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APPENDIX B: BOUNDS ON EIGENVALUES AND EIGENVECTORS

IN THIS APPENDIX, WE PROVIDE bounds on the eigenvalues of VD given in Lemma 2 in the
paper based on a modification of the approach in Ipsen and Nadler (2009). To do so, we
apply the bounding approach of Ipsen and Nadler (2009) to both V −1

D and VD and combine
these bounds. First, we may directly apply the results in Ipsen and Nadler (2009) to VD
using the relation VD = ṼD −κκ

′ and the eigendecomposition of ṼD given in Lemma 2 in
the paper. Let us define hλ�n = λn−1 − λn and κ̃a:b = [ψa ψa+1 · · · ψb−1 ψb]′

κ for integers
a≤ b. Then, for the interior eigenvalues (φ2�φ3� � � � �φN−1), we have the bounds

φn�L(λ) = max
{
λn+1�λn + 1

2
(
hλ�n − ‖κ̃1:n‖2 −

√(
hλ�n − ‖κ̃1:n‖2

)2 + 4hλ�n|κ̃n:n|2
)}
�

φn�U (λ) = λn + 1
2
(−hλ�n+1 − ‖κ̃n:N‖2 +

√(
hλ�n+1 − ‖κ̃n:N‖2

)2 + 4hλ�n+1‖κ̃n+1:N‖2
)
�

For the smallest eigenvalue, φN , we have the bounds

φN�L(λ) = λN + 1
2
(
hλ�N − ‖κ‖2 −

√(
hλ�N − ‖κ‖2

)2 + 4hλ�N |κ̃N:N |2
)
�

φN�U (λ) = λN + 1
2
(
hλ�N − ‖κ̃N−1:N‖2 −

√(
hλ�N − ‖κ̃N−1:N‖2

)2 + 4hλ�N |κ̃N:N |2
)
�

For the largest eigenvalue, φ1, we have the bounds

φ1�L(λ) = λ1 + 1
2
(−hλ�2 − ‖κ̃1:2‖2 +

√(
hλ�2 − ‖κ̃1:2‖2

)2 + 4hλ�2|κ̃2:2|2
)
�

φ1�U (λ) = λ1 + 1
2
(−hλ�2 − ‖κ‖2 +

√(
hλ�2 − ‖κ‖2

)2 + 4hλ�2‖κ̃2:N‖2
)
�

Next, we will obtain bounds on the eigenvalues of V −1
D using the relation V −1

D = Ṽ −1
D +

xx′ and the eigendecomposition of Ṽ −1
D . Let us first define the eigenvalues of Ṽ −1

D as

�n =
1 + ρ2 + 2ρ cos

(
2nπ

2N + 1

)
σ2 � n= 1� � � � �N
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and notice that �1 > �2 > · · ·> �N (i.e., λ−1
n = �N−n+1). Also, let us define the gap between

adjacent eigenvalues as

h��n = �n−1 − �n = 4ρ
σ2 sin

(
(2n− 1)π

2N + 1

)
sin

(
π

2N + 1

)
�

Next, define x̃a:b = [ψN−a+1 ψN+a · · · ψN−b−1]′x. Then, for the interior eigenvalues (φ2�
φ3� � � � �φN−1), we have the bounds

φN−n+1�L(�)−1 = min
{
�n−1� �n + 1

2
(−h��n+1 + ‖x̃n:N‖2

+
√(
h��n+1 + ‖x̃n:N‖2

)2 − 4h��n+1|x̃n+1:N |2
)}
�

φN−n+1�U (�)−1 = �n + 1
2
(
h��n + ‖x̃1:n‖2 −

√(
h��n + ‖x̃1:n‖2

)2 − 4h��n‖x̃n:n‖2
)
�

Similarly, for the largest eigenvalue of VD, we have

φ1�L(�)−1 = �N + 1
2
(
h��N + ‖x̃N−1:N‖2 −

√(
h��N + ‖x̃N−1:N‖2

)2 − 4h��N |x̃N:N |2
)
�

φ1�U (�)−1 = �N + 1
2
(
h��N − ‖x‖2 −

√(
h��N + ‖x‖2

)2 − 4h��N |x̃N:N |2
)
�

and for the smallest eigenvalue of VD, we have

φN�L(�)−1 = �1 + 1
2
(−h��2 + ‖x‖2 +

√(
h��2 + ‖x‖2

)2 − 4h��2|x̃2:N |2
)
�

φN�U (�)−1 = �1 + 1
2
(−h��2 + ‖x̃1:2‖2 +

√(
h��2 + ‖x̃1:2‖2

)2 − 4h��2‖x̃2:2‖2
)
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Finally, we may combine bounds by choosing the least upper bound and largest lower
bound,

max
{
φn�L(�)�φn�L(λ)

} ≤φn ≤ min
{
φn�U (�)�φn�U (λ)

}
�

which improves upon the bounds given directly in Ipsen and Nadler (2009). As an ex-
ample, consider ρ = 0�99 and N = 20 as used in the text. Then, the lower bound, true
eigenvalues, and upper bound for n = 1� � � � �5 are, respectively: {146�1988�146�2077�
146�2086}, {18�8180�18�8197�18�8469}, {6�9158�6�9166�6�9190}, {3�5833�3�5835�3�5840},
and {2�2054�2�2055�2�2056}. For n > 5, we have that |max{φn�L(�)�φn�L(λ)}/φn − 1| and
|min{φn�U (�)�φn�U (λ)}/φn − 1| are smaller than 10−4.

We can then use the bounds on the eigenvalues to obtain bounds on the eigenvectors
of VD and V −1

D . From Lemma 2 we have that

γn = gn∥∥�(

� −φ−1

N−n+1IN
)−1
�′x

∥∥ � gn =�(

� −φ−1

N−n+1IN
)−1
�′x�
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where 
� = diag(�N� �N−1� � � � � �1). Recall that the (i� j) element of � is ψi�j . Let gi�n be
the ith element of gn, where

gi�n =
√
ρ(1 − ρ)
σ2

N∑
k=1

ψi�kψN�k

�N−k+1 −φ−1
N−n+1

�

In order to provide bounds on gi�n, we need to deal with the term �N−k+1 −φ−1
N−n+1. Notice

that

�N−k+1 −φ−1
N−n+1 = λ−1

k −φ−1
N−n+1 = φN−n+1 − λk

φN−n+1λk
�

Thus,

γi�n = gi�n∥∥�(

� −φ−1

N−n+1IN
)−1
�′x

∥∥ � gi�n =
√
ρ(1 − ρ)
σ2

N∑
k=1

φN−n+1λk ·ψi�kψN�k
φN−n+1 − λk �

However,

max
{
φN−n+1�L(�)�φN−n+1�L(λ)

} − λk ≤φN−n+1 − λk
≤ min

{
φN−n+1�U (�)�φN−n+1�U (λ)

} − λk�
and so long as the signs of the upper and lower bounds are the same, we can then bound
the individual summands which comprise gi�n. In some situations, these bounds are unin-
formative, but as shown in Figure B.1, for our case, they provide relatively tight bounds
on the first three eigenvectors of VD (especially for the first principal component). This is
shown in the left chart. In the right chart, we show the scree plot along with the bounds

FIGURE B.1.—Eigenvalues and eigenvector bounds. This figure shows the output from principal component
analysis applied to the variance-covariance matrix of difference returns shown in equation (12) for ρ = 0�99
and maximum maturity N = 20 based on Lemma 2 in the paper. The left chart shows the principal component
loadings for the first three principal components of VD along with upper and lower bounds; the right chart
shows the scree plot for the first ten principal components along with upper and lower bounds.
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on the explained variation of each principal component based on the eigenvalue bounds
given in this section. These bounds are so tight that they are imperceptible based on a
visual inspection of the chart.

APPENDIX C: ADDITIONAL EMPIRICAL EVIDENCE

In this appendix, we provide additional empirical evidence on properties of the term
structure. In Figure 1 in the paper, we presented results derived from traded prices of
securities based on Eurodollar futures prices.1 Figure 1 illustrates that these data have
strong local correlation aligning with the approximation results introduced in Lemma 2
in the paper. However, there are other traded fixed-income securities which have different
local correlation structure in their difference returns. Despite this, as we show below, the
excess returns have strikingly similar properties.

As an alternative data set, we use coupon STRIPS prices of U.S. Treasury securities
with quarterly maturities (see the next section for data description). Figure C.1 plots the
time-series dynamics of excess returns and difference returns based on STRIPS data,
which may be compared to the top two charts of Figure 1 for Eurodollar futures in
the paper. Excess returns exhibit a pronounced commonality across maturities for both
data sets, whereas difference returns for STRIPS display less structured co-movement
than those of Eurodollars; however, they still clearly move together throughout the sam-
ple.

Figure C.2 shows that the local correlation structure of excess returns is broadly sim-
ilar across the two data sets in our sample. Observe that there is some dependence in
difference returns across maturities (as in Lemma 2), which is amplified and made uni-
form by the cross-sectional summation moving from difference returns to excess returns
(Figures 2 and 4). In particular, note that the solid line in each chart is nearly identical

FIGURE C.1.—STRIPS data. The figure shows the time-series dynamics of STRIPS excess bond returns
(left chart) and difference returns (right chart) for maturities up to 20 quarters (in percent, annualized). The
sample period is 1989Q3–2020Q2.

1It is important that we perform our empirical assessments using unsmoothed curves, as parametrically fit-
ted curves enhance the local correlation of observations with nearby maturities and further exacerbate the
issues highlighted by our theoretical analysis. More generally, Cochrane and Piazzesi (2008) raised concerns
of using parametrically fitted yield curves for empirical research. For this reason, we use prices based on di-
rectly tradable securities that are not subjected to statistical smoothing, which necessarily strengthens local
dependence.
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FIGURE C.2.—Correlation structure. This figure shows the Spearman’s correlation coefficient between rx(2)
t

and rx(n)
t (solid line), and dr (2)

t and dr (n)
t (dashed line) for n≥ 2. The left chart displays the results based on Eu-

rodollar futures (1992Q3–2020Q2). The right chart displays the results based on STRIPS (1989Q3–2020Q2).

despite difference returns for Eurodollar futures behaving very differently than those for
STRIPS.

It is instructive to further investigate the properties of these data by examining different
transformations. Table C.I reports the explained variation from PCA applied to various
yield curve objects for the two data sets. In addition to excess returns rx(n)

t , holding-
period returns r (n)

t , and difference returns dr (n)
t , we also include two other weakly seri-

ally correlated variables: yield changes, �y (n)
t ≡ y

(n)
t − y (n)

t−1, and changes in forward rates,
�f

(n)
t ≡ f (n)

t − f (n)
t−1. Note that these two variables are closely related to returns and differ-

ence returns, respectively; for example, equation (6) implies that dr (n)
t = −(f (n−1)

t − f (n)
t−1).

TABLE C.I

EXPLAINED VARIATION OF ORDERED PRINCIPAL COMPONENTS.

Panel A: Eurodollar Futures Panel B: STRIPS

rx
(n)
t r

(n)
t �y

(n)
t �f

(n)
t dr

(n)
t rx

(n)
t r

(n)
t �y

(n)
t �f

(n)
t dr

(n)
t

1 98�366 95�684 93�467 89�375 88�782 97�818 93�097 90�419 41�692 51�661
2 1�5687 3�9368 6�0781 9�3719 9�7219 1�7276 6�1477 5�9377 12�054 9�0558
3 0�0521 0�3530 0�4101 0�8632 0�9767 0�1250 0�4545 0�7193 10�565 6�5757
4 0�0090 0�0210 0�0353 0�1450 0�3791 0�0610 0�0579 0�6092 9�6273 5�2696
5 0�0022 0�0028 0�0049 0�0996 0�0638 0�0483 0�0431 0�5572 6�4318 4�2994
6 0�0010 0�0017 0�0019 0�0534 0�0378 0�0345 0�0342 0�3560 4�4863 3�7229
7 0�0003 0�0006 0�0015 0�0356 0�0122 0�0308 0�0249 0�3067 3�8897 3�0808
8 0�0001 0�0001 0�0006 0�0310 0�0104 0�0263 0�0232 0�2405 3�5403 2�5733
9 0�0000 0�0001 0�0002 0�0110 0�0060 0�0239 0�0207 0�1680 2�1984 2�2322

10 0�0000 0�0000 0�0001 0�0067 0�0033 0�0186 0�0180 0�1439 1�5696 1�9715

Note: The table shows the explained variation (in %) for the ordered principal components for various term structure objects. The
data used in Panel A are based on Eurodollar futures prices with quarterly maturities up to 20 quarters and sample period 1992Q3–
2020Q2. The data used in Panel B are based on STRIPS prices with quarterly maturities of up to 20 quarters and sample period
1989Q3–2020Q2.



6 R. K. CRUMP AND N. GOSPODINOV

However, they do not share the appealing statistical properties and economic interpreta-
tion of returns.2

For both Eurodollar and STRIPS data, the variables based on overlapping maturity-
ordered partial sums—excess returns, returns, and yield changes—appear to exhibit
strong low-dimensional factor structure. For example, the first principal component for
excess returns explains around 98% of the total variation for both data sets. By contrast,
difference returns based on STRIPS data appear to be characterized by one dominant
factor, which accounts for only 51.7% of the variation, and numerous weaker factors re-
quiring 10 factors to reach 90% of the explained variation. The time-series change in
forward rates, which are also not based on overlapping partial sums, follows a similar pat-
tern although the percentage of explained variation is larger for Eurodollar data where
the degree of local correlation is larger. For Eurodollar difference returns, the first three
principal components still account for 99.5% of the explained variation. But while the con-
tribution of the remaining factors is fairly small, the ratios of adjacent higher-order eigen-
values for difference returns appear range-bound, suggesting that they contain meaning-
ful incremental information.

Finally, Figure C.3 shows the first three principal component loadings for excess returns
and difference returns based on the STRIPS data. The loadings on the difference returns
(right chart) do not exhibit the structured properties that we observed for Eurodollars in
Figure 1 of the paper. Despite this, in Table C.I, we saw that the explained variation for the
first three principal components of returns based on either data set were almost identical
and in excess of 99.5%. The left chart of Figure C.3 confirms this observation and shows
that the principal component loadings for excess returns are remarkably similar as well
(see Figure 1). Taken all together, the empirical results in this section are consistent with
the main message of the paper that characterizing the minimal dimension of the term
structure of interest rates proves to be extremely challenging.

FIGURE C.3.—Principal component loadings of STRIPS data. The figure shows the first three principal
component loadings for excess returns (left chart) and difference returns (right chart) for maturities up to 20
quarters (in percent, annualized). The sample period is 1989Q3–2020Q2.

2Note that yield and forward rate changes have a clear negative drift as a result of the sustained decline in
overall yield levels over the last 40 years.
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APPENDIX D: DATA DESCRIPTION

This appendix provides a more detailed description of the data sets used in the paper
and in Appendix C.

Eurodollar Futures. Eurodollar futures are futures contracts with final price based on
the three-month LIBOR interest rate at the expiration date.3 We obtain daily closing
prices of Eurodollar futures from the CME for the sample from 1992Q3 to 2016Q4 and
from Bloomberg for the sample from 2017Q1 to 2020Q2. To construct a zero-coupon
yield curve directly from traded futures prices, we take the settlement value of the March,
June, September, and December quarterly contracts on settlement dates for maturities
up to five years. We use the implied yield curve (100 minus the futures price) to construct
a theoretical zero-coupon yield curve from which we compute forwards, returns, excess
returns, and difference returns using the definitions introduced in Section 2 of the paper.

STRIPS (Separate Trading of Registered Interest and Principal of Securities). STRIPS
are separately traded zero-coupon securities derived from the coupon or principal pay-
ments of a Treasury note or bond. We obtain daily observations for coupon STRIPS bid
prices of notes and bonds from the Wall Street Journal from 1989Q3 to 1997Q4 and from
Street Software Technology Inc. from 1998Q1 to 2020Q2. To construct a quarterly series,
we use the daily price observations at the middle of the 2nd month of the quarter to align
the maturity and time interval. We then construct forwards, returns, excess returns, and
difference returns using the definitions introduced in Section 2 of the paper. For a more
detailed description of the data, see Sack (2000) as well as Appendix C in Crump and
Gospodinov (2019).
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