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THE ANALYTIC THEORY OF A MONETARY SHOCK
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We propose an analytical method to analyze the propagation of an aggregate shock
in a broad class of sticky-price models. The method is based on the eigenvalue-
eigenfunction representation of the dynamics of the cross-sectional distribution of
firms’ desired adjustments. A key novelty is that we can approximate the whole pro-
file of the impulse response for any moment of interest in response to an aggregate
shock (any displacement of the invariant distribution). We present several applications
for an economy with low inflation and idiosyncratic shocks. We show that the shape
of the impulse response of the canonical menu cost model is fully encoded by a single
parameter, just like the Calvo model, although the shapes are very different. A model
with a quadratic hazard function, arguably a good fit to the micro data on price setting,
yields an impulse response that is close to the canonical menu cost model.

KEYWORDS: Menu costs, impulse response, dominant eigenvalue, selection, volatil-
ity.

1. INTRODUCTION

ECONOMISTS are often faced with models where the state is a high-dimensional object,
such as cross-sectional distributions of incomes, assets, markups, and other economic
variables. This is the case when studying impulse response functions, namely the time
evolution of selected moments of some distribution of interest towards the steady state.
We present a powerful method for such analyses that typically require solving the partial
differential equation that characterizes the time evolution of the cross-sectional distribu-
tion. The method is the eigenvalue-eigenfunction decomposition that allows to solve the
partial differential equation through a neat separation of the time-dimension from the
state-dimension.

We consider economies where agents follow a generalized Ss rule, as pioneered by Ca-
ballero and Engel (1999) for a classic investment problem with random fixed costs. Such
economies feature a steady state where agents have heterogeneous propensities to adjust
their decisions. For this broad class of Ss problems, the method allows us to characterize
the whole set of eigenvalues-eigenfunctions and thus to compute the whole profile of the
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impulse response function of any cross-sectional moments of interest to a once and for all
aggregate shock. Although we will mainly consider shocks to the steady state (invariant
distribution) in our applications, the setup is ready to analyze any shock, as summarized
by any arbitrary initial cross-sectional distribution, which can be used to study how the
propagation of shocks depends on the shape of the distribution, for example, along the
business cycle. Moreover, the setup can also be used to analyze the economy’s response
to several unexpected shocks occurring at multiple times.

An important assumption, maintained in most but not all the analysis, that delivers
tractability is to restrict attention to an impulse response “without reinjection,” that is,
keeping track of agents until their first adjustment after the aggregate shock. We show
that this solution is accurate for a class of problem that displays symmetric features, an ap-
propriate benchmark for monetary economies characterized by low inflation and idiosyn-
cratic shocks. Our results also allow us to analyze lumpy adjustment problems featuring
drift in the dynamics of the state and asymmetries in the return functions. Such prob-
lems are a natural area for future applications, as in the analysis of household durables
by Eberly (1994), Attanasio (2000), Stokey (2009), of capital investment by Caballero and
Engel (1999), Baley and Blanco (2021), of saving portfolios by Alvarez, Guiso, and Lippi
(2012), Abel, Eberly, and Panageas (2013), and of monetary policy with portfolio frictions
by Alvarez, Atkeson, and Edmond (2009), Silva (2012). In Section 6, we consider a class
of asymmetric models where our main method stills works, and where we do not require
the simplification of not reinjecting agents after the first adjusment.

For concreteness, the applications in this paper focus on a broad class of sticky-price
models that include versions of Taylor (1980), Calvo (1983), Golosov and Lucas (2007),
a version of the Calvo-plus model by Nakamura and Steinsson (2010), a generalization
of the Calvo-plus model to arbitrary random menu costs as in Dotsey, King, and Wol-
man (1999) and Caballero and Engel (2007), multi-product models as in Midrigan (2011),
Bhattarai and Schoenle (2014), and Alvarez and Lippi (2014), and the model with “price-
plans” as in Eichenbaum, Jaimovich, and Rebelo (2011) and Alvarez and Lippi (2020). In
these models, firms are hit by idiosyncratic shocks and face a price setting problem featur-
ing (possibly random) menu costs, as well as “price-plans” (i.e., the possibility of choosing
two prices instead of a single one upon resetting). The applications deliver new insights
on the propagation of nominal shocks and unveil the key forces and deep parameters
behind the dynamics. Among the new results, we show in Section 4.1 that the impulse re-
sponse function in the Golosov–Lucas model is fully encoded by a single parameter: once
the frequency of price adjustment is fixed, there are no more choices to determine the
shape of the impulse response function. We find this result surprising: the model behaves
in a fundamentally different way from the one-parameter Calvo model, yet its aggregate
behavior is also fully characterized by a single parameter. We show in Section 4.3 that in
a low-inflation economy, the response of all even centered moments to a small monetary
shock, such as the response of the variance of price gaps, is flat. This result is impor-
tant because it suggests that monetary shocks do not significantly affect the steady-state
welfare losses due to price dispersion. In Section 4.4, we characterize when the model
of price-plans of Eichenbaum, Jaimovich, and Rebelo (2011)—a model used to analyze
temporary price changes like sales—produces hump-shaped impulse response function.
In Section 4.5, we use our method to compute the impulse response in sticky-price models
with a generalized hazard function, a setup developed by Caballero and Engel (2007). In
particular, we study a problem with a quadratic hazard function, a specification that has
several appealing empirical features and has been used by Caballero and Engel (1993b),
Berger and Vavra (2018). We show that the impulse response generated by the quadratic
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hazard is much closer to the impulse response of the Golosov–Lucas model than to the
widely used Calvo model. In Section 4.6, we discuss applications with multiple (once and
for all) shocks and with multi-product firms.

Our representation of the whole profile of the impulse response function enriches pre-
vious analytic results on the impact effect of shocks, such as Caballero and Engel (2007),
or analytic results on the cumulated impulse response to shocks, such as Alvarez, Le
Bihan, and Lippi (2016) and the extension developed by Baley and Blanco (2021) and
Alexandrov (2020) for problems with drift and asymmetries. Our analysis differs from
previous ones that used a similar method to study the dynamics of some interesting slow-
moving frequencies encoded in the “dominant eigenvalue,” such as Hansen, Peter, and
Scheinkman’s (2009) analysis of long-run risk in asset pricing, and Gabaix, Lasry, Lions,
and Moll’s (2016) analysis of the dynamics of the distribution of incomes.1 In Section 4.2,
we prove that in our setup, the dominant eigenvalue is irrelevant for the impulse response
of output, since its associated eigenfunction is orthogonal to the function of interest.2
Even more revealing, we show that using the dominant eigenvalue as a test of the model
dynamics might be misleading: we show in Section 4.5 that the ranking between the half-
life implied by the dominant eigenvalue is not necessarily matched by the ranking of the
monetary non-neutrality.

The paper is organized as follows. Section 2 defines the setup of the analysis. Sec-
tion 3 presents our main result, namely the analytic representation of the impulse re-
sponse function. Several applications to sticky-price economies are explored in Section 4
for economies with zero inflation where firms are subject to idiosyncratic shocks. Sec-
tion 5 analyzes the consequences of introducing moderate degrees of drift or asymmetry.
Section 6 discusses an alternative setup where our methods could be fruitfully applied,
exploring labor market dynamics in a setting where workers’ mobility is subject to a fixed
cost. Future work, particularly the analysis of models with strategic complementarities, is
discussed in Section 7.

2. SETUP

This section introduces the main objects of the analysis. First, we introduce a bench-
mark sticky-price model that is used as the baseline setup. Second, we set up a standard
mathematical definition of the impulse response and establish an equivalence result for
symmetric problems.

2.1. The Firm’s Price-Setting Problem

This section lays out the price-setting problem solved by a firm in the “Generalized
Calvo-plus” model. In this model, the firm is allowed to change prices either by paying
a fixed menu cost or upon receiving a random free adjustment opportunity (a menu cost
equal to zero). We allow the firm to pay a flow cost c to affect the rate at which these free
adjustment opportunities arrive. The setup has elements of the Calvo-plus model, first
developed by Nakamura and Steinsson (2010), which nests several models of interest,

1Besides the focus on a different research question, the main methodological difference compared to these
papers is that we characterize all the eigenvalues and eigenfunctions of the dynamical system, while previous
papers only characterized the dominant eigenvalue, namely the one that dies at the slowest rate.

2From a technical standpoint, the reason we obtain more information—that is, all the eigenvalues and
eigenfunctions—is that the set of eigenvalues is discrete in our case, while in Gabaix et al. (2016) there is
a continuum of eigenvalues; this, in turn, is due to the compactness of our operator.
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from the canonical menu cost problem to the pure Calvo model. It has also elements of
the model developed by Woodford (2009) and Costain and Nakov (2011), where firms can
affect the probability of a price change. In Section 4.5, we sketch a model, first proposed
by Caballero and Engel (1999) and fully analyzed in Alvarez, Lippi, and Oskolkov (2022),
which is equivalent to the model presented below but where menu costs are fully random,
instead of just having a two-point distribution as in the Calvo-plus model.

The Firm Ss Problem in the Generalized Calvo-Plus Model. We describe the price-
setting problem for a firm in steady state. The firm’s cost follows a Brownian motion
with variance σ2 and drift μ, where the latter is due to inflation. The price gap x is de-
fined as the price currently charged by the firm relative to the price that will maximize
current profits, which is proportional to the firm cost (measured as the log of the ratio
between these prices). The firm can change its price at any time by paying a fixed cost
ψ> 0. Additionally, in each time period of length dt, if the firm pays a flow cost c(z) dt,
then it obtains a free adjustment opportunity with probability z dt. The firm policy is sum-
marized by the two barriers x� x̄, the optimal return point x∗, and the optimal adjustment
rate z ≡ ξ(x) as a function of x ∈ (x� x̄). The function ξ(·) is what Caballero and Engel
(1993a, 1999, 2007) called a generalized hazard function.

The optimal policy is to change the price when the gap x reaches either of two barriers,
x < x̄, or when the free adjustment opportunity occurs. In either case, at the time of a
price change, the firm sets a new price, thus resetting the price gap to x∗. For this reason,
we refer to x∗ as the reinjection point. Price changes are given by x∗ −x(τ), where τ is the
stopping time at which either one of the barriers is hit, or a free adjustment opportunity
arrives.

The flow cost of the firm is given by R(x) + c(ξ(x)), where R(x) is the difference
between the static maximum profits and c(·) as defined above. We assume that: (a1) R
and c are convex and non-negative, with R(0) = 0 and c(0) = 0, and (a2) c is weakly
increasing. The firm minimizes the expected discounted cost, with a discount rate r > 0.
The value function v satisfies

rv(x) =R(x) +μv′(x) + σ2

2
v′′(x) + min

z≥0
c(z) + z[v(x∗) − v(x)

]
for x ∈ [x� x̄] (1)

as well as value matching, smooth pasting, optimality of the return point given by v(x̄) =
v(x) = v(x∗) + ψ�v′(x) = v′(x̄) = v′(x∗) = 0, and the first-order condition for z which
yields the optimal policy function ξ(x) that solves c′(ξ(x)) = v(x) − v(x∗) for all x ∈
(x� x̄).

The setup nests the Calvo-plus model of Nakamura and Steinsson (2010). If c(z) = 0
for 0 ≤ z ≤ ζ and c(z) = c̄ > 0 for z ≥ ζ, and if c̄ is large enough, then the optimal policy is
ξ(x) = ζ, which gives rise to the Calvo-plus model, namely one where a constant Poisson
arrival rate of free adjustment opportunities coexists with the possibility of deliberate
price adjustments at a cost ψ.

Our results will also apply to the case where the state space is unbounded. Notice that if
ψ= +∞, then we have x̄= −x= ∞, that is, an unbounded state space. However, for this
case, we will require an extra condition, namely that (a3) if ψ= +∞, then limz→∞ c′(z) =
+∞ and that limx→±∞R(x) = +∞. An immediate implication of these assumptions is that
limx→±∞ ξ(x) → ∞, a condition that will be necessary for Theorem 1 to hold. Intuitively,
the fact that the hazard function ξ diverges for large x implies that the probability of
adjustment converges to 1, mimicking what happens when there is a barrier. Notice that
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such a condition is violated by a model where the hazard function is constant, such as the
Calvo model, while it is satisfied by models where the hazard is quadratic.3

Invariant distribution. The density of the invariant distribution for price gaps generated
by the policy {x�x∗� x̄� ξ(·)} solves the Kolmogorov forward equation:

ξ(x)p̄(x) = −μp̄′(x) + σ2

2
p̄′′(x) for x ∈ [x� x̄]�x 
= x∗� (2)

with boundary conditions at the exit points, unit mass, that is, p̄(x) = p̄(x̄) = 0,∫ x̄

x
p̄(x) dx = 1, and p̄ continuous at all x. We will use P̄(x) to denote the CDF of this

density.

2.2. The Impulse Response

The mathematical setup for the impulse response analysis is made of the following
objects: the law of motion of the Markov process {x(t)} for each individual firm, the
function of interest f (x), the cross-sectional initial distribution of x, denoted by P(x;0).
For instance, to analyze the output impulse response, the function of interest is f (x) =
−x, since each firm’s output is inversely proportional to its price gap. Other examples of
f include the quadratic f (x) = x2 which is used in Section 4.3 to discuss the response
of the dispersion of price gaps following a marginal shock, and the function f (x) = 1
which we use to study the survival function in Corollary 3. The second key ingredient
of the impulse response is the initial condition, P(x�0), describing the distribution of x
right after the shock. In several applications, we will consider a small uniform shift of the
invariant distribution computed in equation (2), for instance, P(x;0) = P̄(x + δ), what
Borovicka, Hansen, and Scheinkman (2014) labeled the “marginal response function”
which we formalize below. We stress, however, that our setup can be used to analyze any
initial cross-sectional distribution, that is, to go beyond the small marginal displacement
of the invariant distribution. For instance, in Section 4.1 we explore the effects of a large
shock, and in Appendix C of the Supplemental Material (Alvarez and Lippi (2022)) we
consider the consequences of a higher-order shock.

At this general level, the setup and definition of an impulse response are closely related
to the one in Borovicka, Hansen, and Scheinkman (2014). The law of motion for the
process f (x), with x ∈X ≡ [x� x̄], is also Markov and is described using

H(f )(x� t) = E
[
f
(
x(t)

)
|x(0) = x]� (3)

where the operator H computes the t period ahead expected value of the function f :
X → R conditional on the state x = x(0). Next, we describe the initial distribution of
x, which we denote by P(·;0) : X → R. This represents the measure of firms that start
with value smaller than or equal to x at time t = 0, each of them following the stochastic
process described in H(f ), with independent realizations. We allow the initial distribution
P(x;0) to have countably many mass points. In particular, P has a piecewise continuous
derivative (density) which we extend to the entire domain, so that p(·�0) :X → R, where
P can have K jump discontinuities (mass points), denoting the difference between the

3The impulse response for the Calvo model is straightforward to obtain given its well-known exponential
shape. It can also be obtained as the limiting case of the Calvo-plus model, with a constant hazard ζ > 0 as the
fixed cost ψ diverges.
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right and left limits by pm(·;0) :{xk}Kk=1 → R, so that xk is the location of the mass points.4
Given the diffusion nature of x, such mass points will immediately vanish (i.e., turn into
a density) one instant after the shock.

We are interested in the standard impulse response function H defined for each t > 0
as

H(t; f�P − P̄) =
∫ x̄

x

H(f )(x� t)
[
dP(x;0) − dP̄(x)

]
� (4)

where P̄ is the invariant distribution of x. The impulse response H at time t is the ex-
pected value of f computed on the distribution P(·� t) in deviation from its steady-state
value, where each x(t) has followed the Markov process associated with H(·) and whose
cross-sectional distribution at time zero is given by P(·;0).5 In other words, for ergodic
processes, we are forcing the impulse response to go to zero as t diverges. Since we eval-
uate H only for the difference between two measures, that is, only for signed measures,
we introduce the convenient notation P̂ ≡ P− P̄ and likewise for the densities p̂= p− p̄.
Thus,

P̂(x) ≡ P(x�0) − P̄(x) for all x ∈ [x� x̄]� (5)

so that P̂ defines the “initial condition” for the impulse response.
We define another impulse response function that uses a stopping time τ, and a modi-

fied expectation operator G, defined as

G(f )(x� t) = E
[
1{t≤τ}f

(
x(t)

)
|x(0) = x]	 (6)

The indicator function 1{t≤τ} becomes zero when the first adjustment following the shock
occurs at the stopping time τ. The operator G computes the t period ahead expected value
of the function f :X → R starting from the value of the state x= x(0), conditional on x
surviving.

In the context of the price-setting models with Ss rules, we refer to the operator H
as the one for the problem with “reinjection,” that is, one in which the operator follows
a firm forever, that is, does not stop keeping track of the firm after the first adjustment
occurs (at time τ). In contrast, we refer to the operator G as one for the problem with-
out “reinjection,” that is, tracking the firm until the first adjustment. For example, in the
sticky-price models discussed above, the stopping time τ is given by the occurrence of a
price adjustment.

We define the impulse response function G for each t > 0 as

G(t; f� P̂) =
∫ x̄

x

G(f )(x� t)
[
dP(x;0) − dP̄(x)

]
	 (7)

4Given our assumption on P , we can write the expectations of any function ν(x) at time zero as

∫ x̄

x

ν(x)dP(x;0) =
∫ x̄

x

ν(x)p(x;0)dx+
K∑
k=1

ν(xk)pm(xk;0)	

5The ergodicity of {x} implies that we can write H(t; f�P − P̄) = ∫ x̄
x
H(f )(x� t)dP(x;0) − ∫ x̄

x
f (x)dP̄(x).
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The interpretation of G(t) is the expected value of the cross-sectional distribution of f ,
conditional on surviving, where each x(t) follows the Markov process, and as before, the
cross-sectional distribution at time zero is given by P(·;0) so that the initial condition is
P̂ ≡ P(·;0) − P̄ .

While H is the impulse response as commonly defined, it turns out that G is simpler
to characterize. In Proposition 1, we will establish conditions under which the impulse
response G(t; f� P̂) coincides with H(t; f� P̂) for all t.

An equivalent, and perhaps simpler, representation of the impulse response function
G(t) is obtained by using the transition function Qt (y|x) = Pr{x(t) < y� t < τ|x(0) = x},
with density function qt (y|x) = ∂yQt (y|x). The impulse response function is

G(t; f� P̂) =
∫ x̄

x

∫ x̄

x

f (y)qt (y|x) dy dP̂(x)	 (8)

Our analytical characterization of G(t), which will be given in Theorem 1, can be easily
understood by using a finite-dimensional version of equation (8), as we will discuss after
Corollary 1. In general, our interest is to computeH(t; f� P̂) by using the simpler operator
G(t; f� P̂), which takes as an argument the signed measure P̂ .

The Initial Condition. Our setup encodes the impulse in the initial condition, P̂(x) ≡
P(x�0) − P̄(x), which denotes the distribution of the state variable x ∈ (x� x̄) at time
zero in deviation from the invariant distribution. In particular, P(·;0) describes the cross-
sectional distribution of the state immediately after the shock. As time elapses, the initial
distribution will converge to the invariant distribution P̄(x), tracing out the impulse re-
sponse for the function of interest f (x). We mentioned above that our method allows the
initial distribution to have mass points. This can be useful, for instance, if the initial shock
is large enough to displace a non-negligible mass of agents onto the return point x∗, to
compute the survival function of price changes, or to compute the conditional density of
the state qt .

Marginal Impulse Response Function. Starting from the invariant density p̄(x) and
considering a small uniform displacement δ > 0 so that

p̂(x) = p̄(x+ δ) − p̄(x) = p̄′(x)δ+ o(δ)� (9)

we have the following definition.

DEFINITION 1: Let the marginal impulse response function to a monetary shock be

Y (t; f ) ≡ ∂

∂δ
H

(
t; f� p̄(x+ δ) − p̄(x)

)∣∣∣∣
δ=0

for all t ≥ 0	 (10)

The marginal impulse response function is the first-order expansion of H(t; f� p̄(x +
δ) − p̄(x)) with respect to δ. For future reference, notice that, using equation (9), we will
often writeH(t; f� p̄′(x)δ) instead ofH(t; f� p̂(x)). SinceH(t; f�0) = 0, where 0 denotes
the zero function, the first-order expansion gives H(t; f� p̄(x+ δ) − p̄(x)) = Y (t; f )δ+
o(δ), where the marginal impulse response Y (t; f ) is measured per unit of the monetary
shock.



1662 F. ALVAREZ AND F. LIPPI

2.3. Equivalence of IRF’s H and G for Symmetric Ss Problems

Next, we present a proposition for symmetric problems establishing conditions for the
standard IRF H(t), the one for the problem with reinjections, to coincide with G(t), the
IRF for the problem without reinjections. We start by defining the notion of a symmetric
Ss problem. Informally, this amounts to assuming that the firm problem has zero drift and
that the firm’s return function is symmetric. We then show that for symmetric Ss problems,
H(t) =G(t) for all horizons t ≥ 0. Let us begin by defining a symmetric problem.

DEFINITION 2: We define a problem to be symmetric if: (s1) the unregulated state has
zero drift, that is, μ= 0, (s2) the optimal return point x∗ is equidistant from the barriers,
that is, (x̄+ x)/2 = x∗, and (s3) ξ(x) is symmetric in x around x∗.

Let {x(t)} be the regulated state, u(x; t� x∗) be the density of distribution of x(t) = x,
conditional on x(0) = x∗. If the decision rules are symmetric, then the density satisfies
u(z + x∗; t� x∗) = u(−z + x∗; t� x∗) for all z ≥ 0. The symmetry of u(·; t� x∗) follows from
the combination of the symmetry of the distribution of a BM without drift, the symmetry
of the boundaries relative to x∗, and the symmetry of ξ(·).

Moreover, if R is symmetric in x relative to x∗ and if μ= 0, then the optimal decision
rule for the firm’s problem is symmetric, as in Definition 2. This follows from using a guess
and verify strategy in equation (1) and the boundary conditions, assuming that the value
function v is symmetric in x around x∗.

PROPOSITION 1: Assume the firm’s problem is symmetric as in Definition 2. Then if either
(i) the function of interest f : [x� x̄] → R is anti-symmetric (and P̂(·) is arbitrary) or

(ii) the initial condition P̂ : [x� x̄] → R, including its mass points, is anti-symmetric (and
f (·) is arbitrary),

we have that G(t; f� P̂) =H(t; f� P̂) for all t.

See Appendix A of the Supplemental Material for the proof. The proposition’s require-
ment that either the function of interest f , or the initial condition P̂ , is anti-symmetric is
not that restrictive for our applications. The main function of interest for the paper, used
to compute the IRF for output, is given by f (x) = −x in a large class of models. Also,
our benchmark case in this class of models is that the signed measure P̂ is anti-symmetric
when we consider a small monetary shock.

3. ANALYTIC IMPULSE RESPONSE FUNCTIONS

This section characterizes the impulse response without reinjections given in equa-
tion (7), using an analytic solution for the operator G(f )(x� t) defined in equation (6).
The solution allows us to consider models with drift and with asymmetric return point and
fully characterize the response to a once and for all shock. As made clear by Proposition 1
the focus on the case without reinjections is without loss of generality for a symmetric
model.

The main analytical tool is the use of eigenvalues and eigenfunctions, for which it is
useful to define the inner product:

〈f�g〉 ≡
∫ x̄

x

f (x)g(x)w(x) dx where w(x) ≡ e 2μ
σ2 x� (11)



ANALYTIC THEORY OF A MONETARY SHOCK 1663

which we use to define the set of square integrable functions, L2
w, for which ||f||2 ≡

〈f� f 〉 < ∞. Note that the “weight” function w(x) is constant in the case of zero drift,
that is, w(x) = 1 if μ = 0. Now we introduce the sequence of eigenvalues and eigen-
functions {λj�ϕj}∞

j=1 corresponding to the dynamics of the price gaps characterized by
{x� x̄� ξ(·)�μ�σ2}. The eigenfunctions of the problem with drift are obtained by using the
functions γj ∈L2, twice differentiable in x which solves:

λjγj(x) = γ′′
j (x)

σ2

2
−

(
ξ(x) + 1

2
μ2

σ2

)
γj(x) for all x ∈ [x� x̄]�

s.t. boundary conditions γj(x̄) = γj(x) = 0�

and where ϕj(x) ≡ γj(x)e− μ

σ2 x	 (12)

Notice that given {x� x̄� ξ(·)�μ�σ2}, finding the eigenvalues and eigenvectors amounts to
solving a linear second-order differential equation with known boundary conditions.6

Here, we give an informal explanation of how the eigenfunctions-eigenvalues are used
to solve for G(f )(x� t). First, since G(f )(x� t) is an expected value valid for all t > 0, as
defined in equation (6), it must satisfy the following partial differential equation (p.d.e.):
∂tG(f )(x� t) = μ∂xG(f )(x� t) + σ2

2 ∂xxG(f )(x� t) −ξ(x)G(f )(x� t) for all x ∈ [x� x̄] and t >
0, with two types of boundary conditions, G(f )(x� t) = G(f )(x̄� t) = 0 for all t > 0 and
G(f )(x�0) = f (x) for all x ∈ [x� x̄]. The boundary conditions for t > 0 are an implication
of x̄ and x being exit points; that is, close to them, the survival rate tends to zero. The
boundary condition at t = 0 follows directly from the definition of G(f ) in equation (6).
Now we turn to how to find the solution of the p.d.e. and boundary conditions. First, we
look for a family of functions of x, given by {ϕj} and numbers {λj} so that G(ϕj)(x� t) =
ϕj(x)eλjt ≡ γj(x)e− μ

σ2 xeλjt solves the p.d.e. and boundary conditions. Direct computation
of the derivatives of G shows these functions are a solution provided that γj and λj solve
the o.d.e. and boundary conditions in equation (12). This is the standard separation of
variables method. Second, since the p.d.e. that we are interested in solving is linear, any
linear combination of solutions is a solution, that is, G(

∑
j bjϕj)(x� t) = ∑

j bjG(ϕj)(x� t)
for any set of coefficients {bj}. Hence we look for linear combination of the ϕj , such
that f (x) = ∑

j bjϕj(x). The results below show that under the stated conditions, there
is always a countable family of functions ϕj and numbers λj satisfying equation (12), and
that linear combinations of these functions span the set of square integrable functions, as
stated below.

We summarize known results for the eigenvalues and eigenfunctions corresponding to
the process of the price gap until the next price change defined by {x�x∗� x̄� ξ(·)�μ�σ2},
which can be found in Berezinn and Shubin (1991) and Zettl (2010). We assume: [A1]
positive volatility, that is, σ2 > 0; [A2] non-negative, continuous, generalized hazard func-
tion ξ(·); and [A3] either finite domain, that is, −∞ < x < x̄ < ∞, or infinite domain
x̄= −x= ∞ with diverging generalized hazard function, that is, ξ(x) → ∞ as x→ ±∞.

PROPOSITION 2: Assume that {x� x̄� ξ(·)�μ�σ2} satisfies assumptions [A1], [A2], and
[A3]. Then: (E1) there exist countably many eigenvalues-eigenfunctions pairs solving equa-
tion (12); (E2) the eigenvalues are real, negative, non-repeated, and diverge, that is, 0> λ1 >

6Due to the focus on a problem without reinjections, the optimal return point x∗ is not needed to solve for
eigenfunctions and eigenvalues.
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λ2 > · · · , with λj → −∞ as j→ ∞; (E3) the eigenfunctions {ϕj} form an orthonormal base
of L2

w, that is, 〈ϕi�ϕj〉 = δij , that is, equals 1 if j = i and zero otherwise, and any function
f ∈ L2

w can be obtained by the projection into the eigenfunctions: ||f − ∑∞
j=1〈f�ϕj〉ϕj||= 0;

and [E4] the eigenfunctions are indexed by their number of interior zeroes, with ϕj having
j−1 zeroes on (x� x̄). If, in addition, {x�x∗� x̄� ξ(·)} is symmetric in the sense of Definition 2,
then: [E5] the eigenfunctions ϕj indexed by j = 1�3� 	 	 	 are symmetric and those indexed by
j = 2�4 	 	 	 are anti-symmetric.

A special case of interest occurs when the generalized hazard function is constant, that
is, ξ(x) = ζ, so that we have the Calvo-plus model. In this case, equation (12) takes the
form of the well-known heat equation studied by Fourier, whose eigenvalues and eigen-
functions are

λj = −
[
ζ + 1

2
μ2

σ2 + σ2

2

(
jπ

x̄− x
)2]

and

ϕj(x) = e
− μ

σ2 x√
(x̄− x)/2

sin
(

[x− x]
[x̄− x]

jπ

)
for j = 1�2�3� 	 	 	 	

(13)

We are now ready to state our main result:

THEOREM 1: Assume that the price gaps are governed by {x� x̄� ξ(·)�μ�σ2} which satisfies
assumptions [A1], [A2], and [A3]. Let f ∈ L2

w be piecewise differentiable, with countably
many discontinuities. Furthermore, let P̂ ∈L2

w be a piecewise continuous density with at most
countably many mass points, K. Then the impulse response in equation (7) is

G(t; f� P̂) =
∞∑
j=1

eλjt〈ϕj� f 〉〈ϕj� P̂/w〉 +
∞∑
j=1

K∑
k=1

eλjt〈ϕj� f 〉ϕj(xk)pm(xk)� (14)

where 〈·� ·〉 is the inner product defined in equation (11), each of the eigenvalue-eigenfunction
pair satisfies equation (12), and the double summation accounts for K mass points.

Theorem 1 provides a tractable analytic representation of the impulse response func-
tion. One interesting property of the solution is that it separates the effect of the function
of interest f , encoded in the projection coefficient 〈ϕj� f 〉, from the effect of the initial
impulse P̂ , encoded in the projection coefficient 〈ϕj� P̂/w〉, and from the effect of time,
encoded in the eigenvalues λj . This implies, for instance, that to analyze the effects of dif-
ferent shapes of the cross-sectional distribution, one only needs to change the projection
coefficients of the initial condition P̂ , leaving all other coefficients unchanged. Notice that
although the eigenvalues (encoding the time decay) are unchanged, the modified coeffi-
cients will affect the shape of the impulse response function by changing the “weights”
with which the different eigenvalues enter the expression. In Section 4.1, we illustrate an
application that compares the propagation of a small versus a large monetary shock in the
model of Golosov and Lucas (2007).

In the case where the initial condition P̂ has no mass points, the expression consists
only of the first part: G(t; f� P̂) = ∑∞

j=1 e
λjt〈ϕj� f 〉〈ϕj� P̂/w〉. Note moreover that, in the

case of μ 
= 0, one of the two projections, that is, either the one for f or the one for P̂ ,
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is weighted by the function w(x) = e
2μ
σ2 x, while the other one is not. Where convenient,

equation (14) can equivalently be rewritten as

G(t; f� P̂) =
∞∑
j=1

eλjt〈ϕj� f/w〉〈ϕj� P̂〉 +
∞∑
j=1

K∑
k=1

eλjt〈ϕj� f/w〉ϕj(xk)pm(xk)w(xk)	

In the case with no drift, that is, when μ= 0, thenw(x) = 1, the two formulations coincide
since the projections do not include any weight.

In most of our applications, we will use the Calvo-plus model and variations of it, for
which we have the eigenvalues and eigenfunctions shown in equation (13). The alert
reader will note that, in general, the eigenfunctions and eigenvalues of equation (12) are,
after change in units, the ones of the one-dimensional Schrödinger equation with a poten-
tial given by ξ(·), and where the “particle” is confined to a box [x� x̄]. Given the central
role that such eigenvalues and eigenfunctions play in quantum mechanics, the solution
for this equation is either known in closed form or perturbation techniques have been de-
veloped to obtain analytical approximations, as summarized in Fernandez (2001). In Sec-
tion 4.5, we illustrate an application where the generalized hazard function is quadratic,
that is, ξ(x) = κx2, which turns out to be one of the most studied quantum mechanical
systems, namely the quantum harmonic oscillator, for which eigenvalues and eigenfunc-
tions are known in closed form.

Theorem 1 can be readily understood by considering the discrete time and discrete
state of the representation in equation (8). In this case, qt (y|x) corresponds to the {y�x}
element of the tth power of the one-period transition matrix. Diagonalizing this matrix
delivers the eigenvalue and eigenvectors that can be used to compute projections that
are equivalent to the ones in equation (14). A straightforward application of Theorem 1
using a limiting argument for the function f (z; y� ε) = 1{z∈(y−ε�y+ε)}/(2ε), the definition of
a density function qt (y|x), and an initial condition with all the probability in a mass point
at x, that is, pm(x) = 1, gives a closed-form expression for the transition function qt (y|x)
defined in equation (8):

COROLLARY 1: Let (x� y) ∈ [x� x̄]2. The transition density from x to y in t periods is

qt (y|x) =
∞∑
j=1

eλjtw(y)ϕj(y)ϕj(x)	 (15)

As was the case for the impulse response function, the theorem delivers a neat sepa-
ration between the time and the state which gives a simple characterization of the time
evolution of the whole distribution after a shock.

4. APPLICATIONS TO STICKY-PRICE MODELS

This section uses Theorem 1 to analyze several economic applications: first, an ana-
lytic summary of monetary shocks in the standard menu cost model, as in, for example,
Golosov and Lucas (2007), for both small and large shocks. We show that this model has a
single parameter determining its behavior, pinned down by the frequency of price changes.
Second, we use the Nakamura and Steinsson (2010) Calvo-plus model, encompassing a
large class of models that span Golosov–Lucas and Calvo, to discuss the “selection ef-
fect,” a key mechanism that explains why different sticky-price models yield different real
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effects (Section 4.2). We show that the selection effect creates a wedge between the dura-
tion of price spells and the duration of the aggregate output response. The two durations
coincide when there is no selection, as in the Calvo model. Analytically, such a wedge
is visible in the magnitude of the eigenvalues that control, respectively, the dynamics of
the survival function of prices and the dynamics of aggregate output. Third, we present
a surprising result proving that, following a marginal monetary shock, the response of
even centered moments is zero at all horizons (Section 4.3). This applies, for instance,
to the cross-sectional price dispersion, to the kurtosis of the price changes, as well as to
the survival function. Since the cross-sectional price dispersion is the main measure of
inefficiency in models with price stickiness, the result implies that in these models, such a
cost should be measured in an “average” sense, and not as a consequence of a particular
shock. Fourth, we study the propagation of monetary shocks in models with price-plans
introduced by Eichenbaum, Jaimovich, and Rebelo (2011) to model the phenomenon of
temporary price changes (prices that move from a reference value for a short period of
time and then return to it). These models can be given a full analytical characterization
and are particularly interesting because they may yield non-monotone impulse response
functions (Section 4.4). Fifth, we apply Theorem 1 to a setup pioneered by Caballero and
Engel (1993a), that uses a “generalized hazard function” to model price-setting behavior.
This setup allows for a vast variety of empirical price-setting patterns to be considered.
We analytically solve the model by Caballero and Engel (2007) using a quadratic gen-
eralized hazard function as an example (Section 4.5). We conclude by mentioning other
tractable applications, including the effect of volatility shocks on the propagation of mon-
etary impulses and models with multi-product firms.

4.1. The Canonical Menu Cost Model of Golosov and Lucas (2007)

We solve the canonical menu cost model, obtained by setting μ = 0 and ζ = 0 in the
problem of Section 2.1, which yields the symmetric inaction region x= −x̄ with optimal
return x∗ = 0. To compute the impulse response of output, we use f (x) = −x since the
contribution of a firm to the deviation of output (relative to steady state) is inversely
proportional to its price gap. As prescribed by equation (11), we compute the projection
coefficient 〈f�ϕj〉 in equation (14) integrating f (x) against the eigenfunctions ϕj(x) given
in equation (13). This gives

〈f�ϕj〉 = 4x̄3/2

jπ
for j = 2�4�6� 	 	 	 � and 〈f�ϕj〉 = 0 otherwise. (16)

We first consider a marginal monetary shock so that p̂(x) = δp̄′(x), as in equation (9).
The invariant distribution for this model is readily derived from equation (2) and the
associated boundary conditions, which gives the triangular density p̄(x) = 1/x̄ −|x|/x̄2

for x ∈ (−x̄� x̄). It is apparent that p̄′(x) is a step function, equal to 1/x̄2 for x ∈ [−x̄�0)
and equal to −1/x̄2 for x ∈ (0� x̄]. As before, we construct the projection coefficients
〈p̄′�ϕj〉 integrating p̄′(x) against ϕj(x); this gives

〈
p̄′�ϕj

〉 = 8
jπx̄3/2

if j = 2 + 4i for i= 0�1�2� 	 	 	 � and

〈
p̄′�ϕj

〉 = 0 otherwise.

(17)
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Thus, the impulse response coefficients for equation (14) are

〈
p̄′�ϕj

〉〈f�ϕj〉 = 32
(jπ)2 if j = 2 + 4i for i= 0�1�2� 	 	 	 � and

〈
p̄′�ϕj

〉〈f�ϕj〉 = 0 otherwise.

The eigenvalues are immediately obtained from equation (13) setting μ= ζ = 0 and us-
ing x= −x̄, to get λj = −σ2

2 ( jπ2x̄ )2 = − j2π2

8 N , where the second equality uses that the fre-
quency of price adjustment is N = (σ/x̄)2.

Putting together the (nonzero) projection coefficients and the eigenvalues so derived
yields the marginal impulse response of output as defined in equation (10):

Y (t) =
∞∑
k=0

8(
(1 + 2k)π

)2 e
−N ((1+2k)π))2

2 t 	 (18)

There are two surprising properties of the model unveiled by equation (18). First, the
model dynamics are fully encoded in a single parameter, namely the average number
of price changes per period N . Second, not all eigenvalues matter for output dynam-
ics. In particular, the dominant eigenvalue λ1, the one related to the very low frequen-
cies, is irrelevant. This is a general property of several models that we further discuss in
Corollary 4. As a summary measure, consider the Cumulative IRF or CIR, defined to be
M(f� P̂) = ∫ ∞

0 G(t; f� P̂) dt. For a marginal shock, direct computation using the expres-
sion for Y gives M(f� P̂) = δ

N
1
6 , which agrees with the general formula for CIR in Alvarez,

Le Bihan, and Lippi (2016), Alvarez, Lippi, and Oskolkov (2022), M(f� P̂) = δ
N
Kur

6 , fea-
turing in the numerator the kurtosis of the distribution of price changes (equal to 1 in
the Golosov–Lucas model, equal to 6 in, for example, Calvo). Notice that including only
the term for the first eigenvalue with nonzero projection, that is, λ2 = −N π2

2 , gives an
excellent approximation of the shape of the IRF and of the CIR. Indeed, the ratio of the
CIR using all the eigenvalues to the CIR using only the second is equal to 96/π4 ≈ 0	985,
which indicates the accuracy of the approximation.

A Large Monetary Shock. Consider now a large shock that displaces half of the mass
of firms outside of the inaction region, namely δ = x̄.7 The cross-sectional density right
after the shock is p(x�0) = −x/x̄2 for x ∈ (−x̄�0), and p(x�0) = 0 for x ∈ (0� x̄). The
large shock leads half of the firms to adjust prices on impact, and given the symmetry
of the problem, we can ignore those firms for the computation of the impulse response.
Using equation (11) gives the projection coefficients 〈p0�ϕj〉 = 2

jπx̄1/2 if j = 2 + 2i for i =
0�1�2� 	 	 	 . The odd-indexed projection coefficients are irrelevant since they will be mul-
tiplied by the zero coefficients of f ; see equation (16). We can then normalize by the
shock size x̄ and use equation (14) to compute the impulse response function (per unit of
shock):

Ylarge(t) =
∞∑
k=0

2(
(1 + k)π

)2 e
−N ((1+k)π))2

2 t 	 (19)

7We are thankful to an anonymous referee for suggesting this application.
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Notice that this expression depends only on a single parameter, as was the case for the
marginal impulse response. Also note that this impulse response features some even-
index eigenvalues that were not present in the marginal one (e.g., j = 4�6�8� 	 	 	). This
implies a change of the coefficients, that yields a much smaller persistence of the shocks.
This can be easily seen by inspecting the coefficients of the two expressions. We can also
compute the CIR for the large shock δ = x̄. In this case, we obtain M(f� P̂) = x̄

N
2

45 . We
can see that, per unit of shock, the CIR of a large shock is much smaller than the one
for a marginal shock, about one fourth in magnitude. Notice that the leading eigenvalue
λ2 = −N π2

2 , which is the same in both impulse responses, is associated with a coefficient
that is exactly four times larger in the case of a marginal shock, so that the IRF (per unit
of shock) is approximately four times larger at each time t.

4.2. The “Selection Effect” in the Calvo-Plus Models

This section applies Theorem 1 to illustrate why different sticky-price models display
different degrees of “selection.” The notion of selection, coined by Golosov and Lucas,
refers to the fact that firms that adjust prices following a monetary shock are selected from
a particular set, such as those that need to make a large adjustment. This contrasts with
models where adjusting firms are not systematically selected, such as models where the
times of price adjustment are exogenously given, such as the Taylor or the Calvo model. It
is known that different amounts of selection affect the propagation of monetary shocks.
We illustrate this result analytically using the Calvo-plus model, a model that nests several
special cases featuring different degrees of selection, from Golosov–Lucas to the pure
Calvo model.

Decision Rules and Steady State in the Calvo-Plus Model. Next, we use the decision
problem defined in Section 2.1, assume zero inflation (μ= 0), and a quadratic profit func-
tion R(x) = x2. It is straightforward that x̄= −x > 0 and that the optimal return is x∗ = 0.
Given the policy parameters {−x̄� x̄} and the law of motion of the state dx = σ dW , it
is immediate that the eigenvalues-eigenfunctions of the problem are those computed in
equation (13). Since the eigenvalues depend on the speed at which prices are changed,
we find it convenient to rewrite them in terms of the average number of price changes
per unit of time. To this end, we compute the expected number of adjustments per unit
of time, the reciprocal of the expected time until an adjustment, N = ζ

1−sech(
√

2φ)
where

φ ≡ ζx̄2

σ2 . Note that as x̄→ ∞, then N → ζ, which is the Calvo model where all adjust-
ments occur after an exogenous Poisson shock. As ζ → 0, then N → σ2/x̄2, so that the
model is Golosov and Lucas. This single parameter φ ∈ (0�∞) controls the degree to
which the model varies between Golosov–Lucas and Calvo. Note that with this parame-
terization, we can distinguish between N and the importance of the randomness in the
menu cost ζ versus the width of the barriers, x̄2/σ2. Indeed, ζ/N , the share of adjustment
due to random free adjustments, depends only on φ. We let ζ

N
= �(φ) where this function

is defined as �(φ) = 1 − sech(
√

2φ). The function �(·) is increasing in φ, and ranges from
0 to 1 as φ goes from 0 to ∞. The invariant density function p̄ solves the Kolmogorov
forward ζp̄(x) = σ2/2p̄′′(x) in the support, except at x= 0, integrates to 1, and it is zero
at ±x̄. This gives

p̄(x) = θ
[
eθ(2x̄−|x|) − eθ|x|]
2
(
1 − eθx̄)2 for x ∈ [−x̄� x̄] where θ≡ √

2ζ/σ2	 (20)
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Finally, using equation (13) for j = 1�2� 	 	 	, we have the eigenvalues:

λj = −ζ − σ2

x̄2

(jπ)2

8
= −ζ

[
1 + (jπ)2

8φ

]

= −N�(φ)
[

1 + (jπ)2

8φ

]
where φ≡ ζx̄2

σ2 	 (21)

As in Section 4.1, we use f (x) = −x and consider a marginal monetary shock so that
p̂(x) = δp̄′(x), as in equation (9), to analyze the response of output to a small monetary
shock. We write the output IRF Y (t) per unit of the shock δ as in equation (10). Applica-
tion of Theorem 1 gives the projection coefficients 〈p̄′�ϕj〉〈f�ϕj〉. Getting rid of the zero
projections, and after some careful algebra, we have the following:

COROLLARY 2: The marginal impulse response in the Calvo-plus model is

Y (t) =
∞∑
k=1

2θ2

θ2 + (kπ)2

(
(−1)k

(
1 + e2θ

) − 2eθ(
1 − eθ)2

)
e

−(ζ+ (kπ)2σ2

2x̄2 )t
	 (22)

Interpretation of the Dominant Eigenvalue. The dominant eigenvalue has the interpre-
tation of the asymptotic hazard rate of price changes. In particular, let h(t) be the hazard
rate of price spells as a function of the duration of the price spell t. Let τ be the stopping
time for prices, that is, τ is the first time at which σW (t), which started at W (0) = 0,
either hits x̄ or x = −x̄, or that the Poisson process changes. Let S(t) be the survival
function, that is, S(t) = Pr{τ ≥ t}. Notice that the function of interest to compute the
survival function is the indicator f (x) = 1 for all t < τ. The hazard rate is defined as
h(t) = −S′(t)/S(t). Application of Theorem 1 gives the following:

COROLLARY 3: The survival function S(t) depends only on the odd-indexed eigenvalues-
eigenfunctions, that is, (λi�ϕi) for i= 1�3�5� 	 	 	 . Let h(t) be the hazard rate of price changes.
Then the dominant eigenvalue λ1 is equal to the asymptotic hazard rate, that is,

S(t) =
∑

j=1�3�5�			

eλj t〈1�ϕj〉ϕj(0) and − λ1 = lim
t→∞

h(t)�

where we use equation (14) assuming a degenerate random variable concentrated at x= 0 so
that pm(0) = 1.

Irrelevance of Dominant Eigenvalue for Output IRF. Next, we show that the dominant
eigenvalue λ1, as well as all other odd-indexed eigenvalue-eigenfunction pairs, play no
role in the output impulse response. Consider the output coefficients in the impulse re-
sponse, given by equation (16). It is apparent that the coefficients 〈f�ϕj〉 for all the odd-
indexed eigenvalues-eigenfunctions (j = 1�3� 	 	 	 ) are zero, that is, the loadings of these
terms are zero. This implies that the coefficient corresponding to the dominant eigen-
value λ1 is zero. The first nonzero term, which we call the “leading” eigenvalue, involves
λ2. This is because ϕj(·) is symmetric around x = 0 for j odd, and anti-symmetric for j
even. Thus:

∫ x̄

x
ϕj(x)f (x) dx = 0 =⇒ 〈f�ϕj〉 = 0 for j = 1�3� 	 	 	 . This happens since all

the odd-indexed eigenfunctions ϕj (j = 1�3� 	 	 	) are symmetric functions, and thus the
projection onto them of an asymmetric function, such as f (x) = −x, yields a zero 〈f�ϕj〉
coefficient. We summarize this result in the next corollary.
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FIGURE 1.—Selection effect in the Calvo-plus model. Note: The left panel plots our summary measure of the
selection effect, λ2/λ1, as a function of the “Calvoness” of the problem � ∈ (0�1), namely the share of random
free adjustments. The right panel plots the cumulative output response as a function of the same variable for
a model with N = 1.

COROLLARY 4: The output impulse response function for the Calvo-plus model depends
only on the even-indexed eigenvalues-eigenfunctions (λj�ϕj with j = 2�4� 	 	 	), and has zero
loadings on the odd-indexed ones, such as the dominant eigenvalue. Thus, the first leading
term corresponds to the second eigenvalue λ2 = −(ζ+ π2σ2

2x̄2 ). The marginal impulse response,
given in equation (22), satisfies λ2 = limt→∞

logY (t)
t

.

The corollary states that only half of the eigenvalues (those with an even index) show
up in the output impulse response function. The largest eigenvalue is λ2, which we call
the “leading” eigenvalue of the output response function. It is interesting to notice that
the dominant eigenvalue λ1 does not appear in the impulse response for output. Notice
the difference with the survival function where the only eigenvalues that appear are those
with an odd-index. The left panel of Figure 1 plots the ratio between the leading eigen-
value for output λ2 and the dominant eigenvalue λ1. It is straightforward to see that the
ratio, λ2

λ1
= 8φ+4π2

8φ+π2 , depends only on φ, so that it can be immediately mapped into the
“Calvoness” of the problem �(φ) ∈ (0�1), measuring the share of random free adjust-
ments. It appears that the ratio, which can also be interpreted as the ratio between the
asymptotic duration of price changes over the asymptotic duration of the output impulse
response, is monotonically decreasing in �, and converges to 1 as �→ 1. The economics
of this result is that the shape of the impulse response of output depends on the differ-
ential impact of the aggregate shock on price increases and price decreases. Instead, the
dominant eigenvalue controls the asymptotic behavior of price changes, both increases
and decreases. As �→ 1, selection disappears from the model and the two durations co-
incide. The right panel of the figure uses the particular case of a small monetary shock to
illustrate that as � increases, the cumulated output effect becomes larger due to a muted
selection effect.

4.3. IRF of Cross-Sectional Even Moments After a Monetary Shock

This section shows that in an economy with low inflation, where the distribution of price
gaps is symmetric, the response of even centered moments to a marginal monetary shock
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is zero at all horizons.8 One particular implication of the result is that the cross-sectional
price dispersion is not sensitive to small monetary shocks in a low inflation economy. The
result is relevant because it shows that one of the two sources of inefficiencies in monetary
models, namely the one due to the cross-sectional price dispersion, does not deviate (up
to second-order terms) from its steady-state value.9 For the result to hold, a small inflation
is required. Interestingly, it can be easily shown that under a small inflation, an identical
result holds in a large class of time-dependent models that includes the well-known Calvo
model: the effects of a small monetary shock on all even moments do not include any
first-order terms.10 An advantage of the analytic approach is to clearly illustrate the forces
behind this surprising result.

Let us then analyze how the dispersion of markups behaves following a small monetary
shock of size δ. Let Mk(t;δ) ≡ E[x(t) − E(x(t))]k, for k= 2�4� 	 	 	, denote the kth even
centered moment of x, measured t periods after the monetary shock δ hits the economy at
the steady state. In particular,M2(t;δ) will denote the cross-sectional variance of markups
t periods after the monetary shock. We have the following result:

PROPOSITION 3: Assume the initial condition p̂, the signed mass right after the aggregate
shock, is anti-symmetric. Then the initial impulse p̂ does not have a first-order effect on any
even centered moment Mk(t;δ) with k= 2�4� 	 	 	.

The proposition implies that a small (marginal) monetary shock does not have a first-
order impact on the dispersion of markups at all t > 0 after the monetary shock. It also
shows that a zero first-order effect is predicted for all even centered moments of the dis-
tribution of markups, such as kurtosis. The result does not apply to the uneven moments,
such as the mean markup (proportional to total output) or the skewness of the distribu-
tion, that display a nonzero first-order effect following a marginal monetary shock. As
mentioned at the beginning of the section, this result matters because even moments,
such as the dispersion of price gaps, map directly into the efficiency of the economy. In
terms of measurement, the result implies one should look at the effect of varying the level
of inflation on price dispersion as in Alvarez, Beraja, Gonzalez-Rozada, and Neumeyer
(2019) or Nakamura, Steinsson, Sun, and Villar (2018). Likewise, the hazard rate of price
changes should not react to a small monetary shock. This gives a theoretical foundation to
the estimation of hazard rates of price changes using unconditional time series evidence.11

Alternatively, this prediction can be used to test the model.

4.4. Price-Plans and the Hump-Shaped Output IRF

The model with price-plans assumes that, upon paying the menu cost, the firm can
choose two, instead of one price. At any point in time, the firm is free to charge either
price within the current plan, but changing the plan is costly. The idea was first proposed

8We are thankful to Nobu Kiyotaki for posing this question to us.
9It is well known that there are two sources of inefficiency in sticky-price models: inefficiencies related to

the level of the markup which relate to the overall level of economic activity, or the average markup, and
inefficiencies related to the dispersion of markups. The former are associated with fluctuations in output,
whereas the latter are related to variance of prices (see Woodford (2003), Chapter 6).

10See Appendix E in the Supplemental Material for a simple proof.
11In Alvarez et al. (2019), it was shown theoretically that price dispersion and the average frequency of price

changes should not be affected by inflation around zero inflation, but that it should be responsive at higher
levels; supporting evidence on both predictions is offered.
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FIGURE 2.—Price-plan model. Note: The figure plots the output IRF for an economy with “price-plans” for
two levels of “Calvoness” � ∈ (0�1), namely the share of random free adjustments.

by Eichenbaum, Jaimovich, and Rebelo (2011) to model the phenomenon of temporary
price changes (prices that move from a reference value for a short period of time and then
return to it). In Alvarez and Lippi (2021), we provided an analytic solution to this problem
and characterized the determinants of x̄, the threshold where a new plan is chosen, as well
as the optimal prices within the plan, named x̃ and −x̃. When x ∈ [−x̄�0], the firm charges
−x̃, and when x ∈ (0� x̄], it charges x̃. The invariant density of price gaps is still given by

equation (20). For a given threshold x̄, the value of x̃ is given by x̃= x̄[
e
√

2φ−e−
√

2φ−2
√

2φ√
2φ(e

√
2φ+e−

√
2φ−2)

] ≡
x̄ρ(φ) > 0whereφ = x̄2ζ/σ2. The function ρ(φ) gives the optimal price within the plan
as a function of the adjustment threshold, namely x̃= ρ(φ)x̄. Simple analysis shows that
the images of ρ(φ) lie in the interval (0� 1/3), and that limφ→0 ρ(φ) = 1/3.

In this model, the output of a firm with gap x is given by f̃ (x) = −x− x̃ if x ∈ [−x̄�0)
and f̃ (x) = −x+ x̃ if x ∈ (0� x̄]. By the linearity of Fourier series, we can add to the coef-
ficients of the function f (x) = −x, given in equation (16), the ones of the step function:
f0(x) = −x̃ if x ∈ [−x̄�0) and f0(x) = x̃ if x ∈ (0� x̄]. The function f0 has coefficients equal
to 〈f0�ϕj〉 = − 8x̄3/2ρ(φ)

jπ
if j = 2 + 4i for i = 0�1�2� 	 	 	 � and 〈f0�ϕj〉 = 0 otherwise. The ex-

pression for the impulse response thus features the additional term

〈
p̄′�ϕj

〉〈f0�ϕj〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if j is odd or if j is even and
j

2
is even�

−4ρ(φ)
[

1 + cosh(
√

2φ)

cosh(
√

2φ) − 1

][
1

1 + j2π2

8φ

]

if j is even and
j

2
is odd.

(23)

Thus, the marginal impulse response is given by

YPlan(t) = YCalvoplus(t) +
∞∑
j=1

〈
p̄′�ϕj

〉〈f0�ϕj〉eλj (φ)t �
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where the expression for YCalvoplus was given in equation (22). While the impulse response
is monotone decreasing in the Calvo-plus model, in the price-plan model the impulse
response can be hump-shaped. Indeed, as φ increases, the Calvoness index � ≡ ζ/N ∈
(0�1) defined before also increases, and the impulse response goes from being decreasing
to being hump-shaped when ζ = σ2/x̄2, as shown in Figure 2 (see Proposition 9 in Alvarez
and Lippi (2019) for a formal statement).

4.5. Models With a Generalized Hazard Function

In a series of influential papers, Caballero and Engel (1993a, 1999, 2007) proposed
models of infrequent adjustment, for either price setting or investment decisions, where
the firm’s behavior is summarized by a generalized hazard function ξ(x), giving the prob-
ability of adjustment as a function of the state x. The microfoundation for such behavior
can be derived from our setup, namely equation (1), or from a setup with random menu
costs as in the original papers by Caballero and Engel. The generalized hazard function
provides a considerable generalization of the Calvo-plus model where the hazard function
ξ is constant within the inaction region, as in the case considered in equation (13). Instead,
in this more general setup, the hazard function ξ depends on the value of the state, as in
equation (12). Many authors have employed this setup, starting with the seminal work by
Dotsey, King, and Wolman (1999).12

A case considered in the price-setting literature is the one where ξ(x) is quadratic and
x̄ = ∞, as in Caballero and Engel (2007) and Berger and Vavra (2018). For this case,
all the eigenvalues and eigenfunctions are known analytically, as shown below. Another
tractable example is the one where the hazard function is the absolute value, ξ(x) = κ|x|,
a case that is strongly supported by the estimates of Figures 8 and 9 in Eichenbaum,
Jaimovich, and Rebelo (2011). Both the quadratic and the absolute-value hazard give
rise to cross-sectional patterns that are consistent with empirical observations on the fre-
quency and size of price changes. The eigenvalues and eigenfunctions for this case are
known to be the Airy functions and its zeroes. More broadly, we note that there is a wealth
of analytical approximations used in quantum mechanics to characterize both eigenval-
ues and eigenfunctions for this type of equations, including perturbation methods which
expand ξ around a known solution, expansion methods around small values of σ2, and
approximation methods that replace ξ by a piecewise constant functions, as discussed in
Appendix B of the Supplemental Material.

The Quadratic Generalized Hazard. Consider the quadratic generalized hazard for the
symmetric unbounded case, that is, where ξ(x) = ξ0 + 1

2ξ2x
2 where ξ0 and ξ2 are non-

negative parameters characterizing the hazard function. Let {λj�ϕj} be the eigenvalues
and eigenfunctions that solve equation (12) for this ξ(x). After a change of variables, this
is exactly the equation for the eigenvalues (energy levels) and eigenfunctions (eigenstates)
of the quantum harmonic oscillator, a well-known problem in physics whose solution we
exploit for the next result:

12In Alvarez, Lippi, and Oskolkov (2022), we characterize price setting in the case with no drift and with
a symmetric instantaneous profit function. We have shown that any symmetric increasing function ξ(x) can
be rationalized by some distribution of menu cost, and also shown that ξ itself is uniquely identified by the
steady-state distribution of price changes. Moreover, we have shown that the cumulative impulse response of
output for an economy where price setting is given by any such generalized hazard function equals the kurtosis
of the price changes divided by six times the frequency of price changes.
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FIGURE 3.—Output response and hazard rates in different models (with N = 1). Note: The left panel plots
the impulse response to a small monetary shock for three models with the same average frequency and standard
deviation of price changes. The horizontal lines in the right panel are the asymptotic hazard of these same
models.

PROPOSITION 4: The eigenvalues and eigenfunctions {λj�ϕj} that solve equation (12) with
ξ(x) = ξ0 + 1

2ξ2x
2 and x̄= −x= ∞ and μ= 0 are given by

λj = −
[
σ

√
ξ2

(
j − 1

2

)
+ ξ0

]
for all j = 1�2� 	 	 	 � (24)

ϕj(x) = (
2j−1(j − 1)!√π)− 1

2 √ηe− η2x2
2 Hj−1(ηx) for all x� (25)

where η≡ (ξ2/σ
2)1/4 and Hj(·) is the (physicist’s) Hermite polynomial of degree j, given by

Hj(x) = (−1)jex2 dj

dxj
e−x2 .

It is immediate to see that, as was the case for the Calvo-plus model, the constant ξ0

simply adds to each of the eigenvalues obtained for ξ0 = 0 case, and does not affect the
eigenfunctions.

We use the proposition to compare the impulse response function generated by three
different models: the Golosov and Lucas model described in equation (18), a model with
quadratic hazard (where ξ0 = 0 and ξ2 = 1), and a Calvo model (with constant hazard
rate N). All models feature the same number of price adjustments per unit of time, so
that we normalize N = 1 without loss of generality. The left panel of Figure 3 plots the
impulse response produced by each model. It is apparent that the output response in the
quadratic hazard model (dashed line) is close to the one by Golosov and Lucas (dotted
line), and much smaller than the one in Calvo (solid line).

Following the logic used in Corollary 3, we analytically compute the survival function
and the hazard rate of adjustment as a function of durations, which are reported in the
right panel of the figure (see Appendix B for the analytic solution). We proved in Corol-
lary 4 that the dominant eigenvalue is irrelevant for the characterization of the output
response, since its associated eigenfunction has a zero projection with respect to the (anti-
symmetric) output function. However, one might conjecture that the dominant eigenvalue
might still contain useful information on the model dynamics. The right panel of the figure
plots the dominant eigenvalue, which corresponds to the asymptotic value of the hazard
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function marked by the thin horizontal lines (as established in Corollary 3). This exam-
ple shows that the ranking of the dominant eigenvalue is not matched by the ranking of
the persistence of the monetary non-neutrality. The quadratic hazard model features the
largest eigenvalue, in spite of the fact that the propagation in that model is in between
Calvo and Golosov=-Lucas.

The analytic results reveal the robustness of the patterns portrayed in the figure. The
three dominant eigenvalues for these models are given by the expressions that feature
only one parameter, namely the frequency of price adjustment N .13 Thus, for models
with the same N , there is no other parameter affecting the magnitude of the dominant
eigenvalue, so that the ranking between the dominant eigenvalues of these three models
is always the one reported in the right panel of the figure.

4.6. More Applications: Multiple Shocks and Multi-Product Firms

We briefly mention other applications that are of interest and can be solved using The-
orem 1. One application studies how changes to the volatility of shocks affect the prop-
agation of monetary innovations. The issue matters to, for example, the effectiveness of
monetary policy in recessions versus boom, when the state of the economy is assumed to
feature, respectively, high versus low volatility of shocks as in Vavra (2014). Our method
provides a sharp analytic answer to this question (see Appendix C of the Supplemental
Material for details). Solving this problem also shows how to analyze the economy’s re-
sponse to a sequence of unexpected shocks: in this case, there is first a volatility shock,
which is then followed by a monetary shock. A similar approach can be used to study a
sequence of monetary shocks.

We mention another setup, not nested by the one of Section 2, where the eigenvalues
and eigenfunctions can be explicitly computed. This is the setup of a firm facing a multi-
product price-setting problem, as in Midrigan (2011) for two products or the general case
of n products considered in Alvarez and Lippi (2014). This case is analyzed in the Online
Appendix F, where the n-dimensional problem is reduced to a two-dimensional problem.

5. SCOPE: LOCAL INSENSITIVITY TO ASYMMETRIES

In this section, we present a result that is useful to frame the scope of Theorem 1. We
show that the output’s impulse response to a marginal monetary shock is locally insensi-
tive to two forms of asymmetries. The first one concerns deviations from the zero drift,
or zero inflation, assumption. The second concerns the deviation from the symmetry of
the firm’s objective function. The insensitivity applies to the impulse response of any anti-
symmetric function f , not just the one for output, following a marginal monetary shock.
This gives the precise sense in which our result for a symmetric Ss problem extends to a
range of small inflation rates.

We let μ be the steady-state inflation. We also let a be a coefficient that measures the
degree to which the firms’s period return function is asymmetric. In particular, we let
R(x�a) be the return function which satisfies

R(x�a) =R(−x�−a) for all x�a	 (26)

13The dominant eigenvalue, λ1, in Calvo is λCalvo = −N , in the quadratic hazard model it is λQuad =
−

√
8
π
�( 5

4 )2N ≈ −1	31N , while in Golosov–Lucas it is: λGL = −π2/8N ≈ −1	23N .
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Note that a= 0 implies that the return function is symmetric. For a 
= 0, the function can
be interpreted as the sum of a symmetric and anti-symmetric function. An example of
this is R(x�a) = Bx2 + ax3, which can represent a third-order expansion of the original
profit function around the static maximizing choice x= 0. In this case, a is 1/6 times the
third derivative of the original profit function at x = 0. When either a 
= 0 or μ 
= 0, the
thresholds of the optimal Ss rule will not be equidistant from the optimal return point x∗.

The next proposition computes two derivatives of the output’s IRF to a small monetary
shock at any horizon t and shows that they are both zero. One is the derivative with respect
to steady-state inflation, and the other one is the derivative with respect to the degree of
asymmetry of the objective function. For this proposition, we need to consider the general
case with reinjection, since we do not have the required conditions of Proposition 1 that
ensure that H =G. Also note that the steady-state distribution p̄ will be, in general, also
a function of the drift and the degree of asymmetry (μ�a), and hence we include them
as arguments of the initial impulse p̂(x;δ�μ�a), as well as of the function H itself, since
this function depends on the process for x, and in particular the value of its drift, optimal
return point x∗, and thresholds x� x̄. We also explicitly include the shock δ as an argument
of p̂, which will clarify the arguments below. The initial condition for a monetary shock
thus is p̂(x;δ�μ�a) ≡ p̄(x+ δ;μ�a) − p̄(x;μ�a). Thus, the marginal impulse response
is

Y (t; f�μ�a) ≡ ∂

∂δ
H

(
t; f� p̂(·� δ�μ�a)�μ�a

)∣∣∣∣
δ=0

for all t ≥ 0	 (27)

The next proposition states that impulse response Y (t; f�μ�a) at any horizon t is approx-
imately the same as our benchmark case with zero inflation and with symmetric return
function. Formally, we have the following:

PROPOSITION 5: Consider, for simplicity, the Calvo-plus model. Let μ be the drift of the
state (the inflation rate), and a the index of asymmetry in the return function R(x�a). Then,

∂

∂μ
Y (t; f�μ�a)

∣∣∣∣
μ=0�a=0

= 0 and
∂

∂a
Y (t; f�μ�a)

∣∣∣∣
μ=0�a=0

= 0 for all t ≥ 0 (28)

for any anti-symmetric function f .

See Appendix A of the Supplemental Material for the proof. This result establishes the
insensitivity of the marginal impulse response function with respect to small amounts of
inflation and asymmetries in the objective function. Notice that the proof holds for any
function of interest f that is anti-symmetric. So this holds true for the output impulse
response, given by f (x) = −x, as well as for other anti-symmetric functions.

6. OTHER APPLICATIONS: SECTORAL REALLOCATION MODELS

In this section, we describe how to use our method to compute the impulse response
to an aggregate shock for a class of models of sectoral reallocation based upon the Lucas
and Prescott (1974) equilibrium search and unemployment model, as done for stylized
versions in Rogerson (1987), Jovanovic (1987), Hamilton (1988), and Gouge and King
(1997). Analyzing impulse responses to aggregate shocks in models such as Lucas and
Prescott (1974) is interesting per se, and it presents a case where the assumptions of
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symmetry and no-reinjection are not appropriate, and yet our main characterization holds
with minor modifications.

In these models, output is produced in separate locations (or by different sectors) with
a diminishing returns production function (or by sectors that produce differentiated prod-
ucts). Each location is subject to exogenous idiosyncratic persistent shocks to its produc-
tivity. Long-lived workers can stay in a location, where they earn a competitive wage, or
relocate to a location of their choosing at a cost, that is, search is directed. In equilib-
rium, workers’ reallocation decisions must be consistent with the distribution of future
wages, which requires to solve for the equilibrium value of reallocation, as described in
Chapter 13 of Stokey, Lucas, and Prescott (1989). In this setup, one can analyze many
interesting public policies such as unemployment insurance, minimum wages, firing taxes
as in Alvarez and Veracierto (2000), as well as other related topics such as human capital
accumulation by Rogerson (2005), and mobility and wage inequality by Kambourov and
Manovskii (2009). The relevant state for each location in this model can be simplified
substantially by assuming that the idiosyncratic shocks are geometric Brownian motions,
so that one can carry just the equivalent of full employment wages for each sector, as
shown in Alvarez and Shimer (2011). In the case of directed search, the steady-state dy-
namics of the relevant sector variables behave as a one-dimensional reflecting Brownian
motion, with two barriers corresponding to the equivalent full employment wages where
the sector either expels or attracts workers from the rest of the economy, and it makes
workers indifferent between leaving a depressed location, or migrating to the best loca-
tion, after paying the cost. Alvarez and Shimer (2011) worked out the case with an option
to be out of the labor force, which under some conditions—that is, infinite Frisch elastic-
ity for the decision—considerably simplifies the determination of the equilibrium value of
reallocation.

So far we have just described models of reallocation where the economy is at a steady
state, but aggregate fluctuations of unemployment, wages, productivity, and the dynamics
of their cross-sectorial distributions, are clearly interesting research topics. Indeed, highly
stylized versions of these models have been used to study aggregate fluctuations at least
since the work by Rogerson (1987), Jovanovic (1987), Hamilton (1988), and Gouge and
King (1997). Using the assumption discussed above to simplify the determination of the
equilibrium value of search, we can easily adapt the method in this paper to study impulse
responses to aggregate shocks in this setup. Examples of aggregate shocks will be perma-
nent changes in aggregate productivity, or changes in the policies described above, which
will result in a new steady state. In particular, we must make a small adjustment since
at the barriers there is reflection, as opposed to a discrete adjustment to a central value.
The main difference with the sticky-price economy described above is then to replace the
Direchlet boundary condition ϕj(x̄) = ϕj(x) = 0 by the Neumann boundary condition
ϕ′
j(x̄) = ϕ′

j(x) = 0 for the eigenfunctions, due to the presence of the reflecting barrier.
For instance, in the benchmark case of these models, where ξ(x) is constant, it is essen-
tially just replacing the sin(·) in equation (13) by cos(·). One feature of our main result
(Theorem 1) that is useful in this application is that the initial distribution triggered by a
small displacement of the steady-state distribution will have mass points of the order of
the displacement, due to the fact that the steady-state density is not zero at the bound-
aries. Moreover, for these models, we do not need to restrict the impulse response to the
case without reinjection, that is, we follow every agent after the aggregate shock and com-
puteH as defined in equation (4).14 Economically, the effects of a shock are very different

14Mathematically, the associated operator is measure- preserving and the dominant eigenvalue in this case
is equal to zero.
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from the ones in the sticky-price model discussed above; in particular, the response to a
positive shock differs from the response to a negative shock. The reason for the asymme-
try is that one of the reflecting boundaries corresponds to the sectors where workers leave
the industries, and the other one represents the sector that receives workers.15

7. CONCLUSION AND FUTURE WORK

We used an eigenvalue-eigenfunction decomposition technique to analytically charac-
terize the impulse response function in a large class of sticky-price models. We illustrated
the usefulness of this method with several applications. The main results were derived for
problems “without reinjection,” an assumption that simplifies the analysis and allows us
to consider moderate degrees of drift and asymmetry in the problem of interest.

Open questions for future research involve exploring setups featuring asymmetries and
large drift, as well as the problem with strategic complementarities pioneered by Caplin
and Leahy (1997) in a setup without idiosyncratic shocks.16 For instance, asymmetries are
important in inventory models, or problems where drift is important, as in models of capi-
tal relocation with frictions. Strategic complementarities can also be important depending
on the general equilibrium setup faced by firms, as discussed by Leahy (2011) and Klenow
and Willis (2016). More importantly, incorporating strategic complementarities in a setup
with idiosyncratic shocks requires extending the result to endogenous moving boundary
problems. In ongoing work, Alvarez, Lippi, and Souganidis (2021), we show that the the-
ory of Mean Field Games can be suitably extended to analyze such problems analytically.
Interestingly, the results derived here are essential, since the problem with complementar-
ities is solved using a perturbation around the problem with no complementarities studied
in this paper.
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