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THIS SUPPLEMENT is organized as follows. Supplemental Appendix D gives proofs of
the formal results in the main text and details on Assumption C.5. Supplemental Ap-
pendix E gives details on the simulations. Supplemental Appendix F discusses the power
of tests based on our empirical Bayes confidence interval (EBCIs), and Supplemental
Appendix G works through examples of the general shrinkage estimators in Section 6.1.

APPENDIX D: THEORETICAL DETAILS AND PROOFS

Supplemental Appendix D.1 gives technical details on Assumption C.5. The remainder
of this Supplemental Appendix provides the proofs of all results in the main paper and in
this supplement.

D.1. Primitive Conditions for Assumption C.5

To verify Assumption C.5, we will typically have to define θi to be scaled by a rate of
convergence. Let Ỹi be an estimator of a parameter ϑi�n with rate of convergence κn and
asymptotic variance estimate σ̂2

i . Suppose that

lim
n→∞

max
1≤i≤n

sup
t∈R

∣∣∣∣P(κn(Ỹi −ϑi�n)
σ̂i

≤ t

)
−�(t)

∣∣∣∣= 0� (S1)

Then Assumption C.5 holds with θi = κnϑi�n and Yi = κnỸi. Consider an affine estimator
ϑ̂i = ai/κn +wiỸi = (ai +wiYi)/κn with standard error s̃ei = wiσ̂i/κn. The corresponding
affine estimator of θi is θ̂i = κnϑ̂i = ai + wiYi with standard error sei = κn · s̃ei = wiσ̂i.
Then ϑi�n ∈ {ϑ̂i ± s̃ei · χ̂i} iff θi ∈ {θ̂i ± sei · χ̂i}. Thus, Theorem C.2 guarantees average
coverage of the intervals {ϑ̂i ± s̃ei · χ̂i} for ϑi�n. Note that, in order for the moments of θi

to converge to a non-degenerate constant, we will need to consider triangular arrays ϑi�n

that converge to zero at a κn rate.
As an example, we now verify Assumption C.5 for the linear fixed effects panel data

model

Wit = ϑi�n +X ′
itβ+ uit� i = 1� � � � � n� t = 1� � � � �Ti�
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where Xit are covariates in the fixed effects regression.1 We assume that the Ti’s in-
crease at the same rate so that, letting T̄ = 1

n

∑n

i=1 Ti, we can apply the approach de-

scribed above with κn =
√
T̄ to verify Assumption C.5 with θi =

√
T̄ϑi�n. We consider

the fixed effects estimate of ϑi�n formed by regressing Wit on Xit and indicator variables
for each individual i, along with the heteroscedasticity robust variance estimate from this
regression. To give the formulas for these estimates, we first define some notation. Let
W̄i = 1

Ti

∑Ti
t=1 Wit , X̄i = 1

Ti

∑Ti
t=1 Xit , Ẍit = Xit − X̄i, Ẅit = Wit − W̄i, ūi = 1

Ti

∑Ti
t=1 uit , and

T̄ = 1
n

∑n

i=1 Ti. Letting Q̂XX = 1
nT̄

∑n

i=1

∑Ti
t=1 ẌitẌ

′
it , the fixed effects estimate of β is given

by β̂= Q̂−1
XX

∑n

i=1

∑Ti
t=1 ẌitWit/(nT̄ ), and the fixed effects estimate of ϑi�n is given by

Ỹi = W̄i − X̄ ′
i β̂=

n∑
j=1

Tj∑
t=1

(
I{i = j}

1
Ti

− 1
nT̄

X̄ ′
iQ̂

−1
XXẌit

)
Wit� (S2)

We assume that the Ti’s grow at the same rate, so that all Ỹi’s converge at the same rate
1/
√
T̄ . An estimate of the variance of

√
T̄ (Ỹi − ϑi�n) that is robust to heteroscedasticity

in uit is given by

σ̂2
i = T̄

n∑
j=1

Ti∑
t=1

(
I{i = j}

1
Ti

− 1
nT̄

X̄ ′
iQ̂

−1
XXẌjt

)2

û2
jt � (S3)

where ûit = Wit −X ′
it β̂− Ỹi.

We consider “large n large T ” asymptotics in which the Ti’s are implicitly indexed by
n. We make the following assumptions about the Ti’s and the distribution P̃ = P̃ (n) of
{Xit�uit}i=1�����n� t=1�����Ti .

ASSUMPTION D.1: For some constants γ > 0 and K > 0,
1. uit is mean zero and independent across i and t with 1/K ≤EP̃u

2
it and EP̃ |uit |2+γ ≤K.

2. |Xit | ≤K for all i, t.
3. n→ ∞ and min1≤i≤n Ti → ∞ and Ti/Tj ≤K for all i� j ≤ n.
4. under P̃ ,

√
nT̄ (β̂ − β) = O(1) and the minimum eigenvalue of Q̂XX is greater than

1/K with probability approaching 1 as n → ∞.

Assumption D.1 is meant to give a simple set of sufficient conditions, and it could be
modified for other settings, so long as large n and T asymptotics allow for valid inference
on the individual fixed effects. For example, one could relax the independence assumption
on the uit ’s and modify the standard errors to take into account dependence, so long
as one puts enough structure on the dependence that consistent variance estimation is
possible as n and T increase. The assumption of bounded covariates is made for simplicity,
and could be relaxed, at the possible expense of strengthening the moment condition
on uit . The convergence rate assumption on β̂ follows from standard arguments under
appropriate conditions on uit and Xit (see, e.g., Stock and Watson (2008)).

1We note that, despite the similarity in notation, we do not make any assumption about the relation between
the individual level prediction variables Xi used in the individual level predictive regression and the covariates
Xit used in the fixed effects regression.
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THEOREM D.1: Consider the fixed effects setting given above, and suppose Assump-
tion D.1 holds. Then Assumption C.5 holds with θi =

√
T̄ϑi�n, Yi =

√
T̄ Ỹi where Ỹi is the

fixed effects estimator defined in Eq. (S2), and σ̂2
i is the variance estimate defined in Eq. (S3).

To prove Theorem D.1, we first prove a series of lemmas.

LEMMA D.1: For any η> 0, max1≤i≤n P̃(
√
T̄ |Ỹi −ϑi�n − ūi| >η) → 0.

PROOF: The result is immediate from Assumption D.1 since Ỹi − ϑi�n − ūi = X̄ ′
it (β −

β̂). Q.E.D.

LEMMA D.2: For any η > 0, max1≤i≤n P̃(| 1
Ti

∑Ti
t=1(û2

it − u2
it)| > η) → 0. Furthermore, if

Ait�n is a triangular array of random variables that are bounded almost surely uniformly in n

and i, t, then, for any η > 0, there exists C such that max1≤i≤n P̃(| 1
Ti

∑Ti
t=1 Ait�nû

2
it | > C) < η

and P̃(| 1
nT̄

∑n

i=1

∑Ti
t=1 Ait�nû

2
it |>C) <η for large enough n.

PROOF: Some algebra shows that ûit = Ẍ ′
it(β− β̂) + uit − ūi. Thus,

û2
it = u2

it + (β− β̂)′ẌitẌ
′
it (β− β̂) + ū2

i + 2uitẌ
′
it (β− β̂) − 2ūiẌ

′
it (β− β̂) − 2ūiuit � (S4)

It follows that | 1
nT̄

∑n

i=1

∑Ti
t=1 Ait�nû

2
it | is bounded by maxi�t�n|Ait�n| times

1
nT̄

n∑
i=1

Ti∑
t=1

u2
it + (β− β̂)′Q̂XX (β− β̂) + 1

nT̄

n∑
i=1

Ti∑
t=1

ū2
i

+ 1
nT̄

n∑
i=1

Ti∑
t=1

2|uit | ·
∣∣Ẍ ′

it (β− β̂)
∣∣− 1

nT̄

n∑
i=1

Ti∑
t=1

2|ūi|
∣∣Ẍ ′

it(β− β̂)
∣∣− 1

nT̄

n∑
i=1

Ti∑
t=1

2|ūiuit |�

The second term converges in probability to zero by the assumptions on Xit and β̂. The
remaining terms are bounded by a constant times 1

nT̄

∑n

i=1

∑Ti
t=1(u2

it + ū2
i +|uit|+|ūi|+

|ūiuit|). By Jensen’s inequality, we have ū2
i ≤ 1

Ti

∑Ti
i=1 u

2
it , |ūi| ≤ 1

Ti

∑Ti
i=1|uit|, and

Ti∑
t=1

|ūi||uit | = |ūi|
Ti∑
t=1

|uit | ≤ 1
Ti

[
Ti∑
t=1

|uit |
]2

≤ Ti

1
Ti

Ti∑
t=1

u2
it =

Ti∑
t=1

u2
it �

This gives a bound of a constant times 1
nT̄

∑n

i=1

∑Ti
t=1(u2

it +|uit|). The last statement in the
lemma then follows by Markov’s inequality. The second statement in the lemma follows
from similar arguments.

For the first statement in the lemma, it follows from (S4) that 1
Ti

∑Ti
t=1(u2

it − û2
it) is equal

to

(β̂−β)′
(

1
Ti

Ti∑
t=1

ẌitẌ
′
it

)
(β̂−β) − ū2

i + 2
1
Ti

Ti∑
t=1

uitẌ
′
it(β− β̂) − 2

ūi

Ti

Ti∑
t=1

Ẍ ′
it (β− β̂)�
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The first term is bounded by a constant that does not depend on i times |β̂ − β|2 (the
squared Euclidean norm), which converges in probability to 0 by assumption. The second
term has expectation bounded by T̄−1 times a constant that does not depend on i. From
the bounds on the support of Xit and the first moment of uit , it follows that the last two
terms are bounded by |β̂− β| times a constant that does not depend on i. This gives the
first statement of the lemma. Q.E.D.

LEMMA D.3: Let σ2
i = T̄

T 2
i

∑Ti
t=1 EP̃u

2
it . For any η> 0, max1≤i≤n P̃(|σ̂2

i − σ2
i |>η) → 0.

PROOF: We have σ̂2
i = I + II + III, where I = T̄

T 2
i

∑Ti
t=1 û

2
it ,

II = 1
n2T̄

n∑
j=1

Ti∑
t=1

X̄ ′
iQ̂

−1
XXẌjtẌ

′
jtQ̂

−1
XXX̄iû

2
jt =

1
n
X̄ ′

iQ̂
−1
XXQ̂XXuQ̂

−1
XXX̄i�

where Q̂XXu = 1
nT̄

∑n

j=1

∑Ti
t=1 ẌjtẌ

′
jt û

2
it , and

III = −2
1
nTi

Ti∑
t=1

X̄ ′
iQ̂

−1
XXẌit û

2
it = −2

1
n
X̄ ′

iQ̂
−1
XXQ̂Xu�i�

where Q̂Xu�i = 1
Ti

∑n

i=1 Ẍit û
2
it . By Lemma D.2 and the condition on the minimum eigen-

value of Q̂XX , it follows that max1≤i≤n P̃(|II + III| > η/3) → 0. It also follows from
Lemma D.2 that max1≤i≤n P̃(|I − T̄

T 2
i

∑Ti
t=1 u

2
it | > η/3) → 0. It now suffices to show that

max1≤i≤n P̃(| T̄

T 2
i

∑Ti
t=1(u2

it − EP̃u
2
it)| > η/3) → 0. By von Bahr and Esseen (1965, Theo-

rem 3),

EP̃

∣∣∣∣∣ T̄T 2
i

Ti∑
t=1

(
u2
it −EP̃u

2
it

)∣∣∣∣∣
1+γ/2

≤ 2
(
T̄ /T 2

i

)1+γ/2
Ti∑
t=1

EP̃

∣∣u2
it −EP̃u

2
it

∣∣1+γ/2
�

which is bounded by a constant times T̄−γ/2 by the moment bound on uit and the bound
on Ti/Tj . The result now follows from Markov’s inequality. Q.E.D.

Let Z̃i =
√
T̄ ūi/σi, R1�i =

√
T̄i(Ỹi −ϑi�n − ūi)/σi, and R2�i = σ̂i − σi. We have√

T̄ (Ỹi −ϑi�n)
σ̂i

= (Z̃i +R1�i)
σi

σi +R2�i
= Z̃i − Z̃i

R2�i

σi +R2�i
+R1�i

σi

σi +R2�i
�

It follows from the Lyapunov Central Limit Theorem (applied to Zin for arbitrary se-
quences in ≤ n) that limn→∞ max1≤i≤n supt∈R|P(Z̃i ≤ t) − �(t)| = 0. The conclusion of
Theorem D.1 then follows so long as max1≤i≤n P(|Z̃i

R2�i
σi+R2�i

| + |R1�i
σi

σi+R2�i
| > η) → 0 for

any η> 0. But this follows by Lemmas D.1 and D.3 and the fact that σi is bounded from
above and from below away from zero by the moment assumptions on uit .
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D.2. Proof of Lemma 4.1

We first show that the non-coverage probability is weakly decreasing in wEB�i. Let (m)
denote the space of probability measures on R with second moment bounded above by
m> 0. Abbreviating z1−α/2 by z, let ρ̃(w) = ρ(1/w−1� z/

√
w) denote the maximal under-

coverage when wEB�i = w. By definition of ρ,

ρ̃(w) = sup
F∈(1/w−1)

Eb∼F

[
P
(|b−Z| > z/

√
w | b)]= sup

F∈(1/w−1)
Pb∼F

(√
w|b−Z| > z

)
� (S5)

where Z denotes an N(0�1) variable that is independent of b.
Consider any w0, w1 such that 0 <w0 ≤ w1 < 1. Let F∗

1 ∈ (1/w1 − 1) denote the least-
favorable distribution—that is, the distribution that achieves the supremum (S5)—when
w = w1. (Proposition B.1 implies that the supremum is in fact attained at a particular
discrete distribution.) Let F̃0 denote the distribution of the linear combination√

w1

w0
b−

√
w1 −w0

w0
Z

when b ∼ F∗
1 and Z ∼ N(0�1) are independent. Note that the second moment of this

distribution is w1
w0

· 1−w1
w1

+ w1−w0
w0

= 1−w0
w0

, so F̃0 ∈ (1/w0 − 1). Thus, if we let Z̃ denote
another N(0�1) variable that is independent of (b�Z), then

ρ̃(w0) ≥ Pb∼F̃0

(√
w0|b−Z| > z

)
= Pb∼F∗

1

(√
w0

∣∣∣∣√w1

w0
b−

√
w1 −w0

w0
Z̃ −Z

∣∣∣∣> z

)
= Pb∼F∗

1

(∣∣√w1b− (
√
w1 −w0Z̃ + √

w0Z)︸ ︷︷ ︸
∼N(0�w1)

∣∣> z
)= Pb∼F∗

1

(√
w1|b−Z|> z

)= ρ̃(w1)�

Next, we derive the limit of the non-coverage probability as wEB�i → 0. It follows from
Proposition B.1 that

ρ(t�χ) = sup
0≤λ≤1

(1 − λ)r(0�χ) + λr
(
(t/λ)1/2�χ

)
�

Note that r(0� z/
√
w) → 0 as w → 0. Thus,

lim
w→0

ρ̃(w) = lim
w→0

ρ(1/w− 1� z/
√
w) = lim

w→0
sup

0≤λ≤1
λr
(
λ−1/2(1/w − 1)1/2� zw−1/2

)
�

provided the latter limit exists. We will first show that the supremum above is bounded
below by an expression that tends to 1/max{z2�1}. Then we will show that the supremum
is bounded above by an expression that tends to 1/z2 (and the supremum is obviously also
bounded above by 1).

Let ε(w) ≥ 0 be any function of w such that ε(w) → 0 and ε(w)(1/w − 1)1/2 → ∞ as
w → 0. Let z̃ = max{z�1}. Note first that, by setting λ = (z̃(1 −w)−1/2 + ε(w))−2 ∈ [0�1],

sup
0≤λ≤1

λr
(
λ−1/2(1/w− 1)1/2� zw−1/2

)≥ r
((
z̃(1 −w)−1/2 + ε(w)

)
(1/w − 1)1/2� zw−1/2

)(
z̃(1 −w)−1/2 + ε(w)

)2 → 1
z̃2
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as w → 0, since r(b�χ) → 1 when (b−χ) → ∞, and(
z̃(1 −w)−1/2 + ε(w)

)
(1/w− 1)1/2 − zw−1/2

≥ (
z(1 −w)−1/2 + ε(w)

)
(1/w − 1)1/2 − zw−1/2

= ε(w)(1/w− 1)1/2 → ∞�

Second,

sup
0≤λ≤1

λr
(
λ−1/2(1/w − 1)1/2� zw−1/2

)
≤�

(−zw−1/2
)+ sup

0≤λ≤1
λ�

(
λ−1/2(1/w − 1)1/2 − zw−1/2

)
�

The first term above tends to 0 as w → 0. The second term equals

max
{

sup
0≤λ≤(z−ε(w))−2

λ�
(
λ−1/2(1/w − 1)1/2 − zw−1/2

)
�

sup
(z−ε(w))−2<λ≤1

λ�
(
λ−1/2(1/w− 1)1/2 − zw−1/2

)}
�

where the first argument is bounded above by sup0≤λ≤(z−ε(w))−2 λ= (z−ε(w))−2 → 1
z2 . The

second argument tends to 0 as w → 0, since

λ−1/2(1/w− 1)1/2 − zw−1/2 ≤ (
λ−1/2 − z

)
(1/w − 1)1/2 ≤ −ε(w)(1/w− 1)1/2

for all λ > (z − ε(w))−2, and the far right-hand side above tends to −∞ as w → 0.

D.3. Proof of Proposition B.1

Since r(b�χ) is symmetric in b, Eq. (5) is equivalent to maximizing EF [r0(t�χ)] over
distributions F of t with EF [t] = m2. Let r̄(t�χ) denote the least concave majorant of
r0(t�χ). We first show that ρ(m2�χ) = r̄(m2�χ).

Observe that ρ(m2�χ) ≤ ρ̄(m2�χ), where ρ̄(m2�χ) denotes the value of the problem

ρ̄(m2�χ) = sup
F

EF

[
r̄(t�χ)

]
s.t. EF [t] =m2�

Furthermore, since r̄ is concave, by Jensen’s inequality, the optimal solution F∗ to this
problem puts point mass on m2, so that ρ̄(m2�χ) = r̄(m2�χ), and hence ρ(m2�χ) ≤
r̄(m2�χ).

Next, we show that the reverse inequality holds, ρ(m2�χ) ≥ r̄(m2�χ). By Corol-
lary 17.1.4 on page 157 in Rockafellar (1970), the majorant can be written as

r̄(t�χ) = sup
{
λr0(x1�χ) + (1 − λ)r0(x2�χ) :

λx1 + (1 − λ)x2 = t�0 ≤ x1 ≤ x2�λ ∈ [0�1]
}
� (S6)

which corresponds to the problem in Eq. (5), with the distribution F constrained to be
a discrete distribution with two support points. Since imposing this additional constraint
on F must weakly decrease the value of the solution, it follows that ρ(m2�χ) ≥ r̄(m2�χ).
Thus, ρ(m2�χ) = r̄(m2�χ). The proposition then follows by Lemma D.5 below.
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LEMMA D.4: Let r0(t�χ) = r(
√
t�χ). If χ ≤ √

3, then r0 is concave in t. If χ >
√

3, then
its second derivative is positive for t small enough, negative for t large enough, and crosses
zero exactly once, at some t1 ∈ [χ2 − 3� (χ− 1/χ)2].

PROOF: Letting φ denote the standard normal density, the first and second derivative
of r0(t) = r0(t�χ) are given by

r ′
0(t) = 1

2
√
t

[
φ(

√
t −χ) −φ(

√
t +χ)

]≥ 0�

r ′′
0 (t) = φ(χ− √

t)(χ
√
t − t − 1) +φ(χ+ √

t)(χ
√
t + t + 1)

4t3/2

= φ(χ+ √
t)

4t3/2

[
e2χ

√
t (χ

√
t − t − 1) + (χ

√
t + t + 1)

]= φ(χ+ √
t)

4t3/2 f (
√
t)�

where the last line uses φ(a+ b)e−2ab =φ(a− b), and

f (u) = (
χu+ u2 + 1

)− e2χu
(
u2 −χu+ 1

)
�

Thus, the sign of r ′′
0 (t) corresponds to that of f (

√
t), with r ′′

0 (t) = 0 if and only if f (
√
t) = 0.

Observe f (0) = 0, and f (u) < 0 is negative for u large enough, since the term −u2e2χu

dominates. Furthermore,

f ′(u) = 2u+χ− e2χu
(
2χ

(
u2 −χu+ 1

)+ 2u−χ
)
� f ′(0) = 0�

f ′′(u) = e2χu
(
4χ3u− 4χ2u2 − 8χu− 2

)+ 2� f ′′(0) = 0�

f (3)(u) = 4χe2χu
(
2χ3u+χ2

(
1 − 2u2

)− 6χu− 3
)
� f (3)(0) = 4χ

(
χ2 − 3

)
�

Therefore, for u > 0 small enough, f (u), and hence r ′′
0 (u2), is positive if χ2 ≥ 3, and neg-

ative otherwise.
Now suppose that f (u0) = 0 for some u0 > 0, so that

χu0 + u2
0 + 1 = e2χu0

(
u2

0 −χu0 + 1
)
� (S7)

Since χu+u2 + 1 is strictly positive, it must be the case that u2
0 −χu0 + 1 > 0. Multiplying

and dividing the expression for f ′(u) above by u2
0 − χu0 + 1 and plugging in the identity

in Eq. (S7) and simplifying the expression yields

f ′(u0) =
(
u2

0 −χu0 + 1
)
(2u0 +χ) − (

χu0 + u2
0 + 1

)(
2χ

(
u2

0 −χu0 + 1
)+ 2u0 −χ

)
u2

0 −χu0 + 1

= 2u2
0χ
(
χ2 − 3 − u2

0

)
u2

0 −χu0 + 1
� (S8)

Suppose χ2 < 3. Then f ′(u0) < 0 at all positive roots u0 by Eq. (S8). But if χ2 < 3, then
f (u) is initially negative, so by continuity it must be that f ′(u1) ≥ 0 at the first positive
root u1. Therefore, if χ2 ≤ 3, f , and hence r ′′

0 , cannot have any positive roots. Thus, if
χ2 ≤ 3, r0 is concave as claimed.

Now suppose that χ2 ≥ 3, so that f (u) is initially positive. By continuity, this implies that
f ′(u1) ≤ 0 at its first positive root u1. By Eq. (S8), this implies u1 ≥ √

χ2 − 3. As a result,
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again by Eq. (S8), f (ui) ≤ 0 for all remaining positive roots. But since by continuity, the
signs of f ′ must alternate at the roots of f , this implies that f has at most a single positive
root. Since f is initially positive, and negative for large enough u, it follows that it has a
single positive root u1 ≥ √

χ2 − 3. Finally, to obtain an upper bound for t1 = u2
1, observe

that if f (u1) = 0, then, by Taylor expansion of the exponential function,

1 + 2χu1

χu1 + u2
1 + 1

= e2χu1 ≥ 1 + 2χu1 + 2(χu1)2�

which implies that 1 ≥ (1 +χu1)(χu1 + u2
1 + 1), so that u1 ≤ χ− 1/χ. Q.E.D.

LEMMA D.5: The problem in Eq. (S6) can be written as

r̄(t�χ) = sup
u≥t

{
(1 − t/u)r0(0�χ) + t

u
r0(u�χ)

}
� (S9)

Let t0 = 0 if χ ≤ √
3, and otherwise let t0 > 0 denote the solution to r0(0�χ) − r0(u�χ) +

u ∂
∂u
r0(u�χ) = 0. This solution is unique, and the optimal u solving Eq. (S9) satisfies u = t

for t > t0 and u= t0 otherwise.

PROOF: If in the optimization problem in Eq. (S6), the constraint on x2 binds, or either
constraint on λ binds, then the optimum is achieved at r0(t) = r0(t�χ), with x1 = t and
λ = 1 and x2 arbitrary; x2 = t and λ = 0 and x1 arbitrary; or else x1 = x2 and λ arbitrary.
In any of these cases, r̄ takes the form in Eq. (S9) as claimed. If, on the other hand, these
constraints do not bind, then x2 > t > x1, and substituting λ = (x2 − t)/(x2 − x1) into the
objective function yields the first-order conditions

r0(x2) − (x2 − x1)r ′
0(x1) − r0(x1) = μ

(x2 − x1)2

(x2 − t)
� (S10)

r0(x2) + (x1 − x2)r ′
0(x2) − r0(x1) = 0� (S11)

where μ ≥ 0 is the Lagrange multiplier on the constraint that x1 ≥ 0. Subtracting Eq.
(S11) from Eq. (S10) and applying the fundamental theorem of calculus then yields

μ
x2 − x1

(x2 − t)
= r ′

0(x2) − r ′
0(x1) =

∫ x2

x1

r ′′
0 (t) dt > 0� (S12)

which implies that μ > 0. Here the last inequality follows because by Taylor’s theorem,
Eq. (S11) implies that

∫ x2
x1

r ′′
0 (t)(t − x1) dt = 0. Since r ′′

0 is positive for t ≤ t1 and negative
for t ≥ t1 by Lemma D.4, it follows that x1 ≤ t1 ≤ x2, and hence that

0 =
∫ t1

x1

r ′′
0 (t)(t − x1) dt +

∫ x2

t1

r ′′
0 (t)(t − x1) dt

< (t1 − x1)
∫ t1

x1

r ′′
0 (t) dt + (t1 − x1)

∫ x2

t1

r ′′
0 (t) dt = (t1 − x1)

∫ x2

x1

r ′′
0 (t) dt�

Finally, Eq. (S12) implies that μ > 0, so that x1 = 0 at the optimum. Consequently, the
problem in Eq. (S6) takes the form in Eq. (S9) as claimed.
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To show the second part of Lemma D.5, note that by Lemma D.4, if χ ≤ √
3, r0 is

concave, so that we can put u = t in Eq. (S9). Otherwise, let μ ≥ 0 denote the Lagrange
multiplier associated with the constraint u ≥ t in the optimization problem in Eq. (S9).
The first-order condition is then given by

r0(0) − r0(u) + ur ′
0(u) = −μu2

t
�

Let f (u) = r0(0) − r0(u) + ur ′
0(u). Since f ′(u) = ur ′′

0 (u), it follows from Lemma D.4 that
f (u) is increasing for u ≤ t1 and decreasing for u ≥ t1. Since f (0) = 0 and limu→∞ f (u) <
r0(0) − 1 < 0, it follows that f (u) has exactly one positive zero, at some t0 > t1. Thus, if
t < t0, u= t0 is the unique solution to the first-order condition. If t > t0, u= t is the unique
solution. Q.E.D.

D.4. Proof of Proposition B.2

Since r(b�χ) is symmetric in b, letting t = b2, we can equivalently write the optimization
problem as

ρ(m2�κ�χ) = sup
F

EF

[
r0(t�χ)

]
s.t. EF [t] =m2�EF

[
t2
]= κm2

2� (S13)

where r0(t�χ) = r(
√
t�χ), and the supremum is over all distributions supported on the

positive part of the real line. The dual of this problem is

min
λ0�λ1�λ2

λ0 + λ1m2 + λ2κm
2
2 s.t. λ0 + λ1t + λ2t

2 ≥ r0(t)� 0 ≤ t <∞�

where λ0 is the Lagrange multiplier associated with the implicit constraint that EF [1] = 1,
and r0(t) = r0(t�χ). So long as κ > 1 and m2 > 0, so that the moments (m2�κm

2
2) lie in the

interior of the space of possible moments of F , by the duality theorem in Smith (1995),
the duality gap is zero, and if F∗ and λ∗ = (λ∗

0�λ
∗
1�λ

∗
2) are optimal solutions to the primal

and dual problems, then F∗ has mass points only at those t with λ∗
0 +λ∗

1t+λ∗
2t

2 = r(
√
t�χ).

Define t0 as in Lemma D.5. First, we claim that if m2 ≥ t0, then ρ(m2�κ�χ) = ρ(m2�χ),
the value of the objective function in Proposition B.1. The reason that adding the con-
straint EF [t2] = κm2

2 does not change the optimum is that it follows from the proof
of Proposition B.1 that the distribution achieving the rejection probability ρ(m2�χ) is
a point mass on m2. Consider adding another support point x2 = √

n with probability
κm2

2/n, with the remaining probability on the support point m2. Then, as n → ∞, the
mean of this distribution converges to m2, and its second moment converges to κm2

2, so
that the constraints in Eq. (S13) are satisfied, while the rejection probability converges
to ρ(m2�χ). Since imposing the additional constraint EF [t2] = κm2

2 cannot increase opti-
mum, the claim follows.

Suppose that m2 < t0. At optimum, the majorant g(x) = λ0 + λ1t + λ2t
2 in the dual

constraint must satisfy g(x0) = r0(x0) for at least one x0 > 0. Otherwise, if the constraint
never binds, we could lower the value of the objective function by decreasing λ0; further-
more, x0 = 0 cannot be the unique point at which the constraint binds, since by the duality
theorem, this would imply that the distribution that puts point mass on 0 maximizes the
primal, which cannot be the case.

At such x0, we must also have g′(x0) = r ′
0(x0), otherwise the constraint would be locally

violated. Using this fact together with the equality g(x0) = r0(x0), we therefore have that
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λ0 = r0(x0) −λ1x0 −λ2x
2
0 and λ1 = r ′

0(x0) −2λ2x0, so that the dual problem may be written
as

min
x0>0�λ2

r0(x0) + r ′
0(x0)(m2 − x0) + λ2

(
(x0 −m2)2 + (κ− 1)m2

2

)
s.t. r0(x0) + r ′

0(x0)(x− x0) + λ2(x− x0)2 ≥ r0(x)� (S14)

Since κ > 1, the objective is increasing in λ2. Therefore, given x0, the optimal value of λ2

is as small as possible while still satisfying the constraint,

λ2 = sup
x>0

δ(x;x0)� δ(x;x0) = r0(x) − r0(x0) − r ′
0(x0)(x− x0)

(x− x0)2 �

Next, we claim that the dual constraint cannot bind for x0 > t0. Observe that λ2 ≥ 0,
otherwise the constraint would be violated for t large enough. However, setting λ2 = 0 still
satisfies the constraint. This is because the function h(x) = r0(x0) + r ′

0(x0)(x−x0) − r0(x)
is minimized at x = x0, with its value equal to 0. To see this, note that its derivative equals
zero if r ′

0(x0) = r ′(x). By Lemma D.4, r ′
0(t) is increasing for t ≤ t0 and decreasing for t > t0.

Therefore, if r ′
0(x0) < r ′

0(0), h′(x) = 0 has a unique solution, x= x0. If r ′
0(x0) > r ′

0(0), there
is another solution at some x1 ∈ [0� t0]. However, h′′(x1) = −r ′′

0 (x1) < 0, so h(x) achieves
a local maximum here. Since h(0) > 0 by arguments in the proof of Lemma D.4, it follows
that the maximum of h(x) occurs at x = x0, and equals 0. However, Eq. (S14) cannot be
maximized at (x0�0), since by Proposition B.1, setting (x2�λ2) = (t0�0) achieves a lower
value of the objective function, which proves the claim.

Therefore, Eq. (S14) can be written as

min
0<x0≤t0

r0(x0) + r ′
0(x0)(m2 − x0) + (

(x0 −m2)2 + (κ− 1)m2
2

)
sup
x≥0

δ(x;x0)�

To finish the proof of the proposition, it remains to show that δ cannot be maximized at
x > t0. This follows from observing that the dual constraint in Eq. (S14) binds at any x
that maximizes δ. However, by the claim above, the constraint cannot bind for x > t0.

D.5. Proof of Theorem C.1

To prove this theorem, we begin with some lemmas.

LEMMA D.6: Under Assumption C.1, we have, for any deterministic χ1� � � � �χn, and any
X ∈A with NX �n → ∞,

lim
n→∞

1
NX �n

∑
i∈IX �n

P̃
(|Zi|>χi

)− 1
NX �n

∑
i∈IX �n

r(bi�n�χi) = 0�

Furthermore, if Zi − b̃i is independent over i under P̃ , then

1
NX �n

∑
i∈IX �n

I
{|Zi| >χi

}− 1
NX �n

∑
i∈IX �n

r(bi�n�χi) = oP̃ (1)�
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PROOF: For any ε > 0, 1
NX �n

∑
i∈IX �n

I{|Zi|>χi} is bounded from above by

1
NX �n

∑
i∈IX �n

I
{|Zi − b̃i + bi�n|>χi − ε

}+ 1
NX �n

∑
i∈IX �n

I
{|b̃i − bi�n| ≥ ε

}
�

The expectation under P̃ of the second term converges to zero by Assumption C.1. The
expectation under P̃ of the first term is 1

NX �n

∑
i∈IX �n

r̃i�n(bi�n�χi − ε), where r̃i�n(b�χ) =
P̃(Zi − b̃i < −χ − b) + 1 − P̃(Zi − b̃i ≤ χ − b). Note that ri�n(b�χ) converges to r(b�χ)
uniformly over b, χ under Assumption C.1, using the fact that the convergence in As-
sumption C.1 is uniform in t by Lemma 2.11 in van der Vaart (1998), and the fact that
P̃(Zi − b̃i < −χ − b) = limt↑−χ−b P(Zi − b̃i ≤ t). It follows that the expectation of the
above display under P̃ is bounded by 1

NX �n

∑
i∈IX �n

r̃(bi�n�χi − ε) + o(1). If Zi − b̃i is inde-
pendent over i, the variance of each term in the above display converges to zero, so that
the above display equals 1

NX �n

∑
i∈IX �n

r̃(bi�n�χi −ε) +oP̃ (1). Taking ε → 0 and noting that
r(b�χ) is uniformly continuous in both arguments, and using an analogous argument with
a lower bound, gives the result. Q.E.D.

LEMMA D.7: ρg(χ;m) is continuous in χ. Furthermore, for any m∗ in the interior of the
set of values of

∫
g(b) dF (b), where F ranges over all probability measures on R, ρg(χ;m) is

continuous with respect to m at m∗.

PROOF: To show continuity with respect to χ, note that∣∣ρg(χ;m) − ρg(χ̃;m)
∣∣≤ sup

F

∣∣∣∣∫ [
r(b�χ) − r(b� χ̃)

]
dF (b)

∣∣∣∣ s.t.
∫

g(b) dF (b) = m�

where we use the fact that the difference between suprema of two functions over the same
constraint set is bounded by the supremum of the absolute difference of the two functions.
The above display is bounded by supb|r(b�χ) − r(b� χ̃)|, which is bounded by a constant
times |χ̃−χ| by uniform continuity of the standard normal CDF.

To show continuity with respect to m, note that, by Lemma D.8 below, the conditions for
the Duality Theorem in Smith (1995, p. 812) hold for m in a small enough neighborhood
of m∗, so that

ρg(χ;m) = inf
λ0�λ

λ0 + λ′m s.t. λ0 + λ′g(b) ≥ r(b�χ) for all b ∈ R

and the above optimization problem has a finite solution. Thus, for m in this neighbor-
hood of m∗, ρg(χ;m) is the infimum of a collection of affine functions of m, which implies
that it is a concave function of m (Boyd and Vandenberghe (2004, p. 81)). By concavity,
ρg(χ;m) is also continuous as a function of m in this neighborhood of m∗. Q.E.D.

LEMMA D.8: Suppose that μ is in the interior of the set of values of
∫
g(b) dF (b) as F

ranges over all probability measures with respect to the Borel sigma algebra, where g :R → R
p.

Then (1�μ′)′ is in the interior of the set of values of
∫

(1� g(b)′)′ dF (b) as F ranges over all
measures with respect to the Borel sigma algebra.

PROOF: Let μ be in the interior of the set of values of
∫
g(b) dF (b) as F ranges over

all probability measures with respect to the Borel sigma algebra. We need to show that,
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for any a, μ̃ with (a� μ̃′)′ close enough to (1�μ′), there exists a measure F such that∫
(1� g(b)′)dF (b) = (a� μ̃′)′. To this end, note that μ̃/a can be made arbitrarily close to μ

by making (a� μ̃′)′ close to (1�μ′). Thus, for (a� μ̃′)′ close enough to (1�μ′), there exists a
probability measure F̃ with

∫
g(b) dF̃ (b) = μ̃/a. Let F be the measure defined by F (A) =

aF̃ (A) for any measurable set A. Then
∫

(1� g(b)′)′dF (b) = a
∫

(1� g(b)′)′dF̃ (b) = (a� μ̃).
This completes the proof. Q.E.D.

LEMMA D.9: Let M be a compact subset of the interior of the set of values of
∫
g(b) dF (b),

where F ranges over all measures on R with the Borel σ-algebra. Suppose limb→∞ gj(b) =
limb→−∞ gj(b) = ∞ and that infb gj(b) ≥ 0 for some j. Then limχ→∞ supm∈M ρg(χ;m) = 0
and ρg(χ;m) is uniformly continuous with respect to (χ�m′)′ on the set [0�∞) ×M .

PROOF: The first claim (that limχ→∞ supm∈M ρg(χ;m) = 0) follows by Markov’s in-
equality and compactness of M . Given ε > 0, let χ be large enough so that ρg(χ;m) < ε
for all χ ∈ [χ�∞) and all m ∈ M . By Lemma D.7, ρg(χ;m) is continuous on [0�χ+ 1] ×
M , so, since [0�χ+ 1] ×M is compact, it is uniformly continuous on this set. Thus, there
exists δ such that, for any χ, m and χ̃, m̃ with χ� χ̃ ≤ χ+ 1 and ‖(χ̃� m̃′)′ − (χ�m′)′‖ ≤ δ,
we have |ρg(χ;m) − ρg(χ̃; m̃)| < ε. If we also set δ < 1, then, if either χ ≥ χ + 1 or
χ̃ ≥ χ + 1, we must have both χ ≥ χ and χ̃ ≥ χ, so that ρg(χ̃; m̃) < ε and ρg(χ;m) < ε,
which also implies |ρg(χ;m) − ρg(χ̃; m̃)|< ε. This completes the proof. Q.E.D.

For any ε > 0, let

ρg(χ;m�ε) = sup
m̃∈Bε(m)

ρg(χ; m̃) and ρ
g
(χ;m�ε) = inf

m̃∈Bε(m)
ρg(χ; m̃)�

LEMMA D.10: Let M be a compact subset of the interior of the set of values of∫
g(b) dF (b), where F ranges over all measures on R with the Borel σ-algebra. Suppose

limb→∞ gj(b) = limb→−∞ gj(b) = ∞ and infb gj(b) ≥ 0 for some j. Then, for ε smaller than
a constant that depends only on M , the functions ρg(χ;m�ε) and ρ

g
(χ;m�ε) are continu-

ous in χ. Furthermore, we have limε→0 supχ∈[0�∞)�m∈M[ρg(χ;m�ε) − ρ
g
(χ;m�ε)] = 0.

PROOF: For ε smaller than a constant that depends only on M , the set
⋃

m∈M Bε(m) is
contained in another compact subset of the interior of the set of values of

∫
g(b) dF (b),

where F ranges over all measures on R with the Borel σ-algebra. The result then fol-
lows from Lemma D.9, where, for the first claim, we use the fact that |ρg(χ;m�ε) −
ρg(χ̃;m�ε)| ≤ supm̃∈Bε(m)|ρg(χ; m̃) − ρg(χ̃; m̃)| and similarly for ρ

g
. Q.E.D.

We now prove Theorem C.1. Given X ∈ A and ε > 0, let m1� � � � �mJ and X1� � � � �XJ

be as in Assumption C.3. Let χ
j
= min{χ : ρ

g
(χ;mj�2ε) ≤ α}. For m̂i ∈ B2ε(mj), we have

ρ
g
(χ;mj�2ε) ≤ ρg(χ; m̂i) for all χ, so that, using the fact that ρ

g
(χ;mj�2ε) and ρg(χ; m̂i)

are weakly decreasing in χ, we have χ
j
≤ χ̂i. Thus, letting χ̃(n) denote the sequence with

ith element equal to χ
j

when X̃i ∈Xj , we have

ANCn

(
χ̂(n);X ) ≤ max

1≤j≤J
ANCn

(
χ̃(n);Xj

)
≤ max

1≤j≤J

[
1

NXj �n

∑
i∈IXj �n

I
{
m̂i /∈ B2ε(mj)

}+ 1
NXj �n

∑
i∈IXj �n

I
{|Zi|>χ

j

}]
�
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The first term is bounded by 1
NXj �n

∑
i∈IXj �n

I{‖m̂i − m(X̃i)‖ > ε} since, for i ∈ IXj �n, we

have ‖m̂i − mj‖ ≤ ε + ‖m̂i − m(X̃i)‖. This converges in probability (and expectation) to
zero under P̃ by Assumption C.2. By Lemma D.6, the second term is equal to, letting Fj�n

denote the empirical distribution of the bi�n’s for i with xi ∈Xj ,∫
r(b�χ

j
) dFj�n(b) +Rn ≤ ρg(χ

j
;μj�2ε) +Rn�

where Rn is a term such that EP̃Rn → 0 and such that, if Zi − b̃i is independent over i

under P̃ , then Rn converges in probability to zero under P̃ . The result will now follow if
we can show that max1≤j≤J[ρg(χ

j
;μj�2ε) − α] can be made arbitrarily small by making ε

small. This holds by Lemma D.10 and the fact that ρ
g
(χ

j
;μj�2ε) ≤ α by construction.

D.6. Proof of Theorem C.2

To prove Theorem C.2, we will verify the conditions of Theorem C.1 with A given in As-
sumption C.7, mj(X̃i) = c(γ�σi)�jμ0��j , b̃i = c(γ̂� σ̂i)(θi − X̂ ′

i δ̂), and bi�n = c(γ�σi)(θi −
X̂ ′

iδ), where c(γ�σ) = w(γ�σ)−1
w(γ�σ)σ . The first part of Assumption C.1 is immediate from As-

sumption C.5 since Zi − b̃i = (Yi − θi)/σ̂i. For the second part, we have

b̃i − bi�n = c(γ̂� σ̂i)
(
θi − X̂ ′

i δ̂
)− c(γ�σi)

(
θi −X ′

iδ
)

= [
c(γ̂� σ̂i) − c(γ�σi)

](
θi −X ′

iδ
)+ c(γ̂� σ̂i) · [(X̂i −Xi)′δ̂−X ′

i (δ− δ̂)
]
�

For ‖θi‖ + ‖Xi‖ ≤ C, the above expression is bounded by[
c(γ̂� σ̂i) − c(γ�σi)

] · (‖δ‖ + 1
) ·C + c(γ̂� σ̂i)

[‖δ̂− δ‖ ·C + ‖X̂i −Xi‖ · (C + ‖δ̂− δ‖)]�
By uniform continuity of c() on an open set containing {γ} × S1, for every ε > 0 there
exists η > 0 such that ‖(σ̂i − σi� γ̂ − γ� δ̂′ − δ′� X̂ ′

i − X ′
i)

′‖ ≤ η implies that the absolute
value of the above display is less than ε. Thus, for any X ∈A,

lim
n→∞

1
NX �n

∑
i∈IX �n

P̃
(|b̃i − bi�n| ≥ ε

)
≤ lim

n→∞
1

NX �n

∑
i∈IX �n

P̃
(∥∥(σ̂i − σi� γ̂ − γ� δ̂′ − δ′� X̂ ′

i −X ′
i

)′∥∥>η
)

I
{‖θi‖ + ‖Xi‖ ≤ C

}
+ lim sup

n→∞

1
NX �n

∑
i∈IX �n

I
{‖θi‖ + ‖Xi‖>C

}
�

The first limit is zero by Assumption C.6. The last limit converges to zero as C → ∞ by the
second part of Assumption C.7 and Markov’s inequality. This completes the verification
of Assumption C.5.

We now verify Assumption C.2. Given X ∈ A and given ε > 0, we can partition X
into sets X1� � � � �XJ such that, for some c1� � � � � cJ , we have |c(γ�σi)�k − c

�k
j | < ε for all
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k = 1� � � � �p whenever i ∈ IXj �n for some j. Thus, for each j and k,

1
NXj �n

∑
i∈IXj

�n

b
�k
i�n −mk(X̃i) = 1

NXj �n

∑
i∈IXj

�n

c(γ�σi)�k
[(
θi −X ′

iδ
)�k −μ0��k

]
= c

�k
j · 1

NXj �n

∑
i∈IXj

�n

[(
θi −X ′

iδ
)�k −μ0��k

]
+ 1

NXj �n

∑
i∈IXj

�n

[
c(γ�σi)�k − c

�k
j

][(
θi −X ′

iδ
)�k −μ0��k

]
�

Under Assumption C.7, the first term converges to 0 and the second term is bounded up
to an o(1) term by ε times a constant that depends only on K. Since the absolute value
of 1

NX �n

∑
i∈IX �n b

�k
i�n −mk(X̃i) is bounded by the maximum over j of the absolute value of

the above display, and since ε can be chosen arbitrarily small, the first part of Assumption
C.2 follows.

For the second part of Assumption C.2, we have m̂i�k − mk(X̃i) = c(γ�σi)μ̂�j −
c(γ�σi)�jμ0��j . By uniform continuity of (γ̃′�σ�μ�1� � � � �μ�p)′ → (c(γ�σi)�1μ�1� � � � � c(γ�
σi)�pμ�p)′ in an open set containing {γ} × S1 × {(μ0��1� � � � �μ0��p)′}, for any ε > 0, there
exists η > 0 such that ‖(γ̂′ − γ′� σ̂i − σ� μ̂�1 − μ0��1� � � � � μ̂�p −μ0��p)‖ < η implies ‖m̂i�k −
mk(X̃i)‖ < ε. Thus,

max
1≤i≤n

P̃
(∥∥m̂i −m(X̃i)

∥∥≥ ε
)≤ max

1≤i≤n
P̃
(∥∥(γ̂′ − γ′� σ̂i − σ� μ̂�1 −μ0��1� � � � � μ̂�p −μ0��p

)∥∥<η
)
�

which converges to zero by Assumptions C.6 and C.7. This completes the verification of
Assumption C.2.

Assumption C.3 follows immediately from compactness of the set S1 × · · · × S1 and
uniform continuity of m() on this set. Assumption C.4 follows from Assumption C.7 and
Lemma D.11 below. This completes the proof of Theorem C.2.

LEMMA D.11: Suppose that, as F ranges over all probability measures with respect to the
Borel sigma algebra, (μ�1� � � � �μ�p)′ is interior to the set of values of

∫
(b�1� � � � � b�p)′ dF (b).

Let c ∈ R. Then, as F ranges over all probability measures with respect to the Borel sigma al-
gebra, (c�1μ�1� � � � � c

�pμ�p)′ is also in the interior of the set of values of
∫

(b�1� � � � � b�p)′ dF (b).

PROOF: We need to show that, for any vector r with ‖r‖ small enough, there exists a
probability measure F such that

∫
(b�1� � � � � b�p)′ dF (b) = (c�1μ�1 + r1� � � � � c

�pμ�p + rp)′.
Let μ̃�k = μ�k + rk/c

�k . For ‖r‖ small enough, there exists a probability measure F̃ with∫
b�k dF (b) = μ̃�k for each k. Let F denote the probability measure of cB when B is a

random variable distributed according to F̃ . Then
∫
b�k dF (b) = c�k

∫
b�k dF̃ = c�kμ̃�k =

c�kμ�k + rk as required. Q.E.D.

APPENDIX E: DETAILS FOR SIMULATIONS

Supplemental Appendix E.1 gives details on the Monte Carlo designs in Section 4.4.
Supplemental Appendix E.2 considers an additional Monte Carlo exercise calibrated to
the empirical application in Section 7.
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E.1. Details for Panel Data Simulation Designs

The simulation results reported in Section 4.4 consider the following six distributions
for θi, each of which satisfies var(θi) = μ2:

1. Normal (kurtosis κ = 3): θi ∼ N(0�μ2).
2. Scaled chi-squared (κ= 15): θi ∼

√
μ2/2 ·χ2(1).

3. 2-point (κ= 1/(0�9 · 0�1) − 3 ≈ 8�11), with θi = 0 w.p. 0�9 and θi = μ2/(0�9 · 0�1) w.p.
0�1.

4. 3-point (κ= 2):

θi ∼

⎧⎪⎨⎪⎩
−√

μ2/0�5 w.p. 0�25�
0 w.p. 0�5�√
μ2/0�5 w.p. 0�25�

5. Least favorable for robust EBCI: The (asymptotically as n�T → ∞) least favorable
distribution for the robust EBCI that exploits only second moments, that is,

θi ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√
μ2/min

{
m2

t0(m2�α)
�1
}

w.p.
1
2

min
{

m2

t0(m2�α)
�1
}
�

0 w.p. 1 − min
{

m2

t0(m2�α)
�1
}
�√

μ2/min
{

m2

t0(m2�α)
�1
}

w.p.
1
2

min
{

m2

t0(m2�α)
�1
}
�

where m2 = 1/μ2, and t0(m2�α) is the number defined in Proposition B.1 with χ =
cvaα(m2). The kurtosis κ(μ2�α) = 1/min{ 1/μ2

t0(1/μ2�α) �1} depends on μ2 and α.
6. Least favorable for parametric EBCI: The (asymptotically) least favorable distribu-

tion for the parametric EBCI. This is the same distribution as above, except that now
t0(m2�α) is the number defined in Proposition B.1 with χ= z1−α/2/

√
μ2/(1 +μ2).

E.2. Heteroscedastic Design

We now provide average coverage and length results for a heteroscedastic simulation
design. We base the design on the effect estimates and standard errors obtained in the
empirical application in Section 7. Because we do not have access to the underlying data
set, we treat the standard errors as known and impose exact conditional normality of the
initial estimates. Let (θ̂i� σ̂i), i = 1� � � � � n, denote the n = 595 baseline shrinkage point
estimates and associated standard errors from this application. Note for reference that
En[θ̂i] = 0�0602, and En[(θ̂i− θ̄)2] ·En[1/σ̂2

i ] = 0�6698, where En denotes the sample mean.
The simulation design imposes independence of θi and σi, consistent with the moment

independence assumption required by our baseline EBCI procedure; see Remark 3.1. We
calibrate the design to match one of three values for the signal-to-noise ratio E[ε2

i /σ
2
i ] ∈

{0�1�0�5�1}. Specifically, a simulation sample (Yi�θi�σi), i = 1� � � � � n, is created as fol-
lows:

1. Sample θ̃i, i = 1� � � � � n, with replacement from the empirical distribution {θ̂j}nj=1.
2. Sample σi, i = 1� � � � � n, with replacement from the empirical distribution {σ̂j}nj=1.
3. Compute θi = θ̄ + √

m/c · (θ̃i − θ̄), i = 1� � � � � n. Here m is the desired population
value of E[ε2

i /σ
2
i ] and c = 0�6698.
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TABLE S.I

MONTE CARLO SIMULATION RESULTS: HETEROSCEDASTIC DESIGN.

Robust, μ2 only Robust, μ2 & κ Parametric

n Oracle Baseline Oracle Baseline Oracle Baseline

Panel A: Average coverage (%), minimum across 3 DGPs
595 98�9 96�0 96�1 96�0 94�3 85�7

Panel B: Relative average length, average across 3 DGPs
595 1�56 1�51 1�00 1�48 0�89 0�86

Note: Nominal average confidence level 1 − α = 95%. Top row: type of EBCI procedure. “Oracle”: true μ2 and κ (but not δ)
known. “Baseline”: μ̂2 and κ̂ estimates as in Section 3.2. For each DGP, “average coverage” and “average length” refer to averages
across observations i = 1� � � � � n and across 5000 Monte Carlo repetitions. Average CI length is measured relative to the oracle robust
EBCI that exploits μ2 and κ.

4. Draw Yi

indep∼ N(θi�σ
2
i ), i = 1� � � � � n.

The kurtosis of θi equals the sample kurtosis of θ̂i, which is 3.0773. We use precision
weights ωi = σ−2

i when computing the EBCIs, as in Section 7.
Table S.I shows that our baseline implementation of the 95% robust EBCI achieves

average coverage above the nominal confidence level, regardless of the signal-to-noise
ratio E[ε2

i /σ
2
i ] ∈ {0�1�0�5�1}. This contrasts with the feasible version of the parametric

EBCI, which undercovers by 9.3 percentage points.

APPENDIX F: STATISTICAL POWER

The efficiency calculations in Figure 3 of Section 4.2 show that our EBCI is substantially
shorter than the conventional confidence interval (CI) based on the unshrunk estimate Yi

if the signal-to-noise ratio is small enough. Here, we perform analogous calculations using
the statistical power of tests based on a given CI as the measure of efficiency.

Consider testing H0�i : θi = θ0 for some null value θ0 by rejecting when θ0 /∈ CIi, where
CIi is our robust EBCI. As with the efficiency calculations in Section 4.2, we consider
efficiency under the baseline model in Eq. (9), and we consider the asymptotic setting in
which μ1�i = X ′

iδ, μ2, σ2
i , and κ = 3 can be treated as known. We compute the average

power of this test (averaged over the baseline normal prior, conditional on Xi, σi), and
we compare it to the average power of the conventional two-sided z-test based on the
unshrunk estimate in the same setting. Since the distribution of θi is atomless, the average
power is given by the rejection probability P(θ0 /∈ CIi | Xi�σi). Let di = (μ1�i − θ0)/σi

denote the standardized average distance between the true parameter θi and the null θ0.
Under the baseline model in Eq. (9), the average power of a test based on the robust
EBCI given in Eq. (12) with κ = 3 is thus given by

P(θi /∈ CIi | Xi�σi) = P

(∣∣∣∣ Yi −μ1�i√
σ2

i +μ2

+ diσi

wEB�i

√
σ2

i +μ2

∣∣∣∣> cvaα

(
σ2

i /μ2�3
)√

1 +μ2/σ
2
i

|Xi�σi

)

= r

(
di

√
1 −wEB�i

wEB�i
� cvaα(1/wEB�i − 1�3)

√
1 −wEB�i

)
�

with r given in Eq. (4), and we use the fact that Yi − μ1�i | Xi�σi ∼ N (0�σ2
i + μ2) under

Eq. (9). The two-sided z-test based on the unshrunk estimate Yi rejects when |Yi − θ0|>
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FIGURE S1.—Average power of the robust EBCI and the z-test based on the unshrunk estimate as a function
of the normalized average distance to the null and of the shrinkage wEB�i.

z1−α/2σi. By analogous reasoning, it follows that the average power of this test is given by

P
(|Yi − θ0|> z1−α/2σi |Xi�σi

)= r(di

√
1 −wEB�i� z1−α/2

√
1 −wEB�i)�

Both expressions depend only on di and the shrinkage wEB�i (or, equivalently, since
μ2/σ

2
i =wEB�i/(1 −wEB�i), the signal-to-noise ratio μ2/σ

2
i ).

Figure S1 computes the power of the robust EBCI-based test and the z-test as a func-
tion of the normalized distance di = (μ1�i − θ0)/σi and the shrinkage wEB�i for α = 0�05.
The third panel shows the difference in power, with positive values indicating greater
power for the EBCI-based test.

The graphs show that the EBCI-based test is more powerful than the z-test for a given
shrinkage wEB�i (equivalently, given signal-to-noise ratio) when the normalized distance is
large enough, while being less powerful when it is small enough. To get some intuition for
this, note that the EBCI differs from the unshrunk CI in two ways: it is shorter, and it uses
shrinkage to move the center of the CI toward the regression line μ1�i = X ′

iδ. Shortening
the CI makes the EBCI more powerful than the test based on the unshrunk CI, but the
effect of moving the center of the CI is ambiguous: it increases power when the regression
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line μ1�i is far from the null θ0, while decreasing power when μ1�i is close to θ0. On net, the
graphs show that the EBCI-based test displays substantial gains in average power when
the amount of shrinkage is large, even for small to moderate distances to the null.

APPENDIX G: APPLICATIONS OF GENERAL SHRINKAGE

Here we provide theoretical and numerical results for the soft thresholding EBCI and
the Poisson EBCI, discussed in Examples 6.2 and 6.3 in Section 6.1.

G.1. Soft Thresholding

The soft thresholding EBCI is obtained by calibrating the highest posterior density
(HPD) set in the homoscedastic normal model with a baseline Laplace prior for θi. The
HPD set S(Yi;χ) in Eq. (21) takes the form of an interval, and is available in closed
form. In particular, it follows by direct calculation that the posterior density for θ is given

by p(θ | Yi) = e
c̄(Yi)− 1

2σ2 θ2+Yiθ/σ
2−|θ|

√
2/μ2 , where c̄(Y ) = 1

2 log(2/πσ2) − log(q(
√
σ2/μ2 −

Y/σ
√

2) + q(
√
σ2/μ2 +Y/σ

√
2)). Here q(x) = 2ex2

�(−x
√

2) is the scaled complemen-
tary error function. Consequently, S(Y ;χ) equals the intersection of the solution sets for
two quadratic inequalities,

S(Y ;χ) =
{
θ : θ2

2σ2 −
(
Y

σ2 −
√

2
μ2

)
θ ≤ χ+ c̄(Y )

}

∩
{
θ : θ2

2σ2 −
(
Y

σ2 +
√

2
μ2

)
θ ≤ χ+ c̄(Y )

}
�

Since the quadratic term is positive in both inequalities, S(Y ;χ) is given by an inter-
section of two intervals, and is therefore itself an interval. The non-coverage function
r̃(θi�χ) in Eq. (18) is computed via numerical quadrature. The linear program in Eq.
(19) is solved by discretizing the support for θi. In addition to computing a robust soft
thresholding EBCI, we can similarly compute a parametric soft thresholding EBCI, with
χ solving EF [r(θi�χ)] = α; here F is the Laplace distribution with second moment μ2.

We now compute the coverage and expected length of the soft thresholding EBCIs.
We consider an asymptotic setting where μ2 = E[θ2] is known, and this is the only con-
straint imposed when we compute the robust EBCI. Figure S2 shows the coverage and
expected length of the parametric and robust EBCIs with α = 0�05. The worst-case cov-
erage (over all θi-distributions with second moment μ2) of the nominal 95% parametric
EBCI is below 88% for small signal-to-noise ratios μ2/σ

2. When θi is in fact Laplace-
distributed, both the parametric and robust soft thresholding EBCIs deliver substantial
expected length improvements relative to the unshrunk EBCI Yi ± z1−α/2σ . For small val-
ues of μ2/σ

2, the length improvement exceeds that of the linear EBCIs shown in Figure 3.

G.2. Poisson Data

Suppose now that Yi has a Poisson distribution with rate parameter θi, conditional on
θi. As a baseline prior for θi, we use the conjugate gamma distribution with shape param-
eter k and scale parameter λ. Let −1(α;k�λ) denote the α-quantile of this distribution.



ROBUST EMPIRICAL BAYES CONFIDENCE INTERVALS 19

FIGURE S2.—Soft thresholding EBCIs in the normal means model, α = 0�05. The expected length is nor-
malized by the length of the unshrunk CI. The grid for θi for the linear program in Eq. (19) is given by 500
points equally spaced on [−10�10]. Integrals over the Yi distribution are truncated at the endpoints −10 and
10.

As candidate sets S(y;χ), we use a modification of the equal-tailed posterior credible set
for θi under the baseline prior,

S(y;χ) =
[
−1

(
α

2
;e−χk+ y�

λ

e−χ + λ

)
�−1

(
1 − α

2
;1 + e−χ(k− 1) + y�

λ

e−χ + λ

)]
�

where 1−α is the nominal confidence level. For χ= 0, this corresponds to the equal-tailed
posterior credible interval under the baseline prior; we call this the parametric EBCI. As
χ → ∞, the interval converges to the “unshrunk” Garwood (1936) confidence interval
for the Poisson parameter θi, which has coverage at least 1 − α conditional on θi. We
compute the value χ̂ ∈ (0�∞) that leads to a robust EBCI numerically as in Supplemental
Appendix G.1, except that we replace integrals over the distribution of Yi with (truncated)
sums.

Figure S3 displays the coverage and expected length for k = 1, that is, when the baseline
θi-distribution is exponential with mean λ. We consider the asymptotic limit where the
first two moments of θi are known.2 We set α = 0�05. The worst-case coverage (over all
θi-distributions with the same first and second moments as the exponential distribution) of
the nominal 95% parametric EBCI is disastrously low for all values of λ considered here.
At the same time, the robust EBCI is over 50% shorter on average than the unshrunk
Garwood (1936) CI when λ≤ 0�3, and more than 25% shorter when λ ≤ 0�85.

2These moments are easily obtained from the first and second marginal moments of the data: E[θ] = E[Y ]
and E[θ2] =E[Y 2] −E[Y ]. They equal E[θ] = kλ and E[θ2] = k(k+ 1)λ2 under the baseline distribution.
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FIGURE S3.—Poisson EBCIs, α = 0�05. The expected length is normalized by that of the unshrunk Gar-
wood (1936) CI. The grid for θi for the linear program in Eq. (19) is given by 500 points equally spaced on
[10−6�−1(0�999;1�λ)]. The support for Yi is truncated above at 30.
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