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DETERMINATION OF PARETO EXPONENTS IN ECONOMIC MODELS
DRIVEN BY MARKOV MULTIPLICATIVE PROCESSES
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This article contains new tools for studying the shape of the stationary distribution
of sizes in a dynamic economic system in which units experience random multiplicative
shocks and are occasionally reset. Each unit has a Markov-switching type, which influ-
ences their growth rate and reset probability. We show that the size distribution has a
Pareto upper tail, with exponent equal to the unique positive solution to an equation
involving the spectral radius of a certain matrix-valued function. Under a nonlattice
condition on growth rates, an eigenvector associated with the Pareto exponent provides
the distribution of types in the upper tail of the size distribution.
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1. INTRODUCTION

THIS ARTICLE presents new tools for studying the shape of the stationary distribution
of a dynamic economic system. We have in mind models in which a population of eco-
nomic units experience random multiplicative shocks to their size over time, occasionally
perishing at random and being replaced with a new unit. An economic unit could be,
for instance, a household with size measured by wealth, or a firm with size measured by
market capitalization. Economic units have a type, which may vary over time, such as a
worker/entrepreneur type for households, or a productivity type for firms. The type af-
fects the multiplicative growth rate, and perhaps also the survival rate, of an economic
unit. Many heterogeneous-agent models of the Bewley–Aiyagari kind fit this general de-
scription if agents are subject to random mortality rather than having a certain finite or
infinite lifespan.

It has long been known that random multiplicative growth is a generative mechanism
for power laws. Random multiplicative growth plays a central role in economics and is
known as Gibrat’s law, while power laws are often referred to as Pareto tails. Early con-
tributions to economics drawing a connection between random multiplicative growth and
power laws include Champernowne (1953), Wold and Whittle (1957), and Simon and
Bonini (1958). The topic has attracted a resurgence of interest in economics following the
publication of Gabaix (1999) and Reed (2001); see Gabaix (2009, 2016) and Benhabib
and Bisin (2018) for partial surveys. In mathematics, the central contribution is Kesten
(1973). See Mitzenmacher (2004) for a discussion of many other relevant contributions
across a range of disciplines.
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The primary contribution of this article is an equation whose unique positive solution is
the Pareto (power law) exponent for the upper tail of the stationary distribution of sizes
in a dynamic economic system of the kind described above. The equation is

ρ
(
��ϒ��(z)

) = 1� (1)

where ρ(·) is the spectral radius (maximum modulus of eigenvalues) of a square matrix,
� is the Hadamard (entrywise) product of matrices of the same size, � is a matrix of
transition probabilities for types, ϒ is a matrix of survival rates, and �(z) is a matrix
of moment generating functions of random growth rates. If equation (1) admits a unique
positive solution (which is the case under mild conditions), say z = α, then our main result,
Theorem 1, establishes that α is the Pareto exponent for the upper tail of the stationary
distribution of sizes.

In the simple case where there is only a single type of economic unit (which, in the class
of models we consider, implies serial independence of the multiplicative shocks to size
and is therefore quite restrictive), equation (1) simplifies to

υψ(z) = 1� (2)

where υ is the survival rate and ψ(z) is the moment generating function of the random
growth rate, both constant over time. Equation (2) appears as equation (10) in Man-
rubia and Zanette (1999), and now seems to be fairly widely known. Applications include
Nirei and Aoki (2016) and Mukoyama and Osotimehin (2019) in macroeconomics, Mon-
tero and Villarroel (2013), Yamamoto (2014), and Meylahn, Sabhapandit, and Touchette
(2015) in statistical physics, and Beare and Toda (2020) in epidemiology. Equation (2) is
also closely related to the Cramér–Lundberg estimate of ruin probabilities used in actu-
arial science (see, e.g., Embrechts, Klüppelberg, and Mikosch (1997, Chapter 1)).

Our equation (1) extends (2) to a Markov setting in which economic units switch be-
tween types over time. There is a growing recognition in the literature that persistent
heterogeneity in types plays a critical role in matching salient empirical regularities. Ben-
habib, Bisin, and Zhu (2011) study an overlapping generations model in which agents are
subject to random labor (additive) and capital (multiplicative) income shocks. They allow
these shocks to be persistent through their dependence on a latent Markov state (i.e.,
type), writing (p. 127) “the i.i.d. condition is very restrictive. Positive autocorrelations in
[capital and labor income shocks] capture variations in social mobility in the economy, for
example, economies in which returns on wealth and labor earning abilities are transmitted
across generations.” Cao and Luo (2017) study a similar model in which investors switch
at random between high and low productivity types, while subject to random mortality.
Regarding the importance of persistent heterogeneity in types, they write (p. 302) “the
model with homogeneous returns, when calibrated to match the salient aggregate statis-
tics, produces a tail index that is an order of magnitude too high compared to the one
in the data.” Based on an analysis of Norwegian administrative tax records, Fagereng,
Guiso, Malacrino, and Pistaferri (2020) confirm these observations on the importance
of type dependence for explaining the upper tail of the wealth distribution, writing that
(pp. 118–119) “persistent traits of individual investors (such as financial sophistication,
the ability to process and use financial information, the ability to overcome inertia, and
for entrepreneurs, the talent to manage and organize their businesses) are capable of
generating persistent differences in returns to wealth that may be as relevant as those
conventionally attributed in household finance to differences in risk exposure or scale.”
Taking a somewhat different angle, Gabaix, Lasry, Lions, and Moll (2016) emphasize the
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importance of persistent heterogeneity in productivity types not only for generating an in-
come distribution with a tail sufficiently heavy to match U.S. data, but also for generating
transition dynamics that are sufficiently fast to match the rate of increase of top income in-
equality. Additional articles discussing the importance of persistent heterogeneity in types
for constructing plausibly calibrated models are discussed and cited therein (p. 2095).

Mathematically, the new results introduced in this article concern a class of Markov
chains called Markov multiplicative processes with reset, which we define in Section 2.
Loosely, these are processes driven by positive multiplicative shocks dependent on a
Markov state variable, and subject to occasional reset to one at a state-dependent rate.
After a heuristic discussion in Section 3 aimed at building intuition, we state our main
results in Section 4. Under mild conditions, these results establish (i) that the left-hand
side of equation (1) is convex in z and admits at most one positive solution; (ii) a sufficient
condition for the existence of a positive solution; (iii) the existence of a unique stationary
distribution for a Markov multiplicative process with reset; (iv) a formula for the moment
generating function of the stationary distribution (after taking logs); (v) that a positive
solution to equation (1) is the upper Pareto exponent for the stationary distribution. In
Section 5, we explore refinements obtaining under a nonlattice condition on growth rates,
establishing that (i) the upper tail of the stationary distribution satisfies a stronger form
of Pareto decay; (ii) an eigenvector associated with the Pareto exponent provides the dis-
tribution of types in the upper tail. We lay out some directions for future research in
Section 6. A mathematical Appendix to Sections 4–5 (Appendix A) contains the proofs of
all numbered results, and a second Appendix includes a discussion of comparative statics
for the Pareto exponent (Appendix B).

Continuous-time versions of the results in this article have been established in a com-
panion article, Beare, Seo, and Toda (2022). There we study the tail probabilities of a
Markov-modulated Lévy process stopped at a state-dependent Poisson rate. The tail ex-
ponents in continuous time are determined by an equation similar to (1), but with a spec-
tral abscissa taking the role of the spectral radius.

While we do not provide a substantive economic application of our results in this arti-
cle, several recent articles and circulated manuscripts provide applications.1  Toda (2019,
Theorem 4) uses equation (1) to determine the Pareto exponent for the wealth distribu-
tion in a Huggett economy with stochastic discounting. Ma, Stachurski, and Toda (2020,
Theorem 3.3) do the same in a model with stochastic discounting, returns on wealth,
and labor income. Gomez and Gouin-Bonenfant (2020, Proposition 3) use our results to
determine the Pareto exponent of wealth in an economy populated with entrepreneurs
and rentiers. Gouin-Bonenfant (2020, Proposition A.10) uses our results to calculate the
Pareto exponent for the distribution of firm size in a model of the labor market, finding
that Zipf’s law is approximately satisfied. Gouin-Bonenfant and Toda (2022) show how
to improve grid-based calculation of aggregate quantities in dynamic economic models
by using equation (1) to extrapolate beyond the grid. Beare, Seo, and Toda (2022) use a
continuous-time version of equation (1) to study the tails of wealth in a Huggett economy
inhabited by agents with constant absolute risk aversion.

1Articles in which our results are discussed sometimes cite an earlier version of this article titled “Geometri-
cally stopped Markovian random growth processes and Pareto tails,” available on the arXiv e-print repository
since December 2017: https://arxiv.org/abs/1712.01431.

https://arxiv.org/abs/1712.01431
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2. MARKOV MULTIPLICATIVE PROCESSES WITH RESET

Let Z+ be the set of nonnegative integers and N = {1� 
 
 
 �N}, a finite set. The ele-
ments of N index the types of agents in a dynamic economic system. We will study the
behavior of a homogeneous2 Markov chain (St� Jt)t∈Z+ on (0�∞) × N . In each time pe-
riod t, St indicates the size of an agent (e.g., their wealth) and Jt their type. The transition
probabilities of our Markov chain are parametrized in terms of four objects:

(a) Transition probabilities for Jt without reset: An N × N matrix � with nonnegative
entries πnn′ , and all rows summing to one. The entries of � are the probabilities
with which agents transition between types each period.

(b) Type-dependent survival probabilities: An N × N matrix ϒ whose entries υnn′ are
between zero and one inclusive. The entries of ϒ are the survival probabilities for
agents transitioning from type n to type n′.

(c) Type probabilities for Jt upon reset: An N × 1 vector � with nonnegative entries �n

summing to one. The entries of � provide the distribution of types for a new agent
replacing an agent who has perished.

(d) Type-dependent growth rate distributions for St : A collection of N2 cumulative dis-
tribution functions (CDFs) on (0�∞), denoted 
nn′ with n�n′ ∈ N . The CDF 
nn′
characterizes the distribution of growth rates for an agent transitioning from type
n to type n′.

Conditional on having St = s and Jt = n, the subsequent pair (St+1� Jt+1) may be generated
in the following way:

(i) Choose J∗
t+1 at random from N , with P(J∗

t+1 = n′) = πnn′ . This will be the value
taken by Jt+1 contingent on reset not occurring.

(ii) Conditional on choosing J∗
t+1 = n′ in Step (i), reset occurs with probability 1 −υnn′ .

(iii) If reset occurs, then we set St+1 = 1 and choose Jt+1 at random from N , with
P(Jt+1 = n′) =�n′ .

(iv) If reset does not occur, then we set Jt+1 = J∗
t+1 and, conditional on choosing J∗

t+1 =
n′ in Step (i), we draw a positive random variable Gnn′ from the CDF 
nn′ and set
St+1 =Gnn′s.

Steps (i)–(iv) determine the Markov kernel for (St� Jt)t∈Z. Specifically, given n�n′ ∈N and
s� s′ > 0, the Markov kernel is

Psn
(
s′� n′) := P

(
St+1 ≤ s′� Jt+1 = n′ | St = s� Jt = n

)
= πnn′υnn′
nn′

(
s′/s

)︸ ︷︷ ︸
J∗
t+1=n′→no reset→St+1≤s′

+1
(
s′ ≥ 1

)∑
n′′
πnn′′ (1 − υnn′′)�n′︸ ︷︷ ︸
J∗
t+1=n′′→reset→Jt+1=n′


 (3)

We refer to a homogeneous Markov chain on (0�∞)×N with Markov kernel given by (3)
as a Markov multiplicative process with reset. We call the multiplicative factors Gnn′ gross
growth rates, and their logarithms growth rates.

Under further regularity conditions, a Markov multiplicative process with reset can be
made stationary with a suitable choice of its distribution at time t = 0. This will be made
clear in Proposition 3 below.

3. HEURISTIC DERIVATIONS

To build intuition, in this section we provide a brief heuristic derivation of our equation
determining the Pareto exponent of a stationary Markov multiplicative process with reset.

2Homogeneity means that P(St+1 ≤ s′� Jt+1 = n′ | St = s� Jt = n) does not depend on t.
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Let (St� Jt)t∈Z+ be such a process, and conjecture that for all sufficiently large s > 1 we
have

P(St > s� Jt = n) = yns−α (4)

for some constant yn > 0 and Pareto exponent α> 0. Then

yn′s−α = P
(
St+1 > s�Jt+1 = n′) =

N∑
n=1

πnn′υnn′P(Gnn′St > s� Jt = n)� (5)

whereGnn′ > 0 is the gross growth rate drawn from the CDF 
nn′ in Step (iv) in Section 2.
Applying the law of iterated expectations, we obtain

P(Gnn′St > s� Jt = n) = E
(
P(St > s/Gnn′� Jt = n |Gnn′)

)
= E

(
yn(s/Gnn′)−α) = yn E

(
Gα
nn′

)
s−α
 (6)

For real z, set

ψnn′ (z) :=
∫ ∞

0
sz d
nn′ (s)� (7)

the moment generating function (MGF) of logGnn′ . Let�(z) be theN×N matrix-valued
function with entries ψnn′ (z). Noting that ψnn′ (α) = E(Gα

nn′), and combining (5), (6), and
(7), we obtain

yn′ =
N∑
n=1

ynπnn′υnn′ψnn′ (α)
 (8)

Letting y = (y1� 
 
 
 � yN)
 and collecting (8) into a vector, we obtain

y
 = y
(
��ϒ��(α)

)



Thus ��ϒ��(α) has a unit eigenvalue, with associated left eigenvector y .
The matrix��ϒ��(α) is nonnegative; suppose that it is also irreducible. The Perron–

Frobenius theorem (see, e.g., Horn and Johnson (2013, Theorem 8.4.4)), a fundamental
result in the theory of Markov chains, asserts that the spectral radius of a square, nonneg-
ative, and irreducible matrix is the maximum real eigenvalue of that matrix, and that there
are unique (up to positive scalar multiplication) left and right eigenvectors with positive
entries corresponding to that eigenvalue. Since y has positive entries and is a left eigen-
vector of ��ϒ��(α) associated with a unit eigenvalue, we are thus led to suspect that
��ϒ��(α) may have spectral radius equal to one. This suspicion, if valid, suggests the
possibility that we may be able to determine the Pareto exponent α by finding a positive
number z that solves equation (1). The fact that this is indeed often possible is the main
result of our article, Theorem 1.

The left eigenvector y has a natural interpretation. It follows from (4) that

P(Jt = n | St > s) = P(St > s� Jt = n)
P(St > s)

= yns
−α

N∑
n′=1

yn′s−α
= yn

N∑
n′=1

yn′
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Therefore, if the left eigenvector y is normalized such that its entries sum to one, then
we have P(Jt = n | St > s) = yn. We may thus interpret y to be, loosely, the distribution of
types in the upper tail of the size distribution. We formalize this claim in Theorem 2.

The preceding discussion is largely heuristic. The conjectured equality (4) cannot be ex-
pected to hold exactly except in very special cases. We will see that (4) holds approximately
for large s in fairly general settings. The above derivations based on (4) are therefore also
approximate. We have skirted technical issues such as the existence of a unique stationary
distribution for (St� Jt), the finiteness of ψnn′ (α), and the existence of a unique positive
solution to (1). Derivations similar to those above appear in Gouin-Bonenfant and Toda
(2022). We now turn to a rigorous statement of our main results.

4. MAIN RESULTS

In this section, we provide a rigorous statement of our primary result, which is that
under regularity conditions a Markov multiplicative process with reset has a Pareto upper
tail with exponent α given by the unique positive solution to equation (1). We rely on the
following regularity conditions.

ASSUMPTION 1: (i) The matrix ��ϒ is irreducible. (ii) There exist states n�n′ ∈ N such
that πnn′ > 0 and υnn′ < 1. (iii) ψnn′ ≡ 1 whenever πnn′υnn′ = 0.

Assumption 1(i) means that, for any pair of states (n�n′), if Jt is in state n then there is a
positive probability of it eventually reaching state n′ before reset occurs. Assumption 1(ii)
means that there is some state n such that, if Jt is in state n, then reset occurs next period
with positive probability. These two conditions together ensure that Jt visits all states
infinitely often and that reset occurs infinitely often. Assumption 1(iii), imposed without
loss of generality, is merely a normalization since the growth rate when Jt transitions from
state n to state n′ is unidentified if this transition never occurs.

To clarify the heuristic discussion in Section 3, the first thing we will do is restrict the
domain of the matrix-valued function �(z) such that each of its entries ψnn′ (z), defined
in (7), is finite-valued. Define the set

I = {
z ∈ R :ψnn′ (z) <∞ for all n�n′ ∈N

}



Since MGFs are always convex and are equal to one at zero, I is a convex set containing
zero. We restrict the domain of �(z) to I and, for z ∈ I , define the N ×N matrix-valued
function

A(z) =��ϒ��(z)
 (9)

Using (9), equation (1) may now be rewritten more simply as ρ(A(z)) = 1.
We claimed in Section 3 that it is often the case that there is a unique positive value of

z that solves the equation ρ(A(z)) = 1. The following result concerning the shape of the
function ρ(A(z)) helps to explain why this is true.

PROPOSITION 1: The spectral radius ρ(A(z)) is a convex function of z ∈ I and satisfies
ρ(A(0)) ≤ 1. If Assumption 1 holds, then ρ(A(0)) < 1 and the equation ρ(A(z)) = 1 has at
most one positive solution z = α ∈ I and at most one negative solution z = −β ∈ I .
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FIGURE 1.—Determination of α and β from the spectral radius of A(z).

Figure 1 depicts a typical shape for ρ(A(z)) as a function of z ∈ I . The graph of ρ(A(z))
is convex, less than one at zero (note that A(0) =��ϒ), and diverging to infinity at the
left and right endpoints of I (which may in general be finite or infinite). There is a unique
positive number α at which ρ(A(z)) crosses one. We will see that α is the Pareto exponent
for the upper tail of the stationary distribution of St . There is also a unique negative
number −β at which ρ(A(z)) crosses one. We will see that β is the Pareto exponent for
the lower tail of the stationary distribution of St .

The graph of ρ(A(z)) does not always have the typical shape depicted in Figure 1.
Three atypical cases in which no positive z solves ρ(A(z)) = 1 are depicted in Figure 2. If
all growth rates are nonpositive, so that P(Gnn′ ≤ 1) = 1 for all n�n′ ∈N , then ρ(A(z)) is
nonincreasing in z and we have the case depicted in Figure 2(a). If any growth rate does
not have a light upper tail, so that the corresponding MGF ψnn′ (z) is infinite for all posi-
tive z, then the right endpoint of I is zero and we have the case depicted in Figure 2(b).
Problems may also arise if the tails of growth rates are insufficiently light. For instance,
suppose for simplicity that we have no Markov modulation (N = 1) and that logG has
PDF:

f (x) =
{
c(x+ 2)−2e−ax for x≥ −1�
0 for x <−1�

where a > 0 and c is a positive constant such that the PDF integrates to one. In this case,
E(Gz) is finite for z ≤ a and infinite for z > a, so that I = (−∞� a]. The existence of a
positive solution to ρ(A(z)) = 1 thus depends on whether ρ(A(a)) is greater than one.
The case where a= 1 and υ= 0
7 is depicted in Figure 2(c); we see that ρ(A(a)) < 1, so
that there is no positive solution to ρ(A(z)) = 1.

The following result establishes that, to have a unique positive solution to ρ(A(z)) =
1, it suffices that all growth rates have exponential moments of all orders, with at least
one growth rate logGnn positive with positive probability. An analogous result applies
symmetrically to the existence of a unique negative solution to ρ(A(z)) = 1.

PROPOSITION 2: Suppose that Assumption 1 is satisfied. If E(Gz
nn′) <∞ for all z > 0 and

all n�n′ ∈ N , and if P(Gnn > 1) > 0 for some n ∈N , then there is a unique positive value of
z in the interior of I such that ρ(A(z)) = 1.

We mentioned at the end of Section 2 that, under suitable regularity conditions, a
Markov multiplicative process with reset can be made stationary with a suitable choice
of its distribution at time t = 0. The following result indicates that Assumption 1 provides
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FIGURE 2.—Examples where no positive z solves ρ(A(z)) = 1.

sufficient regularity. It is proved by observing that reset generates a positive recurrent
accessible atom of (St� Jt)t∈Z+ , which implies the existence of a unique stationary distribu-
tion.

PROPOSITION 3: Let (St� Jt)t∈Z+ be a Markov multiplicative process with reset. If Assump-
tion 1 is satisfied, then there exists a unique probability distribution for (S0� J0) such that
(St� Jt)t∈Z+ is stationary.

We denote by p the N × 1 vector of stationary probabilities for Jt , and by q the N × 1
vector whose nth entry is qn = ∑

n′ πnn′ (1 − υnn′), the conditional probability of reset in
period t + 1 given Jt = n. The unconditional probability of reset is then r := ∑

n pnqn. It
will also be useful to introduce notation for the subset of I on which A(z) has spectral
radius less than one. We therefore set I− ={z ∈ I : ρ(A(z)) < 1}, which is a convex subset
of I by Proposition 1, nonempty and containing zero under Assumption 1. In typical cases
such as the one depicted in Figure 1, we have I− = (−β�α).

The following result, Proposition 4, is established in the course of proving our main
result, Theorem 1 below, but is also of independent interest. It reveals the form of the
conditional MGF of logSt given Jt , which has domain I−. The notation I refers to an
N ×N identity matrix.

PROPOSITION 4: Let (St� Jt)t∈Z+ be a stationary Markov multiplicative process with reset.
Then, for each z ∈ I−, the matrix I − A(z) is invertible and[

E
(
Szt 1(Jt = 1)

) · · · E
(
Szt 1(Jt =N)

)] = r�
(
I − A(z)

)−1



An immediate consequence of Proposition 4 is that the MGF of logSt is given by
E(Szt ) = r�
(I−A(z))−11N for z ∈ I−, where 1N is anN×1 vector of ones. Proposition 4
thus completely characterizes the stationary distribution of sizes whenever the interior of
I− contains zero.

We now state our main result.

THEOREM 1: Let (St� Jt)t∈Z+ be a stationary Markov multiplicative process with reset sat-
isfying Assumption 1. If the equation ρ(A(z)) = 1 admits a unique positive solution z = α in
the interior of I , then the limits inferior and superior of sαP(St > s) as s → ∞ are positive
and finite, and

lim
s→∞

log P(St > s)
log s

= −α
 (10)
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Equation (10) indicates that there is an approximately linear relationship in log-log
scale between the tail probability P(St > s) and the threshold s for large s, with slope
−α. In this sense, the upper tail of the distribution of St is Pareto with exponent α. The
fact that this approximately linear relationship in log-log scale arises in distributions with
a Pareto upper tail is the basis for the popular log-log rank-size regression method of
estimating the Pareto exponent; see, for example, Gabaix and Ibragimov (2011). Note
that Theorem 1 does not assert the convergence of sαP(St > s) to a positive and finite
limit, which would be a stronger notion of Pareto tail decay. This stronger property is
not satisfied in general, but may be guaranteed by imposing a nonlattice condition on the
distribution of growth rates, as discussed in Section 5. To obtain the convergence (10), it
suffices that sαP(St > s) has positive and finite limits inferior and superior. To see why,
note that the latter condition implies the existence of positive and finite constants c− and
c+ such that c− ≤ sαP(St > s) ≤ c+ for all sufficiently large s. Taking logarithms, dividing
by log s, and letting s→ ∞, we obtain (10).

We close this section with four remarks on Theorem 1 and a brief example.

REMARK 1: By replacing St with 1/St , it is easy to deduce from Theorem 1 that the
lower tail probability s−βP(St < s) = (1/s)βP(1/St > 1/s) has a positive and finite limit as
s ↓ 0, where z = −β is the unique negative solution to the equation ρ(A(z)) = 1 in the
interior of I (if it exists). Thus the stationary distribution of St also exhibits a power law
in the lower tail.3

REMARK 2: If the survival probabilities υnn′ are constant across states, so that we may
write υnn′ = υ ∈ (0�1), then the equation ρ(A(z)) = 1 reduces to υρ(���(z)) = 1. If in
addition the growth rate MGFs ψnn′ depend only on the current state n′, so that we may
write ψnn′ = ψn′ , then letting D(z) = diag(ψ1(z)� 
 
 
 �ψN (z)), the equation ρ(A(z)) = 1
reduces to

υρ
(
�D(z)

) = 1
 (11)

Similarly, if the growth rate MGFs ψnn′ depend only on the previous state n, then the
equation ρ(A(z)) = 1 reduces to υρ(D(z)�) = 1, which is identical to (11) noting that
ρ(AB) = ρ(BA) in general.

REMARK 3: Our characterization of the upper Pareto exponent α in Theorem 1 is im-
plicit, in the sense that it is given by the positive solution to ρ(A(z)) = 1. It may be useful
for economic applications to provide comparative statics for α; that is, results indicating
how α varies as we vary the parameters that enter into the matrix A(z). We provide a
rigorous statement of such results in Appendix B. The main findings are as follows: (i) A
marginal increase in any survival rate υnn′ reduces α. (ii) A marginal increase in the mean
of any growth rate logGnn′ reduces α. (iii) A marginal increase in the scale of any growth

3Although not widely known, lower-tail power-law behavior in the distribution of economic aggregates has
been documented in a number of empirical studies. For city size, see the bottom-right panel of Figure 1 of
Reed (2001) (who writes “lower-tail power-law behaviour. . . is not apparently widely recognized”), top panels
of Figures 1 and 2 of Reed (2002) (who writes “the lower-tail plots exhibit linearity”), footnote 8 of Giesen,
Zimmermann, and Suedekum (2010), who write “Among the 100 smallest cities we also find a distinctive power
law pattern,” and Figure 2 of Devadoss, Luckstead, Danforth, and Akhundjanov (2016). Aside from city size,
power law behavior in the lower tail has been documented in income (bottom-left panel of Figure 1 of Reed
(2001); Figure 3 of Toda (2011); Figure 1 of Toda (2012)) and consumption (Figure 2 of Toda and Walsh (2015);
and Toda (2017)).
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rate logGnn′ reduces α. (iv) If the survival probabilities υnn′ and growth rates logGnn′ de-
pend only on the current state n′, or only on the previous state n, then a marginal increase
in the persistence of the Markov modulator Jt reduces α.

REMARK 4: Proposition 4 and Theorem 1 are related to Theorem 15 in Toda (2014)
on geometric sums. The latter result establishes that the Laplace distribution provides a
small p asymptotic approximation to the distribution of a sum of Tp weakly dependent
random variables, where Tp is a geometric random variable with success probability p.
It implies a double Pareto approximation to the stationary distribution of St when the
survival probability does not vary with types and is close to one. Proposition 4 provides
the exact MGF of logSt , while Theorem 1 shows that the tail probabilities of St decay
at Pareto rates determined by the positive and negative solutions to ρ(A(z)) = 1, with
neither result relying on asymptotic approximation or type-invariance of survival rates.

EXAMPLE 1: Suppose that there are two states (N = 2). By the Perron–Frobenius the-
orem, ρ(A(z)) is the maximum real eigenvalue of A(z), and so by applying the usual
formula for the eigenvalues of a 2 × 2 matrix (see, e.g., Horn and Johnson (2013, p. 39))
we compute

ρ
(
A(z)

) = 1
2
(
a11(z) + a22(z) +

√(
a11(z) − a22(z)

)2 + 4a12(z)a21(z)
)
� (12)

where ann′ (z) := πnn′υnn′ψnn′ (z). Setting ρ(A(z)) equal to one and solving for z gives a
unique positive solution z = α if the conditions in Proposition 2 are satisfied. To illustrate
concretely, suppose that

�=
[

1 −π12 π12

π12 1 −π12

]
for some π12 ∈ (0�1), that υnn′ = υ= 0
95, and that each ψnn′ is Gaussian, with locations
μ11 = μ21 = 0
03 and μ12 = μ22 = 0
01 and scales σnn′ = σ = 0
01. We graph the unique
positive solution z = α to ρ(A(z)) = 1 as a function of π12 in Figure 3(a). The graph
shows that the Pareto exponent α increases smoothly from around 1.7 to around 2.56 as
the transition probability π12 increases from zero to one. The fact that α is increasing in
π12 is consistent with the comparative statics presented in Appendix B and previewed in
Remark 3. The lower limit of approximately 1.7 is the value of z solving the equation
υψ11(z) = 1; that is, it is the Pareto exponent for an agent always of the higher growth
type. The upper limit of approximately 2.56 is the value of z solving the equation υψ(z) =
1, whereψ is an equally weighted mixture ofψ12 andψ21. We will discuss Figure 3(b) when
we return to this example in Section 5.

Examples 3.5 and 3.6 in Beare, Seo, and Toda (2022) concern a continuous-time refor-
mulation of Example 1 in which the log-size of agents evolves as a two-state Brownian
motion with drift. There the determination of the Pareto exponent boils down to exam-
ining the roots of a quartic polynomial, or of a quadratic polynomial in the absence of a
diffusive component. The latter case corresponds closely to the economic model in Cao
and Luo (2017), in which the upper Pareto exponent for the stationary distribution of
wealth is given by the unique positive root of a quadratic polynomial.
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FIGURE 3.—Upper Pareto exponent and type 1 share in Example 1.

5. REFINEMENTS UNDER A NONLATTICE CONDITION

While Theorem 1 establishes Pareto decay of the upper tail of the stationary distribu-
tion of St in the sense of there being an asymptotically linear relationship in log-log scale
between the tail probability P(St > s) and threshold s with slope −α, it is notable that
Theorem 1 does not assert the convergence of sαP(St > s) to a positive and finite limit.
Such convergence does not hold in general. We show in this section that it obtains under
a nonlattice condition on growth rates. We also establish a characterization of upper-tail
type shares that obtains under the nonlattice condition.

ASSUMPTION 2: There do not exist constants d > 0 and cnn′ , n 
= n′, such that (i)
supp(logGnn) ⊂ dZ for each n ∈ N , and (ii) supp(logGnn′) ⊂ cnn′ + dZ for each n�n′ ∈ N
with n 
= n′.

A simple sufficient (but not necessary) condition for Assumption 2 is that at least one
growth rate is not a discrete random variable. The following result strengthens the con-
clusion of Theorem 1 when Assumption 2 is satisfied, and also shows that in this case a
left eigenvector of A(α) characterizes type shares in the upper tail of St .

THEOREM 2: Let (St� Jt)t∈Z+ be a stationary Markov multiplicative process with reset sat-
isfying Assumptions 1 and 2. If the equation ρ(A(z)) = 1 admits a unique positive solution
z = α in the interior of I , then sαP(St > s) converges to a positive and finite limit as s→ ∞,
so that St has a Pareto upper tail with exponent α. Moreover, A(α) has a unique left eigen-
vector y = (y1� 
 
 
 � yN)
 with strictly positive entries summing to one, and for each n ∈N we
have

lim
s→∞

P(Jt = n | St > s) = yn
 (13)

We illustrate the statement about limiting type shares in Theorem 2 by revisiting Exam-
ple 1.

EXAMPLE 1—continued: At z = α, a left eigenvector with strictly positive entries asso-
ciated with the maximum real eigenvalue computed in (12) is

ỹ =
[1

2
(
a11(α) − a22(α) +

√(
a11(α) − a22(α)

)2 + 4a12(α)a21(α)
)

a12(α)

]
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Scaling the entries of ỹ such that they sum to one yields the left eigenvector y referred
to in Theorem 2. In Figure 3(b), adopting the conditionally Gaussian parametrization
used in our earlier discussion of this example, we graph y1, the share of type 1 agents in
the upper tail of the size distribution, as a function of the transition probability π12. The
graph shows that the share of type 1 agents in the upper tail decreases smoothly from one
to one half as the transition probability π12 increases from zero to one.

The following simple example shows that the conclusions of Theorem 2 need not be
satisfied if Assumption 2 is dropped.

EXAMPLE 1: Suppose again that N = 2, and let (St� Jt) be a Markov multiplicative
process with reset on (0�∞) × {1�2} with G11 =G22 = 1, G12 = 4 and G21 = 2, and with
survival rate υ ∈ (0�1) constant across states. Suppose that we set St = 1 and Jt = 1 upon
reset, and that in the absence of reset Jt has transition probability matrix

�=
[

0 1
1 0

]



These assumptions fully specify the transition probabilities of (St� Jt). Noting that As-
sumption 1 is satisfied, we deduce from Proposition 3 that (St� Jt) has a unique stationary
distribution, and assume it to be initialized at this distribution.

Assumption 2 is not satisfied in this example, as may be seen by taking d = 1 and c12 =
2c21 = 2 log 2. We show in Appendix A that the equation ρ(A(z)) = 1 admits a unique
positive solution z = α= −(2/3) log2υ, and that

υ= lim inf
s→∞

sαP(St > s) < lim sup
s→∞

sαP(St > s) = υ−1/3 and

υ

1 + υ = lim inf
s→∞

P(Jt = 1 | St > s) < lim sup
s→∞

P(Jt = 1 | St > s) = 1
1 + υ


The conclusions of Theorem 2 therefore do not hold. Nevertheless, Theorem 1 implies
that

lim
s→∞

log P(St > s)
log s

= −α= 2
3

log2υ


Example 1 illustrates the fragility of Theorem 2. Since any collection of growth rate
distributions satisfying Assumption 2 can be well approximated by a collection of growth
rate distributions not satisfying it, and vice versa, it is natural to be skeptical of results
that depend on this condition for their validity. Nonlattice conditions have been used
elsewhere to establish Pareto tail behavior of stationary solutions to stochastic difference
equations.4 An advantage of our approach is that our primary result, Theorem 1, does not
rely on any nonlattice condition for its validity. The form of Pareto tail decay given in (10)
is in this sense robust.

4See, for instance, (1.11) in Theorem A of Kesten (1973), (2) in Theorems 1 and 2 of de Saporta (2005), (A7)
in Assumption 1.2 of Roitershtein (2007), and the “spread out” condition on pages 1408–1409 of Collamore
(2009); and in an economic application, see footnote 56 in Benhabib, Bisin, and Zhu (2011). Note also that
results of this kind typically exclude the possibility of reset; see (1.9) in Theorem A of Kesten (1973), the
requirement that zero be excluded from the state space in Theorems 1 and 2 of de Saporta (2005), (A5)
in Assumption 1.2 of Roitershtein (2007), and the requirement that logAn be finite-valued on page 1408 of
Collamore (2009).
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6. FINAL REMARKS

Given the importance of persistent heterogeneity in productivity types for constructing
plausibly calibrated economic models, we expect to see modelers adopting this feature
more widely in future, and hope that the results we have presented here may prove useful
to them. We conclude by outlining three potential generalizations of our results, which
may broaden the scope of applications.

First, it may be useful to pursue a relaxation of our assumption of irreducibility. The
evolution of types may follow a reducible Markov chain if, for instance, the health of
agents randomly and irreversibly deteriorates over time, affecting their access to different
productivity types. We rely on irreducibility at various points in our technical arguments.
In particular, in the proof of Theorem 3 in Appendix A, which is used to prove Theorems
1 and 2, irreducibility is critical to establishing that poles in the MGF of log-size deter-
mining the Pareto exponents are simple. The reducible case may require a more general
treatment of these poles.

Second, it may be useful to pursue a relaxation of our assumption that the number of
types is finite. This would allow, for instance, productivity to be modelled as a general
autoregressive process. Such a generalization would likely entail adapting our numerous
arguments involving matrices such that they apply with linear operators on infinite dimen-
sional spaces.

Third, it may be useful to generalize our results such that they apply when the random
growth of agents is only asymptotically, rather than exactly, multiplicative. For instance,
while capital income is naturally associated with multiplicative growth in wealth, the ef-
fect of labor income on wealth is additive. In an economy in which agents randomly ac-
crue both capital and labor income, the growth in the wealth of the wealthiest agents is
predominantly driven by capital income, and thus approximately multiplicative. Since it
is the wealthiest agents which determine the upper Pareto exponent, we expect that our
results on the upper Pareto exponent may be applied in a setting of this sort. This has
been done in Gouin-Bonenfant and Toda (2022), with heuristic justification. A rigorous
demonstration of the validity of our characterization of the upper Pareto exponent under
asymptotically multiplicative growth would place such applications on firmer footing.

APPENDIX A: PROOFS OF CLAIMS IN SECTIONS 4 AND 5

PROOF OF PROPOSITION 1: Since each entry of A(z) is a nonnegative multiple of a
MGF finite-valued on I , a result of Kingman (1961) guarantees that the spectral radius
ρ(A(z)) is a convex function of z ∈ I . And since A(0) is nonnegative and bounded entry-
wise by �, which is nonnegative with row sums of one, Theorems 8.1.22 and 8.4.5 in Horn
and Johnson (2013) imply that ρ(A(0)) ≤ ρ(�) = 1. Under Assumption 1, A(0) is non-
negative and irreducible with at least one entry strictly less than the corresponding entry of
�, so problem 15 on page 515 in Horn and Johnson (2013) implies that ρ(A(0)) < ρ(�);
thus in this case ρ(A(0)) < 1. Since ρ(A(z)) is convex on I , under Assumption 1 there can
therefore be at most one positive and one negative solution to the equation ρ(A(z)) = 1
in I . Q.E.D.

PROOF OF PROPOSITION 2: The assumption that E(Gz
nn′) < ∞ for all z > 0 and all

n�n′ ∈ N guarantees that [0�∞) ⊂ I and that ρ(A(z)) <∞ for all z > 0, while the as-
sumption that P(Gnn > 1) > 0 guarantees that ψnn(z) → ∞ as z→ ∞. We therefore have

ρ
(
A(z)

) ≥ ρ(diag
(
A(z)

)) = max
{
πnnυnnψnn(z) : n ∈N

} → ∞
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FIGURE A.1.—The strips S and S− in the complex plane.

as z→ ∞, using a monotonicity property of the spectral radius (Horn and Johnson (2013,
Theorem 8.1.18)) to obtain the inequality, and noting that πnnυnn > 0 under Assump-
tion 1(iii). Under Assumption 1, Proposition 1 implies that ρ(A(0)) < 1 and that ρ(A(z))
is convex, hence continuous, on the interior of I . It follows from the intermediate value
theorem that ρ(A(z)) = 1 for some positive z in the interior of I . Q.E.D.

PROOF OF PROPOSITION 3: It will be convenient to augment the state space N such
that we are able to keep track of when reset occurs. To this end, let Ñ = {̃n1� 
 
 
 � ñ2N},
where

ñi =
{

(i�0) for i= 1� 
 
 
 �N�
(i−N�1) for i=N + 1� 
 
 
 �2N


Let Kt be equal to one if there is reset at time t, or equal to zero otherwise. The sequence
of pairs (Jt�Kt)t∈Z+ is then a Markov chain on Ñ . Fix n ∈ N with �n > 0. Under As-
sumption 1, since �n > 0, the state (n�1) is accessible from any other state; therefore,
since there are finitely many states, the state (n�1) must be positive recurrent (Douc,
Moulines, Priouret, and Soulier (2018, Corollary 7.2.3)).

Consider the singleton Rn := {1} × {n}. Since (St� Jt) ∈ Rn whenever (Jt�Kt) = (n�1),
the fact that (n�1) is a positive recurrent accessible state of (Jt�Kt)t∈Z+ implies that Rn is a
positive recurrent accessible atom of (St� Jt)t∈Z+ . It therefore follows from Theorem 6.4.2
in Douc et al. (2018) that there exists a unique probability distribution for (S0� J0) such
that (St� Jt)t∈Z+ is stationary. Q.E.D.

Until now, we have regarded A(z) to be a function of a real variable z ∈ I , where I
was defined to be the smallest convex subset of the real line on which all of the MGFs
ψnn′ (z) are finite. In what follows, it will be more useful to regard A(z) and each of the
MGFs ψnn′ (z) to be functions of a complex variable. We therefore extend I to a strip in
the complex plane by setting S ={z ∈ C : Re(z) ∈ I}. Owing to the fact that∫ ∣∣sz∣∣d
nn′ (s) =

∫
sRe(z) d
nn′ (s) =ψnn′

(
Re(z)

)
� (14)

it is assured that each ψnn′ (z) := ∫
sz d
nn′ (s) is well-defined as a complex-valued function

of z ∈ S , and that A(z) is well-defined as a complex matrix-valued function of z ∈ S .
The functions ψnn′ (z) are called Mellin–Stieltjes transforms of the corresponding CDFs

nn′ (s). We also extend I− to a strip in the complex plane by setting S− ={z ∈C : Re(z) ∈
I−}. Figure A.1 illustrates S and S−.

LEMMA 1: For each z ∈ S−, we have ρ(A(z)) < 1.
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PROOF OF LEMMA 1: In view of (14), the entries of A(z) are bounded in modulus by
the corresponding entries of A(Re(z)) for all z ∈ S . Using a monotonicity property of the
spectral radius (Horn and Johnson (2013, Theorem 8.1.18)), we therefore have ρ(A(z)) ≤
ρ(A(Re(z))) for all z ∈ S . The desired result now follows from the definitions of I− and
S−. Q.E.D.

The quantity E(Szt ), viewed as a function of the complex variable z, is called the
Mellin transform of the distribution of St . The following lemma provides a formula for
E(Szt 1(Jt = n)) valid for each z ∈ S−.

LEMMA 2: Let (St� Jt)t∈Z+ be a stationary Markov chain on (0�∞) × N with Markov
kernel given by (3). Then, for each z ∈ S−, the matrix I − A(z) is invertible and[

E
(
Szt 1(Jt = 1)

) · · · E
(
Szt 1(Jt =N)

)] = r�
(
I − A(z)

)−1

 (15)

PROOF OF LEMMA 2: Let Fn(s) := P(St ≤ s� Jt = n). Then, using (3),

Fn′
(
s′
) =

∑
n

∫
P
(
St+1 ≤ s′� Jt+1 = n′ | St = s� Jt = n

)
dFn(s)

=
∑
n

πnn′υnn′

∫

nn′

(
s′/s

)
dFn(s)

+ 1
(
s′ ≥ 1

)
�n′

∑
n�n′′

pnπnn′′ (1 − υnn′′)
 (16)

Noting that
∫

(s′)z
nn′ (ds′/s) = szψnn′ (z) for each z ∈ S , and using the definition of the
unconditional reset probability r, we take the Mellin–Stieltjes transform of either side of
(16) to obtain ∫

sz dFn′ (s) =
∑
n

πnn′υnn′ψnn′ (z)
∫
sz dFn(s) + r�n′ 
 (17)

Letting L(z) denote the N × 1 vector with nth entry

E
(
Szt 1(Jt = n)

) =
∫
sz dFn(s)�

we may rewrite (17) using matrix notation as L(z) = A(z)
L(z) + r� or, equivalently,

L(z)
(
I − A(z)

) = r�

 (18)

Equation (18) is valid for each z ∈ S . Lemma 1 implies that the matrix I − A(z) is invert-
ible for each z ∈ S−. We may therefore post-multiply both sides of (18) by (I − A(z))−1 to
obtain (15), valid for each z ∈ S−. Q.E.D.

PROOF OF PROPOSITION 4: The result follows immediately from Lemma 2. Q.E.D.

THEOREM 3: Suppose that Assumption 1 holds, and let (St� Jt)t∈Z+ be a stationary homo-
geneous Markov chain on (0�∞) ×N with Markov kernel given by (3). Suppose further that
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the equation ρ(A(z)) = 1 admits a unique positive solution z = α in the interior of I . Then
A(α) has an algebraically simple unit eigenvalue, and the associated right and left eigenspaces
are spanned by unique right and left eigenvectors x and y with positive entries summing to one.
Let

C = r�
x

y
A′(α)x
�

where A′(α) is the matrix of complex derivatives of A(z) at z = α. Let B be the supremum of
all b > 0 such that I−A(α+iτ) is invertible for τ ∈ (−b�b) except at τ = 0. ThenB ∈ (0�∞],
C ∈ (0�∞), and for each n ∈N ,

2πC/B
e2πα/B − 1

yn ≤ lim inf
s→∞

sαP(St > s� Jt = n)

≤ lim sup
s→∞

sαP(St > s� Jt = n) ≤ 2πC/B
1 − e−2πα/B yn (19)

if B <∞, or otherwise

lim
s→∞

sαP(St > s� Jt = n) = Cyn

α

 (20)

PROOF OF THEOREM 3: Let � denote the interior of S , an open and connected subset
of the complex plane, nonempty since it contains α. The matrix-valued function A(z) is
holomorphic on�. Since ρ(A(z)) is a convex function of z ∈ I with ρ(A(0)) < 1 (Proposi-
tion 1), and ρ(A(α)) = 1, it must be the case that I − A(z) is invertible at all real numbers
between 0 and α, which are elements of �. It therefore follows from Theorem A.2 in
Beare, Seo, and Toda (2022) that I − A(z) has a meromorphic inverse on �, with poles at
the points of noninvertibility of I − A(z). Since A(α) is nonnegative, we know from the
Perron–Frobenius theorem that its spectral radius of one is an eigenvalue. Consequently,
zero is an eigenvalue of I − A(α). We deduce that I − A(z) is not invertible at α ∈ �,
and that α is a pole of (I − A(z))−1. Since every pole is an isolated singularity, it follows
immediately that B > 0.

We now show that α is a simple pole of (I − A(z))−1, and determine the associated
residue. Since A(α) is nonnegative and irreducible under Assumption 1, it follows from
the Perron–Frobenius theorem that the unit eigenvalue of A(α) is algebraically simple,
hence geometrically simple, and is associated with unique right and left eigenvectors x� y
with positive entries summing to one. From Theorem A.2 in Beare, Seo, and Toda (2022),
we thus deduce that α is a simple pole of (I − A(z))−1, with residue

R := −x(y
A′(α)x
)−1
y
 = −cxy
�

where c := (y
A′(α)x)−1 is a positive real number.
Let e(n) denote an N × 1 vector with nth entry equal to one and other entries equal to

zero. By Lemma 2, we have

E
(
Szt | Jt = n

) = (r/pn)�
(
I − A(z)

)−1
e(n) (21)

for z ∈ S−, where r is the unconditional probability of reset and pn = P(Jt = n). Moreover,
since (I − A(z))−1 is meromorphic on �, (21) defines a meromorphic extension of E(Szt |
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Jt = n) to �. As z→ α, we obtain

(z− α) E
(
Szt | Jt = n

) = (r/pn)�
(z− α)
(
I − A(z)

)−1
e(n)

→ (r/pn)�
Re(n) = −rc(�
x
)
yn/pn = −Cyn/pn


The eigenvectors x and y have positive entries, and � has nonnegative entries with at
least one entry positive, so �
x > 0 and yn > 0. The unconditional reset probability r
is positive under Assumption 1, and as noted above, c > 0, so also C > 0. Therefore,
limz→α(z − α) E(Szt | Jt = n) 
= 0. This shows that α is a simple pole of E(Szt | Jt = n) with
residue −Cyn/pn. Letting B′ denote the supremum of all b > 0 such that α is the unique
singularity of E(Szt | Jt = n) on {α+ iτ : τ ∈ (−b�b)}, it now follows from Theorem A.1 in
Beare, Seo, and Toda (2022) that

2πC/B′

e2πα/B′ − 1
yn/pn ≤ lim inf

s→∞
sαP(St > s | Jt = n)

≤ lim sup
s→∞

sαP(St > s | Jt = n) ≤ 2πC/B′

1 − e−2πα/B′ yn/pn (22)

if B′ <∞, or otherwise

lim
s→∞

sαP(St > s | Jt = n) = Cyn

αpn

 (23)

It is apparent from (21) that if α + iτ is a singularity of E(Szt | Jt = n) then it is also a
singularity of (I − A(z))−1. Thus B ≤ B′. If B = ∞ then also B′ = ∞, and so (20) follows
from (23). If B <∞ and B′ <∞, then (19) follows from (22) by noting that the lower
(upper) bound in (22) is increasing (decreasing) in B′. If B <∞ and B′ = ∞, then (19)
follows from (23) by noting that Cyn/α falls between the lower and upper bounds in (19).

Q.E.D.

REMARK 5: Theorems A.1 and A.2 in Beare, Seo, and Toda (2022), which play a crit-
ical role in the proof of Theorem 3, are not novel to that paper but are stated there in
a way which is convenient for our purposes. The role played by Theorem A.1 is particu-
larly important. This result, due to Nakagawa (2007), is the source of the tail probability
bounds in (19).

PROOF OF THEOREM 1: Theorem 3 establishes that sαP(St > s) has positive and finite
limits inferior and superior. There thus exist positive and finite constants c− and c+ such
that c− ≤ sαP(St > s) ≤ c+ for all sufficiently large s. Taking logarithms, dividing by log s,
and letting s→ ∞, we obtain (10). Q.E.D.

LEMMA 3: Let X be a real random variable and α a positive real number such that
E(eαX) <∞, and let τ be a nonzero real number. Then |E(e(α+iτ)X)|= E(eαX) if and only
if supp(X) ⊂ c + (2π/τ)Z for some c ∈ R. Moreover, E(e(α+iτ)X) = E(eαX) if and only if
supp(X) ⊂ (2π/τ)Z.

PROOF OF LEMMA 3: The result follows from an obvious modification to the proofs of
Lemmas 3 and 4 in Feller (1971, pp. 500–501). Q.E.D.
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PROOF OF THEOREM 2: The result follows from Theorem 3 if we can show that B= ∞;
that is, that α is the unique point of noninvertibility of I − A(z) on the axis Re(z) = α.
Suppose to the contrary that I − A(α+ iτ) is not invertible for some nonzero τ ∈ R. In
view of (14), the entries of A(α+iτ) are bounded in modulus by the corresponding entries
of A(α). Using a monotonicity property of the spectral radius (Horn and Johnson (2013,
Theorem 8.1.18)), we deduce that ρ(A(α + iτ)) ≤ ρ(A(α)) = 1. But noninvertibility of
I − A(α + iτ) implies that A(α + iτ) has a unit eigenvalue, so we must have ρ(A(α +
iτ)) = ρ(A(α)) = 1. It now follows from Theorem 8.4.5 in Horn and Johnson (2013) that
A(α+ iτ) = DA(α)D−1, where D = diag(eiθ1� 
 
 
 �eiθN ) for some θ1� 
 
 
 � θN ∈ R. We may
therefore write

πnn′υnn′ψnn′ (α+ iτ) = πnn′υnn′ei(θn−θn′ )ψnn′ (α)

for all n�n′ ∈ N . Consequently, ψnn(α+ iτ) =ψnn(α) for all n ∈ N such that πnnυnn > 0,
and |ψnn′ (α + iτ)| = ψnn′ (α) for all n�n′ ∈ N such that πnn′υnn′ > 0. Moreover, for any
n�n′ ∈ N such that πnn′υnn′ = 0, we trivially have ψnn′ (α + iτ) = ψnn′ (α) = 1 due to the
normalization in Assumption 1(iii). It therefore follows from Lemma 3 that, for all n�n′ ∈
N , we have supp(logGnn) ⊂ (2π/τ)Z and supp(logGnn′) ⊂ cnn′ + (2π/τ)Z for some cnn′ ∈
R. But this violates Assumption 2, so we conclude that I − A(α+ iτ) must be invertible
for all nonzero τ ∈R. Q.E.D.

DETAILS OF EXAMPLE 1: Observe that

ρ
(
A(z)

) = υρ
([

0 4z

2z 0

])
= 23z/2υ


It follows that the unique positive solution to the equation ρ(A(z)) = 1 is z =
−(2/3) log2υ, and so we deduce from Theorem 1 that St has a Pareto upper tail with
exponent α= −(2/3) log2υ in the sense of (10).

Assumption 2 is not satisfied in this example. We now show that the conclusions of
Theorem 2 do not hold. If reset occurs in period τ, then in the absence of further
reset, the values taken by Sτ+k for k ≥ 0 are given by the (deterministic) sequence
1�4�8�32�64�256�512� 
 
 
 . Therefore, if in period t the most recent reset occurred in
period t − k, then St is equal to the (k+ 1)th entry in that sequence, which is 2�(3k+1)/2�.
Since the probability that there have been exactly k periods since the most recent reset5

is υk(1 − υ), we find that

P(St > s) =
∞∑
k=0

υk(1 − υ)1
(
2�(3k+1)/2� > s

)

 (24)

Therefore, if n− 1 ≤ log2 s < n, then

P(St > s) =
∞∑

k=�(2n−1)/3�
υk(1 − υ) = υ�(2n−1)/3� = υ�(2�log2 s�+1)/3�
 (25)

5Here, we implicitly extend (St� Jt) to a stationary Markov process indexed by t ∈ Z rather than t ∈ Z+, so
that the number of periods since the most recent reset is unbounded.
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Multiplying by sα with α= −(2/3) log2υ, we obtain

sαP(St > s) = s−(2/3) log2 υυ�(2�log2 s�+1)/3� = υ−(2/3) log2 s+�(2�log2 s�+1)/3��

which oscillates between υ and υ−1/3 as s→ ∞. Thus, while (10) is satisfied, sαP(St > s)
does not converge to any limit as s→ ∞.

The failure of Assumption 2 also causes the convergence (13) in Theorem 2 to fail in
this example. To see why, observe first that, since the Markov state switches every period,
summing the even-indexed terms in the series on the right-hand side of (24) gives

P(St > s� Jt = 1) =
∞∑
k=0

υ2k(1 − υ)1
(
23k > s

)



Therefore, if n− 1 ≤ log2 s < n, then

P(St > s� Jt = 1) =
∞∑

k=�n/3�
υ2k(1 − υ) = υ2�n/3�

1 + υ = υ2�(�log2 s�+1)/3�

1 + υ 
 (26)

Dividing (26) by (25), we obtain

P(Jt = 1 | St > s) = υ2�(�log2 s�+1)/3�−�(2�log2 s�+1)/3�

1 + υ �

which oscillates between υ/(1 + υ) and 1/(1 + υ) as s→ ∞. Thus P(Jt = 1 | St > s) does
not converge to any limit as s→ ∞. Similarly, P(Jt = 2 | St > s) does not converge to any
limit as s→ ∞. Q.E.D.

APPENDIX B: COMPARATIVE STATICS

We consider linear perturbations to the survival probabilities, to the parameters of
location-scale transformations of the growth rates, and to a measure of the degree of per-
sistence in the Markov modulator. Given μnn′ ∈ R and σnn′ > 0, we denote the MGF of
μnn′ + σnn′ logGnn′ by ψnn′ (z;μnn′�σnn′) = ezμnn′ψnn′ (σnn′z), and normalize logGnn′ to have
mean zero. Let�(z;M��) be theN×N matrix of MGFs ψnn′ (z;μnn′�σnn′) parametrized
by M = (μnn′) and �= (σnn′). We parametrize persistence by setting�(τ) = τI+ (1−τ)�
for τ ∈ [0�1]. Increases (decreases) in τ are interpreted as increases (decreases) in persis-
tence.

Collect the parameters to be perturbed into a single vector of parameters,

θ= (ϒ�M���τ) ∈ (0�1)N×N ×R
N×N × (0�∞)N×N × (0�1) =:��

and let A(z;θ) = �(τ) � ϒ � �(z;M��). The following result, an application of the
implicit function theorem, shows how perturbations to θ affect α.

PROPOSITION 5: Suppose the vector of parameters θ0 = (ϒ0�M0��0� τ0) ∈� is such that
�(τ0), ϒ0 and �(z;M0��0) satisfy Assumption 1, and the equation ρ(A(z;θ0)) = 1 admits
a unique positive solution z = α0 in the interior of

I0 := {
z ∈ R : all entries of �(z;M0��0) are finite

}
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Then there exists a neighborhood U ⊂� of θ0 and a unique continuously differentiable func-
tion α : U → (0�∞) such that ρ(A(α(θ);θ)) = 1 on U . The partial derivatives of α satisfy
the following inequalities at θ0:

(i) ∂α/∂υnn′ ≤ 0: Longer lifespan implies a smaller Pareto exponent.
(ii) ∂α/∂μnn′ ≤ 0: Higher growth implies a smaller Pareto exponent.
(iii) ∂α/∂σnn′ ≤ 0: Higher volatility implies a smaller Pareto exponent.
(iv) If all columns or all rows of ϒ0 ��(z;M0��0) are the same, then ∂α/∂τ ≤ 0: Higher

persistence implies a smaller Pareto exponent.

REMARK 6: In Proposition 5(iv), the requirement that all columns or all rows of ϒ0 �
�(z;M0��0) are the same means that the survival probability and growth rate distribution
depend only on the current state, or only on the previous state. Without this condition,
higher persistence need not imply a smaller Pareto exponent. As a counterexample, set
N = {1�2} and suppose that Gnn′ = 2 if n 
= n′ or Gnn′ = 1 if n = n′. Suppose that the
transition probability matrix for Jt is

�(τ) = τI + (1 − τ)
[

0 1
1 0

]
=

[
τ 1 − τ

1 − τ τ

]
�

and the survival probability υ ∈ (0�1) is constant. Then

�(τ) �ϒ��(z) = υ
[

τ (1 − τ)2z

(1 − τ)2z τ

]
�

whose spectral radius is υ(τ + (1 − τ)2z). Setting the spectral radius equal to one and
solving for z > 0, we find that the Pareto exponent for the upper tail of the stationary
distribution of St is

α(τ) = log2

(
1/υ− τ

1 − τ
)

= log2

(
1 + 1/υ− 1

1 − τ
)
�

which is increasing in τ ∈ (0�1). Therefore, in this example, increasing the persistence
makes the upper tail lighter.

PROOF OF PROPOSITION 5: Define F : (0�∞) ×�→ [−1�∞] by

F (z;θ) = ρ(A(z;θ)
) − 1�

where the spectral radius is understood to be infinite whenever one or more entries of
�(z;M��) are infinite. Note that F (α0;θ0) = 0 and that, since α0 lies in the interior of
I0, F (z;θ) is finite on a neighborhood of (α0� θ0). To apply the implicit function theorem,
we need F to be continuously differentiable on a neighborhood of (α0� θ0), with nonzero
partial derivative ∂F/∂z at (α0� θ0). Continuous differentiability follows from the fact that
the entries of �(τ) and �(z;M��) are continuously differentiable with respect to their
parameters and z, and the fact that the spectral radius of a nonnegative irreducible matrix
is continuously differentiable with respect to its entries (see, e.g., Vahrenkamp (1976)).
Positivity of the partial derivative ∂F/∂z at (α0� θ0) follows from Proposition 1. The im-
plicit function theorem thus guarantees the existence of a neighborhood U ⊂� of θ0 and
a unique continuously differentiable function α :U → (0�∞) such that ρ(A(α(θ);θ)) = 1
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on U . The partial derivatives of α on U are then given by

∇θα= − 1
∂F/∂z

∇θF


It remains to show that the partial derivatives of α have the signs asserted in (i)–(iv).
Since ∂F/∂z > 0, and since the spectral radius of a nonnegative matrix is nondecreasing
in its entries (Horn and Johnson (2013, Theorem 8.1.18), to show (i)–(iii) it suffices to
show that the entries of A(z;θ) are nondecreasing in υnn′ , μnn′ , and σnn′ . For υnn′ this is
obvious. For μnn′ , it follows from the fact that

∂ψnn′ (z;μnn′�σnn′)
∂μnn′

= zezμnn′ψnn′ (σnn′z)�

which is positive for z > 0. For σnn′ , observe that since logGnn′ is normalized to have zero
mean, its MGF ψnn′ (z) satisfies ψ′

nn′ (0) = 0, and thus, by convexity, ψ′
nn′ (z) ≥ 0 for z > 0.

The partial derivative

∂ψnn′ (z;μnn′�σnn′)
∂σnn′

= zezμnn′ψ′
nn′ (σnn′z)

is therefore nonnegative for z > 0, and so the entries of A(z;θ) are nondecreasing in σnn′ .
To show (iv), observe that if all rows of ϒ0 ��(z;M0��0) are the same, then we may write
A(z;θ0) =�(τ0)D0(z), where D0(z) = diag(ϒ0 ��(z;M0��0)). On the other hand, if all
columns of ϒ0 ��(z;M0��0) are the same, then we may write A(z;θ0) = D0(z)�(τ0).
Noting that ρ(AB) = ρ(BA) in general (Horn and Johnson (2013, Theorem 1.3.22)), in
either case we have ρ(A(z;θ0)) = ρ((τ0I + (1 − τ0)�)D0(z)). The fact that ρ(A(z;θ0)) is
nondecreasing in τ0 now follows from Theorem 5.2 in Karlin (1982); see also Theorem 1.1
in Altenberg (2013). Since ∂F/∂z > 0, it follows that α is nonincreasing in τ at θ0. This
establishes (iv). Q.E.D.
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