1]K×K

be a symmetric matrix whose element in position (k� l) denotes the probability that agents
of community k and l are interacting (the graphon in Example 2 corresponds to the spe-
cial case Q = [ginIK + gout(1K1�

K − IK)]). Let Ck be the subset of [0�1] associated with
community k, with |Ck| = πk and

∑
k πk = 1, and construct the stochastic block model

graphon

WSBM(x� y) =Qij for all x ∈ Ci� y ∈ Cj�
The stochastic block model graphon is finite rank with rank equal to the number of com-
munities. In fact, as shown, for example, in Avella-Medina et al. (2018), eigenvalues and
eigenfunctions of the corresponding graphon operator can be easily computed by consid-
ering the auxiliary matrix

E :=Q� ∈R
K×K� (11)

where� is a diagonal matrix whose diagonal elements correspond to the community sizes,
that is, �kk = πk for all k. Lemma 10 provided in the Supplemental Material shows that
WSBM and E have the same eigenvalues and the eigenfunctions of WSBM are piecewise
constant over the partition {Ck}Kk=1, with constant value in each community Ck given by the
kth element of the corresponding eigenvector of E.

The example above considered a graphon with a finite number of communities.
A graphon can, however, have finite rank even when there is a continuum of types. For
example, randomly grown ranked attachment graph sequences as described in Borgs,
Chayes, Lovász, Sós, and Vesztergombi (2011) converge to a graphon that has rank 2
(see Avella-Medina et al. (2018, Section 4.2)), and uniform attachment graph sequences
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converge to a graphon which can be very well approximated with a rank 5 graphon. The
next example provides a simple rank 1 graphon.

EXAMPLE 5—Rank 1 Graphon: Consider a graphon Wv(x� y) = v(x)v(y) for some
nonnegative function v ∈ L2([0�1]) s.t. Wv(x� y) ∈ [0�1] for all x, y . This graphon has
degree d(x) ∝ v(x) and is rank 1 with eigenfunction v(x) and eigenvalue λ= ‖v‖2

L2 . For
example, by choosing v = 1√

2(x+0�5)γ
with γ ∈ (0�1/2), one obtains a rank 1 graphon Wγ

with power law degree distribution (as often observed in social networks).

6.2.1. Linear Quadratic Setting

As a first application, we consider network games with scalar nonnegative strategies
and linear quadratic payoff

U
(
si� zi� θi

)= −1
2
(
si
)2 + (αzi + θi)si� (12)

For simplicity, we focus on games with strategic complementarities (i.e., with α> 0). Fol-
lowing Galeotti, Golub, and Goyal (2020), we assume that the central planner can directly
modify the standalone marginal return for an arbitrary agent i from θi to θi + θ̂i, leading
to the modified payoff function

U
(
si� zi� θi + θ̂i)= −1

2
(
si
)2 + si[αzi + θi + θ̂i]� (13)

While Galeotti, Golub, and Goyal (2020) focused on design of interventions when the
central planner has perfect knowledge of the network of interactions, we here consider a
setting in which the central planner only knows the graphon model and show how Prob-
lem (10) can be solved efficiently leading to asymptotically optimal interventions without
the need for exact network data.

PROPOSITION 1: Suppose that 0<α< 1
λmax(W) and assume that W has finite rank R<∞,

let K be the kernel of W, and {ψr}Rr=1 be an orthonormal basis of K⊥ composed of eigenfunc-
tions of W corresponding to the eigenvalues {λr}Rr=1. Set br = 〈θ�ψr〉 for all r = 1� � � � �R and
let b0ψ0 be the projection of θ in K, with ‖ψ0‖L2 = 1. Set λ0 = 0. A maximizer of (10) can be
computed as θ∗ =∑R

r=0 b̂
∗
r ψr , where {b̂∗

r}
R
r=0 solves14

max
[b̂0�����b̂R]

1
2

R∑
r=0

(br + b̂r)2

(1 − αλr)2

s.t.
R∑
r=0

b̂2
r ≤ C�

(14)

14We stress that under the assumption of this proposition, both Problem (10) and Problem (9) can be re-
formulated as semi definite programs with two variables and one inequality constraint; see Boyd and Van-
denberghe (2004, Appendix B.1). The main computational difference is that while the inequality constraint
associated with Problem (9) involves a matrix of dimension N + 1, the one associated with Problem (10) is
limited to dimension R+ 2.



GRAPHON GAMES 209

EXAMPLE 6: Consider again the community structure discussed in Example 4, with
payoff functions as in (13). First note that if we assume that all agents within the same
community have the same standalone marginal return (i.e., θ(x) = θcom

k for all x ∈ Ck),
then it is immediate to see that at the graphon equilibrium, each agent belonging to the
same community has the same strategy s̄com

k and the vector of such strategies s̄com ∈ R
K

satisfies the relation

s̄com = (IK − αE)−1θcom� (15)

Turning to the optimal intervention problem (10), we note that since θ(x) = θcom
k for all

x ∈ Ck, θ can be written as a linear combination of the eigenfunctions of W (i.e., b0 as
defined in Proposition 1 is zero). One can then conclude that b̂∗

0 = 0 and θ∗ =∑R

r=1 b̂
∗
rψr ,

hence the optimal intervention is constant within each community and can be computed
by solving an optimization problem that has dimension equal to the number of communi-
ties instead of agents.

6.2.2. Beyond Linear Quadratic Setting

Games with linear quadratic payoffs (or more generally, affine best responses) as dis-
cussed in the previous section cover a large number of applications. Nonetheless, there
may be settings that would be better modeled using a nonlinear and non-monotone best
response. We illustrate how our framework can be applied to such a case by using a game
in which agents have quadratic nonlinear payoffs

U
(
si� zi� θi + θ̂i)= −1

2
(
si
)2 + si[αzi(1 − zi)+ θi]� (16)

As shown in Parise and Ozdaglar (2019), this payoff leads to a non-affine and non-
monotone best response function, modeling, for instance, race and tournaments. We next
show that, nonetheless, it is possible to reformulate Problem (10) as a lower dimensional
optimization problem. The key insight on why this is possible is that, since the graphon is
low rank, the aggregate z(x) in the graphon game is a low dimensional object that can be
described as a linear combination of the eigenfunctions of the graphon. Finding the Nash
equilibrium and the optimal intervention then reduces to finding the coefficients of such
a linear combination.

For simplicity, in the next proposition we illustrate this argument for rank 1 graphons as
described in Example 5 and for games with quadratic dependence on the local aggregate
as given in (16), but similar arguments could be generalized to graphons with any finite
rank and payoffs with higher order dependence on z.

PROPOSITION 2: Consider a graphon game G([0�1]�U�θ+ θ̂�Wv) with payoff functions as
in (16) and a rank 1 graphon Wv as in Example 5, with corresponding eigenvalue λ. Suppose
that α ∈ [0�min(1�1/λ)], θ(x) ∈ [0�3/4) for all x ∈ [0�1], and 〈θ�v〉> 0. For small budget,
a solution to Problem (10) is given by θ̂∗ = b̂∗

1ψ1 + b̂∗
2ψ2 + b̂∗

0ψ0, where the functions ψi form
an orthonormal basis for the space generated by v, v2, and θ (computed as in Lemma 4 in
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FIGURE 5.—Intervention design for a graphon game G([0�1]�U�θ+ θ̂�Wγ) with payoff function as in (16)
(for α= 0�5), power law rank 1 graphonWγ as described in Example 5 (with γ = 0�25), and θ(x) = 0�6e−( x−0�5

0�1 )2
.

Left: Three possible interventions θ̂ satisfying the budget constraint ‖θ̂‖L2 ≤ 4. Right: The corresponding equi-
libria with welfare improvement noted in the legend (expressed as percentage of improvement with respect to
the no-intervention equilibrium given by θ̂= 0).

the Appendix) and b̂∗
0, b̂∗

1, b̂∗
2 solve the following optimization problem:

max
b̂1�b̂2�b̂0

s2
1 + (−αs1

2λp2 + b2 + b̂2

)2 + (b0 + b̂0)2

s.t. s1 = −(1 − αλ) +
√

(1 − αλ)2 + 4(αλp1)(b1 + b̂1)

2αλp1
�

b̂2
0 + b̂2

1 + b̂2
2 = C�

(17)

where pi = 〈v2�ψi〉 and bi = 〈θ�ψi〉.
Intuitively, Proposition 2 guarantees that the optimal intervention is a combination of

the ψi functions with coefficients given by the optimizer of (17). Figure 5 shows a compar-
ison of the graphon equilibrium obtained under the optimal intervention (computed as
in Proposition 2), a uniform intervention, and an intervention proportional to the eigen-
function for a game with rank 1 graphon constructed as in Example 5. It is important to
remark that in this example, the best response is nonlinear (not affine and not monotone)
and the network generating model is non-standard (having a continuum of heterogeneous
agents instead of a more typical community structure with finite types), yet the proposed
framework still leads to a tractable analysis and an intervention that outperforms classic
ones, illustrating the usefulness of the proposed approach beyond network games typically
studied in the literature.

7. AN ILLUSTRATIVE CASE STUDY

To illustrate the differences (in terms of information, computation, and optimality)
between the intervention procedure described in Section 6 and a more direct approach
based on detailed network information, we construct a simulated data set of 80 network
games (which, e.g., could model interactions among the inhabitants of 80 different rural
villages deciding the level of investment in a microfinance program). Each agent i has
payoff

U
(
si� ziκ(s)� θi

)= −1
2
(
si
)2 + si[αziκ(s) + θi]�
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FIGURE 6.—The stochastic block model graphon used to generate sampled networks in the case study of
Section 7. The figure on the right is a visualization of the interactions among the four communities (the width
of the arrows is larger the stronger the interaction), the figure on the left shows the corresponding graphon
(with white representing 0 and black representing 1). Note that communities 1 and 4 are tightly intra-con-
nected, while communities 2 and 3 are less intra-connected. Communities are only slightly inter-connected
with neighboring communities. For sampling, we used a sparsity parameter κN = 40/N0�8 (see Section 5.1).

where the parameter α is the same for all agents, θi is agent specific, and κ is a sparsity pa-
rameter as introduced in Section 5.1. We assume that agents in each network are equally
likely to belong to one of four different communities (e.g., four different caste in the case
of rural villages) and that the probability of agents interacting depends on community
identity according to the community structure illustrated in Figure 6. Finally, agents be-
longing to the same community have the same parameter θi, which we denote by θcom

h for
community h= 1� � � � �4.

Our main interest is to understand how a central planner can allocate a limited budget
in each sampled network (village) to maximize agents’ welfare, by designing interventions
as discussed in Section 6.

7.1. Data Acquisition

Our aim is to simulate the procedure that the central planner would have to follow in
a field experiment. To this end, from here on we are going to assume that the central
planner does not have access to the information detailed above, but instead needs to rely
on surveys to reconstruct agents’ attributes and interactions. Regarding the latter, we are
going to assume that the central planner can use two different types of relational surveys:

• Detailed Relational Data: The central planner is able to ask to each agent in each
network (village) the exact identity of each of his neighbors.

• Aggregated Relational Data: The central planner is able to ask to a subset of the
agents in some of the networks (villages) how many of his neighbors belong to each
community.

As argued in Breza et al. (2020), aggregated relational data of the second type are
much easier to obtain in the field than the information required by the detailed relational
survey. Furthermore, the aggregated information required by the second type of survey
can allow data acquisition in settings in which detailed information is not possible because
of proprietary data or privacy concerns.

While relational data are typically hard to obtain, it is instead common in empirical
studies to collect detailed agent-level information through an exhaustive census; see, for
example, Banerjee et al. (2013). We here assume that the central planner can perform a
census of all the agents asking about agent-level information such as: (i) agent type (e.g.,
the community to which the agent belongs), (ii) equilibrium strategy before the inter-
vention (e.g., the current level of investment in the microfinance program), and (iii) the
standalone marginal return θi.
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Importantly, the central planner has no information about the strength of peer effects,
α, or about the parameters of the network formation model.15 These parameters would
not be available in field work and therefore need to be estimated from the relational
survey and census data described above.

7.2. Intervention Design and Estimation Based on Different Relational Data

If the central planner has access to the information contained in the census and in the
detailed relational data, then he can reconstruct, for each village: (i) the exact network of
interactions among the agents A[N]

s , (ii) the vector of parameters θ[N] ∈ R
N , and (iii) the

Nash equilibrium s̄[N] before the intervention. He can then use this information to infer
the unknown normalized network parameter ακ := α

κN
by performing least squares regres-

sion given the Nash equilibrium relation s̄[N] = (IN − ακ
N
A[N]
s )−1θ[N], leading to an estima-

tor for ακ which we denote by α̂DRD
κ . 16 Using A[N]

s , θ[N], and α̂DRD
κ , the central planner

can either solve exactly the optimal intervention problem in (9) (if this is computationally
feasible) or otherwise he can use the heuristic suggested in Galeotti, Golub, and Goyal
(2020) and allocate the budget according to the dominant eigenvector of A[N]

s . We refer
to these two interventions as network optimal and network heuristic, respectively.17

If instead the central planner has only access to the census and aggregated relational
data, the previous analysis cannot be performed. Still, we show in Appendix D that aggre-
gated relational data are sufficient to infer the stochastic network model (via maximum
likelihood estimation) and the graphon equilibrium before the intervention (by averag-
ing the strategies of agents belonging to the same community).18 The central planner can
then obtain an estimator α̂ARD by performing least squares regression on the graphon
equilibrium relation ŝARD = (IK − α̂ARD

κ ÊARD
κ )−1θcom, where θcom is the vector of marginal

return per community (which can be recovered exactly from the census data) and the su-
perscript ARD denotes estimators computed from aggregated relational data. Based on
θcom, α̂ARD

κ , and ÊARD
κ , the central planner can solve Problem (10) (by equivalently solving

Problem (14)) and obtain the optimal graphon intervention. Note that for this case study,
Problem (14) is a problem of dimension 4 and outputs the intervention that the central
planner should apply in each community. The central planner then knows which inter-
vention to apply to each agent because he collected information about agent’s type in the
census. We refer to this intervention as graphon optimal.

7.3. Comparison

Figure 7 illustrates the network optimal, network heuristic, and graphon optimal interven-
tions for two sampled networks of size N = 300 and N = 600. A first observation is that
while the first two interventions are tailored to the specific network realization (and thus
prescribe a different intervention to each agent), the graphon intervention prescribes the

15We assume that the planner knows the sampled networks are generated from a stochastic block model with
four communities, but our result could be extended to cases when the number of communities is unknown.

16In our simulated data we assumed no noise, hence this procedure allows the planner to recover ακ exactly.
17The central planner could also employ an in-between strategy by allocating the budget according to the r

dominant eigenvectors for some r > 1. This strategy still requires the detailed relation data set and will have
performances that are in between the network optimal and network heuristic.

18Recall that since the graphon in this case is a stochastic block model, each agent in community h has the
same graphon equilibrium strategy; see (15).
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FIGURE 7.—Interventions for a sampled network of size N = 300 (left) and N = 600 (right).

same intervention to each agent belonging to the same community. We next compare the
performances of the three interventions in terms of optimality, information, and compu-
tation.

1. Information: as discussed above, the network optimal and network heuristic interven-
tions require detailed relational data, while the graphon optimal intervention can be
computed based solely on aggregated relational data;

2. Computation: the network optimal intervention requires the solution of Problem (9)
whose complexity is polynomial in N ; the network heuristic intervention requires the
computation of the dominant eigenvector of A[N]

s ∈ R
N×N which is again polynomial

in N ; the graphon optimal intervention requires the solution of Problem (14) which
is polynomial in K = 4.

3. Optimality: Table I illustrates the percentage of welfare improvement under the three
different policies (averaged over the 80 networks) with respect to the homogeneous
intervention that splits the budget equally for all the agents. Different columns rep-
resent repetitions of the case study for networks with increasing size.

8. CONCLUSION

In this work, we introduced the novel class of graphon games for modeling strategic be-
havior in infinite populations while accounting for local heterogeneity. We then showed
that graphon games can be used to approximate strategic behavior in large but finite
sampled network games by interpreting the graphon as a stochastic network formation
process. This statistical interpretation of network games allows for the design of simple
intervention policies that are computationally tractable and do not require detailed infor-
mation about the network realization.

We believe that the initial investigation of graphons as a tool to model strategic be-
havior presented in this work can be extended in a number of different directions. First,
in this paper, to guarantee uniqueness of the Nash equilibrium we used Assumption 3,
which is formulated in terms of the maximum eigenvalue of the graphon. Previous works
showed that alternative conditions for uniqueness can be formulated in finite network
games by using conditions involving the maximum degree or the minimum eigenvalue
(for games with strategic substitutes). Extending those results to graphon games is an
interesting open direction. Similarly, we believe it should be possible to extend our con-
vergence results beyond games with unique equilibria; such analysis requires tools related
to set convergence and is left as future work. Second, as an application of our framework,
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TABLE I

COMPARISON OF NETWORK OPTIMAL (NO), GRAPHON OPTIMAL (GO), AND NETWORK HEURISTIC (NH)
INTERVENTION FOR THE CASE STUDY IN SECTION 7.

Case Study 1 Case Study 2 Case Study 3

(N = 300) (N = 600) (N = 1200)

Avg. Improvement Network Optimal 25.6% (±6.6) 23.0% (±3.6) –
[15�4;61�5]% [19�0;37�8]% [–]

Avg. Improvement Graphon Optimal 22.8% (±7.1) 20.8% (±3.9) 20.6% (±2.3)
[5�6;59�7]% [14�8;35�7]% [17�6;31�5]%

Avg. Improvement Network Heuristic 12.6% (±15.7) 4.5% (±12.3) 2.8% (±10.5)
[−12�6;60�73]% [−12�2;33�9]% [−12�4;27�3]%

Average Degree 18.5 21.6 24.9

Note: The average improvement is computed as

Avg. Improvement = 1
80

80∑
g=1

(
welfare according to NO/NH/GO intervention in network g

welfare according to homogeneous intervention in network g
− 1
)
�

One standard deviation is reported in round brackets; minimum and maximum are reported in square brackets. The average degree
is shown to illustrate that the graphon optimal intervention is a good approximation in a range of degrees that is realistic (and does
not increase too quickly in N thanks to the sparsity parameter κN ). In all the case studies, we used C = 0�02N , α = 2�65, θ̂com =
[0�1�0�1�0�1�0�25], and aggregated relational surveys completed by 10% of the agents in each network.

we showed how the graphon approach allows the computation of almost optimal targeted
interventions, overcoming the computational intractability of approaches based on full
network information. We believe that our results can be generalized to other types of in-
terventions, such as selecting the key player as introduced in Ballester, Calvó-Armengol,
and Zenou (2006). Third, we here defined graphon games as nonatomic games. It might
be interesting to extend this framework to allow for a small number of atomic (major)
agents that influence a mass of nonatomic (minor) agents interacting over a graphon,
similarly to previous results derived for mean field games in Nourian and Caines (2013).
Finally, in our case study and in Appendix C of the Supplemental Material, we hinted at
how the graphon game framework could be used to estimate peer effects when informa-
tion about the realized network is not available. We believe that extending these results
would be of practical interest.

APPENDIX A: OMITTED PROOFS

Throughout the appendix, we consider the general case in which strategies are vectors
in R

n instead of scalars and the parameter θ is a vector of Rm instead of a scalar. Con-
sequently, a strategy profile s : [0�1] → R

n is a vector valued function. In other words,
s(x) = [s1(x)� � � � � sn(x)]� for all x ∈ [0�1]. In the following, we require that any strat-
egy profile is square integrable, that is, s(x) ∈ L2([0�1];Rn).19 For any strategy function

19This implies that each component is square integrable, that is, sk(x) ∈L2([0�1]) for all k ∈{1� � � � � n}. For

any k ∈{1� � � � � n}, it holds ‖sk‖L2 =
√∫ 1

0 sk(x)2 dx≤
√∫ 1

0 ‖s(x)‖2 dx= ‖s‖L2;Rn .
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s ∈L2([0�1];Rn), the corresponding local aggregate is

z(x | s) :=
∫ 1

0
W (x� y)s(y) dy :=

⎡
⎢⎢⎢⎢⎢⎣

∫ 1

0
W (x� y)s1(y) dy

���∫ 1

0
W (x� y)sn(y) dy

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎣(Ws1)(x)

���
(Wsn)(x)

⎤
⎥⎦=: (Wns)(x)�

where Wn : L2([0�1];Rn) → L2([0�1];Rn) is defined by applying W component-wise.20

We additionally define the operator Bθ : L2([0�1];Rn) → L2([0�1];Rn) point-wise as fol-
lows:

(Bθz)(x) := arg max
s̃∈S(x)

U
(
s̃� z(x)� θ(x)

)
� (18)

where z(x) is any function of L2([0�1];Rn) (i.e., not necessarily z(x | s)). In words,
(Bθz)(x) is the best response of agent x to the fixed local aggregate z(x). Note that,
under Assumption 1, such best response operator is well defined since the maximiza-
tion problem in (18) has a unique solution. The fact that, under the given assumptions,
the codomain of the best response operator Bθ is L2([0�1];Rn) will be proven in Ap-
pendix D.1 of the Supplemental Material. Overall, a strategy profile s̄ ∈L2([0�1];Rn) is a
Nash equilibrium if and only if

s̄ = BθWns̄� (19)

that is, the function s̄ is a fixed point of the composite operator BθWn, which we term the
game operator.

A.1. Section 2: Omitted Proofs

PROOF OF THEOREM 1: Existence: We aim at applying Schauder fixed point theorem
Smart (1974, Theorem 4.1.1) to BθWn : LS → K := (BθWn(LS))cl, where LS := {f ∈
L2([0�1];Rn) | ‖f‖L2;Rn ≤ smax}. We proceed in four steps. (i) The set LS is non-empty,
convex, closed and bounded. (ii) In Lemmas 5 and 6 in Appendix D.1 of the Supple-
mental Material, we prove that both Wn and Bθ are continuous operators, hence BθWn

is continuous. (iii) We show K ⊆ LS . In fact, since Wn : LS → L2([0�1];Rn) and Bθ :
L2([0�1];Rn) → LS , it holds BθWn(LS) ⊆ LS . Since LS is closed, K = (BθWn(LS))cl ⊆
(LS)cl = LS . (iv) Finally, we show that K is compact. To this end, note that Wn is a
compact operator by Lemma 5 in Appendix D.1 of the Supplemental Material and LS
is bounded, hence (Wn(LS))cl is compact, see Hutson, Pym, and Cloud (2005, Defini-
tion 7.2.1). We prove in Lemma 6 in Appendix D.1 that Bθ is Lipschitz (and thus con-
tinuous); consequently, Bθ((Wn(LS))cl) is compact, see Aliprantis and Border (2006,
Theorem 2.34). Clearly Bθ(Wn(LS)) ⊆ Bθ((Wn(LS))cl) and thus K := (Bθ(Wn(LS)))cl ⊆
(Bθ((Wn(LS))cl))cl = Bθ((Wn(LS))cl). K is thus a closed subset of a compact set, which
implies that K is compact, see Aliprantis and Border (2006, p. 40). Schauder fixed point
theorem thus guarantees existence of a fixed point.

Uniqueness: We show that the game operator is a contraction in the Hilbert space
L2([0�1];Rn). The conclusion then follows from Banach fixed point theorem, see Smart

20Note that s(x) ∈L2([0�1];Rn) ⇒ z(x | s) ∈L2([0�1];Rn).
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(1974, Theorem 4.3.4). For any f�g ∈L2([0�1];Rn),

‖BθWnf −BθWng‖L2;Rn ≤ �U

αU
‖Wnf −Wng‖L2;Rn = �U

αU

∥∥Wn(f − g)
∥∥
L2;Rn

≤ �U

αU
|||Wn|||‖f − g‖L2;Rn = �U

αU
λmax(W)‖f − g‖L2;Rn�

where we used Lemma 6, given in Appendix D.1, for the first inequality, the fact that Wn

is linear in the first equality, and the fact that |||Wn||| = λmax(W), as proven in Lemma 5, in
the last line. The conclusion follows from Assumption 3. Q.E.D.

PROPOSITION 3—Continuity: Suppose that the graphon game G(S�U�θ�W ) satisfies As-
sumptions 1, 2, 3 and let s̄ be its unique Nash equilibrium. Consider a perturbed graphon W̃ ,
a perturbed function θ̃, and let s̃ be any Nash equilibrium of the graphon game G(S�U� θ̃� W̃ ).
Then it holds

‖s̄− s̃‖L2;Rn ≤ 1/αU
1 − �U/αUλmax(W)

(
�U |||W− W̃|||smax + �θ‖θ− θ̃‖L2;Rm

)
� (20)

PROOF: To prove that (20) holds, note that s̄ = BθWns̄ and s̃ = Bθ̃W̃ns̃; hence,

‖s̄− s̃‖L2;Rn = ‖BθWns̄−Bθ̃W̃ns̃‖L2;Rn ≤ �U

αU
‖Wns̄− W̃ns̃‖L2;Rn + �θ

αU
‖θ− θ̃‖L2;Rm

≤ �U

αU
‖Wns̄−Wns̃‖L2;Rn + �U

αU
‖Wns̃− W̃ns̃‖L2;Rn + �θ

αU
‖θ− θ̃‖L2;Rm

≤ �U

αU
|||Wn|||‖s̄− s̃‖L2;Rn + �U

αU
|||Wn − W̃n|||‖s̃‖L2;Rn + �θ

αU
‖θ− θ̃‖L2;Rm

= �U

αU
λmax(W)‖s̄− s̃‖L2;Rn +

(
�U

αU
|||W− W̃|||‖s̃‖L2;Rn + �θ

αU
‖θ− θ̃‖L2;Rm

)
�

where we used that Bθ is Lipschitz, as proven in Lemma 6, the fact that |||Wn||| = λmax(W),
and the fact that |||Wn − W̃n||| = |||W− W̃|||. The conclusion follows from the fact that 1 −
�U/αUλmax(W) > 0 by Assumption 3; hence,

‖s̄− s̃‖L2;Rn ≤ 1

1 − �U

αU
λmax(W)

(
�U

αU
|||W− W̃|||‖s̃‖L2;Rn + �θ

αU
‖θ− θ̃‖L2;Rm

)
� (21)

and the fact that, under Assumption 2, ‖s̃‖L2;Rn ≤ smax, as proven in Lemma 6. Q.E.D.

A.2. Section 4 and 5.1: Omitted Proofs

We here report a formal lemma for the equivalence of network games to graphon games
discussed in Section 4.1 and a more general statement for Theorem 2 that includes the
sparsity parameter κN , as discussed in Section 5.1. The statements in Section 4.1 and
Theorem 2 are obtained as special cases by setting δN = δ/N and κN = 1.
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LEMMA 1: A vector s̄[N] ∈ R
Nn is a Nash equilibrium of G [N]

κ ({S i}Ni=1�U�{θ
i}Ni=1�A

[N])
with N players, local aggregate as in (7) for some sparsity parameter κN , strategy sets S i,
parameters θi, and graph A[N] if and only if the corresponding step function equilibrium
s̄[N](x) ∈ L2([0�1];Rn) is a Nash equilibrium of the graphon game G(S[N]�U�θ[N]�W [N]

κ )
with payoff function as in (2), set valued function S[N](x) := S i for all x ∈ U [N]

i , parameter
function θ[N](x) := θi for all x ∈ U [N]

i , and step function graphonW [N]
κ corresponding to A[N]

κN
.

PROOF: Suppose that s̄[N] is a Nash equilibrium of G(S[N]�U�θ[N]�W [N]
κ ). Since W [N]

κ is
a step function over the partition U [N], the aggregate z̄κ(x) = ∫ 1

0 W
[N]
κ (x� y)s̄[N](y) dy is a

step function with respect to the same partition. Let z̄iκ be the value of z̄κ(x) in U [N]
i and

recall that θ[N](x) = θi in U [N]
i . From the definition of Nash equilibrium for the graphon

game,

s̄[N](x) = arg max
s∈S[N] (x)

U
(
s� z̄κ(x)� θ[N](x)

)= arg max
s∈Si

U
(
s� z̄iκ� θ

i
)

for all x ∈ U [N]
i �

Consequently, also s̄[N](x) is a step function with respect to U [N]. Let s̄i[N] be the value

of s̄[N](x) in U [N]
i . Then z̄iκ = ∫ 1

0 W
[N]
κ (x� y)s̄[N](y) dy = 1

N

∑N

j=1

A
[N]
ij

κN
s̄
j
[N] and s̄[N](x) is a

graphon Nash equilibrium if and only if, for each i ∈{1� � � � �N}, it holds

s̄i[N] = arg max
s∈Si

U
(
s� z̄iκ� θ

i
)
� z̄iκ = 1

κNN

N∑
j=1

A
[N]
ij s̄

j
[N]�

The latter is the definition of Nash equilibrium in the sampled network game with network
A[N], thus concluding the proof. Q.E.D.

THEOREM 2—Generalized: Consider a graphon game G(S�U�θ�W ) in which each
player has homogeneous strategy set, that is, S(x) = S for all x ∈ [0�1]. Suppose that G sat-
isfies Assumptions 1, 2, 3, and 4. Let s̄ be its unique Nash equilibrium and fix any sequences
{δN�κN}∞

N=1 such that δN ≤ e−1 and log(N/δN )
NκN

→ 0. Let s̄[N]
W be an arbitrary step function equi-

librium of the sampled network game corresponding to either the sampled network A[N]
w (as

defined in Section 3.2) or A[N]
s (as defined in Section 5.1). Then

1. ‖s̄[N]
W − s̄‖L2;Rn → 0 almost surely when N → ∞;

2. with probability at least 1 − 2δN ,

∥∥s̄[N]
W − s̄∥∥

L2;Rn =O
((

log(N/δN)
N

)1/4

+
(

log(N/δN)
κNN

) 1
2
)

;

3. if κN = 1 for all N and any ε > 0, there exists C > 0 s.t. for N large enough,

P
[∥∥s̄[N]

W − s̄∥∥
L2 > ε

]≤ 2N
exp
(
ε4N/C

) �
PROOF: • We start by proving statement 2. Let θ[N] be the step function corresponding

to the vector [θ(ti)]Ni=1 and W [N]
w , W [N]

s be the step function graphons corresponding to

A[N]
w and A

[N]
s

κN
, respectively, so that s̄[N]

w and s̄[N]
s are the equilibria of the graphon games
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played over the graphon W [N]
w and W [N]

s with parameter function θ[N]. By Proposition 3,
it follows ∥∥s̄[N]

W − s̄∥∥
L2;Rn ≤K(∣∣∣∣∣∣W[N]

W −W
∣∣∣∣∣∣smax + ∥∥θ[N] − θ∥∥

L2;Rm
)
� (22)

The bound on ‖s̄[N]
W − s̄‖L2;Rn follows from (22) and the fact that for N large enough

with probability at least 1 − 2δN ,∥∥θ[N] − θ∥∥
L2;Rm ≤ ρθ(N) and

∣∣∣∣∣∣W[N]
W −W

∣∣∣∣∣∣≤ ρW (N)� (23)

for ρθ(N) and ρW (N) as defined in Lemma 12 in Appendix D.5 of the Supplemental Ma-
terial. The bounds in (23) are proven in Avella-Medina et al. (2018, Theorem 1) (reported
in Lemma 12 in Appendix D.5) and follow from the fact that the {ti}Ni=1 are the ordered
statistic of N uniform samples from [0�1] combined with the fact that W is piecewise
Lipschitz by Assumption 4.

Overall, there exists M > 0 such that for N sufficiently large with probability at least
1 − 2δN , it holds

∥∥s̄[N]
W − s̄∥∥

L2;Rn ≤M
((

log(N/δN)
N

) 1
4

+
(

log(N/δN)
κNN

) 1
2
)

=:�N�

• To prove statement 1, let us define the sequence of events EN :={‖s̄[N]
W − s̄‖L2;Rn > �N}. It

follows by the previous point that Pr[EN]< 2δN . Note that log(N/δN )
NκN

→ 0 implies log(N)
NκN

→
0 (since δN ≤ 1). Hence δN = 1

N2 is an admissible choice and leads to
∑∞

N=1 Pr[EN] <∑∞
N=1

2
N2 <∞. By the Borel–Cantelli lemma, there exists a positive integer N̄ such that for

all N ≥ N̄ , the complement of EN , that is, ‖s̄[N]
W − s̄‖L2;Rn ≤�N , holds a.s. Since, �N → 0,

we obtain ‖s̄[N]
W − s̄‖L2;Rn → 0 a.s.

• Finally, to prove statement 3, fix δN = δ/N for any 0 ≤ δ≤ e−1. Statement 2 then implies
that there exists C̃ > 0 s.t. for N large enough,

P

[∥∥s̄[N]
W − s̄∥∥

L2 > C̃

(
log
(
N2/δ

)
N

) 1
4
]

≤ 2δ
N
�

Statement 3 follows by defining ε = C̃( log(N2/δ)
N

)
1
4 , explicitly deriving δ from such expres-

sion, and then substituting it into the probability bound 2δ
N

with C = C̃4. Q.E.D.

A.3. Section 6: Omitted Proofs

PROOF OF THEOREM 3: Problem (9) can be equivalently reformulated as a problem in
the space of functions instead of vectors by using the reformulation given in Section 4.1,
so that

T
[N]
opt := max

θ̂[N]∈L[N]
T [N]

(
θ̂[N]
)= ∫ 1

0
U
(
s̄

[N]
θ̂[N] (x)� z̄[N]

θ̂[N] (x)� θ[N](x) + θ̂[N](x)
)

s.t. s̄
[N]
θ̂[N] = Nash equilibrium of G

(
S�U�θ[N] + θ̂[N]�W [N]

)
�

z̄
[N]
θ̂[N] = W

[N]s̄
[N]
θ̂[N]�∥∥θ̂[N]

∥∥2

L2 ≤ C�

(24)
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where we used L[N] to denote the subspace of L2([0�1]) composed by functions that are
piecewise constant w.r.t. the partition {U [N]

i }Ni=1 and we used the same symbol θ[N] to de-
note the vector [θ(ti)]Ni=1 and its corresponding piecewise constant function.

Let θ̂[N]
opt be an optimizer of Problem (24) and note that

T [N]
(
θ̂

[N]
graphon

)≥ T (θ̂∗)− ∣∣T [N]
(
θ̂

[N]
graphon

)− T (θ̂∗)∣∣︸ ︷︷ ︸
T1

≥ T (θ̂[N]
opt

)− T1

≥ T [N]
(
θ̂

[N]
opt

)− T1 − ∣∣T [N]
(
θ̂

[N]
opt

)− T (θ̂[N]
opt

)∣∣︸ ︷︷ ︸
T2

= T [N]
opt − T1 − T2�

where we used T (θ̂∗) ≥ T (θ̂[N]
opt ) since θ∗ is a maximizer. Our next objective is to upper

bound the terms T1 and T2. Using Lemma 2 given after this proof, we obtain

T1 ≤L
√∥∥s̄[N]

θ̂
[N]
graphon

− s̄θ̂∗
∥∥2

L2 + ∥∥z̄[N]

θ̂
[N]
graphon

− z̄θ̂∗
∥∥2

L2 + ∥∥θ̂[N]
graphon − θ̂∗∥∥2

L2 + ∥∥θ[N] − θ∥∥2

L2�

and similarly

T2 ≤L
√∥∥s̄[N]

θ̂
[N]
opt

− s̄
θ̂

[N]
opt

∥∥2

L2 + ∥∥z̄[N]

θ̂
[N]
opt

− z̄
θ̂

[N]
opt

∥∥2

L2 + ∥∥θ[N] − θ∥∥2

L2 �

Note that for any function θ̂1� θ̂2 ∈L2([0�1]) by the proof of Proposition 3 (Equation (21))
and Lemma 12, with probability 1 − 2δN , there exists K > 0 s.t.∥∥s̄[N]

θ̂1
− s̄θ̂2

∥∥
L2 ≤K(∣∣∣∣∣∣W[N]

W −W
∣∣∣∣∣∣∥∥s̄[N]

θ̂1

∥∥
L2 + ∥∥(θ[N] + θ̂1

)− (θ+ θ̂2)
∥∥
L2

)
≤K(ρW (N)smax + ∥∥θ[N] − θ∥∥

L2 + ‖θ̂1 − θ̂2‖L2

)
≤K(ρW (N)smax + ρθ(N) + ‖θ̂1 − θ̂2‖L2

)=:K(ρM (N) + ‖θ̂1 − θ̂2‖L2

)
�

where ρW , ρθ are as defined in Lemma 12.
Similarly,∥∥z̄[N]

θ̂1
− z̄θ̂2

∥∥
L2 = ∥∥W[N]s̄

[N]
θ̂1

−Ws̄θ̂2

∥∥
L2 ≤ ∥∥W[N]s̄

[N]
θ̂1

−Ws̄
[N]
θ̂1

∥∥
L2 + ∥∥Ws̄[N]

θ̂1
−Ws̄θ̂2

∥∥
L2

≤ ∣∣∣∣∣∣W[N] −W
∣∣∣∣∣∣∥∥s̄[N]

θ̂1

∥∥
L2 + |||W|||∥∥s̄[N]

θ̂1
− s̄θ̂2

∥∥
L2

≤ ρW (N)smax + λmax(W )K
(
ρM (N) + ‖θ̂1 − θ̂2‖L2

)
≤K′(ρM (N) + ‖θ̂1 − θ̂2‖L2

)
�

with K′ = (1 + λmax(W )K).
We finally bound ‖θ̂[N]

graphon − θ̂∗‖L2 . To this end, let θ̂[N]∗ be the piecewise function cor-
responding to [θ∗(ti)]Ni=1, so that (i) by Lemma 12 with the same probability 1 − 2δN ,
‖θ̂[N]∗ − θ̂∗‖L2 ≤ ρ∗

θ(N) :=√(L∗dN)2 + 4�∗dNθ∗
max (where L∗ is the Lipschitz constant of

θ̂∗,�∗ is the number of points in which θ̂∗ is not Lipschitz continuous and θ̂∗(x) ≤ θ∗
max for
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all x), and (ii) by definition, θ̂[N]
graphon = θ̂[N]∗ √

C

‖θ̂[N]∗‖
L2

= θ̂[N]∗ ‖θ̂∗‖
L2

‖θ̂[N]∗‖
L2

. Overall,

∥∥θ̂[N]
graphon − θ̂∗∥∥

L2 ≤ ∥∥θ̂[N]
graphon − θ̂[N]∗∥∥

L2 + ∥∥θ̂[N]∗ − θ̂∗∥∥
L2 ≤

∣∣∣∣
∥∥θ̂∗∥∥

L2∥∥θ̂[N]∗∥∥
L2

− 1
∣∣∣∣∥∥θ̂[N]∗∥∥

L2 + ρ∗
θ(N)

= ∣∣∥∥θ̂∗∥∥
L2 − ∥∥θ̂[N]∗∥∥

L2

∣∣+ ρ∗
θ(N) ≤ ‖θ̂∗ − θ̂[N]∗‖L2 + ρ∗

θ(N) = 2ρ∗
θ(N)�

Hence T1 + T2 ≤ 2L(
√

(K′2 +K2)(ρM (N) + 2ρ∗
θ(N))2 + (2ρ∗

θ(N))2 + ρθ(N)2) =:
ρT (N) =O(( log(N/δN )

N
)

1
4 ). The result follows setting δN = δ

N
. Q.E.D.

LEMMA 2: Suppose thatU (s� z�θ) is jointly Lipschitz continuous in [s� z�θ] with constant
L. For any function s� z�θ� s̃� z̃� θ̃ ∈L2([0�1]),∣∣∣∣

∫ 1

0
U
(
s(x)� z(x)� θ(x)

)
dx−

∫ 1

0
U
(
s̃(x)� z̃(x)� θ̃(x)

)
dx

∣∣∣∣
≤L

√
‖s− s̃‖2

L2 + ‖z− z̃‖2
L2 + ‖θ− θ̃‖2

L2 �

PROOF: ∣∣∣∣
∫ 1

0
U
(
s(x)� z(x)� θ(x)

)
dx−

∫ 1

0
U
(
s̃(x)� z̃(x)� θ̃(x)

)
dx

∣∣∣∣
≤
∫ 1

0

∣∣U(s(x)� z(x)� θ(x)
)−U(s̃(x)� z̃(x)� θ̃(x)

)∣∣dx
≤L

∫ 1

0

(√∥∥s(x) − s̃(x)
∥∥2 + ∥∥z(x) − z̃(x)

∥∥2 + ∥∥θ(x) − θ̃(x)
∥∥2)
dx

≤L
√∫ 1

0

(∥∥s(x) − s̃(x)
∥∥2 + ∥∥z(x) − z̃(x)

∥∥2 + ∥∥θ(x) − θ̃(x)
∥∥2)
dx

=L
√

‖s− s̃‖2
L2

+ ‖z− z̃‖2
L2

+ ‖θ− θ̃‖2
L2
� Q.E.D.

PROOF OF PROPOSITION 1: First, note that for linear quadratic games with α > 0, the
payoff at equilibrium is

U
(
s̄θ̂(x)� z̄θ̂(x)� θ(x) + θ̂(x)

)= 1
2
s̄θ̂(x)2�

Hence T (θ̂) = 1
2‖s̄θ̂‖2

L2 . Similarly to the proof of Lemma 3, given next, it can be shown
that with probability 1 − 2δN , both ‖s̄[N]

θ̂[N]‖L2 and ‖s̄θ̂‖L2 (as defined in (24) and in (10),
respectively) can be bounded by some constant Ms for any feasible θ̂[N], θ̂. Let K be the
kernel of W, so that Wψ= 0 for any function ψ ∈K and let K⊥ be its orthogonal comple-
ment. By the spectral theorem, it is possible to construct a orthonormal basis for K⊥ made
of eigenfunctions of W. We denote such basis by {ψr}Rr=1. Let θ̂ be a generic function of
L2([0�1]). Let b0ψ0, b̂0ψ̂0 be the projection of θ, θ̂ in K (with ‖ψ0‖L2 = ‖ψ̂0‖L2 = 1) and let
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br = 〈θ�ψr〉, b̂r = 〈θ̂�ψr〉. Since K is a closed linear subspace, it holds θ= b0ψ0 +∑R

r=1 brψr
and θ̂= b̂0ψ̂0 +∑R

r=1 b̂rψr . Using the fact that {ψr}Rr=1 are orthogonal to each other and or-
thogonal to any function in K yields ‖θ̂‖2

L2 = ‖b̂0ψ̂0 +∑R

r=1 b̂rψr‖2
L2 = ‖b̂0ψ̂0‖2

L2 +
∑R

r=1 b̂
2
r =∑R

r=0 b̂
2
r . Since we are considering linear quadratic games, from Example 1, the equilib-

rium induced by θ+ θ̂ can be rewritten as

s̄θ̂ = (I− αW)−1(θ+ θ̂) =
∞∑
h=0

αhWh

(
b0ψ0 + b̂0ψ̂0 +

R∑
r=1

(br + b̂r)ψr
)

=
∞∑
h=0

αhWh(b0ψ0 + b̂0ψ̂0) +
R∑
r=1

(br + b̂r)
∞∑
h=0

αhWh(ψr)

= (b0ψ0 + b̂0ψ̂0) +
R∑
r=1

(br + b̂r)
∞∑
h=0

αhλhr ψr = (b0ψ0 + b̂0ψ̂0) +
R∑
r=1

(br + b̂r)
1 − αλr ψr�

Hence 2T (θ̂) = ‖s̄θ̂‖2
L2 = ‖b0ψ0 + b̂0ψ̂0‖2

L2 +∑R

r=1
(br+b̂r )2

(1−αλr )2 . Note that for any fixed value
of b0, ψ0, b̂0, the quantity ‖b0ψ0 + b̂0ψ̂0‖2

L2 is maximized when ψ̂0 = ψ0, in which case
‖b0ψ0 + b̂0ψ̂0‖2

L2 = (b0 + b̂0)2. Hence Problem (10) can be reformulated as (14). Q.E.D.

LEMMA 3: Let s̄[N]
W be an arbitrary step function equilibrium of the sampled network game

G [N]({R≥0}Ni=1�U�{θ(ti)}Ni=1�A
[N]
W ), as introduced in Section 3.2, with linear quadratic payoff

U as in (12) and set 0 < α < 1
λmax(W) . Then there exists Ms such that for any admissible

confidence sequence {δN}∞
N=1 and N large, with probability 1 − 2δN , ‖s̄[N]

W ‖L2 ≤Ms.

PROOF: Fix k̄ ∈ (1� 1
αλmax(W) ) (this interval has non-empty interior by assumption). Since

by Lemma 12 (given in Appendix D.5 of the Supplemental Material) with probability
1 − 2δN for N large |λmax(W[N]

W ) − λmax(W)|≤ ρW (N), it follows that for N large enough,
λmax(W[N]

W ) ≤ k̄λmax(W), and by the formula for the equilibrium in linear quadratic
graphon games derived in Example 1, we obtain ‖s̄[N]

W ‖L2 ≤ ‖(I− αW[N]
W )−1θ[N]‖L2 ≤

1

1−αλmax(W[N]
W )

‖θ[N]‖L2 ≤ 1
1−αk̄λmax(W)

2‖θ‖L2 =:Ms, where we used that, for largeN , ‖θ[N]‖L2 ≤
2‖θ‖L2 since ‖θ[N] − θ‖L2 → 0, as shown in Lemma 12 in Appendix D.5. Q.E.D.

PROOF OF PROPOSITION 2: By Lemma 4, given next, at the unique internal equilib-
rium,

s̄θ̂(x) = αz̄θ̂(x)
(
1 − z̄θ̂(x)

)+ θ(x) + θ̂(x)�

HenceU (s̄θ̂(x)� z̄θ̂(x)� θ(x)+ θ̂(x)) = 1
2 s̄θ̂(x)2 and T (θ̂) = ‖s̄θ̂‖2

L2 . Moreover, by Lemma 4,
the unique graphon equilibrium and the intervention θ̂ can be rewritten as

s̄θ̂ = s1ψ1 + s2ψ2 + s0ψ0 + b̃ψ̃�
θ̂= b̂1ψ1 + b̂2ψ2 + b̂0ψ0 + b̃ψ̃�

where ψ1, ψ2, ψ0, ψ̃ are orthonormal functions defined in Lemma 4. We then immediately
obtain ‖s̄θ̂‖2

L2 = s2
0 + s2

1 + s2
2 + b̃2. Using the expression for s0, s1, s2 given in Lemma 4,
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Problem (10) can be equivalently reformulated as

max
b̂1�b̂2�b̂3

s2
1 + (−αs1

2λp2 + b2 + b̂2

)2 + (b0 + b̂0)2

s.t. s1 = −(1 − αλ) +
√

(1 − αλ)2 + 4(αλp1)(b1 + b̂1)

2αλp1
�

b̂2
1 + b̂2

2 + b̂2
3 = C�

where we used that, at the optimum, b̃= 0. Note that to use Lemma 4, we should verify
that b1 + b̂1 > 0 and θ(x) + θ̂(x) ∈ [0�3/4] for all x ∈ [0�1]. However, this is true in the
small budget regime under the given assumption that b1 > 0 and θ(x) ∈ [0�3/4) for all
x ∈ [0�1]. Q.E.D.

LEMMA 4: Consider a graphon game G([0�1]�U�θ+ θ̂�Wv) with payoff function U as in
(16) and graphon Wv as in Example 5. Suppose that α ∈ [0�min(1�1/λ)] and θ(x) + θ̂(x) ∈
[0�3/4] for all x ∈ [0�1]. Then there is a unique equilibrium and is internal. To compute an
explicit formula, let ψ1(x) = v(x)/

√
λ ∈ L2([0�1]) be the unique eigenfunction of Wv nor-

malized such that ‖ψ1‖L2 = 1. Moreover, define (i) ψ2 such that v2(x) = p1ψ1(x) +p2ψ2(x)
with p1�p2 > 0, ‖ψ2‖L2 = 1, 〈ψ1�ψ2〉 = 0, (ii) ψ0 such that θ = b1ψ1 + b2ψ2 + b0ψ0 with
‖ψ0‖L2 = 1, 〈ψ0�ψi〉 = 0 for i = 1�2, and (iii) ψ̃ such that θ̂ = b̂1ψ1 + b̂2ψ2 + b̂0ψ0 + b̃ψ̃

with ‖ψ̃‖L2 = 1, 〈ψ̃�ψi〉 = 0, for all i= 0�1�2.21 Suppose b1 + b̂1 > 0. Then

s̄θ̂ = s1ψ1 + s2ψ2 + s0ψ0 + b̃ψ̃�

with s1 = −(1−αλ)+
√

(1−αλ)2+4(αλp1)(b1+b̂1)
2αλp1

, s2 = −αs1
2λp2 + b2 + b̂2, and s0 = b0 + b̂0.

PROOF: First note that all assumptions of Theorem 1 are met, hence there is a unique
equilibrium. The best response is given by

s̄θ̂(x) =�[0�1]

[
αz̄θ̂(x)

(
1 − z̄θ̂(x)

)+ θ(x) + θ̂(x)
]
� (25)

However, s̄θ̂(x) ∈ [0�1] implies z̄θ̂(x) ∈ [0�1], which implies z̄θ̂(x)(1 − z̄θ̂(x)) ∈ [0� 1
4 ].

Since α ∈ [0�1] and θ(x) + θ̂(x) ∈ [0� 3
4 ], we obtain that the argument inside of the pro-

jection in (25) is always in [0�1]. Consequently, (25) can be rewritten as

s̄θ̂(x) = αz̄θ̂(x)
(
1 − z̄θ̂(x)

)+ θ(x) + θ̂(x)� (26)

Note that

z̄θ̂(x) =
∫ 1

0
v(x)v(y)s̄θ̂(y) dy = λ

∫ 1

0
ψ1(x)ψ1(y)s̄θ̂(y) dy = λψ1(x)〈ψ1� s̄θ̂〉�

Set ξ := 〈ψ1� s̄θ̂〉, then z̄θ̂(x) = ξλψ1(x) = ξ
√
λv(x). Consequently, z̄2

θ̂
(x) = ξ2λv2(x) =

ξ2λ[p1ψ1(x) +p2ψ2(x)].

21Such decomposition can be obtained by using the Gram–Schmidt process to construct an orthonormal
basis.
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Substituting this notation in (26), we obtain

s̄θ̂ = αz̄θ̂ − αz̄2
θ̂
+ θ+ θ̂

= αξλψ1 − αξ2λ[p1ψ1 +p2ψ2] + (b0 + b̂0)ψ0 + (b1 + b̂1)ψ1

+ (b2 + b̂2)ψ2 + b̃ψ̃
= (αξλ− αξ2λp1 + b1 + b̂1

)︸ ︷︷ ︸
s1

ψ1 + (−αξ2λp2 + b2 + b̂2

)︸ ︷︷ ︸
s2

ψ2

+ (b0 + b̂0)︸ ︷︷ ︸
s0

ψ0 + b̃ψ̃� (27)

Plugging this expression in ξ := 〈ψ1� s̄θ̂〉, we obtain

ξ= (αξλ− αξ2λp1 + b1 + b̂1

) ⇔ αλp1ξ
2 + (1 − αλ)ξ− (b1 + b̂1) = 0�

which has two solutions ξ± = −(1−αλ)±
√

(1−αλ)2+4(αλp1)(b1+b̂1)
2αλp1

. Since α�p1�λ� (b1 + b̂1) > 0, it

holds ξ+ > 0 and ξ− < 0. Since z̄θ̂(x) = √
λξv(x) ∈ [0� 1

4 ] and v(x) > 0, it must be ξ > 0,
hence ξ= ξ+ = s1. Q.E.D.
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