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APPENDIX SA: ASSUMPTIONS AND NOTATIONS

IN THE PROOFS, K will be a constant that may change from line to line. When it depends
on some parameter par, we write K, instead. But it never depends on » or any param-
eters that depend on n. Let V' be any Itd semimartingale on (, F, (F;) =0, P) that has a
Grigelionis representation as X in (2) of Li and Linton (2021) with coefficients b”, ",
3", which satisfy the following:

ASSUMPTION K: The processes b”, ", 9" are bounded with 8" (w, t, z) < J(z) for some
bounded function J on E satisfying [ J*(z)A(dz) < oo.

Then, for any V' satisfying Assumption K and any r > 2, we have, for any finite (F;)-
stopping times S < 7T,

E(1Vr — VsI'| Fs) <E(T — S| Fs), (SA.1)
[E(Vr — Vs|Fs)| < E(T — S| Fs). (SA.2)

ASSUMPTION SHON: We have Assumptions H, N, O in Li and Linton (2021) and fur-
ther assume that the processes X, o, a, and vy satisfy Assumption K, and the process 1/a is
bounded.

According to a “localization procedure,” we can always assume SHON below, which
implies the existence of p € (1/2 + 7, 1), such that

S(n,iy <K, A, <Kt, PQ)—>1 ifQ:={5N'<1+Kt}. (SA3)

In the sequel, we will assume j= (ji, ..., jg),§' = (Ji>.-.,J,) €3J,and ¢ < ¢'. k, and k,
are an integer and a vector of integers that will be specified later. Let

g k)i = A" (Y)! = (v)) A (07 u(j, k)= A (0! — r(i k),
G =2""k,, dl:=a'8(n,i+1)—35,, (SA.4)
06, k)" = /8,(v") uG, k)",
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2 Z.M. LI AND O. LINTON

where r(j; k,,) := E(A}‘” (x)5)- When k, satisfies the conditions specified in (17) of Li and
Linton (2021), we write g(j)” and u(j)? instead of g(j, k,,)? and u(j, k,,)".

Following Jacod, Li, and Zheng (2017), we assume the processes X, «, @, y and the
observation times 77" are defined on a space (Q©, FO (F,) =0, P©); {xi}icz is defined on
another space (QW, G, (G)iez, PY) with G; := o(xx : k <i) and G' := o (x4 : k > i). Let
Q=00 x QO, F= FO @G, P=PO g PO,

APPENDIX SB: SOME AUXILIARY RESULTS

LEMMA S1: Let &, & be two variables in the probability space (QV, G, PW) so that & is
G,-measurable and &' is G ¢-measurable, where £ € N,. Assume &, & have bounded second
moments. Under Assumption N in Li and Linton (2021), we have

[E(¢¢') —E(£E(¢)] <

(SB.1)

PROOF: By first conditioning on G;, plus an application of the Cauchy—Schwarz inequal-
ity, the LHS of (SB.1) is bounded by /E((¢ — E(£))*)E((E(E - E(£)16:))*)- Now the
result follows from the fact that the second moment is bounded and an application of
Lemma VIII 3.102 of Jacod and Shiryaev (2003). Q.E.D.

Now assume k, satisfies (15), and let k, := infioo (ki1 — ki0); k, = konV (ki) =
sup{lk;.|: 1 <1 <q}.

LEMMA S2: We have under Assumption N that

K
|ris ) — r ()| < TR (SB.2)
where r(j) is defined in (12).
PROOF: Let Q, be the collection of all proper subsets of {1, 2, ..., g}
={0:0¢{l,...,q}}; (SB.3)

thus, for any Q € Q,, Q¢ # #. Now we have, for Q € 9,

'E(le—kl,,,l_[)(jl l_[ )(jl_k,ﬂ)‘ if 1 e QF,

‘E<l_[ Xii 1_[ Xii—ki n) ‘ = o e (SB.4)
e lege 'E(le—m [Tw T1 Xn—kz,n)’ if1¢ 0,

leQ  leQe,i#l

where [ = max{/: / € Q°}if 1 ¢ Q°. Apply Lemma S1 w1th & = Tlico Xit [iege 11 Xir- k,n
§ = Xj- kl,,, i=ji, b=k, if1eQand &= x; & > & = [Tico X [ L1coe it Xir—100

— ki €=k, i1 ¢ 0% we get [E([T,c0 X)i [ T1cor Xii- k,’n)| <C(lk1,l ANK,)™. Now (SB 2)
i proved oo F(is k) = 1G) = Yoeo, (= D' B0 Xi Tieor Xiinn)- QED.
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LEMMA S3: Assume (k, V j;)8? — 0; let

N;I*kn*]-l

ReMeDI'(x:j, k)7 = (v)"8 (0} (SB.5)

i=29-1

Then, for any r > 1, there is some constant K, , > 0 such that
E(|ReMeDI(Y: j, k,)" — ReMeDI'(x: j, k)" || Lian) < Koy (kn v 1) 5:"'.  (SB.6)

PROOF: Let {7 := X7\, — X7y, o+ (Vi — Y Xiey — (Vi — Yi) Xivi—k,» and

{1 =Y (Xiviy — Xitji—k,,,)- Now it follows (recall Q, defined in (SB.3)) that

q

q
Af"(Y);q = 1_[( Zl + 5/21)7 (ﬁ)qun )i = 1_[ :Zl’

=1 =1 (SB.7)
gl k) =>_TT¢nTT 4

QeQq leQ leQc

Apply (SA.1) for X and vy, and the fact that y has bounded moments; we have, for any
k>2,

E(1¢) < K(ka v i), EB(C0) <K, Vil (SB.8)

Let ¢ =|Q¢|, whence £ > 1 (recall (SB.3)). For r > 2, apply Holder’s inequality with expo-
nents (r¢, ..., rt, -5); we have
———

f( *l))’”, (5B.9)

which is further bounded by K, ,((k, v jl)‘o‘ﬁ)% in view of (SB.8). Now (SB.6) follows
immediately.

For 1 < r <2, we first note (SB.9) still holds if £ > 2. For ¢ = 1, we let Q¢ = {I*}. Let
Hip = F ®Gifl">1,and H},. := F'®G if [ = 1. Then, by the independence of

i+« —k[*, _
G and F©, (SA.2) for vy, we have IECS I HE ) < Kk V)85 (1+ | Xigj | + IXi+j,*7k1*,,,|)7
which yields (recall that [],,. {'}, is measurable with respect to H},.)

E(’E(ﬁl H 5/21|H?,1*) )

[n
<K(k,V jl)SﬁE((l + [ Xiwjpe | T |Xi+j1*—k1*,,,|) l_[ | X it = Xiti—k |>
11+

<K(k,V j1)o". (SB.10)

12

[Ta ]

leQ¢ leQ

) =T (=(

leQ¢

[1¢

leQ
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On the other hand, since r > 1, apply Holder’s inequality to get

(< R ) ) <K((k,v ji)8)"". (SB.11)

I£1*

Note that 7!, [, {';; is measurable with respect to 7, ®¢; combined with (SB.10)

and (SB.11), we can apply Lemma A.6 of Jacod, Li, and Zheng (2017) and obtain

N —kn—ji -~
( > el ) K((kov j)os " + (ko v j) 5 8,7 ),
i=24—1 I£1*

and it is further bounded by K(En \Y, jl)]?ﬁf since 85(%,1 Vv j1) = 0. QO.E.D.

In this sequel, we assume k, is specified as follows for a given integer k,: k,, =
—k,ifl =1, k;,, = 2"k, if [ > 2. In line with the notations in Li and Linton (2021), we
will write A;(-)? instead of A}‘"(-);‘ when k, is specified as above. Moreover, we will re-
place r(j, k) by r(j, k,). We further denote h;(i, ), := i+ j,— ki . For O, C{1,2,..., q},
let X(Qg.d)} == Hj,ej Xivjy — r(J) if o, =9 and (_1)|Q”| HIqu Xi+j, Hlng X hj(i,1)n other-
wise. }(Q’q,,j’);1 is defined in a similar manner for j, Q/q, c{1,2,...,q'}. We have for
any 7, k that (recall u(j); defined in (SA4)): u()! = Y0 s g X(Qri)is 4Gl =

ZQ;{/ cin..qy X(Qys )i Now we introduce four mutually exclusive categories of pairs
of (Q,, Q,), or their complements (05, (Q,)°):
0= (2, (SB.12)
O, =iy, (@ =t 1#1, (SB.13)
Q) =9,  O;={l}, (SB.14)
Q=0 (Qy) =1} (SB.15)

First, we show the following.

LEMMA S4: For any pair (Q,, Q,/) that does not satisfy (SB.12) to (SB.15), we define
the following sets of indices for any integers i, k: 1(Qg); = {h;(i, 1), : | € Qg}, 1((Q))ivx =
{hy(i+ k1), 1€ Q) h Q)i ={i+ji: 1€ Qb Q) )ik ={i+k+j, : '€ O} Then
there exists at least one index in 1(Qg); U I((Q,))isx that is at least k,/3 apart from the
remaining indices in 1(Qy); UL((Q,))irx YI(Qy): UI(Q,, )i

PROOF: We first consider pairs of (Q,, Q;,) that do not satisty (SB.12) to (SB.15) but
satisfy |Qg| = |(Q;,)°|. If this were true, then violating (SB.12) and (SB.13) implies |Qf| =
[(Q,,)°| = 2. Now suppose Lemma S4 is not true. Denote (I,)i<.<|g¢ SO that (i, 1), €
I(Q5);, and they are in an ascending order, that is, (i, 1), < hj(i, ), < -+ < B (i, Ligg))ns
or equivalently, /; > [, > --- > ljge|.% (] ,)1§,/§|(Q/q,)c| are defined similarly for the indices

?In this proof, many inequalities hold up to adding a constant. For example, we conclude z, > z,, if z, +¢; >
z, + c;, where ¢y, ¢, are some constant and z,, z,, are large when  is large.
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hy (i + k, 1), € 1((Q;,)) - Since the minimal distance between any index in I(Q); (or

I((Q;))i+x) and the remaining indices in I(Q5); UL(Q,); (or I((Q;) )ik UI((Q;))itx) is
k,, we conclude that each pair of indices

\hi(iy L) — hy (i + K, 1) | <ka/3, T=1,...,]04, (SB.16)
were Lemma S4 not true.
Assume /; > [;. Then by (SB.16) we have (since |Q;| > 2):
|(h(i, 1D)n — hi(i, 1)) — (hy (i + K, 1), —hy(i+k, l’z)n)| <2k,/3, (SB.17)
which implies
2h=t =2h-1, ith=1,0=1;

2=l =2h=1 b1 _ 1, iftL=1,1,>1;
2h=t = b=t 4 oh=t g, ifthL>1,0,=1;
ohl =2kt 2h=t _2h=l if ], > 1,1, > 1.

But it contradicts the fact that /; > max(/,, /], ;). Therefore, we have /; < [|; similarly,
we get [, > [|. Thus, we conclude /; = [{. We also have [, =, since (SB.16) (with 7 =1)
implies |k| < k,/3. We can proceed to prove [, =1 for all [, € Qf], that is, Q; = (Q;,)",
which is a contradiction. Therefore, we conclude that for any pair of (Q,, Q,/) that does
not satisfy (SB.12) to (SB.15), we have |Q¢| # [(Q,)°|-

Now we consider pairs of (Q,, O,) that do nort satisfy (SB.12) to (SB.15) but satisfy

|0¢| > |(Q,)°|- Equation (SB.14) implies |Q;| > 2. Consider the following scenarios:

L If1Qg| > [(Q,)¢| + 1, apply the Pigeonhole Principle: consider |Q¢| “containers” cen-
tered at {/;(i, 1), : hi(i, 1), € I(Q;)} with “radius” k,/3. Were Lemma S4 not true,
we need to place the [(Q,,)°|+1 “items” {hy (i+k, I'), € 1((Q,))isx> 1(Q})isx}’ into
the “containers.” The Pigeonhole Principle implies at least one of the “containers”
is empty, thus Lemma S4 must be true.

2. If|Qg| = [(Q, )| + 1 = 2 and Lemma 54 is false, there is one-to-one correspondence
between the |(Q;)| + 1 “items” {hy (i + k, '), € I((Q,))ix, I(Q,)iss} and ||
“items” {h;(i, [), : | € Qg} so that each pair has a distance less than k,/3 (recall a
representation of such correspondence by (SB.16)). Now we need to consider the
following two cases:

(@) I((Q,))isk ={hj(i+k,1),}, thatis, (Q,)° ={1}. Let us fix the index of I(Q}, )i+«
at i + k.* Let Q¢ = {l;, ,}. Apply the similar arguments to obtain (SB.17); we
have the estimate that [i+k+ ji +k, — (i+ k) — (h;(i, 1) — 1 (i, 1)) | < 2k, /3.
This contradicts to |i+ &k + j; + k, — (i + k) — (h; (i, [) — b (i, L)) | = (A (i, 1), —
hi(i, 1,),)| — k,, which is no smaller than k,,.

(b) Now assume 3" € (Q,/)¢, I’ > 1; we can apply the arguments used above to show
that, foreach I/ > 1,1 € (Q;],)", there is some [, € Q; such that / = /.. We also
conclude |k| < k,/3. Let I*, I be the two indices satisfying (recall |Q¢] > 2):

3 Asymptotically, we treat I(Q, )i+« as one “item” since the distances between the indices in I(Q;, )i+« are
independent of n, thus “fixed.”
tcanbe anyof {i + k +jj :I' O}, but asymptotically they are equivalent.



6 Z.M. LI AND O. LINTON

I = = argmaxy. (g o) (i, s I = argmax e, .y,cii0), Pi (6 Da- (Note that I

could be 1.) Now we have |hy (i + k,I*), — (i + k) — (hi(i, I*),, — b (i, 1) ,)| <
2k, /3. But this contradicts to

\hy(i+ Kk, 17) = (i+ k) — (h(i, "), — B5(i, 1) )|
|(hy (i, 1), = my (i, I5) )| — |y (i + K, 1), — (i + k)| if 15 =1,
|y (i + K, 1), =+ K)| = [(h (6, 1), — B(0, 1), )| 325> 1
> k,.

This finishes the proof of Lemma S4 for the case | Q5| > [(Q,,)¢|- The conclusion for |Q¢| <
|(Q;,)¢| can be proved analogously, and the proof now is complete. Q.E.D.

LEMMA S5: For any pair (Qy, Q,,) that does not satisfy (SB.12) to (SB.15), we have
E(R(Q,0)%(Q,.5).,)| < Ck,", VkeL. (SB.18)
PROOF: Let one of the indices satisfying Lemma S4 be #*. Write
S(J(Qqaj)?y( ”J)z+k )?Z*7QXh*)?Z*+an,

where ¥, and ¥, are the products of the remaining factors in X(Qy. §)! X(Q}» 1)/
3

h* k3”
(other than y,) that are measurable with respect to Gy« _,3 and G" k31 respectively.
Since f(; &y s X and )A(Z*+k,, are integrable, we can apply Lemma S1 to get

-3 3

|E()A(Z*7anXh*)A(Z*+an) - E()A(Z*fanXh*)E()A(ZH/%H < Kk;v;
(SB.19)

|E()A(Z*,%,,Xh*) <Kk,".

This finishes the proof of (SB.18). Q.E.D.
LEMMA S6: For all pairs of (Qy, Q) that satisfy (SB.12), we have, for any k € Z,

(SB.12)

Z E(%(Qq,.])f’%( /"] )z+k) (j’j/; k) — 8 (j,j,; k)

(4.0,

<Kk (SB.20)

PROOF: If Q¢ = (Q)° =¥, we have E(¥(Q,);X(Q,i)ix) = $0(i,i’+ k). Now con-
sider Qf = (Q,,)° # ¥ so that Q;, = O, (recall O, defined in (25)), and

E()N((Qq,j)?;( /7.] ,+k (l_[ Xi+jp 1_[ Xitk+j, HXh (lyn Xy (i+k, /),,)
leQq l’eQ leQg
Let |k| < &o; 55 by successive conditioning as we did to obtain (SB.19), we obtain

‘E<l—[ th(i,l)nth/(iJrk,l)n) - 1_[ "(jl, ]l, + k)

leQg leQg

<Kk,".
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This yields, together with the fact that |r(jo, ij/Ql, (+k))| is bounded, that
‘E<l_[ xien | | Xi+ke+j), I1 th(i,l)nth/(Hk,l)n) —r(jo, Do, (+6) [T (i + k)|
10, reQ, leQs, leQg

+Kk;".

<<1_[ Xi+j) l_[ Xitk+j, =T JQq @JQ (+k) ) l_[ th(i,l),x)(l1j/(i+k,l)n)

leQq reQy leQg

Apply Lemma S1; by successive conditioning, we get that the expectation after the in-
equality is also bounded by Kk, since the indices {i + ji, i+ k + j, : [ € Oy, ' € O} are
at least k, /2 apart from the indices {h;(i, [),, hy (i + k, ), : 1 € Q;}. This proves

> ERXQ0)iX(Q,,3);,) — si(.0: k)| < Kk,", (SB.21)

05=(Q, )4

for |k| < k,/2. For |k| > k,/2, we also have [E(X(Q,,J)/X(Q,»i)i)| < Kk, and
Is1(§,§’; k)| < Kk, thus (SB.21) holds for |k| > k,/2 as well. This completes the
proof. Q.E.D.

LEMMA S7: For all pairs (Q,, Q,,) that satisfy (SB.13) to (SB.15), we have

(SB.13)~(SB.15)

> E(R(Qe ) R(Q),) — Saka (i k)| < KK (SB.22)

©4.2,))
where
2, (031 K) == D e (s dy + k)G () = D r, (Ui @§ (+h)) (i)
ENA i€
14l
=Y ra (i + kY @d)r(is,),
j;/ej/
with

r(ojy+k— Q7 +1)k,)  ifl=1,1>1,
v, (is o k) i= 1 r(is i + ke + 27+ 1)k,) ifl=1,1>1,

r(jp + k= Q7 =20, il 1,1 > 1,1#1,
r(t @i (+(k —k,))) ifl=1,
r(it @i (+(k +27'k,)))  if1>1,
r({iv +ky@i(+(=ky))  ifI'=1,
r({iy + K} @j(+(27'k,))) il > 1L

re, (i} @J (+k)) ==

ro,({7) + k) @) =

i +k
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PROOF: First, we prove

(SB.13)
> EXQediX(Q,00)5) = D iy +k)rGoor(il,)| < Kk,". (SB.23)

(©4:Q) ey el 1A

Let us assume /' > [ = 1. Then, for (5 +2" ")k, < k < (5 +2"")ku, Xugu0pu Xy .05
[T, Xivi and [ Tpsy Xivas j, are asymptotically at least k,/2 away from each other. Apply
Lemma S1; we can separate the terms with an error bounded by Kk *:

[E(¥(Qg» )i X(Qy ), ) — 1 i + k= 2 + )k rGi)r(il,)| < Kk,”.  (SB.24)

For k < (3 +2""Y)k, or k > (3 + 2" "")k,, at least one of /;(i, 1), hy (i + k,I') is at least
k,/2 from the remaining factors in x(Q,, )/ X(Q,, )i, thus we can show

IE(X(Q D)iX (s d )i ) |V P Ji + k= (2 + 1)k,)| < Kk,”,
thus (SB.24) still holds. Similarly, we have for / > I’ =1 that
[E(X(Qq-DiX(Qy- )7, ) = r(is dy + K+ (27 + Dka)r(G-)r(i,)| < Kk,", - (SB.25)
for —(3 +2"Nk, <k < —(} +2"")k,, and
[E(X(Qqs D)iX(Qys §)i )V (s Jy + K+ 27+ 1)k) | < Kk,

for k < —(3 +2""k, or k > —(4 +2""")k,. Now assume I' £ [, > 1, I' > 1. For (2" —
27— Dk, <k < (27" =27 4+ Dk, we have

IE(X(Qu» )i X(Qy )7, ) = rns Jo + k= (2 =27k, rG-nr (i)

For k> (2'~' = 2"+ Dk, or k < (2"~' = 2" — 1)k, we have

<Kk.".

[E(X(Qq )i (o) )|V [P (i i + k= (2771 = 27N ka) | < Kk,

This completes the proof of (SB.23).

The proofs of
(SB.14)
> EB(R(Qe)iX(Q,-8)r) + Y r (i @ (+K))r(n) | < Kk,
(Qq:0,) Ji€i
(SB.15)
Y E(X(QuDiX(Qy0)n,) + Y (L + K @d)r(i,)| < Kk,
(4.2)) el

are similar (in fact, simpler), and this completes the proof. Q.E.D.
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LEMMA S8: For any integers i, k, we have
E(uG)iu(@); ) — s, (.05 k)| < Kk,", (SB.26)

where sy, (3, k) := $0(J, 0" k) + 510,35 k) + 2.0, (3,3's k), and s0(3, s k), 8135, k) are
introduced in Appendix A in Li and Linton (2021).

PROOF: Equation (SB.2) implies we can replace r(j; k,,), r(j’; k,) by r(j), r(j') with
errors no larger than Kk ”. Now (SB.26) follows from (SB.20) and (SB.22). Q.E.D.

Next, we will present and prove a key result on stable convergence.

THEOREM S1: Let

N'—kn—j; Ni'—kn—jj
Gl:= > 0G.k), Gr= ) 0. k)
i=qn i:q;z

NI'—kn—jy N —kn—Jj

1 q y 1 q
H' = — ") dr, H" = — ") dl
e L e H=—o Y )

i=qn i=qp
G :=(G},G), M :=(H,H").

Assume (17); we have (G, H!') converges F-stably in law to (G,, H,) with components

G, =(G,,G)),H,= (H,, H)) that is defined on an extension ((NZ, .77-:, ﬁ) of (O, F,P), which,
conditionally on F, is a centered Gaussian martingale with conditional covariances

E(G,G)|F) =s(j,§) / y*'dA,,  E(HH|F)= / Yy @ dAg;  (SB.27)
0 0
E(G.H/|F) =E(G,H||F) =E(G,H,|F) =E(G,H||F) = 0. (SB.28)

Since {u(j)"}; are serially dependent, we will employ the “block splitting” technique
that is often used in the literature (see, e.g., Jacod, Li, and Zheng (2019)): we will divide
the observations into “big blocks” of size pk, separated by “small blocks” of size K k,,
where p will eventually grow to infinity and Kj; is a constant that depends on j, j'.

Now we consider small blocks of size (24 2771)k,, and we need to introduce a sequence
of notations associated with the block splitting techniques. By polarization, we will con-
sider j =j’; moreover, k, satisfies (17), thus is also fixed. We therefore write 67 instead of
6(j, k,)" in the sequel:

Nl’l
m(p,q):=p+2+217", J.(p,t ;:1+[7t },
(p,q) (p,1) m(p, Dk,

I"(p’ t) = qn‘i‘Jn(P, t)m(P, q)kn - 17
H = F G gtuiis MOV = Hoipporrgr (D)} 1=H

i+pkn—1 In(p,t)

(pi= Y0, Rp= Y O
j=i

i=N"—ky—j;+1

n .
(m(p,@)+p)kn+qn’
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n.__ n ’ n.__ —1\" .
n(P); = L(P) - tym(papiontan’ (P} = LR H2) iy mpoan’
A(p); =E(n(p)|1H(p)), T (p);=E@(p)iIH (p)L):

Jn(p,t) Jn(p,t)

F(p);:=Y_ w(p),  Mp):=>Y (n(p)—n(p)):
j=1 j=1
Jn(p,t) Jn(p.1)

F(py= Y ap, Mpi=> @@;-7).
j=1 j=1

Since p > 242971, we conclude that n(p)7 is H(p)}-measurable and n'(p)} is H'(p)]-
measurable. Now it follows that

Gy =F(p)! + F(p)i + M(p); + M'(p){ — R(p);. (SB.29)
LEMMA S9: For fixed p > 2+ 297, we have

IE(Z(p)!|HY)| < K82k [B((2(p)!) 1HY)] < K, 82K

PROOF: By the independence of G, F © " the boundedness of v, and Lemma S1, we
have for j > i that [E(07|H})| < K/8.E(u()}1Gi-gu—knti)| < K/8u(ky +j — i)~ Thus,
we have [E({(p)!H")| < K6, Zjifk”_l(kn +j—i)"" < K,/8,k. . The second estimate
follows immediately from

E(((p)) M) <K Y |E(6y 0n 07 6 M) | < K, 82K
G =lr<l3=<ly

This completes the proof. QE.D.

In the following lemma, we omit j and simply write s,(k), £ =0, 1, s, (k), and s, 4, (k)
instead of s,(j, j; k), € =0, 1, s, (,j: k), and 524, (j, j; k).

LEMMA S10: Let v > 2; for any p > 2+ 29!, we have

£ A
) ok (skn(k)+skn(—k))—;’ =75 (SB.30)
k=1 n n

where & =3 )i, ivejaer TG-DPG-r)Rir =235 7(-1)Ri; and

. 2141 ifl=1,1'>1;
fori= ) r0,k)x {27 +1 ifl=1,1>1;
k=00 VL _INL IS 1 > 1L £ T

f:=2"" )" r({0} @ j(+k)).

k=—00
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PROOF: Since v > 2, we have | Y/~ & ot (se(k) +s.(=k))| < K| St owl= I;” for
£ =0, 1. Thus, it suffices to show

pkn—1
¢ K
> o (52,0, (k) + 520, (k) — 2| < =2 T (SB.31)
k=1
To see this, we will first show for j;, jr €, I # I’ (recall ry, defined in Lemma S7)
pkn—1
k . - R K
> E(rkn Gis Ji + k) + 1, Gios Ji = k) — 1[; < k—P (SB.32)
k=1
Let
(21 l+ )kn—f—j[—j[f 1fl=1,l/>1,
k;:z (211+ )k +jl’_jl lfl,=1,l>1,
(21\/1 -1 2“1 1)k +]1A1 _]lvl if/ > 1, > 1, l 75 l.
Then (SB.32) follows from
Pknfl pkﬂflfkgl
Z (7, Gits Jv + k) + 1, Gty i — K)) ke = Z (r(0, k) +r(0, k +2k,)) (k + k),
k=1 k=1—k},

phn—1-Fk,, phn—1-k,

and the easy estimates that |}, "7 . ™" r(0, k) — Zk_foo r(0,k)| < k” 5 1 2k, T(0,

k)k| <K, and | Zii’;jc;k r(0,k+2k)(k+ k)| < k" —=. We can prove in a similar manner

that, for j, €,

pkn—1
k . ) . K| K,
; Pk, (rk,,({]l-i-k}@J)-i-l'k,,({]l k}@J)) < =
ok D j . 1| K,
Z pk (rk,,({]l}@J(+k)) +rkn({]l}@J(—k))) _& 2,
k=1 £ )
This finishes the proof of (SB.31) and the proof is now complete. O.E.D.

LEMMA S11: Let v > 2; forany p > 2+ 297, we have

< K k8, (kudi v k87 v k). (SB.33)

‘E((Z(p)?)zl’ﬂ?) — Phada(})’ (s(J - %)

PROOF: We have

w(p,0)} phn—11(p,K)}

e’ = (@) +2Z Z 0167,, with u(p, k)} :=i—k+ pk,—1.
J=i =i
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Thus, E((L(p)!)2IHD) = Y1, €)1 +2 30 37 o €(€); ¢, where, for any nonnegative
integer k,

n, ) k
C(0){ = pbika(!) qSkn(k)<1 B pkn);

E()Y = phusi, (k) (v)) "E(d2[H]):  €Q)1Y = —ksi, (k) (v) E(d!|H):
w(p.k)}

EB)L = sy, (k) Z (") 2 a'8(n, j+1) — (v)) Mo d(n, i+ 1)[HY);

w(p,k)}
6(4) k = skn(k) Z yl+k)q - (’yf)q)a;la(n’ j + 1)|H7)’
w(p,k)}
€(5)i = —si, (k) Z (Vi) M)

w(p,k)}

CO)i = D 80707, F ) = s, (OE((¥))" () IH));

j=i
w(p.k)}

CNi =Y SulE(0;0;, 1)) —E(0,0],,1F)).

First, we note by (4) that Y ;% ot e 1<K, 62 “k.,, and an application of Lemma S10

yields a similar estimate ) ;" k” 1 1€(2) 1 <K, 62 "k,. Next, we show

pkn—1

37 1€GY| < Koknda (827 V K80). (SB.34)

Let z(1)}; == ((v))*"e} — (¥/)*a)8(n, j + 1), 2(2); := (¥/)*a}(8(n, ] + 1) — 8(n, i +
1)); then we have €(3)!7 = si, (k) L E(2(1)2, + 2(2)!,/H}). By first condition-
ing on H! v o(8(n,j+ 1)), (SA.2), and (4), we have |E(z(1)’ |H))| < K(j — i)8:t*;
similarly, we get [E((a — af)8(n, j + 1)|H])| < K(j — 1)8,*"; together with the sim-
ple estimate (using again (4)) |E(a}8(n, j + 1) — «}8(n, i + 1)|H})| < K8§+K, we have
IE(2(2);1H)| < K((j — i)8,* Vv 8/***). This proves (SB.34). Next, since for any k >
0, 8(n,j + 1) is independent of v}, conditional on H7, by first conditioning on HJ,
(SA.1) yields that [E((y})/((v}x)? — (v})")e}8(n, j + 1)[H})| < K8,*k, which implies

ot |€(4);’| < K, k;8,*. Similarly, we have Soptat 1€(5); 1 < K, k26%+K Next, we
can apply Lemma S1 and Lemma S8, which yields the following:  ;~% - 1(|Q‘5(6)Z’kp | +
€)LD < K,p8,k2. Now let s(p)i, = Y0 i 1) Sk, (k). We have (1) |s(p)i, —

sG.0)| < K kL, (2) S ey (L= )8, (k) = s(p), = 05 5 (s, (k) 83, (=),
and (3) s24,0,3; k) = 2.4, (,§; —k). The first estimate is obtained from Lemma S10.
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Therefore, we have by the above three estimates that |€(0);) + 221"‘”‘1 ¢0); —
P8k, (v)*(s(,j) — %)| < K,9,. This finishes the proof of the lemma. Q.E.D.

LEMMA S12: If V is a cadlag process, p > 2+ 217", and 8k, — 0, we have, for all t > 0,
P ! s s
Kb Zjn(p ) Vi-vmp.qkntan — J?nl(/};(,j; :

PROOF: We only need to prove k,6, ZJ"(p’ Vi tym(p.g)kn LN fot V,dA,/m(p, q), since

Knbn Zjn(p t)]E(“/(J Din(pntan — Vi-vm(p.gkal) < Kv/ku8n — 0. Let uff == k,8,J,(p, 1).
Then we have k8, Z]”(” Dy iy dur, where h,

Jn(p Nm(p,Q)kn T/'\l/"'

(=Dm(p, q)kn
It suffices to prove h, —5 0 since u’ BN At/m(p q). Since J, (p, Hm(p, q)k, — N' <
m(p, q)k,, we have, for any € > 0, llmsupn P(|h,| > €) < limsup,P(Ae — A: < m(p,
q9)k,8,)—0,as A,,. > A, k6, — 0. Q.E.D.

LEMMA S13: Let 8,k? — 0, v > 2, §,k* — 0o as n — oo; for all p > 2+ 297!, we have

In(p,1)

> E((m(p)) 1H(p)},) — ey q)< G.d) — —) /0 y¥dA,;  (SB.35)

Jj=1

F(p)l =0,  F(p) —>0; (SB.36)

E(M(p))) < % R(p) > 0. (SB.37)

PROOF: Equation (SB.35) follows directly from Lemma S11 and Lemma S12. Since

J.(p,t) < k’(’;, we have by Lemma S9 that E(|F(p)!]) < ffgkv — 0; the same re-

sult applies to F'(p)’. This proves (SB.36). By the martmgale property, we have
E((M'(p)})?) < an(p t)E((§(2+2q ])((1 Dm(p, q)+p)kn+qn) ) < I;’ The last inequality fol-
lows from Lemma S11 and J,(p,?) < . Note that I,(p,t) — (N' — k, — ji) <

(p+2(297' +2))k,, therefore, we have ]E((R(p),) ) <Kk, ZTHPH(Z.{{ +2)kn E((67)%) <

i=NJ'—kp—j1+1

K,6,k? — 0. This proves (SB.37). Q.E.D.

PROPOSITION S1: Let v > 2, §,k> — 0. For any fixed p > 2 + 297", the sequence of
processes M (p)" converges Fo -stably in law to the process G(p), deﬁned on an extension
(Q F, IP’) of the orzgmal space, condmonally on F,is centered Gaussian with (conditional)

variance Z(p,j); := m(m) (s(,d) — J)fo qu

PROOF: Let 9(p); :=n(p)] —n(p)}. Let AV, p)i ==V o ovknian — Vi ym(p.aynian 10T
any process V. We also set M M; U W, where W is the Brownian motion driving X
and M, denotes the class of all bounded (]-',)-martingales orthogonal to . By a standard
stable convergence theorem for triangular arrays (see, e.g., Theorem IX 7.28 in Jacod and
Shiryaev (2003)), it suffices to prove the following three convergences:

( (4,3) — —) /0 tyfq dA,; (SB.38)

Jn(p.t)

> E((R(p)) 1H(p)}1) —

j=1

(p, q)
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Z @)} TH(P)L) — 0; (SB.39)
Jn(p.t) N
VIV e M, Z E@(p)I AWV, p)i[H(p)!,) — 0. (SB.40)

(1) Note that E((7(p);)*[H(p)j-1) = E((n(p)})*IH(p)j-) — E((W(P)”)ZIH(P)f 1)
and from Lemma S9, we have (7(p)})* < K,8,k;*". Since J,(p, t) < a = ~, we conclude
that ZJ”(” " E(@(p)})*I1H(p)) < K, k, > — 0. Now (SB.38) follows from the first part

of Lemma S13.
(2) By Lemma S9, we have Z]”(” ) E((m(p)})*H(p)}-,) < K,8.k;, and we further have

S PO R(@(p)!) IH(p)L,) < K,8,k3*. Now (SB.39) is proved.
(3) It suffices to show

Jn(p,t)
n n n P

Z E(H(P)_,-A(V, p)le(p)jfl) — 0, (SB.41)

j=1
since E(A(V, p)jIH(p)j,) = 0 for any IV € M. Consider any i in the range [(j —
Dm(p, @)kn + qn, jm(p, q) = 2k, — 1]. We have E(9;A(V, p)jIH(p)}-1) = X(1)}; 36(2)717
where X(1)}; := E(V8,(¥) AV, PYIIFltymip.arknran)> a0d X(2)7; is given by X(2);;
E(u@)!G(=1ym(p.q)-1)kn+j, )- By Lemma S1, we have ), |%(2)w| < K,k!™; now we have
X071 < K\/é E(QAW, PYDF (- tymp.aykntqn) SinCe 7y is bounded. Thus, we have

|E(TI(P)”A(V P) |7—[(p)1 1)| <K kl v\/8 E A(V p) ) | (=Dm(p, q)kn+qn)

and an application of the Cauchy—Schwarz inequality and the martingale property yield

E((C E(m(p)[ AW, p)jIH(p);-))?) < Kp k) B (A(V, p);)?), and itis fur-
ther bounded by K, k.- 21’IEI(( T o omtoaonran 15)?). Now we have that if V' € M,

E((Vr T2 omtoaronsan 15)%) is further bounded by E((V., — V5)?) < K, and this proves
(SBAl)withV e M. WhenV =W, T} . i ., <t+1fornlarge enough on the set

Q! (recall (SA.3)). Thus, (SB.41) is proved with V' = W on the set /. Since P(Q}) — 1,
the proof is complete for V' =W. Q.E.D.

THEOREM S2: (M(p);, H') converges F-stably in law to (G(p):, H,) that is defined

on an extension (Q F, IP’) of (O, F,P), which, conditionally on F, is a centered Gaussian
martingale with conditional covariances

B(G(p).G(p)IF) = Z(p.i)  B(HH|F)= / Y dA,,
0
E(G(p).H,|F)=0

PROOF: Lemma S11 yields an estimate that E(((p)})*) < K,8,k,. Now we have
E(Z]"(p DE(( P)}) 1 p)»;x}l?-l( P)i_1)) — 0by Lebesgue’s dominated convergence the-
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orem and the fact that §,k, — 0. This in turn leads to the following convergence: for any
€>0,

Jn(p.1)

> E((A(P))) Lagy-al H(p)i,) — 0. (SB.42)

j=1

On the other hand, we have "MW = g(u, p)"M(u, p)", P = g(u, p)M(u, p).,
where g(u, p)! and g(u, p), are predictable with finite variation, and 9t(u, p)! and
M(u, p), are martingales (see, e.g., Theorem I1.2.47 in Jacod and Shiryaev (2003)).
According to the proof of Theorem VIIL.2.4 in Jacod and Shiryaev (2003) (see also
the proof of Theorem A.4 in Jacod, Li, and Zheng (2017)), (SB.38) and (SB.42) imply

g(u, p)t LN g(u, p),. Now the joint convergence follows from Proposition S1 and Theo-
rem A.4 of Jacod, Li, and Zheng (2017). Q.E.D.

PROOF OF THEOREM S1: By polarization, it suffices to consider j = j'. The process
V(p)":=G!— M(p)" satisfies lim,_, .. limsup, . P(|V(p)!|>€)=0foralle >0, t > 0.
This follows from (SB.29) and Lemma S13. On the other hand, Z(p,j),(w) < K and

Z(p,j)(®) = Z(j,j).(w) for all £ > 0 and w; we thus have G(p), —> G,. Now Theo-
rem S1 follows from Theorem S2. O.E.D.

The next lemma will be used to prove the consistency of the proposed estimators for
the asymptotic variances and covariances.

We first introduce notations. Let j, € J, je = (et -5 Jeg,)> e = liel, € =1,2,...,d.
{w;?};’zl is a sequence of integers satisfying w,; =0, wj,, — w; > 200 k4 oy +
2k, for £ >1.Letw):=wj)Vk,V j, where j:=max{j, ,:1<{<d,1<p<gq.. Let

Ni'=(ja+wivkn) 4 Ni'=(ja+wivkn) _d
noo.__ E n mo__ E n\4 n
ild,t T HAjz(Y)HwZ" i’[d,t T (yi) HAjz (X)i+w?’
=20, =1 =21k, =1

N =(ja,1+wyVkn)

Wi= (vf)ﬁ(l‘[ijx)gw;—Hr(jz;m).

=201k, =1
LEMMA S14: Assume 6°w;, — 0 and v > 1. Then we have

B8, — 4, 1) < K, ()85, (SB.43)

E((W,) Lap) < K (@5," + (8:k5) °)- (SB.44)

PROOF: Let sy =0, s, := 5.1+ ¢, £ > 1. Let {¢;}/_, be an enumeration of {j, ,: 1 <¢ <
d,1< p <gq,}suchthat ¢, =j,,_, , if s,y <l <s,. Thatis, foreach 1 </ <7g, thereis a
unique pair (Z(l), p(l)) such that L= jg([),p([).

Let gt",lm,m/ = Xin+m - Xi’:—m’ + (y;q-%—m - Y?)Xi+m - (’)/;l+m’ - ’y?)Xier’a g/zr‘fm,m’ = ’yt{q(Xl#m -
Xi+n')- For any integer p > 1, we let k, , = —k, if p=1and k,, =27k, if p > 1. Now
let m; == wy ) + Jeay, pay; My = Wiy + Jeay, pay — K py,n- Using the notations, we obtain (recall
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(SB.3) for Qy)

q

d
l_[Ajk(Y)zr’L+w2‘ = l_[(gznm, mj T+ gl ,my,mj )
=1

=1

(v}) l_[ 8, (X = ]_[ Lo (SB.45)

d
l_[ Aj(’, (Y)er;’ - yl l_[ A.I(’ (X)Hrw” - Z 1_[ gl Jmy,m; l_[ gl Jmymy°
=1

QeQyg leQ leQc

Apply (SA.1) for X and vy, and the fact that y has bounded moments; we get for any
k > 2 that E(|§Zm1’m?|") < Ké&mwy; B(Z7,,01°) <K.
For a fixed Q € Qg, let u = |Q°| whence u > 1. For r > 2, apply Holder’s inequality with
exponents (ry, ..., ru, -5 ); we get
——

!
I\
([T T €] ) = LT D (2T )
leQ leQc leQc leQ
<K(sw?)'". (SB.46)

For 1 < r <2, we note (SB.46) still holds. Now let us consider Q¢ = {[*}. Let (£*, p*)

be the associated pair such that ¢ = jy ,-. Let 7-[,”,* = ]:,'lm; ® Gif pr =1, and
M =Ty, . ®Gif p* > 1. Thus, we have [E(Z},, . 1Hi)l < KSW(1 + | Xicm, | +
|Xi+m.]), which yields E(|E(§l”ml* - [T & i, m1|7-[l ,*)|) < Ké"w), since it is bounded
by KwiStE((1 + [Xitmpe | + | Xitm, ]) ]_[l#* |Xitm, — Xi+m)|). On the other hand, we have by
Hoélder’s inequality (since r > 1) that E(({},, . i, ]_[,#* - m) ) < K(8”(w))))". Also
note that {” ® G; we thus

tm*m

have by Lemma A 6inlJ acod Li, and Zheng (2017) that

]E(
which is further bounded by K, (w})'/"8?"~! since 6*w’; — 0. This proves (SB.43).

Now we prove (SB.44). Let @} := [T, &, (X}, — [Ti, 7 k,) (When the index
set is empty, we let the product be 1, e.g., for £ =1, [], A ¢ (i, ,, = 1.) Then
! = T o where @, = (o) TT2) 8, (0, , Ty 7o ki) By Lemma SL,

we have |E(@7,)| < Kk,". Next, using again Lemma S1, we have for any 1 < ¢, ¢’ < d that

|E(w] @, )] < Kk +K((I — h,) v 1), where h, :=w), + j + (297" + 1)k,. It yields
(SB.44) since vy is bounded and v > 1. Q.E.D.

11
|| P [ is measurable with respect to F, ;.

N = a1+ w))kn

gn g/n
L,mpx ,m}* i,m,,m;

i=291"1g, I#I*

r+1  p-r

1{@?}) <K, (wpo,™" + (wy) ¥ 87 ),
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LEMMA S15: Assume all conditions of Theorem 3 hold. We have

al(jaj/)f P S(j,j,) ! 7
) /Oys dA,. (SB.47)

PROOF: For ¢ =0,1,2, let S;(j,j'; i) := s:(j,j;0) + Z;f:l(s[(j,j/; k) + s.(',J; k),

and S,(j, 3’5 in)2 1= Yo, (50 d's ) + 500055 6)). Let s.(Gb §) 1= Y4y Se (o §'s in)i- We first
prove

an(U(z 0:5,§)) + > (U7 k:3.3), + U7, k:§,§))) + (2 + 1)U(4,j,j’)f)

k=1
— so(i» ) f y! dA,. (SB.48)
0

Since v > 1, vy is bounded, we have S,(j, j; i.)2 fot ysq” dA, < Kil™ — 0. It is therefore suf-
ficient to replace s,(j, ') f; ¥4 dA, by S.(i, s in)1 J; v! d A, on the RHS of (SB.48). Using
the decomposition (SC.1) (for j®j (+k)), for k < i,, we have E(8,(G")*) < K8,(k, V i,).
Lemma S3 gives E(|/8,R( ®j (+k),2)|) < K,(8%(k, Vi,))""; since p > 1/2, we can find
some r > 1 such that (8% (k, v i,))"" < /8.(k, V i,) whence E(|/8,R( D (+k),2)|) <

K./8,(k,V i,); we also have E(]v/8,R(®j (+k),3)]) < Kk;* by Lemma S1. Since
i28, — 0, we have by Lemma A.2 and Lemma A.7 in Jacod, Li, and Zheng (2017) that

F+ DJ(+k), i, — 0since (k, Vv i,)8°7/2 — (. Therefore, we have
(IH"| + R & j (+K), 1)) /i, —> 0 since (k, \ i,)5¢/2 — 0. Theref, h

in t
Z(anU(% ki), —r( @ (+k)) f v dAs) ) (SB.49)
k=1 0

, s s\n . NI'—w(4)n N n n s s\ . N
Let U (47.]’J )t = _Zi:ﬂ*l(ki (yl )q Aj(X)iAj’(X)i-HuM)'ZH C4(.]7J )t = SnU(4,J7J )t +
r()r(i) [, v dA,. Cs(j, j)" can be decomposed into

5
Gl ) =Y D), (SB.50)
=1

where

D,(1)! = 8,(U(%,5.§) = U'(4,3,3)));
t

D42)! = (rG)r() — r(i ko) (i’ k) fo Y dA,;

t N —w(@)n .
D,(3) = r(; k)r(i'; k) </ y! dA, - Z (V)" «d(n, i+ 1));
0

i=24-1k,

N —w(4)n

0,4 = r( k) k) > (v (@d(n,i+1) —8,):

i=24-1k,
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N =w(#)n

D45 =80 Y () (80018 OO iy — 7t k) (s K)-

i=24-1k,

Now we will prove the convergence i,(6,U (4,j,§)! +r@()rQ’) fot v dAy) =0 by almost
repeating the analysis to obtain (SB.49): E(|D4(1)!1ian) < K,(8%k,)"” by Lemma S14;
since y has bounded moments of all orders and 7y is bounded, Lemma S2 leads to
|9D4(2)| < Kk,”. Next, Lemma A.2 and Lemma A.7 in Jacod, Li, and Zheng (2017) im-

ply V/3,(D4(3)" + D4(4)")i,, —> 0; a direct application of the second part of Lemma S14
gives E((D4(5)")?) < K(8,k,+ 8.k, *"). By the above convergence together with (SB.49),
we have (SB.48). We can prove in a similar manner

t
5( (5,0:4.5) +Z (5, k:4,§) +U(5,k;j/,j)j’)>i&sl(j,.i/)/ y! dA,,
0

in t
8, ( (6,0:4,§) +Z (6, k:3,4)) +U(6,k;jzj)’:)> Lsz(j,j/)/ ! dA,
0

which together with (5) and (SB.48) imply (SB.47). Q.E.D.

LEMMA S16: Assume all conditions of Theorem 3 hold. We have

~ [+ o \N . o/ t
az(]J\;nJ), N r(JZ(J) / JE A, (SB51)
t t 0
33(i.§); = RORE) ['_ RG)r() [ /-
ELEN a,dA, — vloa,dA,
N A, /0 ‘ A, /o ’
SRV
_r()R() / Yia, dA,. (SB.52)
A Jo

PROOF: We prove (SB.51), and

U@, = r(j)/’ i—
LN LdA, SB.53
N7 4 ), 7 ( )

can be proved analogously. In view of (3.17) in Jacod, Li, and Zheng (2017), (SB.52)
follows immediately from (SB.53).

Let B 1= 8,U(3,j, ) — Yonto " 8,0 (s ko)r (s k)@ (v))?', Hy = F' ® Gisaon,» and
B(1)7 = 8 (AN D e = (1) 8500 s (O o)
B(2)7 1= 57 (7) " (8500 ey Ay Oy — 7 k)i Ki));
B3, = r(is ka)r(i's ko) (7)) (37 — ).

Then we have an_easy estimate by the independence of F ® and G and Lemma S1
that E(|E(B(2)7|H?)|) < Kk,*. Moreover, we have E((B(2)")?) < K as E((87)*F") <
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K (see the proof of Lemma A.10 in Jacod, Li, and Zheng (2017)), since B(2)”
Ltantdh i3k, 1y, “Measurable. Now Lemma A.6 in Jacod, Li, and Zheng (2017) ylelds

E(| ZN O g (2)!Lny) < Kk)/?8,'%. Using the decomposition (SB.45), and applying
Holder’s inequality, we obtain

n n A n n 1r
]E((Aj(Y)i+w(3)gAj/(Y)i+w(3)g - (YI )q Aj (X)i+1u(3)gAj/ (X)i+w(3)§') ) (Spk ) !

L op
Apply the Cauchy-Schwarz inequality; we have E(| Z F G %(1)”|1{Qn}) <K, ki 8,? !

i=qn

Next, we have by Lemma A.10 in Jacod, Li, and Zheng (2017) that E(| Z _w(3)" B(3)Y| x
Lop) < 5 Since |BY| < 8, 33 Mgy gy and P(Q) — 1, we have B — 0.

=qn

Now the proof of (SB.51) is complete. Q.E.D.

APPENDIX SC: PROOF OF THE MAIN THEOREMS

Let
3
ZG)! = G — (i k) H! + Y R, 0], (SC.1)
=1
where 9(j,1)! = —SE([yadd, — YN (yytars(n, i+ 1); R(G,2)! =

V8.(ReMeDI(Y:j, k,) — ReMeDI'(x:j, k.)!); R(j, 3); 1= "8 [ yaq ..

PROOF OF THEOREM 1: It suffices to show +/3,Z(j)" —5 0 in view of (5). Since v is
bounded, a direct application of Lemma S1 yields E(8,(G")?) < K§,k, — 0; Lemma A.2

and Lemma A.7 of Jacod, Li, and Zheng (2017) imply v/3,(|r(j: k.)H?| + R, 1)"]) —>
0; Lemma S3 yields v/8,E(IR(, 2)/ L) < K(8k,)"" — 0 whence +/5,3:(j, 2)" =0
since P(Q") — 1; Lemma S2 gives v/8,|9(j, 3)"| — 0. This completes the proof. Q.E.D.

PROOF OF THEOREM 2: It is immediate that R(j,1)" —> 0, E(IR(,2)!I1an) <
KkY/ree/r=12 1 1:R(j, 3)"| < Kk, '8, '/, which follow from Lemma A.7 in Jacod, Li, and
Zheng (2017), Lemma S3, and Lemma S2, respectively. Thus, we have 9i(j, 2)7 5 0for
r close to 1 and P(Q)") — 1, and R(j, 3)" —5 0 in view of (17). Now the first part of The-

orem 2 is a simple consequence of Theorem S1 and part (b) follows directly the proof of
Theorem 3.4 in Jacod, Li, and Zheng (2017). Q.E.D.

PROOF OF THEOREM 3: The convergence is an immediate result of Theorem 2,
Lemma S15, and Lemma S16. O.E.D.
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