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STRUCTURAL RATIONALITY IN DYNAMIC GAMES

MARCIANO SINISCALCHI
Economics Department, Northwestern University

The analysis of dynamic games hinges on assumptions about players’ actions and be-
liefs at information sets that are not expected to be reached during game play. Under
the standard notion of sequential rationality, these assumptions cannot be tested on the
basis of observed, on-path behavior. This paper introduces a novel optimality criterion,
structural rationality, which addresses this concern. In any dynamic game, structural ra-
tionality implies weak sequential rationality (Reny (1992)). If players are structurally
rational, assumptions about on-path and off-path beliefs concerning off-path actions
can be tested via suitable “side bets.” Structural rationality also provides a theoreti-
cal rationale for the use of a novel version of the strategy method (Selten (1967)) in
experiments.
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1. INTRODUCTION

THE ANALYSIS OF DYNAMIC GAMES HINGES ON ASSUMPTIONS about players’ actions and
beliefs at information sets that are not expected to be reached during game play. A key
aspect of Savage’s (1954) foundational analysis of expected utility is to argue that the
psychological notion of “belief” can and should be related to observable behavior. This
paper introduces a notion of rationality in dynamic games that is just strong enough to
permit the elicitation of beliefs, both on and off the predicted path of play. Moreover, in
doing so, this paper introduces novel belief-elicitation techniques that broaden the range
of predictions that can be tested experimentally.

In a single-person choice problem, the agent’s beliefs can be elicited via “side bets”
on the relevant events, with the stipulation that both the choice in the original problem
and the side bets contribute to the overall payoff. Similarly, in a game with simultaneous
moves, a player’s beliefs can be elicited via side bets on opponents’ actions (Luce and
Raiffa (1957, Section 13.6)). 1

However, in a dynamic game, the fact that certain information sets may be off the
predicted path of play poses additional challenges. For instance, in the game of Figure 1
(cf. Van Damme (1989)), consider the subgame-perfect equilibrium profile (Out� (S�S)).
Suppose first that an experimenter wishes to verify that, if Ann played In, Bob would
indeed expect her to continue with S. If the simultaneous-move subgame was reached,
the experimenter could offer Bob side bets on Ann’s actions B versus S. However, Ann
plays Out at the initial node in this equilibrium, so the subgame is never actually reached.
Alternatively, the experimenter could try to elicit the prior probability that Bob assigns to
Ann choosing In followed by S, and then update it by conditioning on the event that Ann
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FIGURE 1.—The battle of the sexes with an outside option.

chooses In. However, in the equilibrium under consideration In has zero prior probability,
so updating is not possible.

Now suppose that the experimenter wishes to verify that, at the beginning of the game,
Ann believes that Bob would play S in the subgame. It would appear that offering Ann
a side bet at the beginning of the game might work. However, in the equilibrium under
consideration, Ann plays Out at the initial node; provided the side bet does not change her
incentives (as it should not), Ann’s own move prevents the subgame from being reached.
Therefore, Ann understands that no side bet on Bob’s move can actually be decided, or
paid out. Thus, such a bet provides no real incentives to Ann. Again, elicitation fails—
though for a different reason.

To address these issues, I propose the notion of structural rationality, which builds upon
trembling-hand perfection (Selten (1975)). Fix a player’s beliefs at each information set.
A perturbation of the player’s beliefs is a sequence of probabilities that assigns positive
weight to each information set where the player moves, and approximates the player’s
conditional beliefs there. A strategy is structurally rational given the player’s beliefs if
it maximizes her ex ante expected payoff with respect to some perturbation. Thus, as
in trembling-hand perfection, each player sees every information set as possible, if ar-
bitrarily unlikely. However, unlike in trembling-hand perfection, different perturbations
of the player’s beliefs can justify different structural best replies. In this sense, structural
rationality takes the possibility of surprises seriously, without committing to any specific
“theory” about them.

Proposition 1 draws a connection between structural rationality and a notion of “ro-
bust” preference reminiscent of Bewley (2002). Theorem 1 shows that structural rational-
ity implies weak sequential rationality (Reny (1992), Battigalli (1997), Battigalli and Sinis-
calchi (2002)).2 The main result of this paper, Theorem 2, shows that, under structural
rationality, side bets offered at the beginning of the game allow the incentive-compatible
elicitation of beliefs at every information set, whether on or off the expected path of play.

This result leverages a (to the best of my knowledge) novel experimental design in
which all players are asked to report their intended strategy, and are rewarded if their
actual play conforms to their report. This is a variant of the strategy method of Selten

2Theorem 3 in Appendix B.3 provides a partial converse: under suitable “genericity” assumptions on pay-
offs at terminal histories, if a strategy is weakly sequentially for given beliefs, that strategy is also structurally
rational.
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(1967), which requires that players commit to (rather than just announce) extensive-form
strategies. Structural rationality ensures that players have strict incentives to report the
strategy that they are in fact planning to follow. Side bets are then paid out on the basis
of reported strategies, which are always observed. To illustrate, in the game in Figure 1,
this design gives Bob strict incentives to bet on Ann playing S in the subgame: even if he
expects Ann to play Out, by structural rationality Bob will take seriously the possibility
of being surprised, and will bet accordingly. Similarly, Ann has strict incentives to bet on
Bob playing S in the subgame: even if she herself plans to (and indeed will) play Out, she
recognizes that—by structural rationality—Bob will plan on playing S, and will report this
truthfully, so her own bet will be paid out accordingly. Structural rationality is crucial to
these conclusions; see Example 4.

The companion paper Siniscalchi (2022) provides an axiomatic analysis of the notion
of “robust preference” that underlies structural rationality, and shows that it is the most
permissive such notion that still allows the identification of beliefs and utilities. A second
paper, Siniscalchi (in preparation), shows how to incorporate it into different solution
concepts. Section 6.5 in the present paper takes a first step and defines a version of se-
quential equilibrium in which structural rationality is the notion of best reply. It also draws
a connection with trembling-hand perfection.

Organization. Section 2 introduces the required notation. Section 3 formalizes beliefs
and sequential rationality. Section 4 defines structural rationality. Section 5 contains the
main results. Section 6 provides additional discussion and extensions. All proofs are in
the Appendix.

2. BASIC NOTATION

Following Osborne and Rubinstein (1994, Definition 200.1, pp. 200–201), a finite dy-
namic game with imperfect information is represented by a tuple (N�A�Z�P� (Ii� ui)i∈N),
where:

• N is the set of players and A is the set of actions.
• Z ⊂ ⋃

0≤t<∞ At is the finite set of terminal histories. Given Z, H ≡ ⋃
(a1�����at )∈Z{(a1� � � � �

aτ) : 0 ≤ τ ≤ t} is the set of all histories, including the root (empty history) φ.
• P :H \Z →N is the player function.
• Ii is the collection of information sets of player i; it is a partition of P−1({i}), and is

such that, if (a1� � � � � aK)� (b1� � � � � bL) ∈ I for some I ∈ Ii, and (a1� � � � � aK�a) ∈ H,
then (b1� � � � � bL�a) ∈ H. That is, the same actions are available at every history in
the same information set.

• ui :Z → R is the payoff function for player i.
Section 6.1 shows how to allow for incomplete information.

The analysis in this paper mostly focuses on the following derived objects:
• For every i ∈ N and I ∈ Ii, A(I) = {a ∈ A : ∃(a1� � � � � ak) ∈ I� (a1� � � � � ak�a) ∈ H} is

the (nonempty) set of actions available to i at I.3
• For every i ∈N , Si = ∏

I∈Ii
A(I) is the set of strategies of player i; the action specified

by si ∈ Si at I ∈ Ii is denoted si(I), and as usual S = ∏
i∈N Si and S−i = ∏

j 	=i Sj .
• For every h = (a1� � � � � aK) ∈ H, S(h) = {s ∈ S : ∀k = 1� � � � �K�∃i ∈ N�I ∈ Ii s.t. (a1�

� � � � ak−1) ∈ I�ak = si(I)} is the set of strategy profiles that induce h. Let Si(h) =
projSiS(h) and S−i(h) = projS−i

S(h).

3This is well posed by the assumption that the same actions are available at every h ∈ I .
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• For every i ∈ N and I ∈ Ii, S(I) = ⋃
h∈I S(h) is the set of strategy profiles that in-

duce I. Let Si(I) = projSiS(I) and S−i(I) = projS−i
S(I). If s−i ∈ S−i(I), say that s−i

allows I.4
• The strategic-form payoff function of player i ∈ N is Ui : Si × S−i → R, defined by
Ui(si� s−i) = ui(z) for all z ∈ Z and (si� s−i) ∈ S(z).

As usual, for any si ∈ Si and p ∈ �(S−i), let Ui(si�p) = ∑
s−i

Ui(si� s−i) · p({s−i}); and for
any σi ∈ �(Si), let Ui(σi�p) = ∑

ti∈Si σi(ti)Ui(ti�p).
Sets of the form S−i(I), for I ∈ Ii, are called conditioning events. In preparation for

Definition 1, it is convenient to define S−i(φ) = S−i for all players i ∈N , not just i = P(φ).
I assume that the game has perfect recall, analogously to Definition 203.3 in Osborne

and Rubinstein (1994); see Appendix A. This has two implications that are used in the
analysis. First, for every i ∈ N and I ∈ Ii, S(I) = Si(I) × S−i(I). Second, the set S(I)
satisfies strategic independence (Mailath, Samuelson, and Swinkels (1993, Definition 2 and
Theorem 1)): for every si� ti ∈ Si(I), there is ri ∈ Si(I) such that Ui(ri� s−i) =Ui(ti� s−i) for
all s−i ∈ S−i(I), and Ui(ri� s−i) = Ui(si� s−i) for all s−i ∈ S−i \ S−i(I). Intuitively, ri is the
strategy that coincides with si everywhere except at I and all subsequent information sets,
where it coincides with ti.

3. BELIEFS AND WEAK SEQUENTIAL RATIONALITY

Throughout the remainder of this paper, unless referring to a specific example, I fix an
arbitrary dynamic game (N�A�Z�P� (Ii� ui)i∈N).

I represent player i’s beliefs as a collection of probability distributions over coplay-
ers’ strategies, indexed by her information sets I ∈ Ii;5 compare Rényi (1955), Myerson
(1986), Ben-Porath (1997), Kohlberg and Reny (1997), Battigalli and Siniscalchi (2002).
It is also convenient to assume that every player has a prior belief, even if she does not
move at the root φ of the game. The probabilities (μ(·|I))I∈Ii∪{φ} have a dual interpre-
tation. From an interim perspective, every μ(·|I) can be interpreted as the beliefs that
player i would hold upon reaching I. This is the interpretation that best fits the notion
of sequential rationality. Alternatively, the entire probability array (μ(·|I))I∈Ii∪{φ} can be
viewed as a description of player i’s prior beliefs, according to which every information
set is reached with positive, but possibly “infinitesimal” probability. In this interpretation,
μ({s−i}|I) describes the likelihood of strategy profile s−i relative to that of information
set I, which may itself be infinitely unlikely a priori. This interpretation is particularly apt
from the perspective of structural rationality.

DEFINITION 1: An array μ = (μ(·|I))I∈Ii∪{φ} ∈ �(S−i)Ii∪{φ} is a consistent conditional
probability system (CCPS) for player i if there is a sequence (pk)k≥1 ∈ �(S−i)N such that,
for all I ∈ Ii ∪ {φ}, pk(S−i(I)) > 0 for all k ≥ 1, and limk→∞ pk(·|S−i(I)) = μ(·|I). Such
a sequence (pk) is called a perturbation of μ. Denote the set of CCPSs for player i by
�(S−i�Ii).

Adapting arguments in Myerson (1986), one readily sees that a CCPS is a “conditional
probability system” à la Rényi (1955). However, it satisfies further restrictions; see Sinis-
calchi (2022).

4That is, if i’s coplayers follow the profile s−i , I can be reached; whether it is reached depends upon i’s play.
5Definition 1 implies that, equivalently, one can take the corresponding conditioning events S−i(I) as in-

dices.
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The probabilities pk in Definition 1 need not have full support. In particular, in games
with simultaneous moves, the constant sequence defined by pk = μ(·|φ) for all k is a
perturbation of a player’s (trivial) CCPS μ= μ(·|φ).

To formalize sequential rationality, I follow Reny (1992) and Rubinstein (1991), and
only require that a strategy si of player i be optimal at information sets that si allows. Op-
timality at other information sets is best viewed as a description of other players’ (equi-
librium) beliefs about i, rather than part of player i’s decision-making. Following Reny
(1992), I call this notion “weak sequential rationality,” to distinguish it from the defini-
tion in Kreps and Wilson (1982).

DEFINITION 2: Fix a CCPS μ ∈ �(S−i�Ii). A strategy si ∈ Si is weakly sequentially ra-
tional given μ if, for every I ∈ Ii ∪ {φ} with si ∈ Si(I), and all ti ∈ Si(I), Ui(si�μ(·|I)) ≥
Ui(ti�μ(·|I)).

4. STRUCTURAL RATIONALITY

For conciseness, all definitions and results in this section apply to a player i ∈ N , and a
CCPS μ ∈ �(S−i�Ii) for player i in the dynamic game (N�A�Z�P� (Ii� ui)i∈N).

DEFINITION 3: A strategy si ∈ Si is structurally rational given μ if there is a perturbation
(pk)k≥1 of μ such that, for every ti ∈ Si, Ui(si�pk) ≥Ui(ti�pk) for all k≥ 1.

Structural rationality depends upon (i) the extensive-form structure of the game, and
specifically on the collection {S−i(I) : I ∈ Ii ∪ {φ}} of conditioning events; and (ii) on
player i’s entire CCPS. Conditioning events and the associated conditional beliefs char-
acterize the set of perturbations. Hence, structural rationality is not invariant with respect
to the strategic form.

That said, in simultaneous-move (“strategic-form”) games, one particular perturbation
of μ is given by pk = μ(·|φ) for all k. This is also the case in general dynamic games,
if player i’s prior μ(·|φ) assigns positive probability to every I ∈ Ii. By Definition 3, in
these cases, a strategy is structurally rational given μ if and only if maximizes player i’s ex ante
expected payoff.

EXAMPLE 1: In the game of Figure 1, suppose Bob’s CCPS μ reflects his beliefs in
the subgame-perfect equilibrium (Out� (S�S)), so μ({Out}|φ) = 1 and μ({InS}|J) = 1.
Any perturbation (pk)k≥1 of μ must satisfy pk(Sa(J)) = pk({InS� InB}) > 0 for each k,
and pk({InS}|Sa(J)) → 1. For k large enough, Ub(S�pk) > Ub(B�pk), so S is the only
structurally rational strategy given μ.

EXAMPLE 2: In Figure 2, Ann’s beliefs μ satisfy μ({d}|φ) = μ({a}|I) = 1, so any per-
turbation (pk)k≥1 of μ must satisfy pk(S−a(I)) = pk({a}) > 0 for each k and pk({d}) =
pk({d}|Sb(φ)) → 1.

Denote by D1 either one of the realization-equivalent strategies D1D2, D1A2. If x < 2,
eventually Ua(D1�p

k) > Ua(sa�pk) for any strategy sa 	= D1 of Ann, so D1 is the unique
structurally rational strategy given μ. If instead x = 2, Ua(A1D2�p

k) >Ua(sa�pk) for all
k and all sa 	= A1D1. Thus, A1D2 is the unique structurally rational strategy given μ. By
comparison, for x= 2, both D1 and A1D2 are weakly sequentially rational given μ.
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FIGURE 2.—A centipede-like game parameterized by x ∈ [0�2].

EXAMPLE 3: The game in Figure 3 is an extension of “Matching Pennies.” Denote
Ann’s CCPS by μ, and assume that, as in the unique subgame-perfect equilibrium of this
game, Ann initially expects Bob to play h and t with probability 1

2 : μ({h}|φ) = μ({t}|φ) =
1
2 . Denote by T any one of the realization-equivalent strategies of Ann that choose T at φ.

Any perturbation (pk)k≥1 of μ must satisfy pk({o}) > 0, pk({h}) → 1
2 , and pk({t}) →

1
2 . Since pk({o}) > 0 implies Ua(HL�pk) > Ua(HR�pk), HR is not structurally rational
given μ. If 2pk({o}) + pk({h}) > −pk({o}) + pk({t}), then Ua(HL�pk) > Ua(T�pk), If
however 2pk({o}) +pk({h}) < −pk({o}) +pk({t}), then Ua(HL�pk) <Ua(T�pk). Thus,
both HL and T are structurally rational given μ. This illustrates the robustness aspect of
Definition 3: since all perturbations of Ann’s beliefs μ are allowed, both HL and T are
structurally rational given μ.

5. MAIN RESULTS

5.1. Bewley-Style Characterization

Structural rationality admits a characterization via a notion of “robust preference” in
the spirit of Bewley’s (2002) theory of Knightian uncertainty.

PROPOSITION 1: A strategy si ∈ Si is structurally rational given μ if and only if there is no
σi ∈ �(Si) such that, for every perturbation (pk)k≥1 of μ, eventually Ui(σi�p

k) >Ui(si�pk).

Thus, if si is not structurally rational, there is a mixed strategy σi that is “robustly bet-
ter” than si; that is, σi eventually yields strictly higher expected payoff than si against
all perturbations of μ. The companion paper Siniscalchi (2022) axiomatizes this robust
preference relation.
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FIGURE 3.—Modified matching pennies.
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5.2. Structural and Weak Sequential Rationality

THEOREM 1: Fix a player i ∈ N and a CCPS μ ∈ �(S−i�Ii) for i. If strategy si ∈ Si is
structurally rational given μ, then it is weakly sequentially rational given μ.

The proof of Theorem 1 shows that, if si is structurally rational, it must specify an opti-
mal continuation against some perturbed conditional belief pk(·|S−i(I)) → μ(·|I) at every
information set I with si ∈ Si(I). By way of contrast, weak sequential rationality only re-
quires optimality against the limiting beliefs μ(·|I). This is reminiscent of the difference
between extensive-form trembling-hand perfect and sequential equilibrium (Kreps and
Wilson (1982)), or between strategic-form perfect equilibrium and weak sequential equi-
librium (Reny (1992)). Leveraging “generic equivalence” results from the cited papers,
one can show that, for generic assignments of payoffs at terminal histories, in almost
every (weakly) sequential equilibrium, every strategy played with positive probability is
structurally rational.

This conclusion is not quite a “generic converse” to Theorem 1. The key limitation
is that (weak) sequential equilibrium employs a more restrictive notion of beliefs than
those allowed in Definition 1 and Theorem 1, namely “consistent assessments” à la Kreps
and Wilson (1982) (see also Section 6.5). Theorem 3 in Appendix B.3 provides a proper
“generic converse,” using a notion of genericity that can be verified directly, by inspecting
payoffs at terminal histories.

5.3. Eliciting Conditional Beliefs

Finally, I leverage structural rationality to elicit players’ beliefs. A key requirement is
that, in eliciting a player’s beliefs, one must not alter the other players’ strategic incentives.
This distinguishes belief elicitation in games from elicitation in decision problems.

I restrict attention to binary bets: each player i can either bet on the realization of an
event Ei ⊆ S−i (e.g., “Ann plays InS” in Figure 1) conditional upon reaching a given in-
formation set Ii ∈ Ii (e.g., J), or receive a guaranteed payoff of pi ∈ [0�1] “utils” if Ii is
reached. As will be shown, player i’s choice of bet (Ei or pi) will reveal whether or not she
assigns probability at least pi to Ei given Ii. It is straightforward to adapt the approach
introduced here to offer players a menu of bets, or alternative mechanisms (e.g., Becker,
DeGroot, and Marschak (1964)).

The elicitation mechanism consists of two phases. In the first, each player i simulta-
neously chooses a bet (or “wager”) wi ∈ {Ei�pi} and an reported strategy s̄i ∈ Si, and the
experimenter randomly selects one of the players—henceforth, “the selected player.” In
the second phase, the selected player plays the original game with the experimenter, who
faithfully implements the reported strategies of the other players.6

At each terminal history, players who were not selected receive a fixed payoff (say, 0
utils) independent of their choices in the first phase and of play in the second phase. The
selected player i instead receives an equal-chance lottery over three prizes: a direct-play
prize, equal to the payoff determined by the realized play in the second phase of the
mechanism; a betting prize, which depends on her bet wi and the reported strategies of
the other players, s̄−i; and a bonus ε > 0 if her direct play is consistent with her reported
strategy s̄i.

6Alternatively, players may play separately with the experimenter, either simultaneously or sequentially,
provided they do not observe each other’s moves. However, the required notation is much more cumbersome.
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Figure 4 shows the game tree of the elicitation mechanism for the game in Figure 1,
with one graphical simplification: each action in the first stage (e.g., (B̄�wb) for Bob at
information set I1

b) actually represents two actions, one for each possible bet (e.g., (B̄�Eb)
and (B̄�pb)).

I now formally define the elicitation game associated with an arbitrary dynamic game
(N�A�Z�P� (Ii� ui)i∈N). I allow for bets to be offered to any subset of players; this way
the analysis will include a version of the strategy method (without elicitation) as a special
case.

DEFINITION 4: A questionnaire is a collection Q = (Ii�Wi)i∈N such that, for every i ∈N ,
Ii ∈ Ii, and either Wi ={∗} or Wi ={E�p} for some E ⊆ S−i(Ii) and p ∈ [0�1].7

Fixing a questionnaire Q, the sets of players and actions in the elicitation game are

N∗ = N ∪{0} and A∗ = N ∪
⋃
i∈N

(Si ×Wi) ∪A� (1)

Player 0 is the experimenter. Actions include the experimenter’s choice of a selected
player i ∈N , and each subject i’s choices of a reported strategy s̄i ∈ Si and bet wi ∈ Wi.

Next, I define terminal histories z∗ ∈ Z∗. In the first phase of the elicitation game, the
experimenter moves first, then players move according to their index. In the second phase,
the selected player n plays with the experimenter; the resulting sequence of actions must
be a terminal history z in the original game. Along this history, whenever the player on
the move is j 	= n, the experimenter faithfully carries out j’s reported action. Formally,
if the profile of reported strategies of players other than n is s̄−n, then s̄−n must allow z.
However, history z need not also be allowed by s̄n: regardless of her choice of reported
strategy s̄n, the selected player can choose any course of action that is also available in the
original game. Thus,

Z∗ = {(
n� (s̄1�w1)� � � � � (s̄N�wN)� z

) :
n ∈ N� (s̄i�wi) ∈ Si ×Wi ∀i ∈N�z ∈ Z� s̄−n ∈ S−i(z)

}
� (2)

where, consistently with Osborne and Rubinstein (1994), given two lists of actions
(a1� � � � � aL) and (b1� � � � � bK) ≡ h, I write (a1� � � � � aL�h) to denote the joined list
(a1� � � � � aL�b1� � � � � bK).

As in Section 2, given the set Z∗ of terminal histories, one can define the set H∗ of all
histories, terminal or not. With this, the player function is defined as

P∗(h∗) =

⎧⎪⎨
⎪⎩
i i ∈ N�h∗ = (

n� (s̄1�w1)� � � � � (s̄i−1�wi−1)
)
�

P(h) h∗ = (
n� (s̄1�w1)� � � � � (s̄N�wN)�h

)
�h /∈Z�P(h) = n�

0 h∗ =φ∗ or h∗ = (
n� (s̄1�w1)� � � � � (s̄N�wN)�h

)
�h /∈Z�P(h) 	= n�

(3)

Now turn to information. The experimenter has perfect information:

I∗
0 = {

φ∗} ∪ {{(
n� (s̄1�w1)� � � � � (s̄N�wN)�h

)} ⊂ H∗ \Z∗ : P(h) 	= n
}
� (4)

7If Wi ={∗}, Ii can be arbitrarily specified, and is immaterial.
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In the first phase of the elicitation game, each player i ∈ N does not observe the choices
of those who moved before him: thus, her sole information set in the first phase is

I1
i =N ×

i−1∏
j=1

(Sj ×Wj) ⊂H∗� (5)

In the second phase, whenever the selected player i moves, she recalls her own reported
strategy and bet, and receives the same information as in the original game about other
players’ moves—though these are carried out by the experimenter on their behalf. For
instance, at JB̄�wb

in Figure 4, Bob observes In (and hence can infer that Ann’s reported
strategy is either InB or InS). Thus, at JB̄�wb

, Bob has the same information about Ann’s
prior move as at J in the game of Figure 1. To formalize this, for every I ∈ Ii and (s̄i�wi) ∈
Si ×Wi, let

Is̄i�wi
= {(

n� (t̄1� v1)� � � � � (t̄N� vN)�h
) ∈H∗ : n= i� t̄i = si� v̄i = wi�h ∈ I

}
� (6)

Then, for every player i ∈N , the collection of information sets in the elicitation game is

I∗
i = {

I1
i

} ∪ {
Is̄i�wi

: I ∈ Ii� (s̄i�wi) ∈ Si ×Wi

}
� (7)

Finally, payoffs are specified as follows: for all z∗ = (n� (s̄i�wi)i∈N� z) ∈ Z∗,

u∗
i

(
z∗) =

⎧⎨
⎩

0 i = 0 or i ∈N \{n}�
1
3
ui(z) + 1

3
B(wi� s̄−i) + 1

3
· ε · 1s̄i∈Si (z) i = n�

where B(E� s̄−i) = 1s̄−i∈E�B(p� s̄−i) = p · 1s̄−i∈S−i (Ii)� and B(wi� s̄−i) = 0 otherwise� (8)

For the selected player i = n, ui(z) is the direct-play payoff, B(wi� s̄−i) is the betting payoff,
and ε · 1s̄i∈Si (z) is the bonus, paid out only if her direct play is consistent with her reported
strategy.8

The complete definition of the elicitation game can now be stated.

DEFINITION 5: The elicitation game for Q = (Ii�Wi)i∈N with bonus ε is the tuple
(N∗�A∗�Z∗�P∗� (I∗

i � u
∗
i )i∈N∪{0}� ε), where ε > 0 and the other elements are as in equations

(1)–(8).

How does the game thus defined allow the elicitation of beliefs—provided players are
structurally rational? At a broad level, the mechanism works in three conceptual steps.

First, when selected to play directly, player n will choose a course of action that is part
of a structurally rational strategy given her beliefs in the elicitation game. But, fixing n’s
choice of a reported strategy s̄n and bet wn, there is a one-to-one correspondence between
information sets Is̄n�wn in the second phase of the elicitation game and information sets I
in the original game. Hence, if n’s beliefs at Is̄n�wn in the elicitation game “agree with”
her beliefs at I in the original game, then any structurally rational course of action in

8In particular, in Figure 4, if s̄b = B̄, Bob is selected, and Ann chooses s̄a = Out, the experimenter must play
Out, so Bob’s direct move is not observed. However, since intuitively there is “no evidence” that Bob would
have deviated from her reported strategy, he still receives the bonus ε,
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the former is structurally rational in the latter, and conversely. Thus, player n’s strategic
incentives are preserved.

Second, the selected player n’s play in the second phase of the game is not limited by
her choice of reported strategy s̄n. However, n does get a bonus if s̄n is consistent with her
direct play. Hence, at information set I1

n , player n has an incentive to correctly anticipate
her direct play, and report a strategy s̄n that is consistent with it—not just on-path, but
also following other players’ unexpected actions. Moreover, by the previous argument,
under belief agreement, her reported strategy s̄n will also be consistent with her play in
the original game.

Finally, suppose the experimenter wants to elicit the beliefs that another player i holds
in the original game about n’s moves. In the elicitation game, i bets on n’s reported strat-
egy. But, as was just argued, under belief agreement this is equivalent to betting on n’s
play in the original game. And since bets are always observed and paid out in the elicita-
tion game, every player has (strict) incentives to bet in accordance with her beliefs.

To formalize this intuition, I first describe strategies in the elicitation game. Identify the
set of strategies S∗

0 for the experimenter with N , the set of players (at all other histories,
the experimenter has a single available action). A strategy s∗

i ∈ S∗
i for a player i ∈ N must

specify a reported strategy s̄i and bet wi at I1
i . In addition, it must specify an action at every

information set in the second phase of the elicitation game, including those that do not
follow i’s actual choice of s̄i and wi at I1

i , and are thus not payoff-relevant. To focus on
the payoff-relevant components of strategies, for each player i ∈ N , define the “reported-
strategy” map ri : S∗

i → Si, bet or “wager” map wi : S∗
i → Wi, and “direct-play” map di :

S∗
i → Si as follows: for every s∗

i ∈ S∗
i , if s∗

i (I1
i ) = (s̄i�wi) then ri(s∗

i ) = s̄i, wi(s∗
i ) =wi, and

∀I ∈ Ii� di

(
s∗
i

)
(I) = s∗

i (Is̄i�wi
)� (9)

DEFINITION 6: Fix a player i ∈ N and a CCPS μ∗ ∈ �(S∗
−i�I∗

i ). Say that μ∗ agrees with
μ ∈ �(S−i�Ii) if, for every s−i ∈ S−i and n ∈N ,

μ∗({t∗−i : t∗0 = n� rj
(
t∗j

) = sj ∀j ∈ N \{i}
}
|φ∗) = 1

N
μ

(
{s−i}|φ

)
� (10)

μ∗({t∗−i : t∗0 = i� rj
(
t∗j

) = sj ∀j ∈ N \{i}
}
|Is̄i�wi

) = μ
(
{s−i}|I

) ∀Is̄i�wi
∈ I∗

i � (11)

Thus (i) ex ante, i believes that each player has an equal chance of being selected to play
directly, and that the selection process is independent of coplayers’ choices of reported
strategies; and (ii) at every information set, i holds the same beliefs about each coplayer
j’s reported strategy as about j’s strategy in the original game.9

More than one CCPS for player i in the elicitation game may agree with her CCPS in
the original game, because i may assign different probabilities to her coplayers’ choices
of side bets. However, these differences do not affect i’s payoff.

The main result of this section can now be stated: if players’ beliefs about others’ re-
ported strategies are the same as in the original game, then (i) the elicitation mechanism
does not change the set of structurally rational strategies, (ii) belief bounds can be elicited
from initial, observable betting choices, and (iii) reported strategies are consistent with
direct play.

9Parts (i) and (iii) in Theorem 2 suggest that one could alternatively define “agreement” as meaning that
i believes that coplayers’ direct play coincides with (a) their play in the original game, and (b) their reported
strategies in the elicitation game. Doing so is possible, but notationally more cumbersome.
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THEOREM 2: Fix a questionnaire (Ii�Wi)i∈N and let (N∗� (S∗
i �I∗

i �U
∗
i )i∈N∗� S∗(·)) be the

associated elicitation game. For any CCPS μi ∈ �(S−i�Ii) for player i ∈ N , there is a CCPS
μ∗

i ∈ �(S∗
−i�I∗

i ) that agrees with μi; and for any such μ∗
i , and strategy s∗

i ∈ S∗
i that is struc-

turally rational for μ∗
i :

(i) ri(s∗
i ) and di(s∗

i ) are structurally rational for μi;
(ii) if Wi = (E�p) and and wi(s∗

i ) = E (resp., wi(s∗
i ) = p), then μi(E|Ii) ≥ p (resp.,

μi(E|Ii) ≤ p);
(iii) for all z ∈ Z, ri(s∗

i ) ∈ Si(z) if and only if di(s∗
i ) ∈ Si(z).

Conversely, for every si ∈ Si that is structurally rational for μi, there is s∗
i ∈ S∗

i with ri(s∗
i ) =

di(s∗
i ) = si that is structurally rational for any μ∗

i ∈ �(S∗
−i�I∗

i ) that agrees with μi.

This result also yields a positive theoretical rationale for the use of the strategy method,
provided direct play is implemented as described in Definition 5. Suppose the experi-
menter wishes to test whether play conforms to some solution concept that adopts struc-
tural rationality as the notion of best reply. Then, if indeed players conform to such a
solution concept, the version of the strategy method proposed here will elicit their re-
ported behavior.

COROLLARY 1: Suppose that Wi = {∗} for all i ∈ N . Then, for all i ∈ N and all s∗
i ∈ S∗

i

such that ri(s∗
i ) = di(s∗

i ), s∗
i is structurally rational given μ∗

i in the elicitation game if and only
if di(s∗

i ) is structurally rational given μi in the original game.

Theorem 2 depends crucially on structural rationality. (Weak) sequential rationality is
not sufficient, even if beliefs satisfy the agreement condition of Definition 6.

EXAMPLE 4: Consider the game in Figure 1 and assume that Wa = {∗} and Wb =
{{InS}�0�5}, with Ib = J; that is, Bob is asked to bet on Ann playing S at I, and no bet
is offered to Ann. For 0 < ε < 1, the following strategies are part of a sequential equi-
librium. Ann plays (Out�∗) at I1

a ; Bob plays (S̄�0�5) at I1
b . If selected, Ann plays Out at

information set φt̄a�∗ and S at information set It̄a�∗, for all t̄a ∈ Sa; and if selected, Bob
plays S at Jt̄b�vb , for all (t̄b� vb) ∈ Sb × Wb. Moreover, at all φt̄a�∗ and It̄a�∗, as well as at I1

a ,
Ann assigns probability one to Bob having chosen reported strategy (S̄�0�5); at I1

b , Bob
expects Ann to have chosen (Out), and at each Jt̄b�vb , he assigns probability one to Ann
having chosen reported strategy InS.

The key is that Bob must bet at the beginning of the game, where sequential rationality10

only requires that he maximize his ex ante expected payoff. In equilibrium, Bob expects
Ann to choose Out, so that the bet is called off; hence, he is indifferent between his betting
choices.

To reconcile Theorem 2 and Example 4 with the generic equivalence results described
in Section 5.2, notice that elicitation games feature numerous relevant ties by construction.
Consider Bob at I1

b in Figure 4. If Ann reports strategy Out at I, then for a fixed report s̄b
of Bob, both actions (s̄b�{InS}) and (s̄b�0�5) yield the same payoff, namely 2 + ε. This is a
relevant tie.

10Here, the distinction between weak and full sequential rationality is immaterial. The profile described in
the example is part of a sequential equilibrium.
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6. DISCUSSION

6.1. Incomplete-Information Games

To accommodate incomplete information, fix a dynamic game with N players, strat-
egy sets Si, terminal histories Z, and information sets Ii for each i ∈ N . Consider finite
sets 	i of “types” for each i ∈ N , and a set 	0 that captures residual uncertainty not
reflected in players’ types. Player i’s payoff function is a map ui : Z × 	 → R, where
	 = 	0 × ∏

j∈N 	j . The conditional beliefs of player i’s type θi can then be represented
via a CCPS μθi ∈ �(S−i ×	){φ}∪Ii ; now a perturbation is a sequence (pk)k≥1 ⊂ �(S−i ×	)
such that pk(S−i(I) × 	) > 0 and pk(S−i(I) × 	) → μθi (·|I) for all I ∈ {φ} ∪ Ii. Defi-
nitions 1, 2, and 3 can be applied to each type θi ∈ 	i separately; Theorems 1, 2, and 3
have straightforward extensions. If the sets 	i are infinite, the alternative characteriza-
tion of structural rationality in Siniscalchi (2022) is a more convenient starting point, but
Theorems 1 and 2 still hold.

6.2. Higher-Order Beliefs

The proposed approach can also be adapted to elicit higher-order beliefs. Consider
a two-player game for simplicity. The analyst first elicits Ann’s first-order beliefs about
Bob’s strategies, as in Section 5.3. She then elicits Bob’s second-order beliefs by offering
him side bets on both Ann’s strategies and on her first-order beliefs. To formalize this,
one follows §6.1, taking 	i to be the set of all CCPSs for each player i. The incomplete-
information extension of Theorem 2 ensures that second-order beliefs can be elicited in
an incentive-compatible way. The argument extends to beliefs of higher orders.

6.3. Elicitation: Modified or Perturbed Games

In the equilibrium (Out� (S�S)) of the game of Figure 1, Ann’s initial move prevents J
from being reached. One might consider modifying the game so that J is actually reached,
perhaps with small probability, regardless of Ann’s initial move. However, such modifi-
cations may have a significant impact on players’ strategic reasoning and behavior and,
therefore, on elicited beliefs. For instance, in the game of Figure 1, forward-induction rea-
soning selects the equilibrium (In� (B�B)) (cf., e.g., Van Damme (1989)). Thus, if Ann
follows the logic of forward induction, she should expect Bob to play B. However, sup-
pose action Out is removed. Then the game reduces to the simultaneous-move Battle of
the Sexes, in which forward induction has no bite. Ann may well expect Bob to play B in
the game of Figure 1, and S in the game with Out removed. Thus, Ann’s beliefs elicited in
the latter game may differ from her actual beliefs in the former. Similar conclusions hold
if one causes Ann to play In with positive probability when she chooses Out. Analogous
arguments apply to backward-induction reasoning; see, for example, Ben-Porath (1997,
Example 3.2 and page 36).

By way of contrast, the elicitation approach in Section 5.3 only modifies the game in
ways that, as per part (i) of Theorem 2, are inessential under structural rationality.

6.4. Caution, Elicitation, and Triviality

Consider the games in Figure 5(a).11 Ann has a single move available at I in Figure 5(a).

11I thank a referee for providing this example, which motivated the discussion in this subsection.
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Ann

φ

D1

0

A1 Bob

d

0

a Ann

I

A2
1

Ann

φ

D1

0

A1 Bob

d

0

a
1

(a) I is trivial (b) I removed

FIGURE 5.—A trivial information set; Ann’s payoffs shown.

From the perspective of weak sequential rationality, such an information set can be
disregarded. However, if Ann assigns prior probability 1 to d, A1A2 is the only structurally
rational strategy for her in in Figure 5(a), whereas both D1 and A1A2 are structurally
rational in Figure 5(b). The reason is that Ann has different conditioning events in the
two games in Figure 5.

To avoid this, one can replace Ii with the collection Int
i = {I ∈ Ii :|A(I)|≥ 2} of “non-

trivial” information sets in Definitions 1, 2, 4, and 6; all of the results in this paper continue
to hold (except that, naturally, beliefs at trivial information sets can no longer be elicited).
In fact, “trivial” information sets are only used to model the experimenter’s mechanical
implementation of subjects’ reported strategies in Definition 5.

6.5. Equilibrium and Structurally Rational Strategies

To illustrate how structural rationality can be incorporated into solution concepts, con-
sider Govindan and Wilson’s (2009) reformulation of sequential equilibrium. A behavioral
strategy for player i is an array β = (βi(I))I∈Ii

∈ �(A)Ii such that βi(I)(A(I)) = 1 for all
I ∈ Ii. As usual, each behavioral strategy βi induces a mixed strategy σi ∈ �(Si);

⊗
j 	=i σj

denotes the product measure with marginals σj , for j 	= i. Then a sequential equilibrium
is a profile (βi�μi)i∈N where each βi is a behavioral strategy for i, μi = (μi(·|I))I∈I ∈
�(S−i){φ}∪Ii , and the following two conditions hold:

(i) There is a sequence of strictly positive behavioral strategy profiles (βk
i )i∈N�k≥1 and a

sequence of strictly positive mixed strategy profiles (σk
i )i∈N�k≥1 such that, for every

i, each σk
i is derived from βk

i , βk
i → βi, and (

⊗
j 	=i p

k
j )(·|S−i(I)) → μi(·|I) for each

I ∈ Ii.
(ii) For every i and I ∈ Ii, if βi(I)(a) > 0 then there exists si ∈ Si(I) such that si(I) = a

and si ∈ arg maxti∈Si (I) Ui(ti�μi(·|I)).
By condition (i), each μi is a CCPS, generated by a specific type of perturbation.

To obtain a corresponding notion of “structural equilibrium,” replace (ii) above with:
(ii’) For every i and I ∈ Ii, if βi(I)(a) > 0, then there exists si ∈ Si(I) such that si(I) = a

and a perturbation (pk)k≥1 of μi such that si ∈ arg maxti∈Si (I) Ui(ti�pk(·|S−i(I)) for
all k≥ 1.

Refer to the companion paper Siniscalchi (in preparation) for further analysis.
In addition, there is a straightforward relationship with solution concepts based on

“trembles:” only structurally rational strategies are played in a trembling-hand perfect equi-
librium (Selten (1975)). In the notation of this paper, a (strategic-form) (trembling-hand)
perfect equilibrium is a profile σ ∈ ∏

i∈I �(Si) such that, for every i ∈ N , there exists a se-
quence (σk

i )k≥1 such that σk
i → σi and every si ∈ suppσi is a best reply to each product

measure pk
−i ≡ ⊗

j 	=i σ
k
j , k ≥ 1. Each sequence (pk

−i)k≥1 defines a CCPS μ−i ∈ �(S−i�Ii)
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(possibly considering subsequences), and by Definition 3, every si ∈ suppσi is structurally
rational given μ−i.

APPENDIX A: DYNAMIC GAMES

Fix a dynamic game (N�A�Z�P� (Ii� ui)i∈N) as defined in Section 2. Let H be the set
of all (terminal and nonterminal) histories, as defined therein.12

Let h = (a1� � � � � aK) ∈ H. For all k = 0� � � � �K − 1, h′ ≡ (a1� � � � � ak) is a prefix of h,
written h′ < h. The case k = 0 corresponds to h′ = φ, which is a prefix of every history.
I sometimes write h′ ≤ h to mean that either h′ = h or h′ is a prefix of h.

Perfect recall is formalized per Definition 203.3 in Osborne and Rubinstein (1994). For
every h ∈ P−1(i), let Xi(h) denote i’s experience along the history h; if h = (a1� � � � � aL),
let �1� � � � � �K be the set of indices � ∈ {1� � � � �L − 1} such that P((a1� � � � � a�−1)) =
i, and I1� � � � � IK be such that (a1� � � � � a�k−1) ∈ Ik for k = 1� � � � �K; then Xi(h) =
(I1� a�1� � � � � Ik� a�k). Perfect recall requires that, if h�h′ ∈ I ∈ Ii, then Xi(h) = Xi(h′).
One immediate implication (used in the proof of Remark 1) is that, if h < h′, then h and
h′ cannot be elements of the same information set.

The terminal history map ζ : S → Z associates with each strategy profile s the terminal
history it induces; that is, ζ(s) = z iff s ∈ S(z).

REMARK 1: Let h = (a1� � � � � aK) ∈ H. Then, for every i ∈ N , si ∈ Si(h) ≡ projSi S(h) if
and only if, for every k = 1� � � � �K, if P((a1� � � � � ak−1)) = i and I ∈ Ii is the unique infor-
mation set such that (a1� � � � � ak−1) ∈ I, then si(I) = ak. In particular, S(h) = ∏

i∈N Si(h).

PROOF: Suppose that si ∈ Si(h), so by definition there is s−i ∈ S−i such that (si� s−i) ∈
S(h). Since Ij is a is a partition of P−1({j}) ⊆ H \Z for all j ∈ N , for every k = 1� � � � �K,
if i = P((a1� � � � � ak−1)), then (a1� � � � � ak−1) ∈ I ∈ Ij implies that j = i. Hence, (si� s−i) ∈
S(h) implies si(I) = ak.

Conversely, suppose that, for some si ∈ Si, and for all k with P((a1� � � � � ak−1)) = i,
si(I) = ak, where (a1� � � � � ak−1) ∈ I ∈ Ii. Define s−i ∈ S−i as follows: for every j 	= i and
all J ∈ Ij , if (a1� � � � � ak−1) ∈ J for some k, then sj(J) = ak; otherwise sj(J) is an arbitrary
element of A(J). By perfect recall, there is at most one k such that (a1� � � � � ak−1) ∈ J, so
this definition is well posed. Furthermore, by construction the profile (si� s−i) is such that
P((a1� � � � � ak−1)) = j and (a1� � � � � ak−1) ∈ J ∈ Ij imply sj(J) = ak, regardless of whether
j = i or j 	= i. Hence, (si� s−i) ∈ S(h), so si ∈ projSi S(h) = Si(h). Q.E.D.

REMARK 2: For all i ∈N and I ∈ Ii, S(I) = Si(I) × S−i(I).13

PROOF: si ∈ Si(I) implies that there is t−i ∈ S−i(I) with (si� t−i) ∈ S(I). Similarly, s−i ∈
S−i(I) implies that there is ti ∈ Si with (ti� s−i) ∈ S(I). Let h′�h′′ ∈ I be such that (si� t−i) ∈
S(h′) and (ti� s−i) ∈ S(h′′). By perfect recall, Xi(h′) = Xi(h′′) ≡ (I1� a1� � � � � IK�aK). Let
h̄′′ < h′′ be such that P(h̄′′) = i. By the definition of Xi(·), there is k such that h̄′′ ∈ Ik.
Then there must be h̄′ < h′ such that h̄′ ∈ Ik as well, and si(Ik) = ak = ti(Ik); otherwise
Xi(h′) 	=Xi(h′′). By Remark 1, this implies that (si� s−i) ∈ S(h′′), and so (si� s−i) ∈ S(I), as
claimed. Q.E.D.

12Osborne and Rubinstein (1994) take as primitive a set H of histories, closed under the “subhistory” (pre-
fix) relation, and define Z as the set of histories that are no proper prefix of any other history. The approach
taken here starts from Z and derives H; it is more convenient in Definition 5, but equivalent.

13This result is known, but I have been unable to find a published proof.
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APPENDIX B: PROOFS OF THE MAIN RESULTS

B.1. Proof of Proposition 1

If si ∈ Si is structurally rational for μ, there is a perturbation (pk)k≥1 of μ such that
Ui(si�pk) ≥ Ui(ti�pk) for all ti ∈ Si and all k ≥ 1. Hence, for all σi ∈ �(Si), Ui(si�pk) ≥
Ui(σi�p

k) for all k≥ 1, so no σi ∈ �(Si) satisfies Ui(σi�p
k) >Ui(si�pk) eventually for all

perturbations (pk)k≥1 of μ.
Now suppose si is not structurally rational for μ. Denote by v(s−i) the s−i-th coordinate

of v ∈ R
S−i . For ti ∈ Si, I ∈ Ii ∪{φ}, s−i ∈ S−i(I), and ε > 0, define aI�ati � a

I�s−i�+
ε � a

I�s−i�−
ε ∈

R
S−i by
• aI (t−i) = −1 if t−i ∈ S−i(I), and aI (t−i) = 0 for t−i /∈ S−i(I);
• ati (t−i) =Ui(ti� t−i) −Ui(si� t−i) for all t−i ∈ S−i;
• a

I�s−i�+
ε (t−i) = −[μ({s−i}|I) + ε] for t−i ∈ S−i(I) \{s−i}, aI�s−i�+

ε (s−i) = 1 − [μ({s−i}|I) +
ε], and a

I�s−i�+
ε (t−i) = 0 for t−i /∈ S−i(I);

• a
I�s−i�−
ε (t−i) = [μ({s−i}|I) − ε] for t−i ∈ S−i(I) \{s−i}, aI�s−i�−

ε (s−i) = −1 + [μ({s−i}|I) −
ε], and a

I�s−i�−
ε (t−i) = 0 for t−i /∈ S−i(I).

Let m ∈R
S−i
+ and consider the following system of linear inequalities:

aI ·m ≤ −1 ∀I ∈ Ii ∪{φ}� (12)

ati ·m ≤ 0 ∀ti ∈ Si� (13)

aI�s−i�+
ε ·m ≤ 0 ∀I ∈ Ii ∪{φ}� s−i ∈ S−i(I)� (14)

aI�s−i�−
ε ·m ≤ 0 ∀I ∈ Ii ∪{φ}� s−i ∈ S−i(I)� (15)

By contradiction, suppose the system defined by equations (12)–(15) has a solution for
every ε > 0. For each k≥ 1, let mk be a solution for ε= 1

k
. From equation (12) and the def-

inition of aI , Mk(I) ≡ ∑
s−i∈S−i (I) m

k(s−i) ≥ 1 for all I ∈ Ii ∪{φ}; in particular, Mk(φ) > 0,
and one can define pk ∈ �(S−i) by letting pk({s−i}) = mk(s−i)/Mk(φ) for all s−i ∈ S−i.
Then, for all I ∈ Ii ∪ {φ}, pk(S−i(I)) = ∑

s−i∈S−i (I) m
k(s−i)/Mk(φ) = Mk(I)/Mk(φ) ≥

1/Mk(φ) > 0 because Mk(I) ≥ 1. Now Equations (14) and (15) and the definition of
a
I�s−i�+
ε , aI�s−i�−

ε , and Mk(I) imply that

mk(s−i) −μ
(
{s−i}|I

)
Mk(I) ≤ 1

k
Mk(I) and −mk(s−i) +μ

(
{s−i}|I

)
Mk(I) ≤ 1

k
Mk(I)�

that is, |mk(s−i) − μ({s−i}|I)Mk(I)| ≤ 1
k
Mk(I), for every I ∈ Ii ∪ {φ} and s−i ∈ S−i(I).

Dividing by Mk(I), since mk(s−i)/Mk(I) = mk(s−i)/Mk(φ)
Mk(I)/Mk(φ)

= pk({s−i})
pk(S−i (I))

= pk({s−i}|S−i(I)), one
has |pk({s−i}|S−i(I)) − μ({s−i}|I)|< 1

k
, so pk({s−i}|S−i(I)) → μ({s−i}|I). Hence, (pk)k≥1

is a perturbation of μ. Finally, for every ti ∈ Si, by equation (13) and the definition
of ati ,

∑
s−i

[Ui(ti� s−i) − Ui(si� s−i)]m(s−i) ≤ 0, so dividing by Mk(φ),
∑

s−i
[Ui(ti� s−I]) −

Ui(si� s−i)]pk({s−i}) ≤ 0, that is, Ui(si�pk) ≥Ui(ti�pk). Since this holds for every k and ti,
si is structurally rational given μ, contradiction.

Thus, for some ε > 0, the system defined by equations (12)–(15) has no solution. Then,
by Theorem 22.1 in Rockafellar (1970) (a version of the theorem of the alternative), there
exist λI ≥ 0 for every I ∈ Ii ∪{φ}, λti ≥ 0 for every ti ∈ Si, λI�s−i�+ ≥ 0 for every I ∈ Ii ∪{φ}
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and s−i ∈ S−i(I), and λI�s−i�− ≥ 0 for every I ∈ Ii ∪{φ} and s−i ∈ S−i(I), such that

∑
I∈Ii∪{φ}

λIaI +
∑
ti∈Si

λtiati +
∑

I∈Ii∪{φ}�s−i∈S−i (I)

λI�s−i�+aI�s−i�+

+
∑

I∈Ii∪{φ}�s−i∈S−i (I)

λI�s−i�−aI�s−i�− = 0� (16)

where 0 is the zero vector in R
S−i , and furthermore,

∑
I∈Ii∪{φ}

λI · (−1) +
∑
ti∈Si

λti ·0+
∑

I∈Ii∪{φ}�s−i∈S−i (I)

λI�s−i�+ ·0+
∑

I∈Ii∪{φ}�s−i∈S−i (I)

λI�s−i�− ·0 < 0� (17)

I show that
∑

ti
λti [U (ti�pk)−Ui(si�pk)] > 0 eventually for all perturbations (pk)k≥1 of μ.

This also implies that � ≡ ∑
ti
λti > 0, so to complete the proof one can let σi = ( λti

�
)ti∈Si .

Fix one such perturbation (pk)k≥1. Then pk(S−i(I)) > 0 for all I ∈ I , and pk({s−i}|
S−i(I)) → μ({s−i}|I) for all I ∈ Ii ∪ {φ} and s−i ∈ S−i(I). Thus, for some K ≥ 1, k ≥ K
implies |pk({s−i}|S−i(I)) − μ({s−i|I)|≤ ε. Let pk

min = minI∈Ii∪{φ}p
k(S−i(I)). Then pk

min >
0 and pk(S−i(I)) ≥ pk

min for all I ∈ Ii ∪ {φ}. Abusing notation, let a · pk ≡ ∑
t−i

a(t−i) ·
pk({t−i}) for every a ∈ R

S−i . Then aI · pk = −pk(S−i(I)) ≤ −pk
min < 0 for all I ∈ Ii ∪ {φ}.

Furthermore, |pk({s−i}|S−i(I)) − μ({s−i|I)| ≤ ε iff pk({s−i}|S−i(I)) − μ({s−i}|I) ≤ ε and
−pk({s−i}|S−i(I)) + μ({s−i}|I) ≤ ε, that is, multiplying by pk(S−i(I)) > 0, iff pk({s−i}) −
μ({s−i}|I)pk(S−i(I)) ≤ εpk(S−i(I)) and −pk({s−i}) +μ({s−i}|I)pk(S−i(I)) ≤ εpk(S−i(I)),
or pk({s−i})−[μ({s−i}|I)+ε]pk(S−i(I)) ≤ 0 and −pk({s−i})+[μ({s−i}|I)−ε]pk(S−i(I)) ≤
0; that is, aI�s−i�+

ε ·pk ≤ 0 and a
I�s−i�−
ε ·pk ≤ 0 for all I ∈ Ii ∪{φ} and s−i ∈ S−i(I).

Now for each t−i ∈ S−i, taking the dot product of each side of equation (16) with pk

yields ∑
I∈Ii∪{φ}

λIaI ·pk +
∑
ti∈Si

λtiati ·pk +
∑

I∈Ii∪{φ}�s−i∈S−i (I)

λI�s−i�+aI�s−i�+
ε ·pk

+
∑

I∈Ii∪{φ}�s−i∈S−i (I)

λI�s−i�−aI�s−i�−
ε ·pk = 0�

Since λI�s−i�+�λI�s−i�− ≥ 0, aI�s−i�+
ε · pk ≤ 0, and a

I�s−i�−
ε · pk ≤ 0 for all I ∈ Ii ∪ {φ} and

s−i ∈ S−i(I), the third and fourth summations are nonpositive. Also, for every I ∈ Ii ∪{φ},
aI ·pk < 0, and by equation (17), λI > 0 for at least one I ∈ Ii ∪{φ}: thus, the first summa-
tion is strictly negative. Hence, the second summation is strictly positive. From the def-
inition of ati for ti ∈ Si,

∑
ti∈Si λ

ti [Ui(ti�pk) − Ui(si�pk)] = ∑
ti∈Si λ

ti
∑

t−i∈S−i
[Ui(ti� t−i) −

Ui(si� t−i)]pk({t−i}) > 0.

B.2. Proof of Theorem 1

Suppose that si ∈ Si is structurally rational given μ. Fix I ∈ Ii with si ∈ Si(I) and
ri ∈ Si(I). By strategic independence (cf. Section 2), there is ti ∈ Si such that Ui(ti� s−i) =
Ui(ri� s−i) for s−i ∈ S−i(I), and Ui(ti� s−i) = Ui(si� s−i) for s−i /∈ S−i(I). By Definition 3,
there is a perturbation (pk) of μ such that Ui(si�pk) ≥ Ui(t ′i�p

k) for all t ′i ∈ Si. In partic-
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ular, for t ′i = ti,

Ui

(
si�p

k
(·|S−i(I)

)) =
∑

s−i∈S−i (I)

Ui(si� s−i)pk
(
{s−i}|S−i(I)

)

= 1
pk

(
S−i(I)

) ·
∑

s−i∈S−i (I)

Ui(si� s−i)pk
(
{s−i}

)

= 1
pk

(
S−i(I)

)[ ∑
s−i∈S−i

Ui(si� s−i)pk
(
{s−i}

) −
∑

s−i /∈S−i (I)

Ui(si� s−i)pk
(
{s−i}

)]

≥ 1
pk

(
S−i(I)

)[ ∑
s−i∈S−i

Ui(ti� s−i)pk
(
{s−i}

) −
∑

s−i /∈S−i (I)

Ui(si� s−i)pk
(
{s−i}

)]

= 1
pk

(
S−i(I)

) ∑
s−i∈S−i (I)

Ui(ri� s−i)pk
(
{s−i}

) =Ui

(
ri�p

k
(·|S−i(I)

))
�

The second equality follows from the definition of conditional probability and the fact
that, by Definition 1, pk(S−i(I)) > 0. The inequality follows from the choice of the pertur-
bation (pk)k≥1. The fourth equality follows from the definition of ti. Since pk(·|S−i(I)) →
μ(·|I) by Definition 1, it follows that Ui(si�μ(·|I)) ≥ Ui(ri�μ(·|I)).

B.3. Generic Equivalence of Structural and Sequential Rationality

A relevant tie for player i is a tuple (I� si� ti� t−i) such that I ∈ Ii ∪ {φ}, si� ti ∈ Si(I),
t−i ∈ S−i(I), ζ(si� t−i) 	= ζ(ti� t−i), and Ui(si� t−i) = Ui(ti� t−i). That is, starting from I,
if coplayers move according to t−i, then i’s strategies si and ti reach distinct termi-
nal histories, but yield the same payoff. A nontrivial redundance for player i is a tuple
(I� si�σi� t−i� t

′
−i) such that I ∈ Ii ∪ {φ}, si ∈ Si(I), σi(Si(I) \ {si}) = 1, t−i� t

′
−i ∈ S−i(I),

Ui(si� s−i) = Ui(σi� s−i) for s−i ∈ {t−i� t
′
−i}, and ζ(ti� t−i) 	= ζ(ti� t ′−i) for some ti ∈ suppσi.

That is, the payoff that si yields given t−i and t ′−i is a nontrivial14 convex combination of
payoffs of other strategies of i at I.

In the game in Figure 1, there are no relevant ties or nontrivial redundances for Ann.
On the other hand, in Figure 2, if x= 2, there is a relevant tie at the initial node.

THEOREM 3: Fix i ∈ N and μ ∈ �(S−i�Ii). If si ∈ Si is weakly sequentially rational given
μ, and there is no relevant tie or nontrivial redundance for i, then si is structurally rational
given μ.

PROOF: Assume that si ∈ Si is weakly sequentially rational given μ, and that the game
has no relevant ties or nontrivial redundancies for i. We show that, for every σi ∈ �(Si),
there is a perturbation (p̃k)k≥1 of μ for which Ui(si� p̃k) ≥ Ui(σi� p̃

k) for all k; by
Proposition 1, this implies that si is structurally rational for μ. Thus, fix σi ∈ �(Si). If
σi({si}) < 1, then for every p ∈ �(S−i), Ui(si�p) ≥ Ui(σi�p) = σi({si})Ui(si�p) + [1 −

14If ζ(ti� t−i) = ζ(ti� t ′−i) for all ti ∈ suppσi , then either there is a relevant tie, or for small payoff pertur-
bations, one can correspondingly perturb σi so that the condition “Ui(si� s−i) = Ui(σi� s−i) for s−i ∈ {t−i� t

′
−i}”

holds.
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σi({si})]Ui(σi(·|Si \{si})�p) holds iff Ui(si�p) ≥ Ui(σi(·|Si \{si})�p). Thus, it is enough to
prove the result for σi with σi({si}) = 0.

For every s−i ∈ S−i, let h(s−i) ∈ H be the longest history h such that h ≤ ζ(si� s−i) and
h ≤ ζ(ti� s−i) for all ti ∈ suppσi. If h(s−i) = ζ(si� s−i), then also h(si) = ζ(ti� s−i) for all
ti ∈ suppσi, because terminal histories are not ranked by the prefix relation; conversely,
for the same reason, if h(s−i) = ζ(ti� s−i) for some ti ∈ suppσi, then in fact h(s−i) =
ζ(t ′i� s−i) for all t ′i ∈ suppσi, and h(s−i) = ζ(si� s−i). Furthermore, if h(s−i) ∈ H \ Z, then
P(h) = i; by contradiction, if P(h(s−i)) = j 	= i, then h(s−i) ∈ J for some J ∈ Ij , so that
(h(s−i)� sj(J)) ≤ ζ(si� s−i) and (h(s−i)� sj(J)) ≤ ζ(ti� s−i) for all ti ∈ suppσi, which contra-
dicts the definition of h(s−i). Hence, either h(s−i) ∈ Z, in which case h(s−i) = ζ(si� s−i) =
ζ(ti� s−i) for all ti ∈ suppσi, or else h(s−i) ∈ I for some I ∈ Ii; in the latter case, denote
the unique element of Ii containing h(s−i) by I(s−i); then, by the definition of h(s−i),
si(I(s−i)) 	= ti(I(s−i)) for at least one ti ∈ suppσi, for otherwise a = si(I(s−i)) would sat-
isfy a= ti(I(s−i)) for all ti ∈ suppσi, (h(s−i)� a) ≤ ζ(si� s−i), and (h(s−i)� a) ≤ ζ(ti� s−i) for
all ti ∈ suppσi, contradiction. Furthermore, σi(Si(I(s−i))) = 1, because every ti ∈ suppσi

satisfies ti ∈ Si(h(s−i)) ⊆ Si(I(s−i)). Since σi({si}) = 0, σi(Si(I(s−i)) \{si}) = 1.
Now fix s−i� t−i ∈ S−i. I claim that either S−i(I(s−i)) ∩ S−i(I(t−i)) = ∅, or S−i(I(s−i)) =

S−i(I(t−i)). Suppose that there is r−i ∈ S−i(I(s−i) ∩ S−i(I(t−i)). Since si ∈ Si(I(s−i)) ∩
Si(I(t−i)), by perfect recall, there are h ∈ I(s−i) with h < ζ(si� r−i) and h′ ∈ I(t−i) with
h′ < ζ(si� r−i). Since h and h′ are prefixes of the same terminal history, either they coin-
cide, or they are ordered by precedence. If h < h′, then I(s−i) is in i’s experience at h′, and
hence, by perfect recall, at h(t−i). Hence, there must be h′′ < h(t−i) such that h′′ ∈ I(s−i).
Perfect recall also implies that, for some a ∈ A, (h�a) ≤ h′ and (h′′� a) ≤ h(t−i): hence, all
strategies in Si(I(t−i)) must play a at I(s−i), so in particular si(I(s−i)) = a = ti(I(s−i)) for
all ti ∈ suppσi, which contradicts the fact that, as was shown above, si(I(s−i)) 	= t ′i(I(s−i))
for at least some t ′i ∈ suppσi. Similarly, it cannot be that h′ < h. Thus, h = h′, and so
h = h′ ∈ I(s−i) ∩ I(t−i). Since Ii partitions P−1({i}), I(s−i) = I(t−i). Therefore, writing
S0

−i = {s−i : h(s−i) ∈ Z}} and arbitrarily enumerating the collection {I(s−i) : s−i ∈ S−i} as
I1� � � � � IL, {S0

−i}∪{S−i(I�) : � = 1� � � � �L} is a partition of S−i.
For all s−i ∈ S0

−i, by definition Ui(si� s−i) = Ui(ti� s−i) for all ti ∈ suppσi. By weak se-
quential rationality, for all � = 1� � � � �L, Ui(si�μ(·|I�) ≥ Ui(ti�μ(·|I�) for all ti ∈ Si(I�);
but since σi(Si(I�)) = 1, also Ui(si�μ(·|I�) ≥Ui(σi�μ(·|I�). Furthermore, fix one such �.

Suppose that μ({t−i}|I�) > 0 implies Ui(si� t−i) = Ui(σi� t−i), and that in addition,
for all t−i� t

′
−i ∈ suppμ(·|I�), and all ti ∈ {si} ∪ suppσi, Ui(ti� t−i) = Ui(ti� t ′−i). Fix t̄−i ∈

suppμ(·|I�). For all ti ∈{si}∪ suppσi,

Ui

(
ti�μ(·|I�)

) =
∑

t−i∈suppμ(·|I�)

μ
(
{t−i}|I�

)
Ui(ti� t−i)

=
∑

t−i∈suppμ(·|I�)

μ
(
{t−i}|I�

)
Ui(ti� t̄−i) =Ui(ti� t̄−i)�

By weak sequential rationality, Ui(si�μ(·|I�)) ≥ Ui(ti�μ(·|I�)) for all ti ∈ Si(I�), so in par-
ticular for all ti ∈ suppσi. Thus, Ui(si� t̄−i) ≥ Ui(ti� t̄−i) for all ti ∈ suppσi. By assump-
tion, Ui(si� t̄−i) = Ui(σi� t̄−i), so it must be that Ui(si� t̄−i) = Ui(ti� t̄−i), for all ti ∈ suppσi.
Since there is t̄i ∈ suppσi with t̄i(I�) 	= si(I�), we have ζ(si� t̄−i) 	= ζ(t̄i� t̄−i) and Ui(si� t̄−i) =
Ui(t̄i� t̄−i); that is, (I�� si� t̄i� t̄−i) is a relevant tie, contradiction.

Suppose instead that μ({t−i}|I�) > 0 implies Ui(si� t−i) = Ui(σi� t−i), but there are
t−i� t

′
−i ∈ suppμ(·|I�), and ti ∈{si}∪ suppσi such that Ui(ti� t−i) 	= Ui(ti� t ′−i). If ti = si, then
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Ui(σi� t−i) = Ui(si� t−i) 	= Ui(si� t ′−i) = Ui(σi� t
′
−i), so there must be t̄i ∈ suppσi such that

Ui(t̄i� t−i) 	= Ui(t̄i� t ′−i). Thus, it is wlog to take ti = t̄i ∈ suppσi; thus, ζ(ti� t−i) 	= ζ(ti� t ′−i).
But then, since σi(S−i(I�) \{si}) = 1, (I�� si�σi� t−i� t

′
−i) is a nontrivial redundance, contra-

diction.
To sum up, there exists t−i ∈ S−i(I�) such that μ({t−i}|I�) > 0 and either Ui(si� t−i) >

Ui(σi� t−i) or Ui(si� t−i) < Ui(σi� t−i). Write S+
−i(I�) and, respectively, S−

−i(I�), for the col-
lection of t−i ∈ S−i(I�) for which Ui(si� t−i) > Ui(σi� t−i) and, respectively, Ui(si� t−i) <
Ui(σi� t−i). Since, for all t−i /∈ S+

−i(I�) ∪ S−
−i(I�), either μ({t−i}|I�) = 0 or Ui(si� t−i) =

Ui(σi� t−i) (or both), Ui(si�μ(·|I�) ≥Ui(σi�μ(·|I�)) implies that∑
t−i∈S+

−i (I�)

μ
(
{t−i}|I�

)[
Ui(si� t−i) −Ui(σi� t−i)

]

≥
∑

t−i∈S−
−i (I�)

μ
(
{t−i}|I�

)[
Ui(σi� t−i) −Ui(si� t−i)

] ≥ 0� (18)

and at least one inequality is strict. Thus,
∑

t−i∈S+
−i (I�) μ({t−i}|I�)[Ui(si� t−i) −Ui(σi� t−i)] >

0.
Now fix a perturbation (pk)k≥1 of μ. For every �, eventually

∑
t−i∈S+

−i (I�) p
k({t−i}|

S−i(I�))[Ui(si� t−i) −Ui(σi� t−i)] > 0, so for k large, the quantity

αk
� ≡

∑
t−i∈S−

−i (I�)

pk
(
{t−i}|S−i(I�)

)[
Ui(σi� t−i) −Ui(si� t−i)

]
∑

t−i∈S+
−i (I�)

pk
(
{t−i}|S−i(I�)

)[
Ui(si� t−i) −Ui(σi� t−i)

]

is well-defined. By equation (18), limk→∞ αk
� ≤ 1. Let βk

� = max(αk(s−i)�1), so βk
� ≥ 1 and

βk
� → 1; let c = (pk(S0

−i)+∑L

m=1[βk
mp

k(S+
−i(Im))+pk(S−

−i(Im))])−1. Finally, define (p̃k)k≥1

by

p̃k
(
{t−i}

) =
{
c ·βk

�p
k
(
{t−i}

)
t−i ∈ S+

−i(I�) for some �= 1� � � � �L;
c ·pk

(
{t−i}

)
otherwise

for every k ≥ 1 and t−i ∈ S−i. By construction, for every �= 1� � � � �L and every k ≥ 1,∑
t−i∈S+

−i (I�)

p̃k
(
{t−i}|S−i(I�)

)[
Ui(si� t−i) −Ui(σi� t−i)

]

= 1
p̃k

(
S−i(I�)

) ·
∑

t−i∈S+
−i (I�)

p̃k
(
{t−i}

)[
Ui(si� t−i) −Ui(σi� t−i)

]

= 1
p̃k

(
S−i(I�)

) · c ·βk
� ·

∑
t−i∈S+

−i (I�)

pk
(
{t−i}

)[
Ui(si� t−i) −Ui(σi� t−i)

]

= pk
(
S−i(I�)

)
p̃k

(
S−i(I�)

) · c ·βk
� ·

∑
t−i∈S+

−i (I�)

pk
(
{t−i}|S−i(I�)

)[
Ui(si� t−i) −Ui(σi� t−i)

]
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≥ pk
(
S−i(I�)

)
p̃k

(
S−i(I�)

) · c · αk
� ·

∑
t−i∈S+

−i (I�)

pk
(
{t−i}|S−i(I�)

)[
Ui(si� t−i) −Ui(σi� t−i)

]

= pk
(
S−i(I�)

)
p̃k

(
S−i(I�)

) · c ·
∑

t−i∈S−
−i (I�)

pk
(
{t−i}|S−i(I�)·

)[
Ui(σi� t−i) −Ui(si� t−i)

]

= 1
p̃k

(
S−i(I�)

) · c ·
∑

t−i∈S−
−i (I�)

pk
(
{t−i}

)[
Ui(σi� t−i) −Ui(si� t−i)

]

= 1
p̃k

(
S−i(I�)

) ·
∑

t−i∈S−
−i (I�)

p̃k
(
{t−i}

)[
Ui(σi� t−i) −Ui(si� t−i)

]

=
∑

t−i∈S−
−i (I�)

p̃k
(
{t−i}|S−i(I�)

)[
Ui(σi� t−i) −Ui(si� t−i)

];
hence, Ui(si� p̃k(·|S−i(I�)) ≥Ui(σi� p̃

k(·|S−i(I�)). Since this holds for all �, {S0
−i}∪{S−i(I�) :

�= 1� � � � �L} is a partition of S−i, and Ui(si� s−i)) = Ui(σi� s−i) for all s−i ∈ S0
−i, Ui(si� p̃k) ≥

Ui(σi� p̃
k).

It remains to be shown that p̃k is a perturbation of μ. Since each p̃k has the same
support as pk, p̃k(S−i(I)) > 0 for all I ∈ Ii and k ≥ 1. Now fix one such I and s−i ∈ S−i(I)
with μ({s−i}|I) > 0. Then eventually p̃k({s−i}) > 0, and for any other t−i ∈ S−i(I),

p̃k
(
{t−i}

)
p̃k

(
{s−i}

) = γk(t−i) ·pk
(
{t−i}

)
γk(s−i) ·pk

(
{s−i}

) = γk(t−i) ·pk
(
{t−i}|S−i(I)

)
γk(s−i) ·pk

(
{s−i}|S−i(I)

) → μ
(
{t−i}|I

)
μ

(
{s−i}|I

) �
where γk(r−i) = βk

� if r−i ∈ S+
−i(I�) for some �, and γk(r−i) = 1 otherwise, so that γk(r−i) →

1 in either case. This implies that p̃k(·|S−i(I)) → μ(·|I). Q.E.D.

B.4. Elicitation

Throughout this section, fix a dynamic game (N�A�Z�P� (Ii� ui)i∈N), a questionnaire
Q = (Ii�Wi)i∈N , and an elicitation game (N ∪{0}�A∗�Z∗�P∗� (I∗

i � u
∗
i )i∈N∪{0}� ε) for Q.

For s∗ ∈ S∗, let s∗
−0i = (s∗

j )j∈N\{i} and S∗
−0i =

∏
j∈N\{i}S

∗
j .

LEMMA 1: S∗(I1
i ) = S∗ for every i ∈ N . Furthermore, for all Is̄i�wi

∈ Ii,

S∗(Is̄i�wi
) ={i}× {

s∗
i : ri

(
s∗
i

) = s̄i�wi

(
s∗
i

) = wi�di

(
s∗
i

) ∈ Si(I)
}

× {
s∗
−0i :

(
rj

(
s∗
j

))
j∈N\{i}

∈ S−i(I)
}
� (19)

PROOF: S∗(φ∗) = S∗(I1
i ) = S∗ follows immediately from Definition 5. Now consider

Is̄i�wi
∈ I∗

i . By definition, S∗(Is̄i�wi
) = ⋃

h∗∈Is̄i �wi
S∗(h∗).

CLAIM: Let h∗ = (n� (t̄1� v1)� � � � � (t̄i� vi)� � � � � (t̄i� vi)�h) ∈ N ×∏
i∈N (Si ×Wi) × (H \Z).

Then h∗ ∈ Is̄i�wi
iff n = i, t̄i = s̄i, vi = wi, h ∈ I, and there is ti ∈ Si such that (ti� t̄−i) ∈ S(h).
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PROOF: If h∗ ∈ Is̄i�wi
, then by definition n = i, t̄i = s̄i, vi =wi, and h ∈ I; moreover, since

h∗ ∈ Is̄i�wi
implies h∗ ∈ H∗, the definition of H∗ implies that (n� (t̄1� v1)� � � � � (t̄i� vi)� � � � �

(t̄i� vi)� z) ∈ Z∗ for some z ∈ Z such that h < z. By the definition of Z∗, t̄−i ∈ S−i(z),
so there is ti ∈ Si is such that (ti� t̄−i) ∈ S(z). Since h < z, (ti� t̄−i) ∈ S(h) as well,
as claimed. Conversely, suppose that n = i, t̄i = s̄i, vi = wi, h ∈ I, and (ti� t̄−i) ∈
S(h). Let z = ζ(ti� t̄−i): then h < z and by construction t̄−i ∈ S−i(z); hence, z∗ ≡
(i� (t̄1� v1)� � � � � (t̄i� vi)� � � � � (s̄i�wi)� z) ∈ Z∗, so h∗ ∈ H∗; and since n = i, t̄i = s̄i, vi = wi,
and h ∈ I, h∗ ∈ Is̄i�wi

, as claimed. Q.E.D.

Now fix s∗ ∈ S∗(Is̄i�wi
), so s∗ ∈ S∗(h∗) for some h∗ ∈ Is̄i�wi

. By the claim,

h∗ = (
i� (t̄1� v1)� � � � � (s̄i�wi)� � � � � (t̄N� vN)�h

)
for some h ∈ I, and there is ti ∈ Si such that (ti� t̄−i) ∈ S(h), so t̄−i ∈ S−i(h). By definition,
s∗ ∈ S∗(h∗) then implies that s∗

0 (φ∗) = i and (rj(s∗
j )�wj(s∗

j )) = s∗
j (I1

j ) = (t̄j� vj) for j ∈ N \
{i}, so (rj(s∗

j )j∈N\{i} = t̄−i ∈ S−i(h) ⊆ S−i(I). Also, (ri(s∗
i )�wi(s∗

i )) = s∗
i (I1

i ) = (s̄i�wi).
In addition, let h = (a1� � � � � aK), and consider k ∈ {1� � � � �K} such that P((a1� � � � �

ak−1)) = i. Let J ∈ Ii be such that (a1� � � � � ak−1) ∈ J, and define h∗
k−1 = (i� (t̄1� v1)� � � � �

(s̄i�wi)� � � � � (t̄N� vN)� a1� � � � � ak−1). As noted above, there is ti such that (ti� t̄−i) ∈ S(h) ⊆
S((a1� � � � � ak−1)). Hence, by the claim, h∗

k−1 ∈ Js̄i�wi
. By the definition of di(·), since

s∗ ∈ S∗(h∗), di(s∗
i )(J) = s∗

i (Js̄i�wi
) = ak. By Remark 1, di(s∗

i ) ∈ Si(h) ⊆ Si(I). Therefore,
s∗ belongs to the right-hand side of equation (19).

Conversely, suppose s∗ belongs to the right-hand side of equation (19). By assump-
tion (rj(s∗

j ))j∈N\{i} ∈ S−i(I) and di(s∗
i ) ∈ Si(I), so by perfect recall (di(s∗

i )� (rj(s∗
j ))) ∈ S(I).

Hence, there is h ∈ I such that (di(s∗
i )� (rj(s∗

j ))j∈N\{i}) ∈ S(h). Let

h∗ ≡ (
s∗

0

(
φ∗)� (r1

(
s1
i

)
�w1

(
s∗
i

))
� � � � �

(
ri

(
s∗
i

)
�wi

(
s∗
i

))
� � � � �

(
rN

(
s∗
N

)
�wN

(
s∗
N

))
�h

)
�

By assumption s∗
0 (φ∗) = i, ri(s∗

i ) = s̄i, and wi(s∗
i ) = wi. Furthermore, (di(s∗

i )�
(rj(s∗

j ))j∈N\{i}) ∈ S(h)—that is, one can take ti = di(s∗
i ) in the statement of the claim.

Hence, h∗ ∈ Is̄i�wi
. It remains to be shown that s∗ ∈ S∗(h∗).

Write h∗ = (a∗
1� � � � � a

∗
K), with K ≥ N + 1. Thus, h = (a∗

N+2� � � � � a
∗
K).15 According to

the definition, it must be shown that, for all k = 1� � � � �K, action a∗
k is specified by

s∗ at history (a∗
1� � � � � a

∗
k−1). There are two cases to consider. If 1 ≤ k ≤ N + 1, then

either k = 1, in which case a∗
k = s∗

0 (φ∗) by the definition of h∗, or (a∗
1� � � � � a

∗
k−1) =

(s∗
0 (φ∗)� (r1(s∗

1)�w1(s∗
1))� � � � � (rk−2(s∗

k−2)�wk−2(s∗
k−2)) ∈ I1

k−1 and, by the definition of h∗,
ri(·), and wi(·), s∗

k−1(I1
k−1) = (rk−1(s∗

k−1)�wk−1(s∗
k−1)) = a∗

k.
If instead k > N + 1, then (a∗

1� � � � � a
∗
k−1) = (s∗

0 (φ∗)� (r1(s∗
1)�w1(s∗

1))� � � � � (rN (s∗
N)�

wN (s∗
N))� a∗

N+2� � � � � a
∗
k−1), where h′ ≡ (a∗

N+2� � � � � a
∗
k−1) < (a∗

N+2� � � � � a
∗
k) ≤ h.16 There are

two subcases.
If P(h′) = i, then also P∗((a∗

1� � � � � a
∗
k−1)) = i, and there exists J ∈ Ii such that h′ ∈ J.

Furthermore, s∗
0 (φ∗) = i, ri(s∗

i ) = s̄i, wi(s∗
i ) = wi, and (di(s∗

i )� (rj(s∗
j ))j∈N\{i}) ∈ S(h) ⊆

S(h′). Therefore, by the claim, (a∗
1� � � � � a

∗
k−1) ∈ Js̄i�wi

. Also, by Remark 1, di(s∗
i ) ∈ Si(h)

implies di(s∗
i )(J) = a∗

k. We conclude that s∗
i (Js̄i�wi

) = di(s∗
i )(J) = a∗

k.
If instead P(h′) = j 	= i, then as above there is J ∈ Ij with h′ ∈ J. In this case,

(di(s∗
i )� (rj(s∗

j ))j∈N\{i}) ∈ S(h) ⊆ S(h′) implies that rj(s∗
j )(J) = a∗

k. Moreover, now P∗((a∗
1�

15K =N + 1 corresponds to h =φ.
16k =N + 2 is also allowed, in which case (a∗

N+2� � � � � a
∗
k−1) =φ.
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� � � � a∗
k−1)) = 0, and (a∗

1� � � � � a
∗
k−1) is contained in the singleton information set J∗ =

{(a∗
1� � � � � a

∗
k−1)}∈ I∗

0 . Now suppose that a ∈A is such that(
a∗

1� � � � � a
∗
k−1� a

) = (
s∗

0

(
φ∗)� (r1

(
s1
i

)
�w1

(
s∗
i

))
� � � � �

(
ri

(
s∗
i

)
�wi

(
s∗
i

))
� � � � �(

rN
(
s∗
N

)
�wN

(
s∗
N

))
� a∗

N+2� � � � � a
∗
k−1� a

)
∈ H∗�

Then (a∗
1� � � � � a

∗
k−1� a) < z∗ for some z∗ ∈ Z∗, and there must exist z ∈Z such that

z∗ = (
s∗

0

(
φ∗)� (r1

(
s1
i

)
�w1

(
s∗
i

))
� � � � �

(
ri

(
s∗
i

)
�wi

(
s∗
i

))
� � � � �

(
rN

(
s∗
N

)
�wN

(
s∗
N

))
� z

)
�

This requires that (h′� a) = (a∗
N+2� � � � � a

∗
k−1� a) < z. In addition, the definition of Z∗ re-

quires that (rj(s∗
j ))j∈N\{i} ∈ S−i(z) (recall that s∗

0 (φ∗) = i), so by Remark 1, in particular
rj(s∗

j )(J) = a. But then a= a∗
k. We conclude that A(J∗) ={a∗

k}, so necessarily s∗
0 (J∗) = a∗

k,
as needed. Q.E.D.

For every s−i ∈ S−i, let [s−i] ={t∗−0i ∈ S∗
−0i : ∀j 	= i� rj(t∗j ) = sj}. The collection {[s−i] : s−i ∈

S−i} partitions S∗
−0i. Furthermore, from equation (19),

S∗
−i(Is̄i�wi

) ={i}×
⋃

s−i∈S−i (I)

[s−i]� (20)

For every i ∈ N , si ∈ Si, and wi ∈ Wi, let s∗
i (s̄i�wi� si) be the element of S∗

i such that
s∗
i (s̄i�wi� si)(I1

i ) = (s̄i�wi) and, for all I ∈ Ii and (s̄′
i�w

′
i) ∈ Si × Wi, s∗

i (s̄i�wi� si)(Is̄′i�w′
i
) =

si(I). That is, s∗
i (s̄i�wi� si) plays (s̄i�wi) in the first stage, and then, if called upon to play

directly, plays according to si at all information sets, including those that follow stage-1
choices different from (s̄i�wi).

OBSERVATION 1: ri(s∗
i (s̄i�wi� si) = s̄i, wi(s∗

i (s̄i�wi� si) = wi, and di(s∗
i (s̄i�wi� si) = si.

LEMMA 2: For all μi ∈ �(S−i�Ii), there is μ∗
i ∈ �(S∗

−i�I∗
i ) that agrees with μi.

PROOF: For any s−i ∈ S−i and n ∈ N , let s∗
−i(n� s−i�w−i) the element of S∗

−i such that s∗
0 =

n and, for all j /∈ {i�0}, s∗
j (n� s−i�w−i) = s∗

j (sj�wj� sj). Let S∗∗
−i = {s∗

−i ∈ S∗
−i : ∃(n� s−i�w−i) ∈

N × S−i ×W−i : s∗
−i = s∗

−i(n� s−i�w−i)}.
Define μ∗

i ∈ �(S∗
−i)

I∗
i by letting, for every n ∈ N , w−i ∈ W−i, and s−i ∈ S−i,

μ∗
i

({
s∗
−i(n� s−i�w−i)

}
|φ∗) = 1

N · |W−i|μ
(
{s−i}|φ

)
and

∀Is̄i�wi
∈ I∗

i � μ∗
i

({
s∗
−i(i� s−i�w−i)

}
|Is̄i�wi

) = 1
|W−i|μ

(
{s−i}|I

)
�

and then defining μ∗
i (E∗|I∗

i ) = ∑
s∗−i∈S∗∗−i∩E μ

∗
i ({s−i}|I∗

i ) for all E ⊆ S∗
−i. The fact that this

does in fact define probabilities on S∗
−i is immediate; furthermore, μ∗

i (S∗∗
−i|I

∗
i ) = 1 for all

I∗
i ∈ I∗

i .
Let (pk)k≥1 be a perturbation of μi. Define (qk)k≥1 ⊆ �(S∗

−i) by letting qk({s∗
−i(n� s−i�

w−i)}) = 1
N·|W−i|

pk({s−i}) for all k ≥ 1, n ∈ N , s−i ∈ S−i and w−i ∈ W−i, and then letting
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qk(E∗) = ∑
s∗−i∈S∗∗−i∩E q

k({s−i}) for all E ⊆ S∗
−i. Again, this does in fact define probabilities

on S∗
−i, and qk(S∗∗

−i) = 1.
Then qk({s∗

−i(n� s−i�w−i}) = 1
N·|W−i|

pk({s−i}) → 1
N·|W−i|

μ({s−i}|φ) = μ∗
i ({s∗

−i(n� s−i�

w−i)}|φ∗). Furthermore, for all I ∈ Ii and (s̄i�wi) ∈ Si × Wi, for all s−i ∈ S−i(I) and
w−i ∈ W−i, by equation (19) and the fact that qk(S∗∗

−i) = 1,

qk
({
s∗
−i(i� s−i�w−i)

}
|S∗

−i(Is̄i�wi
)
)

= qk
({
s∗
−i(i� s−i�w−i)

})
∑

t−i∈S−i (I)

qk
(
{i}× [t−i]

) = qk
({
s∗
−i(i� s−i�w−i)

})
∑

t−i∈S−i (I)�w̃−i∈W−i

qk
(
s∗
−i(i� t−i�w−i)

)

=
1

N · |W−i|p
k
(
{s−i}

)
∑

t−i∈S−i (I)�w̃−i∈W−i

1
N · |W−i|p

k
(
{t−i}

) = 1
|W−i|p

k
(
{s−i}|S−i(I)

)

→ 1
|W−i|μi

(
{s−i}|I

) = μ∗
i

({
s∗
−i(n� s−i�w−i)

}
|Is̄i�wI

)
�

Thus, μ∗
i is a CCPS. Finally, I show that μ∗

i agrees with μi. Fix s−i ∈ S−i; for I∗
i =φ∗,

μ∗
i

({
t∗−i : t∗0 = n� s̄j

(
t∗j

) = sj ∀j ∈ N \{i}
}
|φ∗)

=
∑

w−i∈W−i

μ∗
i

({
s∗
−i(n� s−i�w−i)

}
|φ∗)

=
∑

w−i∈W−i

1
N · |W−i|μi

(
{s−i}|φ

) = 1
N
μi

(
{s−i}|φ

)
�

where the first equality follows from μ∗
i (S∗∗

−i|φ
∗) = 1. For I∗

i = Is̄i�wi
∈ I∗

i ,

μ∗
i

({
t∗−i : t∗0 = i� s̄j

(
t∗j

) = sj ∀j ∈ N \{i}
}
|Is̄i�wi

)
=

∑
w−i∈W−i

μ∗
i

({
s∗
−i(i� s−i�w−i)

}
|Is̄i�wi

)

=
∑

w−i∈W−i

1
|W−i|μi

(
{s−i}|I

) = μi

(
{s−i}|I

)
�

which completes the proof. Q.E.D.

LEMMA 3: Consider a CCPS μ∗
i ∈ �(S∗

−i�I∗
i ) that agrees with μi. Then:

(i) For every perturbation (qk)k≥1 of μ∗
i , there exists a finite index κ ≥ 1 such that q�({i}×

S∗
−0i) > 0 for all �≥ κ, and the sequence (pk)k≥1 ∈ �(S−i)N defined by

pk
(
{s−i}

) = qk+κ−1
(
{i}× [s−i] |{i}× S∗

−0i

)
� s−i ∈ S−i� k≥ 1 (21)

is a perturbation of μi.
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(ii) For every perturbation (pk)k≥1 of μi, there is a perturbation (qk)k≥1 of μ∗
i that satisfies

equation (21) with κ= 1.

PROOF: For (i), by equation (10) and the fact that (qk)k≥1 is a perturbation of μ∗
i ,

μ∗
i ({i} × S∗

−0i|φ
∗) = 1

N
= limk q

k({i} × S∗
−0i); this implies that there is κ ≥ 1 such that

qk({i} × S∗
−0i) > 0 for all k ≥ κ. Henceforth, to reduce notational clutter, I assume that

in fact κ = 1; the argument goes through unmodified if κ > 1, simply replacing qk with
qk+κ−1.

Fix I ∈ Ii. Then, for every k ≥ 1, fixing an arbitrary (s̄i�wi) ∈ A(I1
i ) = Si ×Wi,

pk
(
S−i(I)

) =
∑

s−i∈S−i (I)

qk
(
{i}× [s−i]|{i}× S∗

−i0

)

= qk
(
S∗

−i(Is̄i�wi
)|{i}× S∗

−0i

) ≥ qk
(
S∗

−i(Is̄i�wi
)
)
> 0;

the last equality follows from equation (20), and the strict inequality from the assumption
that (qk)k≥1 is a perturbation of μ∗

i . Also, for every s−i ∈ S−i(I), since by equation (20)
{i}× [s−i] ⊆ S∗

−i(Is̄i�wi
),

lim
k→∞

pk
(
{s−i}

)
pk

(
S−i(I)

) = lim
k→∞

qk
(
{i}× [s−i]|{i}× S∗

−0i

)
qk

(
S∗

−i(Is̄i�wi
)|{i}× S∗

−0i

) = lim
k→∞

qk
(
{i}× [s−i]

)
qk

(
S∗

−i(Is̄i�wi
)
)

= μ∗
i

(
{i}× [s−i]|Is̄i�wi

) = μi

(
{s−i}|I

) :
the third equality follows from the assumption that (qk)k≥1 is a perturbation of μ∗

i , and
the last from agreement, that is, equation (11) in Definition 6.

As for prior beliefs, for every s−i ∈ S−i,

lim
k→∞

pk
(
{s−i}

) = lim
k→∞

qk
(
{i}× [s−i]|{i}× S∗

−0i

)

= lim
k→∞

qk
(
{i}× [s−i]

)
qk

(
{i}× S∗

−0i

) =
lim
k→∞

qk
(
{i}× [s−i]

)
lim
k→∞

qk
(
{i}× S∗

−0i

)

= μ∗
i

(
{i}× [s−i]|φ∗)

μ∗
i

(
{i}× S∗

−0i|φ
∗) =

1
N
μi

(
{s−i}|φ

)
1
N

= μi

(
{s−i}|I

) :

the third equality holds because limk→∞ qk({i}× S∗
−0i) = μ∗

i ({i}× S∗
−0i|φ

∗) > 0; the fourth
follows from the definition of perturbation, and the fifth from equation (10).

For (ii), for every I∗ ∈ I∗
i ∪{φ∗}, let

ρ
(
s∗
−i; I∗) =

⎧⎪⎨
⎪⎩

μ∗
i

({
s∗
−i

}
|I∗)

μ∗
i

({
s∗

0

} × [s−i]|I∗) s∗
−0i ∈ [s−i]�μ∗

i

({
s∗

0

} × [s−i]|I∗)> 0�

0 otherwise.

Fix s∗
−i ∈ S∗

−i and let s−i = (rj(s∗
j ))j∈N\{i}; thus, s∗

−0i ∈ [s−i]. Suppose μ∗
i ({s∗

0}× [s−i]|I∗) > 0
and μ∗

i ({s∗
0}× [s−i]|J∗) > 0 for distinct I∗� J∗ ∈ I∗

i . Since μ∗
i (S∗

−i(I
∗)|I∗) = μ∗

i (S∗
−i(J

∗)|J∗) =
1, {s∗

0}× [s−i] ∩ S∗
−i(I

∗) 	= ∅ and {s∗
0}× [s−i] ∩ S∗

−i(J
∗) 	= ∅, so by equation (19), s∗

−i ∈ {s∗
0}×



2462 MARCIANO SINISCALCHI

[s−i] ⊆ S∗
−i(I

∗) ∩ S∗
−i(J

∗).17 Finally, fix a perturbation (rk)k≥1 of μ∗
i . Then rk(S∗

−i(I
∗)) > 0

for all k, and rk({s∗
0}× [s−i]|S∗

−i(I
∗)) → μ∗

i ({s∗
0}× [s−i]|I∗) > 0, so

ρ
(
s∗
−i; I∗) =

lim
k→∞

rk
({
s∗
−i

}
|S∗

−i

(
I∗))

lim
k→∞

rk
({
s∗

0

} × [s−i]|S∗
−i

(
I∗)) = lim

k→∞
rk

({
s∗
−i

}
|S∗

−i

(
I∗))

rk
({
s∗

0

} × [s−i]|S∗
−i

(
I∗))

= lim
k→∞

rk
({
s∗
−i

}
|
{
s∗

0

} × [s−i]
)
�

By a similar argument, ρ(s∗
−i;J∗) = limk→∞ rk({s∗

−i}|{s
∗
0} × [s−i]). Therefore, ρ(s∗

−i; I∗) =
ρ(s∗

−i;J∗).
Now define (qk)k≥1 ∈ �(S∗

−i)
N as follows: for every s∗

−i ∈ S∗
−i, again let s−i = (rj(s∗

j ))j∈N\{i}
and

qk
({
s∗
−i

}) =

⎧⎪⎪⎨
⎪⎪⎩
pk

(
{s−i}

) · 1
N

· ρ(
s∗
−i; I∗) μ∗

i

({
s∗

0

} × [s−i]|I∗)> 0 for some I∗ ∈ Ii;
pk

(
{s−i}

)
N · ∣∣[s−i]

∣∣ otherwise�

By the preceding argument, this definition is well posed. Furthermore, fix j ∈ N and
s−i ∈ S−i. Suppose first that μ∗

i ({j}× [s−i]|I∗) > 0 for some I∗ ∈ I∗
i . Then

∑
s∗−i∈{j}×[s−i]

qk
({
s∗
−i

}) =
∑

s∗−i∈{j}×[s−i]

pk
(
{s−i}

) · 1
N

· ρ(
s∗
−i; I∗)

=
∑

s∗−i∈{j}×[s−i]

pk
(
{s−i}

) · 1
N

· μ∗
i

({
s∗
−i

}
|I∗)

μ∗
i

({
s∗

0

} × [s−i]|I∗)

= pk
(
{s−i}

)
μ∗

i

(
{j}× [s−i]|I∗) · 1

N
·

∑
s∗−i∈{j}×[s−i]

μ∗
i

({
s∗
−i

}
|I∗) = 1

N
pk

(
{s−i}

)
�

If instead μ∗
i ([s−i]|I∗) = 0 for all I∗, then

∑
s∗−i∈{j}×[s−i]

qk
({
s∗
−i

}) =
∑

s∗−i∈{j}×[s−i]

pk
(
{s−i}

) · 1
N · ∣∣[s−i]

∣∣ = 1
N
pk

(
{s−i}

)
�

Therefore, for all j ∈ N and s−i, qk({j}× [s−i]) = 1
N
pk({s−i}). This implies that qk(S∗

−i) =
1, so qk ∈ �(S∗

−i), and furthermore,

qk
(
{i}× [s−i]|{i}× S∗

−0i

) = qk
(
{i}× [s−i]

)
∑
t−i∈Si

qk
(
{i}× [t−i]

) =
1
N
pk

(
{s−i}

)
∑
t−i∈Si

1
N
pk

(
{t−i}

) = pk
(
{s−i}

)
�

that is, equation (21) holds.

17This implies that if, for example, I∗ = Isi�wi
for some (si�wi) ∈ Si × Wi , then necessarily s∗

0 = i; if instead
I∗ ∈ {φ∗� I1

i }, this need not hold and is similar for J∗. However, this difference is immaterial to the argument
in this paragraph.
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It remains to be shown that (qk)k≥1 is a perturbation of μ∗
i . For every I∗ ∈ I∗

i , either I∗ ∈
{φ∗� I1

i }, in which case trivially qk(S∗
−i(I

∗)) = qk(S∗
−i) = 1, or I∗ = Is̄i�wi

for some (s̄i�wi) ∈
Si × Wi and I ∈ Ii. Since (pk)k≥1 is a perturbation of μi, pk(S−i(I)) > 0 for all k. For
each k ≥ 1, there must be s−i ∈ S−i(I), possibly depending on k, with pk({s−i}) > 0. Since
qk({i} × [s−i]|{i} × S∗

−0i) = pk({s−i}) > 0, also qk({i} × [s−i]) > 0. Thus, by equation (20),
qk(S∗

−i(Is̄i�wi
)) ≥ qk({i}× [s−i]) > 0.

Now consider I∗ ∈ {φ∗� I1
i }. Fix s∗

−i ∈ S∗
−i and let s−i = (rj(s∗

j ))j∈N\{i}. If μ∗
i ({s∗

0} ×
[s−i]|I∗) > 0,

qk
({
s∗
−i

}) = pk
(
{s−i}

) · 1
N

· μ∗
i

({
s∗
−i

}
|I∗)

μ∗
i

({
s∗

0

} × [s−i]|I∗)
→ μi

(
{s−i}|φ

) · 1
N

· μ∗
i

({
s∗
−i

}
|I∗)

μ∗
i

({
s∗

0

} × [s−i]|I∗)
= μi

(
{s−i}|φ

) · 1
N

· μ∗
i

({
s∗
−i

}
|I∗)

1
N
μi

(
{s−i}|φ

) = μ∗
i

({
s∗
−i

}
|I∗);

the second equality follows from the fact that μ∗
i agrees with μi. If instead μ∗

i ({s∗
0} ×

[s−i]|I∗) = 0, then a fortiori μ∗
i ({s∗

−i}|I
∗) = 0, and by agreement with μi also μi({s−i}|φ) =

0, so

qk
({
s∗
−i

}) = pk
(
{s−i}

) · 1
N

· c → μi

(
{s−i]}|φ

) · 1
N

· c = 0 = μ∗
i

({
s∗
−i

}
|I∗);

here, c = ρ(s∗
−i;J∗) if there exists J∗ ∈ I∗

i with μ∗
i ({s∗

0}× [s−i]|J∗) > 0, and c = 1
|[s−i]|

other-
wise, but since c is independent of k, its value is immaterial to the argument.

Finally, suppose I∗ = Is̄i�wi
for some I ∈ Ii and (s̄i�wi) ∈ Si × Wi. Fix s∗

−i� t
∗
−i ∈ S∗

−i(I
∗),

with μ∗
i ({t∗−i}|I

∗) > 0. By the definition of the elicitation game, s∗
0 = t∗0 = i. Let s−i =

(rj(s∗
j ))j∈N\{i} and t−i = (rj(t∗j ))j∈N\{i}. Thus, μ∗

i ({i}× [t−i]|I∗) > 0, and since μ∗
i agrees with

μi, μ({t−i}|I) > 0. Then, for all k large, pk({t−i}) > 0. Moreover, ρ(t∗−i; I∗) = μ∗
i ({t∗−i}|I

∗)

μ∗
i ({i}×[t−i]|I∗) >

0, and so, for k large, qk({t∗−i}) = pk({t−i}) · 1
N

· ρ(t∗−i; I∗) > 0 as well.
First, suppose μ∗

i ({i}× [s−i]|I∗) > 0, so, since μ∗
i agrees with μi, μi({s−i}|I) > 0. Then

qk
({
s∗
−i

})
qk

({
t∗−i

}) =
pk

(
{s−i}

) · 1
N

· ρ(
s∗
−i; I∗)

pk
(
{t−i}

) · 1
N

· ρ(
t∗−i; I∗) =

pk
(
{s−i}

) · μ
∗
i

({
s∗
−i

}
|I∗)

μ∗
i

(
[s−i]|I∗)

pk
(
{t−i}

) · μ
∗
i

({
t∗−i

}
|I∗)

μ∗
i

(
[t−i]|I∗)

=
pk

(
{s−i}|S−i(I)

) · μ
∗
i

({
s∗
−i

}
|I∗)

μi

(
{s−i}|I

)
pk

(
{t−i}|S−i(I)

) · μ
∗
i

({
t∗−i

}
|I∗)

μi

(
{t−i}|I

)
→ μ∗

i

({
s∗
−i

}
|I∗)

μ∗
i

({
t∗−i

}
|I∗) :

the last equality follows because μ∗
i agrees with μi, and the limit statement from the as-

sumption that (pk)k≥1 is a perturbation of μi.
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If instead μ∗
i ({i}× [s−i]|I∗) = 0, then by agreement μi({s−i}|I) = 0 as well, so

qk
({
s∗
−i

})
qk

({
t∗−i

}) ≤ qk
(
{i}× [s−i]

)
qk

({
t∗−i

}) ≤ qk
(
{i}× [s−i]|{i}× S∗

−0i

)
qk

({
t∗−i

}) = pk
(
{s−i}

)
pk

(
{t−i}

) · 1
N

· ρ(
t∗−i; I∗)

= N

ρ
(
t∗−i; I∗) · p

k
(
{s−i}|S−i(I)

)
pk

(
{t−i}|S−i(I)

) → N

ρ
(
t∗−i; I∗) · μi

(
{s−i}|I

)
μi

(
{t−i}|I

) = 0 = μ∗
i

({
s∗
−i

}
|I∗)

μ∗
i

({
t∗−i

}
|I∗) �

The first equality is from equation (21); the limit statement follows because (pk)k≥1 is a
perturbation of μi, and the last equality follows from μ∗

i ({s∗
−i}|I

∗) ≤ μ∗
i ({i}× [s−i]|I∗) = 0.

To sum up, in each case
qk({s∗−i})

qk({t∗−i})
→ μ∗

i ({s∗−i}|I
∗)

μ∗
i ({t∗−i}|I

∗) for every s∗
−i ∈ S∗

−i(I
∗). Therefore,

qk
({
s∗
−i

}
|S∗

−i

(
I∗)) = qk

({
s∗
−i

})
∑

r∗−i∈S∗−i (I
∗)

qk
({
r∗
−i

}) =

qk
({
s∗
−i

})
qk

({
t∗−i

})
∑

r∗−i∈S∗−i (I
∗)

qk
({
r∗
−i

})
qk

({
t∗−i

})

→

μ∗
i

({
s∗
−i

}
|I∗)

μ∗
i

({
t∗−i

}
|I∗)

∑
r∗−i∈S∗−i (I

∗)

μ∗
i

({
r∗
−i

}
|I∗)

μ∗
i

({
t∗−i

}
|I∗)

= μ∗
i

({
s∗
−i

}
|I∗)∑

r∗−i∈S∗−i (I
∗)

μ∗
i

({
r∗
−i

}
|I∗) = μ∗

i

({
s∗
−i

}
|I∗)�

where the second equality follows from dividing numerator and denominator by
qk({t∗−i}) > 0, and the third by multiplying both by μ∗

i ({t∗−i}|I
∗) > 0. Q.E.D.

Now rewrite the strategic-form payoff function in the elicitation game as follows. Fix
s∗ ∈ S∗, and let z∗ = ζ∗(s∗). By the definition of the maps rj(·) and wj(·) for all j ∈ N ,
letting n = s∗

0 (φ∗), z∗ = (n� (rj(s∗
j )�wj(s∗

j ))j∈N� z) ∈ Z∗, where rj(s∗
j ) ∈ Sj(z) for all j ∈ N \

{n}. In addition, write z = (a1� � � � � aL), fix K ∈ {1� � � � �L − 1}, and let h = (a1� � � � � aK).
Suppose that P(h) = n, so h ∈ I ∈ In. Then h∗ ≡ (n� (rj(s∗

j )�wj(s∗
j ))j∈N�h) ∈ H∗, P∗(h∗) =

n, and h∗ ∈ Is̄n�wn ; then since s∗ ∈ S∗(z∗), s∗
n(Is̄n�wn) = aK+1. But by equation (9), dn(s∗

n)(I) =
s∗
n(Is̄n�wn) = aK+1. Thus, for all K such that P((a1� � � � � aK)) = n, if (a1� � � � � aK) ∈ I ∈ In

then dn(s∗
n)(I) = aK+1. By Remark 1, dn(s∗

n) ∈ Sn(z), and so (dn(s∗
n)� (rj(s∗

j ))j∈N\{n}) ∈ S(z),
that is, z = ζ(dn(s∗

n)� (rj(s∗
j ))j∈N\{n}). With this, for every i ∈ N , if n 	= i then U∗

i (s∗) = 0; if
n = i, since ui(z) = Ui(di(s∗

i )� (rj(s∗
j ))j∈N\{i}),

U∗
i

(
s∗) = u∗

i

(
z∗)

= 1
3
Ui

(
di

(
s∗
i

)
�
(
rj

(
s∗
j

))
j∈N\{i}

) + 1
3
Bi

(
wi

(
s∗
i

)
�
(
rj

(
s∗
j

))
j∈N\{i}

)
+ 1

3
ε · 1ri(s∗i )∈Si (ζ(di(s∗i )�(rj (s∗j ))j∈N\{i}))�

This emphasizes that, if i is selected, her payoff depends on s∗
−0i only through (rj(s∗

j ))j∈N\{i},
the profile of coplayers’ reported strategies. Now ri(s∗

i ) ∈ Si(ζ(di(s∗
i )� (rj(s∗

j ))j∈N\{i})) if
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and only if ζ(ri(s∗
i )� (rj(s∗

j ))j∈N\{i}) = ζ(di(s∗
i )� (rj(s∗

j ))j∈N\{i}). Therefore, for all s∗
i ∈ S∗

i and
q ∈ �(S∗

−i),

U∗
i

(
s∗
i � q

) = 1
3

∑
s−i∈S−i

q
(
{i}× [s−i]

)
Ui

(
di

(
s∗
i

)
� s−i

) + 1
3

∑
s−i∈S−i

q
(
{i}× [s−i]

) ·Bi

(
wi

(
s∗
i

)
� s−i

)

+ 1
3
ε ·

∑
s−i∈S−i :

ζ(di(s∗i )�s−i)=ζ(ri(s∗i )�s−i)

q
(
{i}× [s−i]

)
� (22)

PROOF OF THEOREM 2: Throughout, adopt the notation and definitions in the state-
ment. The existence of a CCPS that agrees with μi is established in Lemma 2. Now assume
that s∗

i is structurally rational given a CCPS μ∗
i that agrees with μi.

Let si = di(s∗
i ), s̄i = ri(s∗

i ), and wi = wi(s∗
i ). Also let ŝ∗

i = s∗
i (si�wi� si).

CLAIM: For every z ∈ Z, si ∈ Si(z) implies s̄i ∈ Si(z)—that is, si and s̄i are realization-
equivalent.

PROOF: Suppose that, for some z ∈ Z, si ∈ Si(z) but s̄i /∈ Si(z). Then di(s∗
i ) = di(ŝ∗

i ) =
ri(ŝ∗

i ) and wi(s∗
i ) = wi(ŝ∗

i ), so for all q ∈ �(S∗
−i) the first and second terms in equation (22)

for U∗
i (s∗

i � q) and U∗
i (ŝ∗

i � q) are the same. Hence,

U∗
i

(
s∗
i � q

) −U∗
i

(
ŝ∗
i � q

)
= 1

3
ε

( ∑
s−i

ζ(di(s∗i )�s−i)=ζ(ri(s∗i )�s−i)

q
(
{i}× [s−i]

) −
∑
s−i

ζ(di(ŝ∗i )�s−i)=ζ(ri(ŝ∗i )�s−i)

q
(
{i}× [s−i]

))

= 1
3
ε

( ∑
s−i :

ζ(si�s−i)=ζ(s̄i�s−i)

q
(
{i}× [s−i]

) −
∑
s−i

ζ(si�s−i)=ζ(si�s−i)

q
(
{i}× [s−i]

))

= 1
3
ε

( ∑
s−i :

ζ(si�s−i)=ζ(s̄i�s−i)

q
(
{i}× [s−i]

) − 1
)
�

Fix an arbitrary t−i ∈ S−i such that (si� t−i) ∈ S(z). It must be the case that (s̄i� t−i) /∈ S(z),
for otherwise s̄i ∈ Si(z), a contradiction. Let h be the last common prefix of z and ζ(s̄i� t−i),
that is, the longest nonterminal history such that h < z and h < ζ(s̄� t−i). Then P(h) = i;
let h ∈ I ∈ Ii. Then si� s̄i ∈ Si(I) and si(I) 	= s̄i(I). Hence, for all s−i ∈ S−i(I), ζ(si� s−i) 	=
ζ(s̄i� s−i). It follows that

U∗
i

(
s∗
i � q

) −U∗
i

(
ŝ∗
i � q

) = 1
3
ε

( ∑
s−i

ζ(si�s−i)=ζ(s̄i�s−i)

q
(
{i}× [s−i]

) − 1
)

≤ −1
3
ε

∑
s−i∈S−i (I)

q
(
{i}× [s−i]

)
�
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Finally, for any perturbation (qk)k≥1 of μ∗
i , by equation (19),

0 < qk(S∗
−i(Is̄i�wi

) = qk

(
{i}×

⋃
s−i∈S−i (I)

[s−i]
)

=
∑

s−i∈S−i (I)

qk
(
{i}× [s−i]

)
�

Therefore, for all perturbations {qk}k≥1 of μ∗
i , and all k, U∗

i (ŝ∗
i � q

k) >U∗
i (s∗

i � q
k). But then

s∗
i is not structurally rational for μ∗

i , a contradiction. Thus, s̄i ∈ Si(z) as well. Q.E.D.

Now consider part (iii) of the theorem. Fix z ∈ Z. By the claim, if si ∈ Si(z), then s̄i ∈
Si(z) as well. Conversely, suppose that s̄i ∈ Si(z). Let s−i ∈ S−i(z), so (s̄i� s−i) ∈ S(z) by
Remark 1. Thus, z = ζ(s̄i� s−i). Let z′ ≡ ζ(si� s−i), so si ∈ Si(z′) and s−i ∈ S−i(z′). The claim
implies that also s̄i ∈ Si(z′). Then, by Remark 1, (s̄i� s−i) ∈ S(z′), that is, z′ = ζ(s̄i� s−i) = z,
so s̄i ∈ Si(z) as well.

Part (iii) of the theorem has two implications, which will be used below.
Implication (iii.a): si is structurally rational given μi if and only if s̄i is. Proof : By (3) and

Remark 1, (si� s−i) ∈ S(z) iff (s̄i� s−i) ∈ S(z), so that Ui(si� s−i) =Ui(s̄i� s−i) for all s−i ∈ S−i

and, therefore, Ui(si�p) =Ui(s̄i�p) for every p ∈ �(S−i), which implies the claim.
Implication (iii.b): ŝ∗

i is structurally rational given μ∗
i . Proof : The first two terms in

equation (22) for U∗
i (s∗

i � q) and U∗
i (ŝ∗

i � q) are the same, because di(s∗
i ) = si = di(ŝ∗

i ) and
wi(s∗

i ) = wi = wi(ŝ∗
i ), By (3), the third term is also the same, because di(s∗

i ) and ri(s∗
i )

are realization-equivalent, and by construction di(ŝ∗
i ) = si = ri(ŝ∗

i ). Hence, U∗
i (ŝ∗

i � q) =
U∗

i (s∗
i � q) for every q ∈ �(S∗

−i). Since s∗
i is structurally rational given μ∗

i , so is ŝ∗
i .

To prove part (i) of the theorem, by implication (iii.a), it is enough to show that si is
structurally rational given μi. Since, by implication (iii.b), ŝ∗

i is structurally rational given
μ∗

i , there is a perturbation (qk)k≥1 of μ∗
i such that U∗

i (ŝ∗
i � q

k) ≥U∗
i (t∗i � q

k) for all k and t∗i ∈
S∗
i . Fix ti ∈ Si arbitrarily and let t∗i = s∗

i (ti�wi� ti). Then by construction ri(ŝ∗
i ) = di(ŝ∗

i ) = si,
ri(t∗i ) = di(t∗i ) = ti, and wi(ŝ∗

i ) = wi(t∗i ). Therefore, for every k ≥ 1, the second and third
terms in equation (22) for U∗

i (ŝ∗
i � q

k) and U∗
i (t∗i � q

k) have the same value, so

0 ≤U∗
i

(
ŝ∗
i � q

k
) −U∗

i

(
t∗i � q

k
) = 1

3

∑
s−i

qk
(
{i}× [s−i]

)[
Ui(si� s−i) −Ui(ti� s−i)

]
� (23)

Since μ∗
i agrees with μi, by Lemma 3 part (i), there κ ≥ 1 such that qk+κ−1({i}× S∗

−i0) > 0
for all k ≥ 1 and the sequence (pk)k≥1 defined in equation (21) is a perturbation of μi.
Then equation (23) implies that, for this perturbation, Ui(si�pk) ≥ Ui(ti�pk) for all k.
Since ti was arbitrary, si is structurally rational for μi.

For part (ii) of the theorem, suppose wi = p, and let ŝ∗
i = s∗

i (si�p� si). By contradiction,
suppose that μi(E|Ii) >p, and let t∗i = s∗

i (si�E� si). I show that, for all perturbations (qk)
of μ∗

i , eventually U∗
i (ŝ∗

i � q
k) <U∗

i (t∗i � q
k), which contradicts the fact that ŝ∗

i is structurally
rational by implication (iii.b).

Since by construction ri(ŝ∗
i ) = ri(t∗i ) = si, di(ŝ∗

i ) = di(t∗i ) = si, wi(s∗
i ) = p and wi(t∗i ) = E,

for every q ∈ �(S∗
−i) the first and third terms in equation (22) for U∗

i (s∗
i � q) and U∗

i (t∗i � q)
are equal, and

U∗
i

(
ŝ∗
i � q

) −U∗
i

(
t∗i � q

) = 1
3

∑
s−i∈S−i

q
(
{i}× [s−i]

)[
Bi(p� s−i) −Bi(E� s−i)

]

= 1
3

[∑
s−i∈E

q
(
{i}× [s−i]

)
(p− 1) +

∑
s−i∈S−i (Ii)\E

q
(
{i}× [s−i]

)
p

]
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= 1
3

[
p

∑
s−i∈S−i (Ii)

q
(
{i}× [s−i]

) −
∑
s−i∈E

q
(
{i}× [s−i]

)]

= 1
3

[
p · q(

S∗
−i(Isi�wi

)
) − q

(
{i}×

⋃{
[s−i] : s−i ∈ E

})]
� (24)

where the last equality follows from equation (19).
Since by assumption μi(E|I) > p and μ∗

i agrees with μi, μ∗
i ({i} × ⋃

{[s−i] : s−i ∈
E}|Is̄i�p) = μ∗

i ({i} × ⋃
{[s−i] : s−i ∈ E}|Is̄i�E) > p. Hence, for any perturbation {qk}k≥1 of

μ∗
i , and all wi ∈ Wi,

p< lim
k→∞

qk
(
{i}×

⋃{
[s−i] : s−i ∈ E

}
|S∗

−i(Is̄i�wi
)
) = lim

k→∞

qk

(
{i}×

⋃{
[s−i] : s−i ∈ E

})
qk

(
S∗

−i(Is̄i�wi
)
) ;

the last equality uses the fact that, by equation (20), E ⊆ S−i(I) implies {i}×⋃
{[s−i] : s−i ∈

E}⊆ S∗
−i(Is̄i�wi

). Hence, for large k, p ·qk(S∗
−i(Is̄i�wi

)) −qk({i}×⋃
{[s−i] : s−i ∈ E}) < 0, and

by equation (24), U∗
i (ŝ∗

i � q
k) <U∗

i (t∗i � q
k), as claimed. The case wi = E is analogous, hence

omitted.
Finally, to prove the last claim in Theorem 2, suppose that si ∈ Si is structurally ratio-

nal given μi, so there is a perturbation (pk)k≥1 of μi such that Ui(si�pk) ≥ Ui(ti�pk) for
all k ≥ 1 and all ti ∈ Si. Moreover, if Wi = {E�p}, either pk(E|S−i(Ii)) ≥ p infinitely of-
ten; otherwise, or pk(E|S−i(Ii)) ≤ p eventually. In the former case, restrict attention to
a subsequence of (pk) for which pk(E|S−i(Ii)) ≥ p and let wi = E; in the latter, restrict
attention to a subsequence of (pk) for which pk(E|S−i(Ii)) ≤ p and let wi = p. In either
case, to simplify indices, I abuse notation and refer to the resulting subsequence also as
(pk)k≥1. If instead Wi ={∗}, then let wi = ∗.

Let s∗
i ≡ s∗

i (si�wi�wi), so di(s∗
i ) = ri(s∗

i ) = si. Since μ∗
i agrees with μi, by Lemma 3, part

(ii), there is a perturbation (qk)k≥1 of μ∗
i that satisfies equation (21) with κ = 1. It must be

shown that U∗
i (s∗

i � q
k) ≥ U∗

i (t∗i � q
k) for all k≥ 1 and t∗i ∈ S∗

i . Fix one such t∗i arbitrarily.
Since qk({i} × S∗

−0i) > 0 eventually as (qk)k≥1 is a perturbation of μ∗
i , for all ri ∈ Si,

eventually

Ui

(
ri�p

k
(
{s−i}

)) =
∑
s−i

qk
(
{i}× [s−i]|{i}× S∗

−0i

) ·Ui(ri� s−i)

= 1
qk

(
{i}× S−0i

) ∑
s−i

qk
(
{i}× [s−i]

) ·Ui(ri� s−i)�

Therefore, in particular, there is K ≥ 1 such that, for all k ≥K,18

∑
s−i

qk
(
{i}× [s−i]

) ·Ui

(
di

(
s∗
i

)
� s−i

) ≥
∑
s−i

qk
(
{i}× [s−i]

) ·Ui

(
di

(
t∗i

)
� s−i

)
�

Furthermore, since di(s∗
i ) = ri(s∗

i ), for all k,∑
s−i∈S−i :

ζ(di(s∗i )�s−i)=ζ(ri(s∗i )�s−i)

qk
(
{i}× [s−i]

) = 1 ≥
∑

s−i∈S−i :
ζ(di(t∗i )�s−i)=ζ(ri(t∗i )�s−i)

qk
(
{i}× [s−i]

)
�

18The choice of K is only to ensure that qk({i}× S∗
−0i) > 0.



2468 MARCIANO SINISCALCHI

Finally, if wi(s∗
i ) = wi(t∗i ), then for all k,∑

s−i∈S−i

qk
(
{i}× [s−i]

) ·Bi

(
wi

(
s∗
i

)
� s−i

) =
∑

s−i∈S−i

qk
(
{i}× [s−i]

) ·Bi

(
wi

(
t∗i

)
� s−i

)
�

Otherwise, necessarily Wi = {E�p}. Suppose wi(s∗
i ) = wi = E, so wi(t∗i ) = p. Since we re-

stricted attention to a subsequence for which pk(E|S−i(I)) ≥ p or pk(E) ≥ p ·pk(S−i(I)),∑
s−i∈S−i

qk
(
{i}× [s−i]

) ·Bi

(
wi

(
s∗
i

)
� s−i

)

=
∑
s−i∈E

qk
(
{i}× [s−i]

) · 1 = pk(E) · qk
(
{i}× S−0i

)

≥ p ·pk
(
S−i(I)

) · qk
(
{i}× S−0i

) =
∑

s−i∈S−i (I)

qk
(
{i}× [s−i]

) ·p

=
∑

s−i∈S−i

qk
(
{i}× [s−i]

) ·Bi

(
wi

(
t∗i

)
� s−i

)
�

where the second and third equalities follow from equation (21). Similarly, if wi(s∗
i ) =

wi = p, then wi(t∗i ) = E and pk(E|S−i(I)) ≤ p and an analogous argument yields the
same inequality.

Therefore, equation (22) implies that, for all k ≥ K, U∗
i (s∗

i � q
k) ≥ U∗

i (t∗i � q
k). Since t∗i

was arbitrary, s∗
i is structurally rational for μ∗

i . This completes the proof of Theorem 2.
Q.E.D.
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