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APPENDIX A: PROOFS

A.1. Proof of Claims in Sections 3 and 4

PROOF OF PROPOSITION 1: The solution to HJB equations (1) through (3) imply that
equilibrium investment and value functions must satisfy ηs = vs+1 − vs for s ∈ {−1�0�1}.
The HJB equations can thus be rewritten as

(r +ηs/2 +η−s)vs = πs +ηsvs+1/2 +η−svs−1 for s ∈{−1�0�1}� (A.1)

Substitute using v2 = π2/r, v−2 = π−2/r, v1 = v2 − η1, v0 = v2 − η1 − η0, and v−1 = v2 −
η1 − η0 − η−1, the HJB equations become a system of 3 quadratic equations involving 3
endogenous variables {η−1�η0�η1} with exogenous parameters {πs} and r. That dηs/dr <
0 follows from totally differentiating the system of equations and applying the implicit
function theorem.

We prove a generalized version of the limiting result that as r → 0, η1 → ∞, η−1 →
∞, and (η1 − η−1) → ∞, under a quadratic cost function with a leader disadvantage.
Specifically, define cs = 1 if s < 1 and cs = c if s = 1, and write the HJB equation for state
s ∈{−1�0�1}:

rvs = max
η

πs − csη
2/2 +η(vs+1 − vs) +η−s(vs−1 − vs)�

The parameter c is a cost shifter for the leader. The example in Section 3 has c = 1.
When c > 1, leader holds a cost disadvantage relative to the follower. We now prove the
limiting result for a generic c. Optimal investment satisfies η−1 = v0 − v−1, η0 = v1 − v0,
and cη1 = v2 − v1. After substituting these expressions into the HJB equation and then
taking the limit r → 0, we obtain

v1 ∼ η1v2 + 2η−1v0

η1 + 2η−1
� v0 ∼ v1 + 2v−1

3
� v−1 ∼ η−1v0 + 2η1v−2

η−1 + 2η1
�
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where we use x ∼ y to denote limr→0(x − y) = 0. Using optimal investment decisions to
substitute out v−1, v0 and v1, we obtain

cη1 ∼ 8η−1(v2 − v−2)
6η1 + 9η−1

� η−1 ∼ 2η1(v2 − v−2)
6η1 + 9η−1

�

thereby implying cη2
1 ∼ 4η2

−1. As r → 0, v2 − v−2 → ∞, implying that η1 → ∞, η−1 →
∞, and (η1 − η−1) → ∞ if and only if c < 4. In particular, when the leader does not
have a cost disadvantage (c = 1), the difference between leader and follower investment
diverges. Q.E.D.

PROOF OF LEMMAS 4.1 AND 4.2: The CES demand within each market implies that

the market share of firm i is δi ≡ piyi
p1y1+p2y2

= p1−σ
i

p1−σ
1 +p1−σ

2
. Under Bertrand competition,

the price of a firm with productivity zi must solve pi = σ (1−δi)+δi
(σ−1)(1−δi)

λ−zi , with markup

mi ≡ pi

λ−zi
= σ (1−δi)+δi

(σ−1)(1−δi)
and profits πi = δi(

pi−λ−zi

pi
). Now define ρs as the relative price be-

tween leader and follower in a market with productivity gap s. Taking ratios of the prices
and re-arrange, we derive that ρs must solve ρσ

s = λ−s (σρσ−1
s +1)

σ+ρσ−1
s

. Market share is therefore

δs = ρ1−σ
s

ρ1−σ
s +1

for the leader and δ−s = 1
ρ1−σ
s +1

for the follower and profits are πs = 1
σρσ−1

s +1

and π−s = ρσ−1
s

σ+ρσ−1
s

, respectively. Leader’s markup is ms = σ+ρ1−σ
s

σ−1 and follower’s markup is

m−s = σρ1−σ
s +1

(σ−1)ρ1−σ
s

.
The fact that follower’s flow profits are convex in s follows from algebra. Moreover,

lims→∞ ρσ
s λ

s = 1/σ ; hence, for large s, πs ≈ 1

σ
1
σ λ− σ−1

σ s+1
and π−s ≈ 1

σ
2σ−1
σ λ

σ−1
σ s+1

. The even-

tual concavity of πs and (πs + π−s) as s → ∞ is immediate. Also note that, as s → ∞,
πs → 1, π−s → 0, ms → ∞, m−s → 0. Q.E.D.

PROOF OF LEMMA 4.5: The expression g = lnλ(
∑∞

s=0 μsηs + μ0η0) shows that aggre-
gate growth is equal to lnλ times the weighted-average investment rate of firms at the
frontier—leaders and neck-and-neck firms. In a steady state, the growth rate of the pro-
ductivity frontier must be the same as the growth rate of followers; hence, aggregate
growth rate g can also be written as g = lnλ(

∑∞
s=1 μs(η−s + κ)).

To prove the expression formally, we proceed in two steps. First, we express aggregate
productivity growth as a weighted average of productivity growth in each market. We then
use the fact that, given homothetic within-market demand, if a follower in state s improves
productivity by one step (i.e., by a factor λ) and a leader in state s − 1 improves also by
one step, the net effect is equivalent to one step improvement in the overall productivity
of a single market.

Let p(ν) ≡ [p1(ν)1−σ + p2(ν)1−σ ]
1

1−σ be the price index of a single market ν. We can
equivalently index for markets not using ν but instead using (s� zF), the productivity gap
and the productivity of the follower. The growth rate g of aggregate productivity defined
in (12) is equal to − d lnP

dt
, where P is the ideal consumer price index, and can be written as

g ≡ d lnλZ

dt
= −d lnP

dt
= −

d

∫ 1

0
lnp(ν) dν

dt
= −

∞∑
s=0

μs ×
d

[∫
zF

lnp
(
s� zF

)
dF

(
zF

)]
dt

�
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Now recognize that productivity growth rate in each market, − d lnp(s�zF )
d ln t , is a function of

only the productivity gap s and is invariant to the productivity of follower, zF . Specifically,
suppose the follower in market (s� zF) experiences an innovation, the market price index
becomes p(s− 1� zF + 1). If instead the leader experiences an innovation, the price index
becomes p(s + 1� zF). The corresponding log-changes in price indices are respectively

aF
s ≡ lnp

(
s − 1� zF + 1

) − lnp
(
s� zF

) = − lnλ+ ln
[
ρ1−σ
s−1 + 1

] 1
1−σ − ln

[
ρ1−σ
s + 1

] 1
1−σ �

aL
s ≡ lnp

(
s + 1� zF

) − lnp
(
s� zF

) = ln
[
ρ1−σ
s+1 + 1

] 1
1−σ − ln

[
ρ1−σ
s + 1

] 1
1−σ �

where ρs is the implicit function defined in the proof for Lemma 1. The log-change in
price index is independent of zF in either case. Hence, over time interval [t� t + �], the
change in price index for markets with state variable s at time t follows

� lnp
(
s� zF

) =
{
aL
s with probability ηs��

aF
s with probability (η−s + κ · 1(s �= 0))��

The aggregate productivity growth can therefore be written as

g = −μ02η0a0 −
∞∑
s=1

μs × (
ηsa

L
s + (η−s + κ)aF

s

)
�

where a0 ≡ aF
0 = aL

0 . Finally, note if both leader and follower in a market experiences
productivity improvements, regardless of the order in which these events happen, the
price index in the market changes by a factor of λ−1: aF

s + aL
s−1 = aL

s + aF
s+1 = − lnλ for all

s ≥ 1. Hence,

g = −μ02η0a0 −
∞∑
s=1

μs × (
ηsa

L
s + (η−s + κ)aF

s

)

= −μ02η0a0 −
∞∑
s=1

μs × (
ηsa

L
s + (η−s + κ)

(− lnλ− aL
s−1

))

= lnλ ·
∞∑
s=1

μs(η−s + κ) −
( ∞∑

s=1

μs × (
ηsa

L
s − aL

s−1(η−s + κ)
) +μ02η0a0

)
�

Given that steady-state distribution {μs} must follow equations (10) and (11), we know

∞∑
s=1

μs × (
ηsa

L
s − aL

s−1(η−s + κ)
) +μ02η0a0

=
∞∑
s=1

μsηsa
L
s +μ02η0a0 −

( ∞∑
s=1

μsa
L
s−1(η−s + κ)

)
= 0�

Hence, aggregate growth rate simplifies to g = lnλ · ∑∞
s=1 μs(η−s + κ), which traces

the growth rate of productivity laggards. We can also apply equations (10) and (11)
again to express productivity growth as a weighted average of frontier growth: g =
lnλ · (

∑∞
s=1 μsηs + 2μ0η0). Q.E.D.
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A.2. An Example With Leapfrogging

“No-sudden-leapfrog” is the source of strategic asymmetry in the paper. We extend the
example in Section 3 to allow for partial leapfrogging show a strict form of “no-leapfrog”
is not necessary for strategic asymmetry. Suppose upon a successful innovation, the fol-
lower can jump from state −1 to state 2 with probability p, and to state 0 with probability
1 −p. The HJB equations can be written as

rv1 = max
η

π1 −η2/2 +η(v2 − v1) +η−1

(
(1 −p)v0 +pv−2 − v1

)
� (A.2)

rv0 = max
η

π0 −η2/2 +η(v1 − v0) +η0(v−1 − v0)� (A.3)

rv−1 = max
η

π−1 −η2/2 +η
[
(1 −p)(v0 − v−1) +p(v2 − v−1)

] +η1(v−2 − v−1)� (A.4)

The HJB equations reflect the fact that with probability p, follower’s innovation raises
follower’s value to v2 and knocks leader’s value down to v−2. The model in Section 3
corresponds to the case where p = 0.

Using the same proof strategy as for Proposition 1, one can show that as r → 0, equi-
librium investment η1 and η−1 both diverge to infinity, and their ratio, x ≡ η1/η−1, must
satisfy the following cubic equation:

(1 + 2p)x3 + 2p(2 +p)x2 − 2(2 +p)x−p(1 + 2p) = 0�

For all p < 1, the positive solution to the cubic equation always features x > 1, implying
that (η1 −η−1) → ∞. That is, unless the follower always leapfrogs with probability p= 1,
the leader-follower strategy asymmetry that we highlight is always present, and the leader
always responds to low interest rates more than the follower.

A.3. Proof of Claims in Sections 5.2 and 5.3

Section 5 maintains the assumption that investment cost is linear, c(ηs) = c · ηs for
ηs ∈ [0�η]. As discussed in Section 4.2, we assume the investment space is sufficiently
large—cη > π∞ and η > κ—so that firms can compete intensely if they choose to—and
c is not prohibitively high relative to the gains from becoming a leader (cκ < π∞ −π0)—
otherwise no firm has any incentive to ever invest.

PROOF OF LEMMA 5.1: Recall n + 1 ≡ min{s|s ≥ 0�ηs < η} is the first state in which
market leaders choose not to invest, and k + 1 ≡ min{s|s ≤ 0�ηs < η} is the first state
in which followers choose not to invest. Suppose n < k, that is, leader invests in states 1
through n whereas the follower invests in states 1 through at least n + 1. We first show
that, if these investment decisions were optimal, the value functions of both the leader
and follower in state n + 1 must be supported by certain lower bounds. We then reach
for a contradiction, showing that, if n < k, then market power is too transient to support
these lower bounds on value functions.

The HJB equation for the leader in state n+ 2 implies

rvn+2 = max
ηn+2∈[0�η]

πn+2 +ηn+2(vn+3 − vn+2 − c) + (η−(n+2) + κ)(vn+1 − vn+2)

≥ πn+2 + (η+ κ)(vn+1 − vn+2)� (A.5)
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That leader does not invest in s = n + 1 implies c ≥ vn+2 − vn+1; combining with (A.5) to
get

rvn+1 ≥ πn+2 − c(η+ κ+ r)�

The HJB equation for the follower in state n+ 1 implies

rv−(n+1) = max
η−(n+1)∈[0�η]

π−(n+1) + (η−(n+1) + κ)(v−n − v−(n+1)) − cη−(n+1)

≥ π−(n+1) + κ(v−n − v−(n+1))� (A.6)

That follower invests in s = n+ 1 implies c ≤ v−n − v−(n+1); combining with (A.6) to get

rv−(n+1) ≥ π−(n+1) + cκ� (A.7)

Combining this with the earlier inequality involving rvn+1, we obtain an inequality on the
joint value wn+1 ≡ vn+1 + v−(n+1):

rwn+1 ≥ πn+2 +π−(n+1) − c(η+ r)� (A.8)

We now show that inequalities (A.7) and (A.8) cannot both be true. To do so, we con-
struct alternative economic environments with value functions ŵ

(0)
1 and v̂

(0)
−1 such that

ŵ
(0)
1 ≥ wn+1 and v̂

(0)
−1 ≥ v−(n+1); we then show that even these dominating value functions

ŵ
(0)
1 and v̂

(0)
−1 cannot satisfy both inequalities.

First, fix n and fix investment strategies (leader invests until state n + 1 and follower
invests at least through n + 1); suppose for all states 1 ≤ s ≤ n + 1, follower’s profits are
equal to π−(n+1) and leader’s profits are equal to πn+2; two firms each earn

π−(n+1)+πn+2

2 in
state zero. The joint profits in this modified economic environment are independent of the
state by construction; moreover, the joint flow profits always weakly dominate those in the
original environment and strictly dominate in state zero (πn+2 +π−(n+1) ≥ π1 +π−1 > 2π0).
Let ŵs denote the value function in the modified environment; ŵs > ws for all s ≤ n+ 1.

Consider the joint value in this modified environment but under alternative invest-
ment strategies. Let n̄ index for investment strategies: leader invests in states 1 through
n̄ whereas the follower invests at least through n̄ + 1. Let ŵ(n̄)

s denote the joint value in
state s under investments indexed by n̄. We argue that ŵ

(n̄)
n̄+1 is decreasing in n̄. To see

this, note the joint flow payoffs in all states 0 through n̄ is constant by construction and is
equal to x ≡ (πn+2 + π−(n+1) − 2cη)—total profits net of investment costs—and the joint
flow payoff in state n̄ + 1 is (πn+2 + π−(n+1) − cη) = x + cη. ŵ(n̄)

n̄+1 is equal to a weighted
average of x/r and (x+ cη)/r, and the weight on (x+ cη)/r is higher when n̄ is smaller.
Hence, ŵ(n̄)

n̄+1 is decreasing in n̄, and that ŵ(0)
1 ≥ ŵ

(n)
n+1 > wn+1. The same logic also implies

v̂
(0)
0 = 1

2 ŵ
(0)
0 > 1

2w0 = v0.
Consider follower’s value v̂

(0)
−1 in the alternative environment, when investment strate-

gies are indexed by zero, that is, firms invest in states 0 and −1 only. We know v̂
(0)
−1 must

be higher than v−(n+1) because

v̂
(0)
−1 = π−(n+1) − cη+ κv̂

(0)
0

r + κ+η
>

π−(n+1) − cη+ κv0

r + κ+η
≥ π−(n+1) − cη+ κv−n

r + κ+η
= v−(n+1)�
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We now show that inequalities rv̂(0)
−1 ≥ π−(n+1) + cκ and rŵ

(0)
1 ≥ πn+2 +π−(n+1) − c(η+ r)

cannot both hold. We can explicitly solve for the value functions from the HJB equations:

ŵ
(0)
0 = πn+2 +π−(n+1) − 2cη+ 2ηŵ(0)

1

r + 2η
�

ŵ
(0)
1 = πn+2 +π−(n+1) − cη+ (η+ κ)ŵ(0)

0

r +η+ κ
�

v̂
(0)
−1 = π−(n+1) − cη+ (η+ κ)ŵ(0)

0 /2
r +η+ κ

�

Solving for ŵ(0)
1 and v̂

(0)
−1 , we obtain

rŵ
(0)
1 = πn+2 +π−(n+1) − cη

(
1 + η+ κ

r + 3η+ κ

)
�

(r +η+ κ)rv̂(0)
−1 = r(π−(n+1) − cη) + (η+ κ)

(
πn+2 +π−(n+1)

2
− cη

r + 2η+ κ

r + 3η+ κ

)
�

That rv̂(0)
−1 ≥ π−(n+1) + cκ implies

(r +η+ κ)rv̂(0)
−1 = r(π−(n+1) − cη) + (η+ κ)

(
πn+2 +π−(n+1)

2
− cη

r + 2η+ κ

r + 3η+ κ

)
≥ (r +η+ κ)(π−(n+1) + cκ)

=⇒ (η+ κ)
(
πn+2 −π−(n+1)

2
− cη

r + 2η+ κ

r + 3η+ κ

)
≥ (r +η+ κ)cκ+ cηr�

Since
πn+2−π−(n+1)

2 ≤ πn+2
2 < cη, it must be the case that

(η+ κ)cη > (r +η+ κ)cκ+ cηr + (η+ κ)cη
r + 2η+ κ

r + 3η+ κ
�

On the other hand, that rŵ(0)
1 ≥ πn+2 +π−(n+1) − c(η+ r) implies r ≥ η η+κ

r+3η+κ
; hence, the

previous inequality implies

(η+ κ)cη > (r +η+ κ)cκ+ (η+ κ)cη
η

r + 3η+ κ
+ (η+ κ)cη

r + 2η+ κ

r + 3η+ κ

= (r +η+ κ)cκ+ (η+ κ)cη�

which is impossible; hence, n ≥ k.
We now show that the follower does not invest in states s ∈ {k + 1� � � � � n + 1}. First,

note

(r +η+ κ)(v−s − v−s−1) = π−s −π−s−1 + κ(v−s+1 − v−s) +η(v−s−1 − v−s−2)

+ max
{
η(v−s+1 − v−s − c)�0

} − max
{
η(v−s − v−s−1 − c)�0

}
�



LOW INTEREST RATES, MARKET POWER, AND PRODUCTIVITY GROWTH 7

Suppose v−s+1 − v−s ≥ (v−s − v−s−1), then

(r +η+ κ)(v−s − v−s−1) ≥ π−s −π−s−1 + κ(v−s+1 − v−s) +η(v−s−1 − v−s−2)

=⇒ (r +η)(v−s − v−s−1) ≥ π−s −π−s−1 +η(v−s−1 − v−s−2)�

If v−s+1 − v−s < (v−s − v−s−1), then

(r +η)(v−s − v−s−1) < π−s −π−s−1 +η(v−s−1 − v−s−2)

+ max
{
η(v−s+1 − v−s − c)�0

} − max
{
η(v−s − v−s−1 − c)�0

}
≤ π−s −π−s−1 +η(v−s−1 − v−s−2)�

To summarize, for all s,

v−s+1 − v−s ≥ (v−s − v−s−1)

⇐⇒ (r +η)(v−s − v−s−1) ≥ π−s −π−s−1 +η(v−s−1 − v−s−2)� (A.9)

Now suppose η−k−1 = 0 but η−s′ = η for some s′ ∈{k+ 2� � � � � n+ 1}. This implies

v−(k−1) − v−k ≥ c > v−k − v−k−1 < v−s′+1 − v−s′�

implying there must be at least one s ∈ {k + 2� � � � � n + 1} such that v−s+1 − v−s ≥ v−s −
v−s−1 < v−s−1 − vs−2. Applying (A.9),

(r +η)(v−s − v−s−1) ≥ π−s −π−s−1 +η(v−s−1 − v−s−2)� (A.10)

(r +η)(v−s−1 − v−s−2) < π−s−1 −π−s−2 +η(v−s−2 − v−s−3)� (A.11)

Inequality (A.10) and v−s −v−s−1 < v−s−1 −v−s−2 implies r(v−s −v−s−1) >π−s −π−s−1; con-
vexity in follower’s profit functions further implies r(v−s − v−s−1) >π−s−1 −π−s−2. Substi-
tute into inequality (A.11), and using the fact v−s − v−s−1 < v−s−1 − vs−2, we deduce it must
be the case that (v−s−2 − vs−3) > (v−s−1 − v−s−2). Applying (A.9) again,

(r +η)(v−s−2 − v−s−3) <π−s−2 −π−s−3 +η(v−s−3 − v−s−4)�

That r(v−s−2 − v−s−3) >π−s−2 −π−s−3 further implies (v−s−3 − v−s−4) > (v−s−2 − v−s−3). By
induction, we can show vs−1 − vs−2 < vs−2 − vs−3 < · · ·< v−n − v−(n+1). But

(r +η+ κ)(v−n − v−(n+1)) ≤ π−n −π−(n+1) + κ(v−n+1 − v−n) +η(v−n+1 − v−n+1)

=⇒ (r +η)(v−n − v−(n+1)) ≤ π−n −π−(n+1)

which is a contradiction, given convexity of the profit functions. Hence, we have shown
v−k − v−(k+1) ≥ v−s − v−s−1 for all s ∈ {k+ 1� � � � � n+ 1}, establishing that follower cannot
invest in these states. Q.E.D.

PROOF OF LEMMA 5.2: Given the cutoffs (n�k), aggregate productivity growth is (from
Lemma 4.5) g = lnλ · (

∑n

s=1 μsη+ 2μ0η). The steady-state distribution must follow

μsη =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
μ1(η+ κ)/2 if s = 0�
μs+1(η+ κ) if 1 ≤ s ≤ k− 1�
μs+1κ if k≤ s ≤ n+ 1�
0 if s > n+ 1�

(A.12)
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Hence, we can rewrite the aggregate growth rate as

g = lnλ ·
(

2μ0η+
k−1∑
s=1

μsη+
n∑

s=k−1

μsη

)

= lnλ ·
(
μ1(η+ κ) +

k∑
s=2

μs(η+ κ) +
n+1∑
s=k

μsκ

)

= lnλ · (μC (η+ κ) +μMκ
)
�

as desired. To solve for μ0, μC , and μM as functions of n and k, we use (A.12) to write μs

as a function of μn+1 for all s. Let α≡ κ/η, then

μs =

⎧⎪⎨
⎪⎩
μn+1α

n+1−s if n+ 1 ≥ s ≥ k�

μn+1α
n+1−k(1 + α)k−s if k− 1 ≥ s ≥ 1�

μn+1α
n+1−k(1 + α)k/2 if s = 0�

Hence, μ0 = μn+1α
n+1−k(1 + α)k/2. The share of markets in the competitive and monop-

olistic regions can be written, respectively, as

μM = μn+1

n+1∑
s=k+1

αn+1−s = μn+1
1 − αn−k+1

1 − α
�

μC = μn+1α
n+1−k

k∑
s=1

(1 + α)k−s = μn+1α
n−k

(
(1 + α)k − 1

)
�

Q.E.D.

PROOF OF LEMMA 5.3: Given k ≥ 1, the share of markets in the competitive region is

μC =
k∑

s=1

μs = μ1 +μ1(1 + α)−1︸ ︷︷ ︸
=μ2

+· · · +μ1(1 + α)−(k−1)︸ ︷︷ ︸
=μk

= μ0
κ+η

2η︸ ︷︷ ︸
=μ1

1 − (1 + α)−k

1 − (1 + α)−1 ≥ μ0
κ+η

2η
�

Aggregate growth rate can be rewritten as

g = lnλ · [(1 −μ0)κ+μCη
] ≥ lnλ ·

[
(1 −μ0)κ+μ0

κ+η

2

]
≥ lnλ · κ�

Aggregate investment is I = 2η(μC + μ0) + η(μM − μn+1). In a steady state, it must be
that 2ημ0 +η(μM −μn+1) = (η+κ)μC +κμM , thus I = 2ημC +κ(1−μ0) ≥ κ, as desired.

Q.E.D.

A.4. Proof of Claims in Section 5.4

Consider the following recursive equations of value functions {us}∞
s=−∞:

rus+1 = λs+1 +ps+1(us − us+1) + q(us+2 − us+1)� (A.13)
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where λs+1 is the flow payoff, ps+1 and q are respectively the Poisson rate of transition
from state s+ 1 into state s and state s+ 2. Given us and �us ≡ us+1 −us , we can solve for
all us+t , t > 0 as recursive functions of us and �us. The recursive formulation generically
does not have a closed-form representation. However, as r → 0, the value functions do
admit asymptotic closed-form expressions, as Proposition A.1 shows. In what follows, let
∼ denote asymptotic equivalence as r → 0, that is, x∼ y iff limr→0(x− y) = 0.

PROPOSITION A.1: Consider value functions {us}∞
s=−∞ satisfying (A.13). Fix state s and

integer t > 0. Suppose λs′ ≡ λ and ps′ ≡ p for all states s ≤ s′ ≤ t. Let δ ≡ rus−λ
q

, a ≡ p

q
,

b≡ r
q
, then for all t > 0,

us+t − us ∼ (�us)
1 − at

1 − a
+ δ

t − a− at

1 − a
1 − a

+�us · b (t − 1)
(
1 + at

)
(1 − a) − (2 − a)

(
at − a

)
(1 − a)3

+ δb
1

(1 − a)3

((
(t − 2)(t − 1)

2
+ 2a

)
(1 − a)

− (t − 3)at − a(2 − a)(t − 1)
)
� (A.14)

us+t − us+t−1 ∼ �usa
t−1 + δ

1 − at−1

1 − a
+�usb

(
(t − 1)

(
1 + at

) − (t − 2)
(
1 + at−1

))
(1 − a)2

−�usb

(
(2 − a)

(
at − at−1

))
(1 − a)3 + δb

(1 − a)2

(t − 2)(t − 1) − (t − 2)(t − 3)
2

− δb

(1 − a)3 (t − 3)at + (t − 4)at−1 − a(2 − a))� (A.15)

If t → ∞ as r → 0, then the formulas can be simplified as follows:
1. If a < 1, then us+t − us+t−1 ∼ �usa

t−1 + δ
1−a

+ b�us
(1−a)2 ; further,

(a) if r�us → 0, then us+t − us ∼ �us
1

1−a
+ tδ

1−a
;

(b) if r�us �→ 0, then r(us+t − us) ∼ r�us
1−a

.
2. Suppose a > 1 and r�us → 0.

(a) If �us + δ
a−1 � 0, then r(us+t −us) ∼ (�us + δ

a−1 ) rat

a−1 and r(us+t −us+t−1) ∼ (�us +
δ

a−1 )rat−1.
(b) If �us + δ

a−1 ∼ 0, then us+t − us ∼ − bδ
(1−a)4 · at+1.

Suppose λs′ and ps′ are state-dependent. Let λ ≥ λs′ and p ≤ ps′ for all s ≤ s′ ≤ t. The
formulas in (A.14) and (A.15) provide asymptotic lower bounds for us+t − us+t−1 and us+t −
us. Conversely, if λ ≤ λs′ and p ≥ ps′ for all s ≤ s′ ≤ t, then the formulas provide asymptotic
upper bounds for us+t − us+t−1 and us+t − us.

REMARK: Proposition A.1 expresses us+t and �us+t as functions of us and �us. One
can also apply the proposition write us and �us as functions of �us+t and us+t . Proposition
A.1 thus enables us to solve for value functions asymptotically, and we apply it repeated
throughout the rest of this Appendix.
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PROOF OF PROPOSITION A.1: First, suppose λs′ ≡ λ and ps ≡ p are constant for all
states s ≤ s′ ≤ t. Given us and �us, we can solve for value functions us+t as

us+1 − us = �us�{
us+2 − us+1 = a�us + b�us + δ�

us+2 − us = (1 + a)�us + b�us + δ�
(A.16)

{
us+3 − us+2 = a2�us + (1 + 2a)b�us + (1 + a)δ+ o(r)�
us+3 − us = (

1 + a+ a2
)
�us + (1 + 1 + 2a)b�us + (1 + 1 + a)δ+ bδ+ o(r)�

where o(r) are terms that vanish as r → 0. Applying the formula iteratively, we find

us+t+1 − us+t = at�us + δ

t−1∑
z=0

az + b�us

t∑
z=1

zaz−1 + bδ

t−1∑
z=1

z∑
m=1

mam−1 + o(r)�

us+t+1 − us = �us

t∑
z=0

az + δ

t∑
z=0

z−1∑
m=0

am + b�us

t∑
z=1

z∑
m=1

mam−1

+ bδ

t−1∑
x=1

x∑
z=1

z∑
m=1

mam−1 + o(r)�

One obtains the proposition by applying the following formulas for power series summa-
tions:

1.
∑t

z=0 a
z = 1−at+1

1−a
;

2.
∑t

z=0

∑z−1
m=0 a

m = t+1− a−at+1
1−a

1−a
;

3.
∑t

z=1

∑z

m=1 mam−1 = t(1+at+1)(1−a)−(2−a)(at+1−a)
(1−a)3 ;

4.
∑t−1

x=1

∑x

z=1

∑z

m=1 mam−1 = 1
(1−a)3 ( t(t−1)+4a

2 (1 − a) − (t − 2)at+1 − a(2 − a)t).
Now suppose λs and ps are state-dependent, and λ ≥ λs′ , p ≤ ps′ for all s ≤ s′ ≤ t. Let
δs ≡ rus−λs

q
, as ≡ ps

q
and note δs > δ ≡ rus−λ

q
, as > a. By rewriting equations in this proof

as inequalities (e.g., rewrite (A.16) as us+2 − us+1 > a�us + b�us + δ and us+2 − us >
(1 +a)�us +b�us +δ), the formulas in the proposition provide asymptotic lower bounds
for us+t −us+t−1 and us+t −us as functions of us and �us. Conversely, if λ≤ λs′ and p ≥ ps′
for all s ≤ s′ ≤ t, then the formulas provide asymptotic upper bounds for us+t −us+t−1 and
us+t − us. Q.E.D.

PROOF OF LEMMA 5.4: Recall n and k are the last states in which the leader and the
follower, respectively, chooses to invest in an equilibrium. Both n and k are functions of
the interest rate r. Also recall that we use ws ≡ vs + v−s to denote the total firm value of a
market in state s.

We first prove limr→0 n = ∞. Consider the sequence of value functions v̂s generated by
an alternative sequence investment decisions: leader follows equilibrium strategies and
invests in n states whereas follower does not invest in any state. Under these alternative
investments, flow payoff is higher in every state, hence the joint value of both firms is
higher in every state—including state 0—thus v̂0 ≥ v0. One can further show by induction
that the alternative value functions dominate the equilibrium value functions (v̂s ≥ vs) for
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all s ≥ 0; intuitively, leader’s value is higher in any state because it expects to spend more
time in higher payoff states, since the follower does not invest. Also by induction one can
show �vs ≥ �v̂s for all s ≥ 0; intuitively, when the follower does not invest, leader has less
of an incentive to invest as well.

Now suppose n is bounded, and we look for a contradiction. Let N be the smallest in-
teger such that (1) N > n for all r, and (2) πN −π0 > cκ. Note rvN = r · πN+κvN−1

r+κ
→ rvN−1

as r → 0; hence, rvN ∼ rvN−1. By induction, because N is finite, rvs ∼ rvt ∼ rv−s for
any s� t ≤ N . Likewise, rv̂s ∼ rv̂t for any s� t ≤ N . The fact that leader does not in-
vest in state N − 1 implies limr→0(vN − vN−1) < c =⇒ limr→0 rvN−1 > πN − cκ, which
further implies limr→0 rv̂0 ≥ limr→0 rv0 = limr→0 rvN−1 > πN − cκ. Also note that �v̂0 >

�ŵ0 = rŵ1−(2π0−2cη)
r+2η → rŵ0−(2π0−2cη)

2η = rv̂0−(π0−cη)
η

. We now put these pieces together and ap-
ply Proposition A.1 to compute a lower bound for �v̂n as a function of v̂0 and �v̂0 (substi-
tute us = v̂0, us+t = v̂N , a= κ/η, b= r/η, δ= rv̂0−(πN−cη)

η
):

lim
r→0

�v̂N ≥ lim
r→0

(
�v̂0(κ/η)N−1 + rv̂0 − (πN − cη)

η

1 − (κ/η)N−1

1 − κ/η

)

> lim
r→0

rv̂0 − (π0 − cη)
η

(κ/η)N−1 + rv̂0 − (πN − cη)
η

1 − (κ/η)N−1

1 − κ/η

> lim
r→0

πN − cκ− (π0 − cη)
η

(κ/η)N−1 + πN − cκ− (πN − cη)
η

1 − (κ/η)N−1

1 − κ/η

> lim
r→0

c(κ/η)N−1 + c(η− κ)
η

1 − (κ/η)N−1

1 − κ/η
= c�

where the last inequality follows the fact that πN − π0 > cκ. Thus limr→0 �vN ≥
limr→0 �v̂N > c and the leader must invest in state N , a contradiction.

Next, suppose limr→0 k = ∞ but (n − k) remain bounded. Let ε ≡ 2cη − π∞ > 0. The
joint flow payoff πs + π−s − 2cη is negative and bounded above by −ε in all states s ≤ k.
As k → ∞, if n − k remain bounded, then there are arbitrarily many states in which the
total flow payoffs for both firms is negative and only finitely many states in which the
flow payoffs may be positive. The firm value in state 0 is therefore negative. Since firms
can always ensure nonnegative payoffs by not taking any investment, this cannot be an
equilibrium, reaching a contradiction. Hence, limr→0(n− k) = ∞.

To show limr→0 k= ∞, we first establish a few asymptotic properties of the model.

LEMMA A.1: (1) rvn ∼ π∞ − cκ; (2) vn+1 − vn ∼ c; (3) r(n− k) ∼ 0; (4) rk ∼ 0.

PROOF: (1) The fact that leader invests in state n but not in state n+ 1 implies

πn+2 − rvn+1

r + κ
= vn+2 − vn+1 ≤ c ≤ vn+1 − vn = πn+1 − rvn

r + κ

=⇒ π∞ − cκ= lim
r→0

(πn+2 − cκ) ≥ lim
r→0

rvn ≥ lim
r→0

(πn+1 − cκ) = π∞ − cκ�

(2) The claim follows from the previous one: vn+1 − vn = πn+1−rvn
r+κ

∼ π∞−rvn
κ

∼ c.
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(3) The previous claims show rvn ∼ π∞ − cκ and �vn ∼ c. We apply Proposition A.1 to
iterate backwards and obtain a lower bound for (vk − vn):

lim
r→∞

r(vk − vn) ≥ lim
r→∞

− r2

κ2

rvn − (π∞ − cη)
(1 −η/κ)4 (η/κ)n−k+1 ∼ − r2

κ2

c(η− κ)
(1 −η/κ)4 (η/κ)n−k+1�

Since | limr→0 r(vk − vn)| ≤ π∞, limr→0 r
2(η/κ)n−k+1 must remain bounded, implying r(n−

k) ∼ 0.
(4) We apply Proposition A.1 to find a lower bound for wk −w0 (where a≡ η/κ > 1):

lim
r→0

r(wk −w0) ≥ lim
r→0

(
�w0 + rw0 − (π∞ − 2cη)

a− 1

)
rak

a− 1
≥ lim

r→0

(
2cη−π∞
a− 1

)
rak

a− 1
�

Since r(wk −w0) is bounded, it must be that rak is bounded; therefore rk ∼ 0. Q.E.D.

LEMMA A.2: rv−k ∼ r�v−k ∼ rv−n ∼ �v−n ∼ 0.

PROOF: First, note that follower not investing in state k + 1 implies c ≥ �v−(k+1). We
apply Proposition A.1 to find an upper bound for (v−n − v−k) as a function of rv−k and
�v−(k+1): v−n − v−k ≤ limr→0(−�v−(k+1)

η

η−κ
+ (n− k) rv−k

η−κ
), which implies r(v−n − v−k) ∼ 0.

Let m ≡ floor( n+k
2 ). That the follower does not invest in state m implies c ≥ �v−m.

Proposition A.1. provides a lower bound for v−(n+1) − v−n as a function of rv−m and
�v−m−1: limr→0(v−(n+1) −v−n) ≥ limr→0 −�v−(m+1)(κ/η)n−m + rv−m−π−m

η−κ
= limr→0

rv−m

η−κ
, where

the equality follows from limr→0(κ/η)n−m = 0 and limr→0 π−m → 0. Since the LHS is non-
positive, it must be the case that limr→0 �v−n = limr→0 rv−m = 0. But since rv−n ≤ rv−m, it
must be that rv−n ∼ 0, which, together with rv−n ∼ rv−k, further implies rv−k ∼ 0. That
r�v−k ∼ 0 follows directly from the HJB equation for state k. Q.E.D.

We now prove limr→0 k = ∞. We show k bounded =⇒ rwk ∼ r�wk ∼ 0, and we look
for a contradiction. First, we use the fact that 0 ≤ π−s for all 0 ≤ s ≤ k and apply Propo-
sition A.1 (simplification 1a, substituting us ≡ v−k+1, us+t = v0, t = k + 1, �us = �v−k,
a= η

η+κ
, b = r

η+κ
, δ= rv−(k+1)−(−cη)

η+κ
) to find an asymptotic upper bound for rv0:

lim
r→0

rv0 = lim
r→0

r(v0 − v−(k+1)) ≤ lim
r→0

r

1 − κ/η

(
�v−(k+1) + k

rv−(k+1) + cη

η

)
�

By Lemma A.1(4) and Lemma A.2, the RHS converges to 0, implying rv0 ∼ rw0 ∼ 0.
Further, using the HJB equation for state 0, we find that �w0 ≡ w1 − w0 = rw0+2cη−2π0

2η ∼
c −π0/η.

Lower and upper bounds for rwk and r�wk can be found, as functions of �w0 and
rw0, using Proposition A.1 (simplification 2(a), substituting us ≡ w0, us+t = wk, t = k,
�us = �w0, a = η+κ

η
, b = r

η
, and δ = rw0−(−2cη)

η
for the upper bound, δ = rw0−(π∞−2cη)

η
for

the lower bound):

lim
r→0

(
�w0 + rw0 + 2cη−π∞

κ

)
η

κ
r

(
η+ κ

η

)k

≤ lim
r→0

(rwk − rw0) ≤ lim
r→0

(
�w0 + rw0 + 2cη

κ

)
η

κ
r

(
η+ κ

η

)k

� (A.17)
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lim
r→0

(
�w0 + rw0 + 2cη−π∞

κ

)
r

(
η+ κ

η

)k−1

≤ lim
r→0

(r�wk) ≤ lim
r→0

(
�w0 + rw0 + 2cη

κ

)
r

(
η+ κ

η

)k−1

� (A.18)

If k is bounded, these inequalities imply rwk ∼ r�wk ∼ 0.
Now suppose rwk ∼ r�wk ∼ 0 and we look for a contradiction. Let k̂ ≡ max{k�N}

where N is the smallest integer such that πN − π0 > cκ. That |N − k| is finite and rwk ∼
r�wk ∼ 0 jointly imply rwN ∼ r�wN ∼ 0. Note that πk̂ is a lower bound for πs for all
n ≥ s ≥ k̂; we apply Proposition A.1 (simplification 1, substituting us ≡ wk̂, us+t = wn+1,
t = n + 1 − k̂, �us = �wk̂, a = κ

η
, b = r

η
, δ = rw

k̂
−(π

k̂
−cη)

η
) and obtain

rw
k̂
−(π

k̂
−cη)

η−κ
as an

asymptotic upper bound for wn+1 −wn. Lemma A.1 part 2 further implies that

lim
r→0

rwk̂ − (πk̂ − cη)
η− κ

≥ c ⇐⇒ lim
r→0

rwk̂ ≥ πk̂ − cκ > 0� (A.19)

This contradicts the presumption that rwk̂ ∼ 0. Q.E.D.

Note that (A.17), (A.18), and the contradiction above jointly imply limr→0 rwk > 0,
limr→0 r�wk > 0, and that r(η+κ

η
)k converges to a positive constant, summarized as a

lemma.

LEMMA A.3: limr→0 r�wk > 0, and r(η+κ

η
)k converges to a positive constant as r → 0.

PROOF OF THEOREM 5.5: We show limr→0(κ/η)n−k(1 + κ/η)k = 0, which, based on
Lemma 4.5, is a sufficient condition for μM → 1, μC → 0, and g → κ · lnλ.

We first find a lower bound for �wk by applying simplification 2 of Proposition A.1
(substituting us ≡ w0, us+t = wk, t = k, �us = �w0, a= η+κ

η
, b= r

η
, δ= rw0−(π∞−2cη)

η
):

lim
r→0

r�wk ≥ lim
r→0

(
�w0 + rw0 − (π∞ − 2cη)

κ

)
r

(
η+ κ

η

)k

� (A.20)

Simplification 1 of Proposition A.1 provides asymptotic bounds for �wn (substituting
us = wk, us+t = wn, t = n−k, �us = �wk, a= κ

η
, b= r

η
; the upper bound is obtained using

δ= rwk−(πk−cη)
η

and the lower bound is obtained using δ= rwk−(π∞−cη)
η

):

lim
r→0

[
�wk

(
(κ/η)n−k + rη

(η− κ)2

)
+ rwk + cη−πk

η− κ

]
≥ lim

r→0
�wn�

lim
r→0

�wn ≥ lim
r→0

[
�wk

(
(κ/η)n−k + rη

(η− κ)2

)
+ rwk + cη−π∞

η− κ

]
�

Since limr→0 πk = π∞, the lower and upper bounds coincide asymptotically. Furthermore,
Lemma A.1 shows �wn ∼ c; hence,

c ∼ �wk

(
(κ/η)n−k + rη

(η− κ)2

)
+ rwk + cη−π∞

η− κ
� (A.21)
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Next, we apply simplification 1(b) of Proposition A.1 to obtain (substituting us ≡ wk,
us+t = wn, t = n − k, �us = �wk, a = κ

η
, b = r

η
; the simplification applies because

limr→0 r�wk > 0, as stated in Lemma A.3): r(wn − wk) ∼ r�wk

(η−κ)/η . Part 1 of Lemma A.1
further implies

π∞ − cκ− rwk ∼ r�wk

(η− κ)/η
� (A.22)

Substituting the asymptotic equivalence (A.22) into (A.21), we obtain

c ∼ c +�wk

(
(κ/η)n−k + rη

(η− κ)2

)
− rη�wk

(η− κ)2

=⇒ 0 ∼ �wk(κ/η)n−k�

Further substitute into inequality (A.20),

0 ≥ lim
r→0

(
�w0 + rw0 − (π∞ − 2cη)

κ

)(
η+ κ

η

)k

(κ/η)n−k�

Given �w0 ≥ 0, rw0 ≥ 0, and 2cη − π∞ > 0, the inequality holds if and only if
limr→0(η+κ

η
)k(κ/η)n−k = 0, as desired. All other claims in Theorem 5.5 follows di-

rectly. Q.E.D.

Finally, the next result characterizes the relative rate of divergence between (n − k)
and k, as well as the rate of convergence of μM .

LEMMA A.4: (1) limr→0
n−k
k

= 2 ln(1+κ/η)
lnη/κ ; 2) limr→0

1−μM

r
goes to a positive constant.

PROOF OF LEMMA A.4: We first prove n+k
k

∼ 2 ln(1+α)
− lnα . Note Lemmas A.1 and A.2 jointly

imply rwn+1−(π∞−cη)
η−κ

∼ c ∼ �wn. We apply Proposition A.1 simplification 2(b) to find
limr→0 rwk. We substitute us = wn+1, us+t = wk, �us = wn − wn+1 = −�wn, a = η

κ
, b = r

κ
;

the upper bound is obtained using δ= rwn+1−(πk−cη)
κ

and the lower bound is obtained using
δ = rwn+1−(π∞−cη)

κ
, and that the lower and upper bounds coincide as r → 0. Simplification

2(b) applies because �us + δ
a−1 ∼ −c + rwn+1−(π∞−cη)

κ(η/κ−1) ∼ 0. Proposition A.1 implies

wk −wn+1 ∼ − r

κ(η/κ− 1)4

c(η− κ)
κ

(η/κ)n+1−k

=⇒ r(wn+1 −wk) ∼ c(η− κ)
κ2(η/κ− 1)4 r

2(η/κ)n+1−k

substitute into (A.22) =⇒ r�wk ∼ ϕ1 · r2(η/κ)n−k for some constant ϕ1 > 0�

We denote a = �(f (r)) if a/f (r) converges to a positive constant as r → 0. By Lemma
A.3, limr→0 r�wk > 0, hence (κ/η)n−k =�(r2). Lemma A.3 also states that (1 +κ/η)−k =
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�(r); hence (η/κ)n−k ∼ ϕ2(1 + κ/η)2k for some constant ϕ2 > 0, implying

(n− k) ln(η/κ) ∼ lnϕ2 + 2k ln
(
η+ κ

η

)

=⇒ n− k

2k
∼ 2 ln(1 + κ/η)

lnη/κ
� as desired�

We now prove 1 −μM = �(r). By Lemma 4.5 and denoting α≡ κ/η,

1 −μM = αn−k
(
(1 + α)k − 1

) + αn−k+1(1 + α)k/2

1 − αn−k+1

1 − α
+ αn−k

(
(1 + α)k − 1

) + αn−k+1(1 + α)k/2
�

Hence, (1 − μM) ∼ (κ/η)n−k(1 + κ/η)k. But we have established above that (κ/η)n−k =
�(r2) and (1+κ/η)−k = �(r); jointly, these relationships imply 1−μM =�(r), as desired.

Q.E.D.

APPENDIX B: EXTENSIONS

B.1. General Equilibrium Extension

In this Appendix, we embed the partial equilibrium model in Sections 4 and 5 into a
general equilibrium framework. We focus on a steady-state equilibrium, that is, a balanced
growth path, with aggregate productivity and consumption both growing at a constant rate
g. We start with a discrete time economy and take the limit as the time between periods
shrinks to zero to match the continuous-time setting as in the paper. There is unit measure
of households, each with intertemporal preferences:

max
{y1(t;ν)�y2(t;ν)��(t)}

E

∞∑
t=0

e−ρt (ln ct − �t)

s.t. ct = exp
(∫ 1

0
ln

[
y1(t;ν)

σ−1
σ + y2(t;ν)

σ−1
σ

] σ
σ−1 dν

)
� (A.23)

∫ 1

0
p1(t;ν)y1(t;ν) +p2(t;ν)y2(t;ν) dν + bt+1

1 + r̂t
= [ζtwt�t + dt + Tt] + bt�

where e−ρ is the discount rate, dt is dividends income, bt is the holding of a risk-free bond.
We assume households hold the same market portfolio of all firms and, therefore, receive
identical dividend payments that is equal to the total flow payoff that firms receive in a
period. We normalize the wage rate wt ≡ 1 for all t, and specify that production and the
investment cost are both paid in labor.

To generate variations in the interest rate, we follow Benigno and Fornaro (2018) and
introduce uninsurable, idiosyncratic unemployment risk, captured by ζt , which is an indi-
cator variable that takes value 1 if the household is employed, and zero if the household
is unemployed. Each household faces in every period a constant probability q of being
unemployed, and the employment status is revealed at the start of the period. Tt is a
lump-sum transfer for the unemployed households and a tax for employed households. Tt

is set such that the income of an unemployed household is equal to a fraction δ < 1 of the
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income of an employed household.1 We further assume unemployed households cannot
borrow (bt+1 ≥ 0) and that trade in firms’ shares is not possible, so that every household
receives the same dividends.

The labor market clearing condition is

q�(t) =
∫ 1

0

[
y1(t;ν)λ−z1(t;ν) + y2(t;ν)λ−z2(t;ν)

]
dν

+
( ∞∑

s=1

μs(t)
(
c(ηs) + c(η−s)

) + 2μ0(t)c(η0)

)
�

The consumption aggregator c(t) in (A.23) features CES across varieties within each mar-
ket and Cobb–Douglas across markets. Given our normalization wt = 1, the employed
households’ intratemporal problem implies total expenditure on all consumption goods is
constant along the balanced growth path, thereby inducing instantaneous demand func-
tions that coincide with the preferences in (4) of Section 4 subject to a normalization in
the level of expenditure. As in Benigno and Fornaro (2018), the Euler equation of the
employed implies an aggregate relationship between consumption growth and the inter-
est rate:

ct+1

ct
= e−ρt (1 + r̂t)(1 − q+ q/δ)�

The term (1 − q+ q/δ) captures the precautionary saving incentive for employed house-
holds due to idiosyncratic unemployment risk. Taking logs and then take the limit as the
time between periods shrinks to zero, we obtain the continuous-time analogue:

g(t) ≡ d ln c(t)
dt

= r̂(t) − ξ� (A.24)

where ξ ≡ ρ + q − q/δ < ρ. The interest rate and the growth rate along the bal-
anced growth path is jointly pinned down by the demand-side relationship (A.24) and a
production-side relationship derived in the partial equilibrium model of Sections 4 and 5.
A reduction in the interest rate driven by demand-side forces, such as increasing patience
or heightened levels of uninsurable risk, can be modeled as a decline in ξ, as depicted in
Figure B.1.

On a balanced growth path, the consumption price index P(t) takes the same form as
defined in Section 4.1, and it declines at a constant rate g relative to the numeraire; hence,
the value function of a firm currently in state s is

vs(t) = E

[∫ ∞

0
e−r̂τ

{
π(t + τ) − c(t + τ)

P(t + τ)/P(t)

}
dτ

∣∣∣∣ s
]

= E

[∫ ∞

0
e−(r̂−g)τ

{
π(t + τ) − c(t + τ)

}
dτ

∣∣∣ s]�
1That is, an unemployed receives a transfer Tt = b(wt�t+dt )−dt

1+bq/(1−q) while an employed pays a tax Tt =
− q

1−q

b(wt�t+dt )−dt
1+bq/(1−q) .
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FIGURE B.1.—Growth and the interest rate in general equilibrium.

The general equilibrium version of the main result of Theorem 5.5 states that, as ξ de-
clines toward zero, r̂ − g → 0, and aggregate productivity growth rate g must decline and
converge to κ · lnλ.2

B.2. Asset-Pricing Implications

Our key mechanism implies that, starting from a steady state with a low interest rate,
a further decline in r raises the expected future cash flows of current market leaders by
causing their leadership to become more persistent. Hence, a decline in r raises the firm
value of market leaders relative to followers, and the asymmetric valuation response is
larger at lower levels of the interest rate. In this Appendix, we formalize this intuition
into a prediction testable using asset prices. Let us start with a steady-state economy with
interest rate r and consider an unexpected and permanent decline in the interest rate
−dr. Lower discounting of future cash flows raises market values of all firms; moreover,
investment decisions respond endogenously, further affecting firm valuations. We focus
on the immediate, on-impact effect of the shock on the relative firm value between leaders
and followers. Let vs and v̂s, respectively, denote the pre- and post-shock value function
in state s. Define V̂ L

V L ≡
∑∞

s=0 μsv̂s∑∞
s=0 μsvs

. The numerator evaluates leaders’ market value in the
new equilibrium using the productivity gap distribution from the preshock steady state;
therefore, d lnV L ≡ V̂ L

V L − 1 captures the on-impact effect of the interest rate shock −dr
on the total value of market leaders, before the economy starts transitioning to the new,
post-shock steady state. We define V̂ F

V F and d lnV F analogously for followers.

PROPOSITION A.2: Consider a steady state with interest rate r. To first-order around r = 0,
a permanent change in the interest rate has the following on-impact, proportional effect on
the valuation of leaders and followers:

−d lnV L

dr
= 1

r
and − d lnV F

dr
= 1

−r ln r
�

2The reason we introduce unemployment risk á la Benigno and Fornaro (2018) is as follows. Absent unem-
ployment risk (q = 0), the Euler equation takes the standard form given log-utility over ct : g = r̂ − ρ. In that
case, a decline in ρ can still generate a decline in the interest rate, but there is a lower bound on ρ below, which
the consumer optimization problem is no longer well-defined (i.e., when consumption growth is higher than
the rate of discounting), and r̂ − g cannot fall to zero. Unemployment risk creates a channel for the interest
rate to fall close to zero.
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The proposition states that, starting from a steady state with low r, a small decline in
the interest rate −dr immediately raises leaders’ market value by a proportion of 1/r
and raises followers’ value by a proportion of 1/(r ln r). The relative valuation response
between leaders and followers, − d ln(V L/V F )

dr = 1
r
(1 + 1

ln r ), increases and diverges to infinity
as r → 0. This is an empirically-testable prediction. Starting from a low-r steady state and
following an unexpected further decline in the interest rate, market leaders at the time of
the shock should experience immediate valuation gains relative to market followers. The
asymmetric valuation effect should be more pronounced when the preshock interest rate
is lower.

Importantly, low r affects relative firm valuations not only through changing the dis-
count rate but also through changes in future cash flows that favor the current leaders.
Holding cash-flows constant, followers in the model expect more distant payoff streams,
and their firm value should therefore be more sensitivity to changes in the interest rate.
However, because investments respond endogenously to interest rates, cash flows are ex-
pected to change. Leaders tend to raise investments more than followers do. The en-
dogenous investment response increases leader’s duration and the persistence of market
power. Changes in future cash flows are key in explaining why leaders may have longer du-
ration than followers. These predictions would not emerge naturally from other models,
and they form a powerful test of our model’s dynamics.

The proposition shows that, if the interest rate declines from an already low level, the
endogenous investment response dominates the mechanical duration effect and, there-
fore, leader value unambiguously increases more than follower value. To understand why
the asymmetry is stronger when r is lower, note that the valuation responses of leaders
and followers depend on the state variable in the respective industries. When the leader-
follower gap is small—the state is competitive and close to neck-and-neck—a lower inter-
est rate may actually reduces the leader’s value relative to the follower’s, as maintaining
leadership becomes more difficult due to followers’ investment response. On the other
hand, when the leader-follower gap is sufficiently large, the follower invests little as it
is discouraged, and a lower interest rate boosts the relative value of leaders even fur-
ther because the far-ahead leaders now expects even more persistent profits due to the
asymmetric investment response. Proposition 2 aggregates these state-by-state valuation
effects to the entire economy. If the initial interest rate is high, the steady state features
a significant mass of markets in which the follower stays competitive, and the average
leader in the economy experiences a valuation loss relative to the average follower if the
interest rate declines. Conversely, starting from a low-r steady state, the distribution of
the state variable concentrates in regions in which the follower is no longer competitive
and, therefore, the average leader experiences valuation gains relative to the average fol-
lower in the economy when the interest rate declines. The lower is the initial interest rate,
the stronger is this asymmetry. To prove the proposition, we first establish a lemma.

LEMMA A.5: �v−k ∼ c, v−k ∼ c
1−κ/η

, v−(n+1) ∼ 0.

PROOF: Note that v−(k−1) − v−k ≥ c, v−(k−2) − v−(k−1) ≥ c, and c ≥ v−k − v−(k+1). Sub-
stitute these inequalities into the HJB equations for followers in state k − 1 and k, we
get

(v−(k−1) − v−k) ≤ π−(k−1) −π−k

2η+ κ+ r
+ 2η+ κ

2η+ κ+ r
c�
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which implies limr→0(v−(k−1) − v−k) ≤ c. Coupled with the fact that v−(k−1) − v−k ≥ c, this
establishes that v−(k−1) − v−k ∼ c. That v−k − v−(n+1) ∼ c

1−κ/η
can be obtained by applying

simplification 1(a) of Proposition A.1. It remains to show v−(n+1) ∼ 0. Note that we can
write v−(n+1) as a weighted average of the flow payoffs in states k + 1 through n + 1 and
the value function in state −k:

v−(n+1) =
n+1∑

s=k+1

εsπ−s + εkv−k� where
n∑

s=k

εk = 1�

The flow payoffs π−k approach zero as r → 0; hence, v−(n+1) ∼ εkv−k. The term εk can be
found by solving the recursive relationship

v−(n+1) = κ

r + κ
v−n�

v−n = κ

r + κ+η
v−(n−1) + η

r + κ+η
v−(n+1)�

���

v−(k+1) = κ

r + κ+η
v−k + η

r + κ+η
v−(k+2)�

It is easy to see that εk < (κ/η)n−k; hence, as r → 0,
v−(n+1)

v−k
→ 0. This implies that v−(n+1) ∼

0 and v−k ∼ c
1−κ/η

, as desired. Q.E.D.

PROOF OF PROPOSITION A.2: Let (k�n) be the equilibrium investment decisions un-
der interest rate r and (k2� n2) be the investments under r − dr. Recall α ≡ κ/η. We now
show d lnV F = k2−k

k
+O(r). The total market value of followers is

k∑
s=1

μsv−s +
n+1∑

s=k+1

μsv−s = 2μ0

(
k∑

s=1

asv−s

)
+μk+1

(
n−k∑
s=0

bsv−(k+1+s)

)
�

where a ≡ η

η+κ
and b ≡ η/κ. We analyze the two terms on the RHS separately. First, we

show the total value of followers in the competitive region scales with k asymptotically,
that is,

∑k

s=1 μsv−s ∼ Ck for some constant C. For any m<k, we can write
∑k

s=1 μsv−s as

k∑
s=1

μsv−s = 2μ0

(
m−1∑
s=1

asv−s +
k∑

s=m

asv−s

)
�

Lemma A.5 shows �v−k ∼ c and v−k ∼ c
1−κ/η

. For any s′ ≥ m, we apply Proposition A.1
to generate asymptotic upper- and lower-bounds for v−s′ and �v−s′ . Specifically, let v−s′ ≡
c

1−a
(1 − ak−s′) + ca

1−a
((k − s′) − a−ak−s′

1−a
), v−s′ ≡ c

1−a
(1 − ak−s′) + ca− πm

η+κ

1−a
((k − s′) − a−ak−s′

1−a
),

�v−s′ ≡ cak−s′ + ca (1−ak−s′−1)
1−a

, and �v−s′ ≡ cak−s′ + (ca− πm

η+κ
) (1−ak−s′−1)

1−a
. Then

lim
r→0

(v−s′ − v−s′) lim
r→0

(v−s′ − v−s′)�

lim
r→0

(�v−s′ −�v−s′) ≥ 0 ≥ lim
r→0

(�v−s′ −�v−s′)�
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Analogously for all s <m, we apply Proposition A.1 to find bounds for v−s using v−m, v−m,

�v−m, and �v−m. Specifically, let v−s ≡ v−m+�v−m
1−am−s

1−a
+ ca− πm

η+κ

1−a
(m−s− a−am−s

1−a
) and v−s ≡

v−m +�v−m
1−am−s

1−a
+ ca− πs

η+κ

1−a
(m− s− a−am−s

1−a
), then limr→0(v−s −v−s) ≥ 0 ≥ limr→0(v−s −v−s).

Using these bounds for v−s, we can now find upper and lower bounds for
∑k

s=1 μsv−s:

0 ≤ lim
r→0

2μ0

(
m−1∑
s=1

asv−s +
k∑

s′=m

asv−s′

)
−

k∑
s=1

μsv−s�

0 ≥ lim
r→0

2μ0

(
m−1∑
s=1

asv−s +
k∑

s′=m

asv−s′

)
−

k∑
s=1

μsv−s�

These bounds simplifies to

0 ≤ lim
r→0

(
2μ0c

(
a

1 − a

)2

k−
k∑

s=1

μsv−s

)
�

0 ≥ lim
r→0

(
2μ0(c −πm/η)

(
a

1 − a

)2

k−
k∑

s=1

μsv−s

)
�

Since m is arbitrarily chosen, πm can be made arbitrarily close to zero; hence, we con-
clude

∑k

s=1 μsv−s ∼ 2μ0c( a
1−a

)2k. We now compute the market value of followers in the
monopolistic region. Using Proposition A.1, we derive

v−(k+s) ∼ v−k − c

1 − κ/η

(
1 − (κ/η)s

) ∼ c

1 − κ/η
(κ/η)s�

=⇒
n+1∑

s=k+1

μsv−s = μk+1

n−k∑
s=0

(η/k)sv−(k+1+s) ∼ μk+1
αc

1 − α
(n− k)�

The total market value of followers is thus

V F ≡
k∑

s=1

μsv−s +
n+1∑

s=k+1

μsv−s ∼ 2μ0c

(
a

1 − a

)2

k�

Now consider the new equilibrium characterized (k2� n2) under interest rate r − dr.
Let value functions be denoted by v̂s under the new equilibrium. The market value of
followers, evaluated using the steady state under r, is V̂ F ≡ ∑k

s=1 μsv̂−s + ∑n+1
s=k+1 μsv̂−s.

Following the same derivation as before, we can show V̂ F ∼ 2μ0c( a
1−a

)2k2, thus d lnV F ≡
V̂ F

V F − 1 = k2−k

k
+O(r). That d lnV F = log(r−dr)

log r +O(r) ⇐⇒ − d lnV F

dr = 1
r ln r follows from the

convergence of r(η+κ

η
)k to a positive constant (Lemma A.3).

The on-impact, proportional change in the total market value of leaders can be derived
analogously, as Proposition A.1 enables us to derive an asymptotic analytic approximation
for the value functions. We omit the derivations here and instead provide a simpler intu-
ition for the result. As interest rate converges to zero, the total market value of leaders
becomes inversely proportional to the interest rate (rV L converges to a positive constant).
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Hence, following a small decline in interest rate, the value of leaders changes proportion-
ally with the interest rate, that is, − d lnV L

dr = 1
r
. Q.E.D.
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