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WE CORRECT A BOUND in the definition of approximate truthfulness used in the body of
the paper of Jackson and Sonnenschein (2007). The proof of their main theorem uses a
different permutation-based definition, implicitly claiming that the permutation-version
implies the bound-based version. We show that this claim holds only if the bound is loos-
ened. The new bound is still strong enough to guarantee that the fraction of lies vanishes
as the number of problems grows, so the theorem is correct as stated once the bound is
loosened.

Setting. Recall the setting of Jackson and Sonnenschein (2007, hereafter JS). Consider
an n-agent collective decision problem D = (D, U, P), where D is the finite set of deci-
sions; U = U; x --- x U, is the finite set of possible profiles of utility functions on D; and
P=(P,...,P,)in A(U;) x --- x A(U,) is the profile of priors.

There are K independent copies of this decision problem, labeled k =1, ..., K. Each
agent i knows their preference vector u; = (u}, ..., uX) in UX, and their total payoff from
adecision vector (d', ..., d") is the sum u; (d') +- - -+ uX (d*). Utility functions are drawn
independently across agents and decision problems, according to the priors in P.

Given an ex ante Pareto efficient social choice function f: U — A(D), JS introduce
the following linking mechanism. Each agent i is asked to report a preference vector i, =
(@}, ..., uX) with exactly the same utility frequencies as the distribution PX, where PX is
the closest approximation of P; with the property that every probability is a multiple of
1/K. In each decision problem, the mechanism applies the social choice function f to the
profile of preferences reported on that problem.

To formalize the linking mechanism, define the marginal (distribution) of a vector u; in
UK, denoted either marg u; or marg(-|u;), by

marg(v;|u;) = #{k :u} =v;}/K, v;eU.

The linking mechanism is a pair (MX, g&). The message space M* equals the product
M x -+ x MX, where

MK ={a; e U :margi; = P*}.
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The outcome rule g&: MX — (A(D))X c A(D¥) is defined by!
gh@',.... a5 = (f(@"),..., f(a%)),

where &% denotes the vector (&%, ..., i¥) of reports on problem k.

In the linking mechanism, an agent cannot report exactly truthfully if their realized
preference vector violates the marginal constraint. JS focus on strategies in which each
agent lies in as few decision problems as is feasible under the mechanism. They define a
strategy o : UX — MF to be approximately truthful if

#lk:[of )] #ut} = min #{k: af # uf}, M

lf{,'EMiK

for all u; in UX, where [oX (u;)]* denotes the kth component of o (u;). The right side
of (1) equals Kd(margu;, PX), where d is the total variation metric on A(U;) defined by
d(Q, Q) =2, () — Q' (v)).?

We propose a weaker bound. A strategy o : UX — M} is approximately truthful* if

#{k : [oX ()] #ut} < (#U; — 1)K d(margu;, PX), )

for all u; in UX. The inequality in (2) relaxes (1) by a factor of (#U; — 1). Agent i can
lie (#U; — 1) times more than is required by the marginal constraint. The two definitions
coincide if #U; < 2. For #U; > 2, the new definition is strictly weaker. Both definitions
extend immediately to mixed strategies.’

We also give a name to a different notion of truthfulness that appears in JS’s proof.
A strategy o : UK — A(MF) is permutation-truthful if, for each u; in UF and each i, in
supp o (u;), the following holds: for any subset S of {1, ..., K}, if there is a bijection
on S such that it = u7" for all k in S, then ¥ = u* for all k in S. That is, an agent never
nontrivially permutes their true preferences over a subset of decision problems.

The concepts of permutation- and approximate truthfulness serve distinct roles in JS’s
argument. Permutation-truthfulness captures the reporting incentives created by the ef-
ficiency of the outcome function. Approximate truthfulness directly quantifies how fre-
quently the reports match the truth.

Theorem 1.i in JS (p. 248) says that each linking mechanism has a Bayesian equilib-
rium in approximately truthful strategies; however, their proof shows only that there exists
a Bayesian equilibrium in (label-free*) permutation-truthful strategies. We give a coun-
terexample to the existence of an approximately truthful equilibrium. Next, we prove that
permutation-truthful strategies are approximately truthful* and that this weaker property
is still sufficient for part (ii) of Theorem 1. The remaining parts of the theorem are true as
stated—only part (iii) mentions approximate truthfulness and it is true under either def-
inition. Therefore, Theorem 1 is correct if approximately truthful is everywhere replaced
by approximately truthful®.

This exact outcome rule is used only in the case n = 1. For n > 1, the reports are modified before applying
f in such a way that the modified reports follow P exactly.

The right side of (1) is the minimal cost in the optimal transport problem between measures K marg u; and
K PX with cost function c¢(x, y) = [x # y].

3A mixed strategy is approximately truthful (approximately truthful®) if it can be expressed as a mixture
over approximately truthful (approximately truthful*) pure strategies.

*This means that whenever the agent’s preference vector u; is permuted, their report oX (u;) is permuted in
the same way; see JS (p. 251).
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TABLE I
COUNTEREXAMPLE.
1 2 3
type vector A A B
approximate truth A4 C B
deviation A B C

Counterexample. Suppose there is a single agent (n = 1). The set of decisions is
D ={a, b, c}. The agent has three possible utility functions, denoted u(-|A4), u(:|B), and
u(-|C). The prior P puts probability 1/3 on each utility function. We say that the agent’s
type is either A, B, or C. Suppose that type A (respectively B, C) strictly prefers deci-
sion a (respectively b, ¢) to the other two decisions. Therefore, the unique ex ante Pareto
efficient social choice function is f(A) = a, f(B) = b, and f(C) =c.

Consider linking K = 3 decisions. In the linking mechanism, the agent must report
a vector & = (&', %, ’) in which A, B, and C each appear exactly once. Suppose the
agent has type vector (A4, A, B), as indicated in Table 1. Reporting truthfully would vio-
late the quota. Under an approximately truthful strategy, the agent must lie exactly once
by reporting either (A, C, B) or (C, A4, B). But the agent strictly prefers to lie twice by
reporting (A4, B, C) if

u(b|A) + u(c|B) > u(c|A) + u(b|B),

which holds as long as u(c|A4) is low enough. In this case, reporting C in problem 2 is
so costly that the agent prefers to report B even though this forces them to lie again
in problem 3 to satisfy the quota.” Reporting (A4, B, C) does not violate approximate
truthfulness* or permutation-truthfulness.

Approximate Efficiency. Theorem 1.ii in JS says that their sequence {o*} of equilibria
approximate f in the sense that

lim| max P{gf (0" () # f (")} ] = 0, 3)

K

where gf denotes the component of g¥ in the kth decision problem; the equation inside
the probability is between lotteries in A(D); and the probability is taken over the random
vector u in UX and possible mixing in oX. By the definition of g, (3) holds as long as we
have

. k
lllgn[rl?ﬁakx P([c"(w)] # uk)] =0. 4)
JS observe that (4) follows from the law of large numbers for label-free approximately
truthful strategy profiles. We confirm that (4) holds for label-free approximately truthful*
strategy profiles {o*}. For such profiles, we have for each agent i that
Ky, 15 k L . pK
max P([of(w)] #uf) < (#U; — 1) E[d(margu;, P{)]

5In general, telling a different lie in one problem can start a cycle of up to #U; — 1 lies in total. If the cycle
had length #U;, then the agent could report truthfully on each problem in the cycle.



06 I. BALL, M. O. JACKSON, AND D. KATTWINKEL

As K — oo, the approximation PX converges to P;, and the expectation goes to zero by
the law of large numbers (since U, is finite). Then (4) follows by applying a union bound
over the agents i =1, ...,n.°

To complete the proof, we check that permutation-truthfulness implies approximate
truthfulness*. Consider an agent i. The following combinatorial lemma guarantees that
there is a sufficiently large subset S of decision problems over which the agent permutes
their true preferences. Under a permutation-truthful strategy, the agent is truthful on S,
so the size of the complement of S gives the desired bound (2) on the number of lies.

LEMMA 1: Fix an agent i. For any pair of vectors u; and u; in UK, there exists a subset S
of {1, ..., K} and a bijection 7 on § such that

() @ =u® forall kin S;

(ii) #S > K — (#U,; — 1)Kd(margu,, marg ii;).

PROOF: Given u; and &; in UX, construct a directed multigraph as follows. The set
of nodes is U,. For each k =1,..., K, add edge k from node u¥ to node @¥. In this
graph, each node v; has out-degree deg®(v;) = K marg(v;|u;) and in-degree deg™ (v;) =
K marg(v;|&;).

Now we add new edges as follows. Add an edge from a node with net in-degree to
a node with net out-degree, update the degrees of the new graph, and repeat until the
graph is balanced, that is, deg” (v;) = deg (v;) for all v; in U;. Let K’ be the number of
new edges added by this procedure. Counting the heads of the new edges, we have

K = Y (deg' (0) — de (1),

Vi

=K Z(marg(v,lui) — marg(v|i;))

= Kd(margu,;, margi).

Now we have a balanced graph with K + K’ edges. Partition this graph into edge-disjoint
cycles.” Remove every cycle that contains at least one of the new edges. Define S to be the
set of labels of the remaining edges. Since at most K'# U, edges were removed, we have

#S>K+ K — K'#U; =K — (#U; — 1)Kd(margu;, marg it;),

so § satisfies (ii). For (i), define 7 on § by letting 7 (k) be the label of the edge that follows
edge k in its cycle. (In particular, 7(k) = k if edge & is a loop.) Since the head of edge k

equals the tail of edge m(k), we have if = uf(k) by the definition of the graph.  Q.E.D.
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For any (not necessarily label-free) approximately truthful* strategies X, we can still conclude that the
expected fraction of reports that are lies, E[#{k : [oX (u;)]* # u*}]/K, tends to 0 as K — oo. This is the only
property of approximately truthful strategies that is used in JS’s proof of Theorem 1.iii-v.

"To do so, start at a node with an outgoing edge. Form a path by arbitrarily selecting outgoing edges until
the path contains a cycle. Remove the cycle and repeat. Since the graph remains balanced, this process can
terminate only when every edge has been removed.


http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C3%3ACOJASO%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/jackson2007overcoming&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C3%3ACOJASO%3E2.0.CO%3B2-9
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/jackson2007overcoming&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C3%3ACOJASO%3E2.0.CO%3B2-9

ECONOMETRICA ONLINE ARTICLE COMMENT

Co-editor Bart Lipman handled this manuscript.

Manuscript received 19 January, 2022; final version accepted 16 April, 2022; available online 3 May, 2022.

o7



	Setting
	Counterexample
	Approximate Efﬁciency
	References

