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This Online Appendix to “Robust Screens for Noncompetitive Bidding in Procure-
ment Auctions” provides extensions, robustness checks, and proofs. We show how to
extend our results to allow for multistage bidding in Section OA. Section OB presents
theoretical extensions. Section OC presents further empirical results and robustness
checks. Section OD collects proofs for Lemmas 1, 2, and 3.

ONLINE APPENDIX OA: MULTISTAGE BIDDING

NATIONAL LEVEL AUCTIONS in our data follow a first-price auction format with a secret
reserve price. This means that the auction is a multistage game, with stages k ∈{1� � � � �k}.
The auctioneer picks a secret reserve price r. At each stage k, bidders submit bids bi�k.
A winner is declared if and only if mini bi�k ≤ r. In this case, the winner is paid her bid. If
instead mini bi�k > r the game continues to an additional stage. At the end of each stage
without a winner, the lowest bid is revealed. The reserve price is constant across stages. In
this Appendix, we extend the revealed preference inequalities of Section 6 to multistage
first-price auctions.

In a multistage auction, a bidder’s continuation strategy after her first bid is a contingent
plan dependent on the information revealed at each stage. We denote by bi�1 bidder i’s
first bid, and by βi her continuation play, mapping future information to bids.

Given an equilibrium strategy σi = (bi�1�βi) by player i we consider first-stage-only de-
viations σ ′

i = (b′
i�1�βi) such that player i’s initial bid is different, but her continuation

contingent plan, as a function of her own private signals, and the play of others, is un-
changed.

Let wini�k denote the event that bidder i wins in round k. Expected profits under σi and
σ ′

i take the form

Eσi [πi] = (bi�1 − ci)probσi�σ−i
(wini�1) +Eσi�σ−i

[∑
k>1

(bi�k − ci)1wini�k

]
�
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Eσ ′
i
[πi] = (b′

i�1 − ci
)
probσ ′

i �σ−i
(wini�1) +Eσ ′

i �σ−i

[∑
k>1

(bi�k − ci)1wini�k

]
�

We now introduce a classification of histories following upward and downward devi-
ations in the first round as a function of how they affect the continuation play. We say
that a deviation is marginal for continuation, if it changes whether the auction continues
after period 1. When a deviation is marginal for information, it changes the information
available to participants in future periods. If a deviation is nonmarginal, it does not affect
continuation play. This corresponds to the following formal definition.

DEFINITION OA.1: Consider an upward deviation b′
i�1 > bi�1. It is marginal for continu-

ation (MC) if and only if bi�1 ≤ r <∧b−i�1, and b′
i�1 > r. It is marginal for information (MI) if

and only if r < bi�1 <∧b−i�1. It is nonmarginal (NM) otherwise.
Consider a downward deviation b′

i�1 < bi�1. It is marginal for continuation (MC) if and
only if b′

i�1 ≤ r < ∧b−i�1, and bi�1 > r. It is marginal for information (MI) if and only if r <
b′
i�1 <∧b−i�1. It is nonmarginal (NM) otherwise.

Note that we can assess the marginality of deviations using data, since it only relies on
observed period 1 bids. Note also that bidder i’s belief that a given deviation is marginal
for continuation or information only depends on the bidder i’s beliefs about bids b−i�1.

For bids bi�1 and b′
i�1, we have that

Eσi [πi] = (bi�1 − ci)probσi�σ−i
(wini�1) +Eσi�σ−i

[∑
k>1

(bi�k − ci)1wini�k|MC

]
probσ−i

(MC)

+Eσi�σ−i

[∑
k>1

(bi�k − ci)1wini�k|MI

]
probσ−i

(MI)

+Eσi�σ−i

[∑
k>1

(bi�k − ci)1wini�k|NM

]
probσ−i

(NM)�

Eσ ′
i
[πi] = (b′

i�1 − ci
)
probσ ′

i �σ−i
(wini�1) +Eσ ′

i �σ−i

[∑
k>1

(bi�k − ci)1wini�k|MC

]
probσ−i

(MC)

+Eσ ′
i �σ−i

[∑
k>1

(bi�k − ci)1wini�k|MI

]
probσ−i

(MI)

+Eσ ′
i �σ−i

[∑
k>1

(bi�k − ci)1wini�k|NM

]
probσ−i

(NM)�

Equilibrium implies that under player i’s beliefs Eσi [πi] ≥ Eσ ′
i
[πi]. We now establish

implications of this equilibrium condition that can be taken to the data.
For all deviations, the following hold:
• Bids must decrease with the stage of the game: bi�k > bi�k+1; indeed, since the reserve

price is constant, any bid submitted in period k wins with probability 0 in period k+1
if the auction continues.

• Continuation payoffs under σi and σ ′
i are equal conditional on the deviation being

nonmarginal.
If the deviation is an upward deviation then,
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• Player i’s continuation value under σi is equal to zero when the deviation is marginal
for continuation.

• If continuation strategies βi, β−i are monotonic in observed bids, then

Eσ ′
i �σ−i

[∑
k>1

(bi�k − ci)1wini�k|MI

]
≥ Eσi�σ−i

[∑
k>1

(bi�k − ci)1wini�k|MI

]
�

It follows from this that Eσi [πi] ≥ Eσ ′
i
[πi] implies

(bi�1 − ci)probσi�σ−i
(wini�1) ≥ (b′

i�1 − ci
)
probσ ′

i �σ−i
(wini�1)� (O1)

This coincides with the IC constraint for upward deviations used in Sections 5 and 6.
If the deviation is a downward deviation, then player i’s continuation value under σ ′

i is
equal to zero when the deviation is marginal for continuation. Furthermore, we assume
that for some α ∈ (0�1),

Eσ ′
i �σ−i

[∑
k>1

(bi�k − ci)1wini�k|MI

]
≥ (1 − α)Eσi�σ−i

[∑
k>1

(bi�k − ci)1wini�k|MI

]
� (O2)

In words, following a downward deviation that is marginal for information (meaning that
the bid is in fact above the reserve price, which it would have to beat to win at a later stage)
the change in the information provided in the continuation stage does not destroy all the
continuation value of the bidder. Note that if at the end of each stage the auctioneer
revealed an exogenous signal of the reserve price, rather than the endogenous minimum
bid, then condition (O2) would hold with α = 0. In our empirical investigation, we use
α= 0�5.

Finally, we observe that the following bounds hold:

Eσi�σ−i

[∑
k>1

(bi�k − ci)1wini�k|MI

]
≤ E
[
(r − ci)+]�

Eσi�σ−i

[∑
k>1

(bi�k − ci)1wini�k|MC

]
≤ E
[
(r − ci)+]�

Altogether, with optimality condition Eσi [πi] ≥ Eσ ′
i
[πi] this implies that

(bi�1 − ci)probσi�σ−i
(wini�1) ≥ (b′

i�1 − ci
)
probσ ′

i �σ−i
(wini�1)

− [probσ−i
(MC) + αprobσ−i

(MI)
]
E
[
(r − ci)+]� (O3)

Equations (O1) and (O3) replace (IC) in the inference problem defined in Section 6.
In addition to disciplining residual demand under μ, expanded consistency requirement
(ĈR) must ensure that the probability of events MI and MC under the true historical av-
erage distribution of beliefs μ∗ must also be close to their sample probability. Denote by
mih and mch the probability that downward deviation ρ is marginal for information or
continuation at h. An extension of Proposition 1 implies that for any ρ < 0, with large
probability as |H| becomes large,

Eμ∗[mi] ≡ 1
|H|
∑
h∈H

mih ∈
[

1
|H|
∑
h∈H

1r<(1+ρ)bi�1<∧b−i�1 ±K

]
�
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Eμ∗[mc] ≡ 1
|H|
∑
h∈H

mch ∈
[

1
|H|
∑
h∈H

1(1+ρ)bi�1≤r<∧b−i�1 ±K

]
�

where K is an arbitrary fixed tolerance parameter. This implies that we can expand cov-
erage sets Dα introduced in Section 6.3 to cover not only the true expected vector of de-
mands Eμ∗[d], but also the true expected probability that deviations are marginal: Eμ∗[mi]
and Eμ∗[mc].

ONLINE APPENDIX OB: FURTHER THEORETICAL RESULTS

OB.1. Connection With Bayes Correlated Equilibrium

In this section, we further extend the estimator introduced in Section 6 and clarify what
would need to be added so that asymptotically, it exploits all implications from equilib-
rium. This allows us to connect with the work of Bergemann and Morris (2016).

For simplicity, we assume that player identities i, bids b and costs c take a fixed finite
number of values (i� b� c) ∈ I × B × C that does not grow with sample size |H|. Ties
between bids are resolved with uniform probability. Deviations ρn ∈ (−1�∞) correspond
to the ratios of different bids on finite grid B.

In Section 6, we were able to express inference problem (P) as a function of beliefs
alone. Because both costs and bids are part of bidders’ information set (so that selecting
histories on the basis of both beliefs and costs is adapted), to exploit all the information
content of equilibrium, we must impose constraints on demand conditional on both bids
and costs. For this reason, instead of expressing our inference problem using the distribu-
tion of beliefs alone, we express this new inference problem using the historical profile of
beliefs, costs, and bids.1

For any history h ∈ H, let ωh = ((dh�n)n∈M� ch) be the demand and cost of the firm
associated with history h. Let ωH = (ωh)h∈H denote the profile of demands and costs
across all histories in H. Let 
 ≡{ωH : ∀h ∈H� (dh�n)n∈M ∈F} be the set of environments
ωH with feasible demands.

For each profile ωH ∈ 
, define

Hcomp(ωH) ≡ {h ∈ H s.t. (dh� ch) satisfy (IC) and (MKP)
}
�

to be the set of histories in H that satisfy markup constraint (MKP) and are rationalizable
as competitive under ωH .

For each set of adapted histories H, each deviation n, and each profile ωH = (ωh)h∈H ,
let

Dn(ωH�H) ≡ 1
|H|
∑
hi�t∈H

dhi�t �n

be the average residual demand when firms’ demands and costs are given by ωH .
We extend problem (P) as follows. For any environment ωH and (i� b� c) ∈ I × B × C,

let us define Hi�b�c(ωH) ≡{h ∈H|(ih� bh� ch) = (i� b� c)} to be the histories at which bidder
i experiences a cost c and bids b. Note that Hi�b�c is adapted to the information of player
i. For any tolerance function K :N→ R

+ such that

lim
k→∞

K(k) = 0 and lim
k→∞

exp
(−K(k)2k/2Nmax

)= 0

1As in Section 6, we could directly consider the joint distribution of beliefs, costs, and bids.
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we consider inference problem (P′),

ŝcomp = max
ωH

∣∣Hcomp(ωH)
∣∣

|H| (P′)

s.t. ∀(i� b� c)�∀n� Dn

(
ωH�Hi�b�c(ωH)

) ∈ [D̂(ρn|Hi�b�c(ωH)
)−K

(∣∣Hi�b�c(ωH)
∣∣)�

D̂
(
ρn|Hi�b�c(ωH)

)+K
(∣∣Hi�b�c(ωH)

∣∣)]�
Problem (P′) differs from (P) by imposing demand consistency requirements conditional
on all triples (i� b� c). Proposition 3 continues to hold with an identical proof: with proba-
bility approaching 1 as |H| goes to ∞, ŝcomp is an upper bound to the share of competitive
histories. Imposing consistency requirements conditional on bids and costs lets us estab-
lish a converse: if data passes our extended tests, then the joint distribution of bids and
costs is an ε-Bayes correlated equilibrium in the sense of Hart and Mas-Colell (2000).

Consider an ωH solving (P′). Let μ̂ ∈ �([B × C]I) denote the sample distribution over
bids and costs implied by (H�ωH).

PROPOSITION OB.1: For any ε > 0, for |H| large enough, ŝcomp = 1 implies that μ̂ is an
ε-Bayes correlated equilibrium of the stage-game first-price auction.

PROOF: Consider demand and costs (dh�n� ch)h∈H solving Problem (P′), and μ̂ the cor-
responding sample distribution over profiles of bids b and costs c.

In order to deal with ties, we denote by ∧b−i � bi the event “∧b−i > bi, or ∧b−i = bi and
the tie is broken in favor of bidder i.”

For |H| large enough, we have that for all (i� b� c) and all n,

1
|H|
∣∣∣∣ ∑
h∈Hi�b�c

dn�h − probμ̂

(∧b−i � (1 + ρn)bi|i� b� c
)∣∣∣∣≤ ε� (O4)

In addition, ŝ = 1 implies that (IC) holds at all histories: for all h, n,

dh�n

(
(1 + ρn)bh − ch

)≤ dh�0(bh − ch)�

Summing over histories h ∈ Hi�b�c yields

1
|H|

∑
h∈Hi�b�c

dh�n

(
(1 + ρn)bh − ch

)− dh�0(bh − ch) ≤ 0�

Hence for |H| large enough, for all (bi� ci),∑
b−i�c−i

μ̂(bi� ci� b−i� c−i)
(
1∧b−i�(1+ρn)bi

(
(1 + ρn)bi − ci

)− 1∧b−i�bi (bi − ci)
)≤ ε�

It follows that μ̂ is an ε-Bayes correlated equilibrium in the sense of Hart and Mas-Colell
(2000). Q.E.D.

OB.2. Bounding the Share Competitive Histories in Simple Cases

This section provides an explicit characterization of bound ŝcomp when we consider either
a single upward deviation or a single downward deviation.
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OB.2.1. Inference From an Upward Deviation

Consider first the case of a single upward deviation ρ1 > 0. Let 
 = {(1�0)� (0�−1)}
and xλ = x > 0 for all λ ∈ 
. Set Dα then takes the form:

Dα = {d = (d0� d1) ∈F s.t. d0 ≤ D̂(ρ0|H) + x and d1 ≥ D̂(ρ1|H) − x
}
�

Bound ŝcomp takes the form

ŝcomp = min

⎧⎪⎪⎨⎪⎪⎩1�1 −
(
D̂(ρ1|H) − x

)(
1 + ρ1

(
1 + 1

M

))
− (D̂(ρ0|H) + x

)
ρ1

(
1 + 1

M

)
⎫⎪⎪⎬⎪⎪⎭ �

Note that when M = +∞, ŝcomp < 1 is equivalent to the condition that elasticity of demand
is larger than −1:

ŝcomp < 1 ⇐⇒ log
(
D̂(ρ1|H) − x

)− log
(
D̂(ρ0|H) + x

)
log(1 + ρ1)

>−1�

When the bidder’s demand is unchanged following an upward deviation (i.e., when
D̂(ρ1|H) ≈ D̂(ρ0|H)), for x > 0 small enough we have ŝcomp < 1 even as M goes to +∞.

PROOF: For any competitive history h ∈ H, beliefs dh�1 and dh�0 must be such that(
1 + ρ1 − 1

1 +M

)
dh�1 ≤

(
1 − 1

1 +M

)
dh�0

⇐⇒ dh�0 ≥ dh�1

(
1 + ρ1

(
1 + 1

M

))
� (O5)

where the first inequality uses the mark-up constraint ch
bh

≥ 1
1+M

. Suppose that

D̂(ρ0|H) + x ≥ (D̂(ρ1|H) − x
)(

1 + ρ1

(
1 + 1

M

))
� (O6)

Note that in this case, ŝcomp = 1. Indeed, let μ ∈ �(F) be a distribution that puts all its
mass at (d0� d1), with d0 = D̂(ρ0|H) + x, and d1 = D̂(ρ1|H) − x. Note that Eμ[d] ∈ Dα,
and Eμ[IsComp(d)] = 1.

Suppose next that (O6) does not hold. Let μ ∈ �(F) be a distribution satisfying the
constraint Eμ[d] ∈Dα, and let ŝ(μ) = Eμ[IsComp(d)] be the share of competitive histories
under μ. Note that

D̂(ρ0|H) + x ≥ Eμ[d0]

= ŝcomp(μ)Eμ

[
d0|IsComp(d) = 1

]
+ (1 − ŝcomp(μ)

)
Eμ

[
d0|IsComp(d) = 0

]
� (O7)

D̂(ρ1|H) − x ≤ Eμ[d1]

= ŝcomp(μ)Eμ

[
d1|IsComp(d) = 1

]
+ (1 − ŝcomp(μ)

)
Eμ

[
d1|IsComp(d) = 0

]
� (O8)
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Since equation (O5) holds for d with IsComp(d) = 1, we have that

Eμ

[
d0|IsComp(d) = 1

]≥ Eμ

[
d1|IsComp(d) = 1

](
1 + ρ1

(
1 + 1

M

))
� (O9)

Using (O7)–(O9), we get

D̂(ρ0|H) + x− (1 − ŝcomp(μ)
)
Eμ

[
d0|IsComp(d) = 0

]
≥ ŝcomp(μ)Eμ

[
d0|IsComp(d) = 1

]
≥ ŝcomp(μ)Eμ

[
d1|IsComp(d) = 1

](
1 + ρ1

(
1 + 1

M

))
≥ (D̂(ρ1|H) − x− (1 − ŝcomp(μ)

)
Eμ

[
d1|IsComp(d) = 0

])(
1 + ρ1

(
1 + 1

M

))
� (O10)

From equation (O10), we get

(
D̂(ρ1|H) − x

)(
1 + ρ1

(
1 + 1

M

))
− (D̂(ρ0|H) + x

)
≤ (1 − ŝcomp(μ)

)
×
(
Eμ

[
d1|IsComp(d) = 0

](
1 + ρ1

(
1 + 1

M

))
−Eμ

[
d0|IsComp(d) = 0

])
≤ (1 − ŝcomp(μ)

)
ρ1

(
1 + 1

M

)

=⇒ ŝcomp(μ) ≤ 1 −
(
D̂(ρ1|H) − x

)(
1 + ρ1

(
1 + 1

M

))
− (D̂(ρ0|H) + x

)
ρ1

(
1 + 1

M

) �

where the second inequality follows since 1 ≥ Eμ[d0|IsComp(d) = 0] ≥ Eμ[d1|
IsComp(d) = 0] ≥ 0. Since this inequality holds for all μ ∈ �(F) satisfying the constraint
Eμ[d] ∈Dα,

ŝcomp ≤ s1 ≡ 1 −
(
D̂(ρ1|H) − x

)(
1 + ρ1

(
1 + 1

M

))
− (D̂(ρ0|H) + x

)
ρ1

(
1 + 1

M

) �

Finally, to see that ŝcomp = s1 when (O6) does not hold, let μ ∈ �(F) be a distribution
that puts weight 1 − s1 on beliefs dnc = (dnc

0 � dnc
1 ) = (1�1) and puts weight s1 on beliefs

dc = (dc
0� d

c
1) such that s1d

c
0 + (1 − s1) = D̂(ρ0|H) + x and s1d

c
1 + (1 − s1) = D̂(ρ1|H) − x.

One can check that Eμ[d] ∈Dα and that Eμ[IsComp(d)] = s1. Hence, when (O6) does not
hold, ŝcomp = s1. Q.E.D.
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OB.2.2. Inference From a Downward Deviation

Consider next the case of a single downward deviation ρ−1 < 0. Let 
 = ((−1�0)� (0�1))
and xλ = x > 0 for all λ ∈ 
. Set Dα then takes the form:

Dα = {d = (d−1� d0) ∈F s.t. d−1 ≥ D̂(ρ−1|H) − x and d0 ≤ D̂(ρ0|H) + x
}
�

With a single deviation ρ−1 < 0 such that m≤ 1/(1+ρ−1) −1, all histories can be rational-
ized as competitive. Indeed, reducing bids by ρ−1 would result in negative profits if costs
are such that bh/ch = 1 +m. Instead, if m> 1/(1 + ρ−1) − 1, the solution to program (P)
is

ŝcomp = min

⎧⎪⎪⎨⎪⎪⎩1�1 −
(
D̂(ρ−1|H) − x

)(
1 + ρ−1

(
1 + 1

m

))
− (D̂(ρ0|H) + x

)
1 + ρ−1

(
1 + 1

m

)
⎫⎪⎪⎬⎪⎪⎭ �

PROOF: For any competitive history h, beliefs dh�−1 and dh�0 must be such that(
1 + ρ−1 − 1

1 +m

)
dh�−1 ≤

(
1 − 1

1 +m

)
dh�0

⇐⇒ dh�0 ≥ dh�−1

(
1 + ρ−1

(
1 + 1

m

))
� (O11)

where the first inequality uses the mark-up constraint ch
bh

≤ 1
1+m

. Suppose that

D̂(ρ0|H) + x≥ (D̂(ρ−1|H) − x
)(

1 + ρ−1

(
1 + 1

m

))
� (O12)

Note that in this case, ŝcomp = 1. Indeed, let μ ∈ �(F) be a distribution that puts all its
mass at (d−1� d0), with d−1 = D̂(ρ−1|H) − x and d0 = min{D̂(ρ0|H) + x� D̂(ρ−1|H) − x}.
Note that Eμ[d] ∈ Dα, and Eμ[IsComp(d)] = 1. Note that (O12) always holds when m ≤
1/(1 + ρ−1) − 1.

Suppose next that (O12) does not hold. Let μ ∈ �(F) be a distribution satisfying the
constraint Eμ[d] ∈ Dα, and let ŝcomp(μ) = Eμ[IsComp(d)] be the share of competitive his-
tories under μ. Note that equation (O7) must hold. In addition,

D̂(ρ−1|H) − x ≤ Eμ[d−1]

= ŝcomp(μ)Eμ

[
d−1|IsComp(d) = 1

]
+ (1 − ŝcomp(μ)

)
Eμ

[
d−1|IsComp(d) = 0

]
� (O13)

Since equation (O11) holds for d with IsComp(d) = 1,

Eμ

[
d0|IsComp(d) = 1

]≥ Eμ

[
d−1|IsComp(d) = 1

](
1 + ρ−1

(
1 + 1

m

))
� (O14)

Using (O7), (O13), and (O14), we get

D̂(ρ0|H) + x ≥ D̂(ρ0|H) + x− (1 − ŝcomp(μ)
)
Eμ

[
d0|IsComp(d) = 0

]
≥ ŝcomp(μ)Eμ

[
d0|IsComp(d) = 1

]
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≥ ŝcomp(μ)Eμ

[
d−1|IsComp(d) = 1

](
1 + ρ−1

(
1 + 1

m

))
≥ (D̂(ρ−1|H) − x− (1 − ŝcomp(μ)

)
×Eμ

[
d−1|IsComp(d) = 0

])(
1 + ρ−1

(
1 + 1

m

))
≥ (D̂(ρ−1|H) − x− (1 − ŝcomp(μ)

))(
1 + ρ−1

(
1 + 1

m

))
� (O15)

where the first inequality uses 0 ≤ Eμ[d0|IsComp(d) = 0] and the last inequality uses
Eμ[d−1|IsComp(d) = 0] ≤ 1. It follows from (O15) that

ŝcomp(μ) ≤ 1 −
(
D̂(ρ−1|H) − x

)(
1 + ρ−1

(
1 + 1

m

))
− (D̂(ρ0|H) + x

)
1 + ρ−1

(
1 + 1

m

) �

Since this holds for all μ ∈ �(F) satisfying the constraint Eμ[d] ∈Dα,

ŝcomp ≤ s−1 ≡ 1 −
(
D̂(ρ−1|H) − x

)(
1 + ρ−1

(
1 + 1

m

))
− (D̂(ρ0|H) + x

)
1 + ρ−1

(
1 + 1

m

) �

Finally, to see that ŝcomp = s−1 when (O12) does not hold, let μ ∈ �(F) be a distribution
that puts weight 1 − s−1 on beliefs dnc = (dnc

−1� d
nc
0 ) = (1�0) and puts weight s−1 on beliefs

dc = (dc
−1� d

c
0) such that s−1d

c
0 + (1 − s−1)dnc

0 = s−1d
c
0 = D̂(ρ0|H) + x and s−1d

c
−1 + (1 −

s−1)dnc
−1 = s−1d

c
−1 + (1 − s−1) = D̂(ρ−1|H) − x. One can check that Eμ[d] ∈ Dα and that

Eμ[IsComp(d)] = s−1. Hence, when (O12) does not hold, ŝcomp = s−1. Q.E.D.

OB.3. Complementarities Between Upward and Downward Deviations

In this Appendix, we clarify complementarities between downward and upward devi-
ations and establish a possibility result in a stylized setting. Even if neither individual
deviation implies that a positive share of auctions is noncompetitive, the joint restrictions
imposed by upward and downward deviations can imply that a positive share of auctions
is noncompetitive. For simplicity, we focus on the case of arbitrarily large data so that we
can use limit confidence set Dα ={D̂}, where D̂ = (D̂(ρn|H))n∈M.

As we discussed in Section 7, individual upward and downward deviations, respectively,
imply strict bounds on the share of competitive histories if and only if

D̂(0|H) − (1 + ρ1)D̂(ρ1|H) <
1

1 +M

[
D̂(0|H) − D̂(ρ1|H)

]
�

(1 + ρ−1)D̂(ρ−1|H) − D̂(0|H) >
1

1 +m

[
D̂(ρ−1|H) − D̂(0|H)

]
�2
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To clarify the existence of complementarities between upward and downward deviations,
we now consider the special case in which

D̂(0|H) − (1 + ρ1)D̂(ρ1|H) = 1
1 +M

[
D̂(0|H) − D̂(ρ1|H)

]
� (O16)

(1 + ρ−1)D̂(ρ−1|H) − D̂(0|H) = 1
1 +m

[
D̂(ρ−1|H) − D̂(0|H)

]
� (O17)

Individual upward and downward deviations imply no restrictions on the set of competi-
tive histories. However, different deviations are potentially rationalized by using different
costs at the same history. We show this is indeed the case, and that jointly considering
upward and downward deviations can yield strict constraints on the share of competitive
histories. The following lemma clarifies that markup constraints will play a role in our
argument.

LEMMA OB.1: Under (O16) and if m = 0 and M = +∞, then all histories can be ratio-
nalized as competitive.

PROOF: The following demand and costs rationalize the observed bidding behavior
while satisfying consistency requirement (ĈR). At every history h such that the bidder
wins, we set dh�0 = 1, dh�−1 = 1, dh�1 = D̂(ρ1|H)/D̂(0|H) and ch = 0. Since ρ1 > 0, dh�1 ≤ 1.

At every history h such that the bidder loses, but would win after reducing its bids by
ρ−1, we set dh�0 = dh�1 = 0, dh�−1 = 1, and ch = bh

At every history such that the bidder loses even after deviation ρ−1, we set dh�−1 = dh�0 =
dh�1 = 0, and ch = bh.

It is immediate that these demand and costs are feasible, and satisfy (IC) and (ĈR).
Q.E.D.

We return now to the case where (O16) and (O17) hold for m> 0. We establish lower
bounds for the number of histories at which ch/bh must be equal to 1

1+m
and 1

1+M
. When-

ever these two lower bounds are mutually incompatible, the share of competitive histories
is strictly less than one.

Histories Such That ch/bh = 1/(1 +M). (IC) for upward deviation ρ1 implies that for
all histories h,

dh�0 − (1 + ρ1)dh�1 ≥ (dh�0 − dh�1)
ch

bh

�

Summing over all histories, conditions (ĈR) and (O16) imply that

1
|H|
∑
h∈H

(dh�0 − dh�1)
ch

bh

≤ 1
|H|
∑
h∈H

dh�0 − (1 + ρ1)dh�1 = 1
1 +M

(
D̂(0|H) − D̂(ρ1|H)

)
= 1

|H|
∑
h∈H

(dh�0 − dh�1)
1

1 +M
�

2Checking whether these constrains hold can be performed rapidly, and suggests a rough rationale by which
one could pick ρ−1 and ρ1: obtain a smooth estimate of the true demand, and pick ρ−1 and ρ1 so that the
conditions above hold with a reliable margin.
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Since dh�0 − dh�1 ≥ 0 and ch/bh ≥ 1
1+M

, this implies that whenever dh�0 − dh�1 > 0, ch/bh =
1/(1 +M).

Note that if dh�0 = dh�1 > 0 then dh�0 − (1 + ρ1)dh�1 < 0 so that (IC) cannot hold. Hence
dh�0 − dh�1 = 0 implies dh�0 = dh�1 = 0. This implies that

1
|H|
∑
h∈H

1dh�0−dh�1>0 ≥ 1
|H|
∑
h∈H

1dh�0>0 ≥ 1
|H|
∑
h∈H

dh�0 = D̂(0|H)�

Hence the share of histories such that ch/bh = 1
1+M

is at least equal to D̂(0|H).

Histories Such That ch/bh = 1/(1 +m). (IC) for downward deviation ρ−1 implies that
for all histories h,

(1 + ρ−1)dh�−1 − dh�0 ≤ (dh�−1 − dh�0)
ch

bh

�

Summing over all histories in H, conditions (ĈR) and (O17) imply that

1
|H|
∑
h∈H

(dh�−1 − dh�0)
ch

bh

≥ 1
|H|
∑
h∈H

(1 + ρ−1)dh�−1 − dh�0 = 1
1 +m

(
D̂(ρ−1|H) − D̂(0|H)

)
= 1

|H|
∑
h∈H

(dh�−1 − dh�0)
1

1 +m
�

Since dh�−1 − dh�0 ≥ 0 and ch/bh ≤ 1
1+m

, this implies that whenever dh�−1 − d0�h > 0, then
ch/bh = 1/(1 +m). In addition, for all h, we have that

(1 + ρ−1)dh�−1 − dh�0 = (dh�−1 − dh�0)
1

1 +m
⇒ dh�0 =

1 + ρ−1 − 1
1 +m

1 − 1
1 +m

dh�−1 = (1 − ν)dh�−1

with ν ≡ −ρ−1/(1 − 1
1+m

) > 0. Hence, we have that

1
|H|
∑
h∈H

dh�−1 − dh�0 ≤ 1
|H|
∑
h∈H

(dh�−1 − dh�0)1dh�−1−dh�0>0 ≤ 1
|H|
∑
h∈H

νdh�−11dh�−1−dh�0>0

≤ 1
|H|
∑
h∈H

ν1dh�−1−dh�0>0�

This implies that the share of histories such that ch/bh = 1/(1 + m) is greater than
1
ν
(D̂(ρ−1|H) − D̂(0|H)).
Hence, if D̂(0|H) + 1

ν
(D̂(ρ−1|H) − D̂(0|H)) > 1, then joint upward and downward

deviations imply strict constraints on the share of competitive histories. For example,
if m = 3%, ρ−1 = −1�5%, D̂(ρ−1|H) = 65% and D̂(0|H) = 25%, then 1

ν
� 1�94, and

D̂(0|H) + 1
ν
(D̂(ρ−1|H) − D̂(0|H)) � 1�027.
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OB.4. Common Values

We now show how to extend the analysis in Section 6 to allow for common values. Be-
cause expected costs conditional on winning now depend on a bidder’s bid, costs, and
demand associated with history h ∈ H now take the form (dh�n� ch�n)n∈M, where for each
n ∈ M, ch�n = E[c|h�∧b−i�h > (1 + ρn)bh] is the bidder’s expected cost at history h condi-
tional on winning at bid (1 + ρn)bh.

We make the following monotonicity assumption.

ASSUMPTION OB.1: For all histories h and all bids b, b′, b′′ with b < b′ < b′′, E[c|h�
∧b−i�h ∈ (b�b′)] ≤ E[c|h�∧b−i�h ∈ (b′� b′′)].

In words, bidders’ expected costs are increasing in opponents’ bids. This implies that
expected costs ch�n conditional on winning are weakly increasing in the deviation ρn. This
condition on costs follows from affiliation when bidders’ signals are one-dimensional and
bidders use monotone bidding strategies. We now show that, under these conditions, al-
lowing for common values does not relax the constraints in Program (P).

Note first that, for each deviation n, expected costs conditional on winning (ch�n)n∈M
satisfy

∀n ∈M� dh�nch�n = dh�0ch�0 + (dh�n − dh�0)ĉh�n� (O18)

where ĉh�n = E[c|h�∧b−i�h ∈ (bh� (1 +ρn)bh)].3 Our assumptions on costs imply that ĉh�n is
weakly increasing in n.

Consider first downward deviations ρn < 0 (i.e., n < 0). For such deviations, incentive
compatibility constraints hold if and only if

dh�n(1 + ρn)bh − dh�0bh

dh�n − dh�0
≤ ĉh�n�

Consider next upward deviations ρn > 0 (i.e., n > 0). For any such deviation, incentive
compatibility constraints become

ĉh�n ≤ dh�0bh − dh�n(1 + ρn)bh

dh�0 − dh�n

�

Since ĉh�n̂ is weakly increasing in n̂, ĉh�n ≥ ĉh�n′ for all n > 0 and n′ < 0. Hence, there exist
costs (ch�n)n∈M satisfying (IC) if and only if

max
n<0

dh�n(1 + ρn)bh − dh�0bh

dh�n − dh�0
≤ min

n>0

dh�0bh − dh�n(1 + ρn)bh

dh�0 − dh�n

� (O19)

Condition (O19) implies that there also exists a constant profile of costs ch�n = ch (i.e.,
a private value cost) that satisfies (IC).

ONLINE APPENDIX OC: FURTHER EMPIRICAL FINDINGS

OC.1. Additional Figures for Section 2

Figure OC.1 illustrates the clustering of bids we highlight in Section 2 more di-
rectly. The two panels of Figure OC.1 plot the sample demand function, D̂(·), for city-
level and national-level auctions. We define the sample demand as follows: D̂(ρ) =

3We replace (b�b′) by (b′� b) in the event that b′ < b.
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FIGURE OC.1.—Sample demand.

1
|H|

∑
i�a 1bi�a(1+ρ)<∧b−i�a

, where |H| denotes the number of all bids in the data set. In words,
D̂(ρ) is the sample probability with which bidders win an auction if the bids are changed
by a factor of (1 + ρ). For panel (a), we find that a drop in bids of 2% increases the like-
lihood of winning by more than 3-fold from 16.3% to 56.9%. For panel (b), we find that
a 2% drop in bids also increases the likelihood of winning by about 3-fold from 10.8% to
33.2%.

Figure OC.2 plots the distribution of differences �2 between bids after the lowest bid is
excluded. Formally, let NW (a) denote the set of nonwinning bidders in auction a. Then

∀i ∈NW (a)� �2
i�a =

bi�a − min
j∈NW (a)

bj�a

r
�

Although there is some bunching at exactly zero making the distributions of �2 somewhat
irregular, the kernel density estimates show that there is no corresponding missing mass.

Figure OC.3 plots the distribution of bid differences � for the set of auctions whose
prices were not renegotiated up (about 15.3% of the sample). As the figure shows, the

FIGURE OC.2.—Distribution of bid-difference �2 excluding winning bids. The dotted curves correspond to
local (6th order) polynomial density estimates with bandwidth set to 0.0075.
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FIGURE OC.3.—Distribution of bid-difference �. National data, auctions with no renegotiation. The dotted
curves correspond to local polynomial density estimates with bandwidth set to 0.0075.

missing mass at �= 0 is just as visible when we focus on this set of auctions. This suggests
that renegotiation does not drive the patterns we document.

OC.2. Additional Findings Related to Section 7.4

This Appendix provides sensitivity analysis of the share of competitive histories for the
industries that were investigated for bid rigging by the JFTC to changes in (a) the choice
of confidence level, and (b) the set of deviations considered.

Figure OC.4 presents estimates of the 90% confidence bound on the share of compet-
itive histories for the three industries we studied in Section 7.4. Relative to the bounds
in Figure 7 in Section 7.4, these bounds are obtained using smaller tolerance parame-
ters (xλ)λ∈
 when computing set Dα. Under this less conservative bound, firms labeled
Floods and Prestressed Concrete appear to have continued colluding in the period after
the investigation.

Figure OC.5 again presents estimates of the 90% confidence bound on the share of
competitive histories for the three industries we studied in Section 7.4, but with the set
of deviations {−0�02�0�0�002}. Relative to the bounds in Figure OC.4, we now only find
evidence of noncompetitive behavior for firms labeled Prestressed Concrete in the after
period.

The difference between our estimates in Figure OC.4 and Figure OC.5 can be explained
as follows. For Flood auctions occurring after investigation, a 0.1% upward deviation
causes no change in demand. As a result, our estimate on the share of competitive his-
tories in the after period are strictly less than 1 when we consider such a small upward
deviation. However, we are worried that this insensitivity of demand to a small upward
deviation might be a mechanical consequence of the small number of observations we
have in the after period for this industry. Indeed, a 0.2% upward deviation causes a small
drop in demand, and our estimate on the share of competitive histories in the after period
is exactly 1 in Figure OC.5.
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FIGURE OC.4.—90% confidence bound on share of competitive histories. Deviations {−0�02�0�0�001};
maximum markup 0�5.

OC.3. Relation to the Cover Bidding Screen of Imhof, Karagök, and Rutz (2018)

One screen of collusion that is closely related to ours is the cover bidding screen pro-
posed by Imhof, Karagök, and Rutz (2018). The authors study road construction projects
in Switzerland and document a suspicious bidding pattern for a subset of the auctions in
which the difference between the two lowest bids is substantially larger than the gap be-
tween any two losing bids. Based on this pattern, the authors propose a screen based on
a comparison of the gap between the two lowest bids and the standard error of the losing
bids. In particular, they consider computing the following statistic for each auction:

covert = b(2)
t − b(1)

t

σt

�

where b(1)
t and b(2)

t are the lowest and second lowest bids in the auction taking place in
period t; and σt is the standard error of the losing bids in auction t. Imhof, Karagök,
and Rutz (2018) identifies a subset of auctions in which covert is consistently above 1 and
flag them as potentially uncompetitive. Interestingly, the Swiss competition commission
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FIGURE OC.5.—90% confidence bound on share of competitive histories. Deviations {−0�02�0�0�002};
maximum markup 0�5.

(COMCO) launched an investigation based partly on the results of this statistical test
which led to sanctions against eight firms.

The distribution of the gap between the two lowest bids determine the elasticity of resid-
ual demand, and hence, the cover bidding screen of Imhof, Karagök, and Rutz (2018) is
related to Proposition 2. Moreover, the distribution of the gap between the two lowest
bids determine the upper bound on costs that must hold under competitive bidding. To-
gether with our upper bound on markups, the gap between the lowest bids determine how
much power upward deviations have in problem (P) in Section 6. This relates the cover
bidding screen to the metric of competitive behavior introduced in Section 6.

Table OC.1 reports the firm-level bounds on the share of competitive auctions and the
test statistic of Imhof, Karagök, and Rutz (2018). The left panel of the table corresponds
to the top 30 firms in the municipal sample and the right panel corresponds to the top
30 firms in the national sample. Columns (1)–(4) are the same as in Table 2. In column
(5), we report for each firm the fraction of auctions it participates in, such that covert is
above 1. We find that covert is above 0.5 for all of the firms except one (firm 4 in the sample
of national auction). In fact, except this one firm, we can reject with 95% confidence that
covert is equal to 0.5. Hence, almost all of the firms in our data set would be considered
as somewhat suspicious by the cover bidding screen.
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TABLE OC.1

SHARE OF COMPETITIVE HISTORIES, INDIVIDUAL FIRMS.

(1) (2) (3) (4) (5)
Shr Shr Shr cover

Rank Participation won comp ≥ 1

(a) Municipal Data
1 347 0.19 0�88 0.69
2 336 0.21 0�86 0.74
3 299 0.08 0�98 0.79
4 293 0.05 1.00 0.94
5 290 0.14 1.00 0.81
6 287 0.20 1.00 0.70
7 269 0.14 0�94 0.72
8 268 0.09 0�97 0.75
9 262 0.12 1.00 0.69
10 259 0.18 0�90 0.74
11 252 0.12 0�97 0.85
12 241 0.12 0�95 0.83
13 239 0.16 0�93 0.82
14 238 0.09 0�99 0.76
15 227 0.11 0�97 0.82
16 226 0.12 0�99 0.84
17 225 0.08 0�96 0.81
18 223 0.12 0�98 0.84
19 220 0.07 1.00 0.91
20 218 0.08 1.00 0.93
21 211 0.07 1.00 0.77
22 210 0.14 0�95 0.84
23 209 0.17 0�93 0.78
24 204 0.15 1.00 0.74
25 203 0.11 0�98 0.72
26 199 0.06 1.00 0.75
27 190 0.12 1.00 0.82
28 189 0.06 1.00 0.75
29 188 0.16 0�94 0.82
30 187 0.08 1.00 0.85

(1) (2) (3) (4) (5)
Shr Shr Shr cover

Rank Participation won comp ≥ 1

(b) National Data
1 4044 0.17 0�84 0.56
2 3854 0.07 0�91 0.82
3 3621 0.12 0�85 0.58
4 2998 0.15 1.00 0.49
5 2919 0.06 0�92 0.89
6 2547 0.08 0�71 0.76
7 2338 0.07 0�74 0.79
8 2333 0.07 0�74 0.77
9 2328 0.04 0�95 0.60
10 2292 0.06 0�75 0.77
11 2237 0.08 0�90 0.59
12 2211 0.03 0�96 0.62
13 2015 0.09 0�76 0.78
14 1984 0.08 0�75 0.75
15 1727 0.07 1.00 0.81
16 1674 0.05 0�84 0.80
17 1661 0.03 0�94 0.87
18 1660 0.08 0�75 0.78
19 1589 0.07 0�79 0.77
20 1427 0.10 1.00 0.58
21 1393 0.06 0�86 0.83
22 1392 0.07 1.00 0.76
23 1370 0.04 0�92 0.86
24 1368 0.14 1.00 0.54
25 1353 0.05 0�80 0.80
26 1342 0.09 1.00 0.72
27 1337 0.04 0�87 0.85
28 1326 0.08 0�92 0.75
29 1291 0.06 0�86 0.83
30 1260 0.06 0�93 0.74

Note: 95% confidence bound on the share of competitive auctions for top thirty most active firms. The first column corresponds
to the ranking of the firms and the second column corresponds to the number of auctions in which each firm participates. Column 3
shows the fraction of auctions that each of these firms wins. Column 4 present our 95% confidence bound on the share of competitive
histories for each firm based on Proposition 3. For our estimates of column 5, we use deviations {−0�02�0�0�001}, minimum markup
m= 0�025 and maximum markup M = 0�5.

The overall correlation between the share of competitive histories that we report in
column (4) and column (5) is essentially zero across both municipal and national data. If
we instead take the correlation between a dummy of whether or not the estimated share
of competitive histories is less than 1 and the statistic in column (5), the two statistics
become more negatively correlated, with a correlation coefficient of −0.18.

A possible reason why the association between the two measures is somewhat weak is
because our measure exploits information from downward deviations as well as from up-
ward deviations. The metric proposed in Imhof, Karagök, and Rutz (2018) only captures
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information from upward deviations. This may explain why the correlation between the
two is not very strong.4

OC.4. Bounds on Other Moments

This Appendix shows how to adapt the approach of Section 6 to obtain robust bounds
on other moments of interest: (i) the share of competitive auctions, and (ii) the total
deviation temptation.

Maximum Share of Competitive Auctions. The bound on the share of competitive histo-
ries provided by Proposition 3 allows some histories in the same auctions to have different
competitive versus noncompetitive status. This may underestimate the prevalence of non-
competition in a given data set. In particular, if one player is noncompetitive, she must
expect other players to be noncompetitive in the future. Otherwise, if all of her opponents
played competitively, her stage-game best reply would be a profitable dynamic deviation.

For this reason, one might be interested in providing an upper bound on the share of
competitive auctions, where an auction is considered to be competitive if and only if every
player is competitive at their respective histories.

Take as given an adapted set of histories H, corresponding to a set A of auctions.
Recall from Appendix OB that ωH = (ωh)h∈H denotes an environment, with ωh =
((dh�n)n∈M� ch). Recall further that 
 = {ωH : ∀h ∈ H� (dh�n)n∈M ∈ F} is the set of envi-
ronments ωH with feasible demands.

For every environment ωH ∈ 
, let

Acomp(ωH) ≡ {A′ ⊂A s.t. ∀a ∈ A′�∀h ∈ a� (dh� ch) satisfy (IC) and (MKP)
}

be the set of competitive auctions under ωH . Consider the following program:

ŝauc = max
ωH

∣∣Acomp(ωH)
∣∣

|A|
s.t. ∀n�Dn(ωH�H) ∈ [D̂(ρn|H) −K�D̂(ρn|H) +K

]
�

where, for each n and each ωH , Dn(ωH�H) = 1
|H|

∑
h∈H dh�n. ŝauc provides an upper bound

to the fraction of competitive auctions.

Total Deviation Temptation. Regulators may want to investigate an industry only if
firms fail to optimize in a significant way. Our methods can be used to derive a lower
bound on the bidders’ deviation temptation.

Given demand and costs ωH , define

U (ωH) ≡ 1
|H|
∑
h∈H

[
(bh − ch)dh�0 − max

n∈{−n�����n}

[
(1 + ρn)bh − ch

]
dh�n

]
�

Our inference problem now becomes

D̂T = max
ωH

U (ωH)

s.t. ∀n�Dn(ωH�H) ∈ [D̂(ρn|H) −K�D̂(ρn|H) +K
]
�

4Another potential reason is that, for the municipal data, the presence of the public reserve price compresses
the distribution of the losing bids.
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FIGURE OC.6.—Total deviation temptation as a fraction of profits, Tsuchiura. Deviations {−�02�0� �001}.
Maximum markup 0�5.

In this case, with probability approaching 1 as |H| gets large, −D̂T is a lower bound for
the average total deviation-temptation per auction. This lets a regulator assess the extent
of firms’ failure to optimize before launching a costly audit. In addition, since the sum of
deviation temptations must be compensated by a share of the cartel’s future excess profits
(along the lines of Levin (2003)), D̂T provides an indirect measure of the excess profits
generated by the cartel.

Figure OC.6 reports estimates for firms in the city of Tsuchiura, as a function of mini-
mum markup m.

OC.5. Sensitivity to Economic Plausibility Constraints

Figure OC.7 shows that, for our city-level data, our estimates on the share of compet-
itive histories are insensitive to changes in maximum markup M . Figure OC.8 illustrates

FIGURE OC.7.—Share of competitive histories for different maximum markups, city data, deviations
{−0�02�0�0�001}.
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FIGURE OC.8.—Share of competitive histories, national-level data. Deviations {−0�02�0�0�001}, M = 0�5.

the sensitivity of our estimates to parameter α ∈ [0�1] in downward deviation IC con-
straint (O3) for auctions with rebidding. Recall that parameter α measures the extent to
which a deviation by a firm in round 1 affects her continuation profits in the following
rounds when the deviation changes the information bidders have in the following rounds.

ONLINE APPENDIX OD: PROOFS FOR LEMMAS 1, 2, AND 3

PROOF OF LEMMA 1: Let us first establish that problem (P) does admit a solution.
Since F is a compact subset of RM, Prokhorov’s theorem implies the set �(F) of dis-
tributions over F is compact under the weak topology. Since Dα is compact and IsComp
is upper semicontinuous, it follows that

sup
μ∈�(F)

Eμ

[
IsComp(d)

]
s.t. Eμ[d] ∈Dα

does admit a solution, and the supremum is in fact a maximum. Let us denote by μ̂ this
solution.

Let us denote by C the set of competitive belief profiles d satisfying (IC-MKP), and
by Co the interior of set C, that is, the set of beliefs d satisfying (IC-MKP) with strict
inequalities.

Since Fn
0 becomes dense in F as n grows, it follows that Fn

0 ∩Co becomes dense in Co.
Since C is equal to the closure of Co, it follows that Fn

0 ∩Co becomes dense in C.
Pick ε > 0. Since C is compact, it is covered with finitely many balls of radius ε, and

since Fn
0 ∩ Co becomes dense in C, for n large enough and for all d ∈ C, there exists

d′ ∈Fn
0 ∩Co such that ‖d − d′‖ ≤ ε, where ‖ · ‖ is the Euclidean distance on R

M.
Hence, for n large enough and for every d ∈ supp μ̂ ∩ C we can associate f (d) = d′ ∈

Fn
0 ∩Co such that ‖d − f (d)‖ ≤ ε.
Let d¬C ≡ Eμ̂[d|d /∈C] denote the weighted average of d under μ̂ conditional on d /∈ C

(i.e., d not competitive). For n large enough, there exists f (d¬C) ∈Fn
0 such that ‖f (d¬C) −

d¬C‖ ≤ ε.
Similarly, consider the sample demands D̂. For n large enough, we can find f (D̂) ∈ Fn

0
such that ‖f (D̂) − D̂‖ ≤ ε. We assume for simplicity that D̂ �= d¬C .
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Finally consider distributions μn ∈ �(Fn
0 ) such that

μn ◦ f (D̂) = ν�

μn ◦ f (d¬C) = (1 − ν) × μ̂(F −C)�

∀d ∈C�μn ◦ f (d) = (1 − ν) × μ̂(d)�

where ν > 0.5
For each ν > 0, we can find ε > 0 small and N large such that, for all n ≥ N ,

Eμn[d] ∈ Dα. In addition, by construction μn ∈ �(Fn
0 ) and Eμn[IsComp(d)] ≥ (1 −

ν) × Eμ̂[IsComp(d)] = (1 − ν)̂scomp. Since ŝncomp ≤ ŝcomp by construction, this implies that
limn→∞ ŝncomp = ŝcomp. Q.E.D.

PROOF OF LEMMA 2: Along the lines of the proof of Proposition 1, we define

εt ≡
∑
hi�t

〈λ�dhi�t − d̂hi�t 〉 and ST ≡
T∑
t=0

εt�

where for each history hi�t , d̂hi�t = (1∧b−i�t>(1+ρn)bi�t )n∈M. ST is a sum of martingale incre-
ments εt whose absolute value is bounded by ‖λ‖1Nt , where ‖λ‖1 ≡∑n∈M|λn| and Nt

denotes the number of bidders participating at time t with histories in H.
The Azuma–Hoeffding inequality implies that

prob
(
ST > xλ|H|)≤ exp

(
− x2

λ|H|2

2‖λ‖2
1

T∑
t=0

N
2

t

)
�

Observing that
∑T

t=0 N
2

t ≤∑T

t=0 NtNmax = Nmax|H|, this implies that

prob
(
ST > xλ|H|)≤ exp

(
− x2

λ|H|
2‖λ‖2

1Nmax

)
�

This concludes the proof. Q.E.D.

PROOF OF LEMMA 3: As in the proof of Lemma 2, we define

εt ≡
∑
hi�t

〈λ�dhi�t − d̂hi�t 〉 and ST ≡
T∑
t=0

εt = |H|〈λ�Eμ∗[d] − D̂
〉
�

ST is a sum of martingale increments εt whose absolute value is bounded by ‖λ‖1Nmax.
This implies that the central limit theorem for sums of martingale increments holds
(Billingsley (1995), Theorem 35.11):

lim
T→∞

prob

(
1

σλ

√
T + 1

ST ≥ x

)
= 1 −�(x) = �(−x)

5If D̂ = d¬C , we can define μn to be such that: μn ◦ f (d¬C) = ν + (1 − ν) × μ̂(F −C), and such that ∀d ∈ C ,
μn ◦ f (d) = (1 − ν) × μ̂(d).
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with

σλ ≡
√√√√ 1

T + 1

T∑
t=0

var

(∑
hi�t∈H

〈λ�dhi�t − d̂hi�t 〉|h0
t

)
�

We cannot directly exploit this result to get explicit bounds on the distribution of
〈λ�Eμ∗[d] − D̂〉 because dhi�t is not directly observed, so that we cannot form a consis-
tent estimate of σλ. Instead, we show that

σ̂λ =
√√√√ 1

T + 1

T∑
t=0

∣∣{hi�t ∈ H}
∣∣ ∑
hi�t∈H

〈λ� D̂t − d̂hi�t 〉2�

can be used as an asymptotic upper bound to σλ.
Indeed, for any period t, Jensen’s inequality implies that

var

(∑
hi�t∈H

〈λ�dhi�t − d̂hi�t 〉|h0
t

)
= ∣∣{hi�t ∈H}

∣∣2var

(
1∣∣{hi�t ∈H}

∣∣ ∑
hi�t∈H

〈λ�dhi�t − d̂hi�t 〉|h0
t

)
≤ ∣∣{hi�t ∈H}

∣∣ ∑
hi�t∈H

var
(〈λ�dhi�t − d̂hi�t 〉|h0

t

)
�

Furthermore, since dhi�t = E[̂dhi�t|hi�t], and since hi�t includes all the information provided
in history h0

t , it follows that for any h0
t -measurable random variable Zt ∈ R

M,

var
(〈λ�dhi�t − d̂hi�t 〉|h0

t

)≤ E
[〈λ�Zt − d̂hi�t 〉2|h0

t

]
�

The law of large number for martingale increments implies that almost surely,

lim
T→∞

1
T + 1

T∑
t=0

∑
hi�t∈H

E
[〈λ�Zt − d̂hi�t 〉2|h0

t

]− 〈λ�Zt − d̂hi�t 〉2 = 0�

Hence, setting Zt = D̂t , it follows that for any ε > 0, almost surely as T becomes large,
(1 + ε)σ̂λ ≥ σλ. Since x > 0, this implies that

lim sup prob

(
1

σ̂λ

√
T + 1

ST ≥ x

)
≤ lim sup prob

(
1

σλ

√
T + 1

ST ≥ x(1 + ε)
)

=�
(−x(1 + ε)

)
�

Observing that 1
σ̂λ

√
T+1

ST = |H|
σ̂λ

√
T+1

〈λ�Eμ∗[d] − D̂〉, Lemma 3 follows from the fact that the
result holds for any ε > 0, and � is continuous. Q.E.D.
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