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This file contains supplementary material for “Breaking Ties: Regression Discon-
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APPENDIX B: UNDERSTANDING THEOREM 1

FIGURE B.1 ILLUSTRATES THEOREM 1 for an applicant who ranks screened schools 1,
3, 5, and 6 and lottery schools 2 and 4, where school k is applicant’s kth choice. The
line next to each school represents applicant position (priority plus tie-breaker) for each
school. Schools with the same colored lines have the same tie-breaker. Schools 1 and 5
use screened tie-breaker 2. Schools 2 and 4 use lottery tie-breaker 1. Schools 3 and 6 use
screened tie-breaker 3.

Since school 1 has only one priority, positions run from 1 to 2. School 2 has two priority
groups, so positions run from 1 to 3. Figure B.1 indicates the applicant’s position π by
an arrow. At screened schools, the brackets around the DA cutoff ξ represent the δ-
neighborhood around the cutoff.

The applicant is never seated at school 1 since his position is to the right of the δ-
neighborhood, conditionally seated at schools 2 and 4 since his priority is equal to the
marginal priority at each school, conditionally seated at schools 3 and 5 since his posi-
tion is within the δ-neighborhood at each school, and always seated at school 6 since his
position is to the left of the δ-neighborhood.

The columns next to the lines record tie-breaker cutoff, τ, disqualification probability
at lottery schools, λ, schools contributing to λ, the disqualification probability at screened
schools, σ , schools contributing to σ , and assignment probability.
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FIGURE B.1.—Illustrating Theorem 1. Notes: This figure illustrates Theorem 1 for one applicant list-
ing six schools. The applicant has marginal priority (shown in bold) at each school. Dashes mark inter-
vals in which offer risk is strictly between 0 and 1. The set of applicants subject to random assignment in-
cludes everyone with marginal priority at lottery schools and applicants with tie-breakers inside the rele-
vant bandwidth at screened schools. Same-color tie-breakers are shared. Schools 1, 3, 5, and 6 are screened,
while 2 and 4 have lottery tie-breakers. The applicant’s preferences are 1 �i 2 �i 3 �i 4 �i 5 �i 6. Ar-
rows mark πis = ρis + Riv(s) , the applicant’s position at each school s. Lower πis is better. Integers indi-
cate priorities ρs , and tick marks indicate the DA cutoff, ξs = ρs + τs . Note that t6 = a, so this applicant
is sure to be seated somewhere. The assignment probability therefore sums to 1: if τ2 ≥ τ4, the probabil-
ity of any assignment is τ2 + 0	5 × (1 − τ2) + 0 + 2 × 0	52 × (1 − τ2) = 1; if τ2 < τ4, this probability is
τ2 + 0	5 × (1 − τ2) + 0	5 × (τ4 − τ2) + 2 × 0	52 × (1 − τ4) = 1.

The local score at each school is computed as follows:
School 1: The local score at school 1 is zero because ti1(δ) = n.
School 2: MID at school 2 is zero because this applicant ranks no other lottery school

higher. Hence, the second line of (9) applies and probability is given by the tie-
breaker cutoff at school 2, which is τ2.

School 3: Since ti3(δ) = c, the third line of (9) applies. The local score at school 3 is the
probability of not being assigned to school 2, that is, 1 − τ2, times 0	5. This last term
is the probability associated with being local to the cutoff at school 3.

School 4: MID at school 4 is determined by the tie-breaker cutoff at school 2. When
MID exceeds the tie-breaker cutoff at school 4, then school 4 assignment probability
is zero. Otherwise, since ti3(δ) = c and school 4 is a lottery school, the second line of
(9) applies. The probability is therefore 0	5 times the difference between the cutoff
at school 4 and MID.

School 5: MID at school 5 is determined by the larger of the tie-breaker cutoffs at
school 2 and school 4. Since ti5(δ) = c, the third line of (9) applies, and the probabil-
ity is determined by (0	5)2 times λ, the disqualification probability at lottery schools.

School 6: Finally, since ti6(δ) = a, the first line of (9) applies and the local score be-
comes (0	5)2 times λ.

Since ti6(δ) = a, the probabilities sum to 1. If τ2 ≥ τ4, the probability of any assignment
is τ2 + 0	5 × (1 − τ2) + 2 × (0	5)2 × (1 − τ2) = 1. If τ2 < τ4, the probability is τ2 + 0	5 ×
(1 − τ4) + 0	5 × (τ4 − τ2) + 2 × 0	52 × (1 − τ4) = 1.
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APPENDIX C: ADDITIONAL RESULTS AND PROOFS

C.1. The DA Propensity Score

This appendix derives the DA propensity score defined as the probability of assign-
ment conditional on type for all applicants, without regard to cutoff proximity. The serial
dictatorship propensity score discussed in Section 3.1 is a special case of this.

MIDv
θs and priority status determine DA propensity score with general tie-breakers. For

this proposition, we assume that tie-breakers Riv and Riv′ are independent for v �= v′.

PROPOSITION 1—The DA Propensity Score With General Tie-breaking: Consider DA
with multiple tie-breakers indexed by v, distributed independently of one another according to
Fv(r|θ). For all s and θ ∈�s,

ps(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if ρθs > ρs�∏
v

(
1 − Fv

(
MIDv

θs|θ
))

if ρθs < ρs�
∏
v �=v(s)

(
1 − Fv

(
MIDv

θs|θ
))

× max
{
0�Fv(s) (τs|θ) − Fv(s)

(
MIDv(s)

θs |θ
)}

if ρθs = ρs�

where Fv(s) (τs|θ) = τs and Fv(s) (MIDv(s)
θs |θ) = MIDv(s)

θs when v(s) ∈{1� 	 	 	 �U}.

Proposition 1, which generalizes an earlier multiple lottery tie-breaker result in Ab-
dulkadiroğlu et al. (2017a), covers three sorts of applicants. First, applicants with less-
than-marginal priority at s have no chance of being seated there. The second line of the
theorem reflects the likelihood of qualification at schools preferred to s among applicants
surely seated at s when they cannot do better. Since tie-breakers are assumed indepen-
dent, the probability of not doing better than s is described by a product over tie-breakers,∏

v(1 −Fv(MIDv
θs|θ)). If type θ is sure to do better than s, then MIDv

θs = 1 and the proba-
bility at s is zero.

Finally, the probability for applicants with ρθis = ρs multiplies the term
∏
v �=v(s)

(
1 − Fv

(
MIDv

θs|θ
))

by

max
{
0�Fv(s) (τs|θ) − Fv(s)

(
MIDv(s)

θs |θ
)}
	

The first of these is the probability of failing to improve on s by virtue of being seated at
schools using a tie-breaker other than v(s). The second parallels assignment probability in
single-tie-breaker serial dictatorship: to be seated at s, applicants in ρθis = ρs must have
Riv(s) between MIDv(s)

θs and τs.
Proposition 1 allows for single tie-breaking, lottery tie-breaking, or a mix of non-lottery

and lottery tie-breakers as in the NYC high school match. With a single tie-breaker, the
propensity score formula simplifies, omitting product terms over v:

COROLLARY—Single Tie-Breaking DA Score; Abdulkadiroğlu et al. (2017a): Consider
DA using a single tie-breaker, Ri, distributed according to FR(r|θ) for type θ. For all s and
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θ ∈�s , we have

ps(θ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ρθs > ρs�
1 − FR(MIDθs|θ) if ρθs < ρs�(
1 − FR(MIDθs|θ)

) × max
{

0�
FR(τs|θ) − FR(MIDθs|θ)

1 − FR(MIDθs|θ)

}
if ρθs = ρs�

where ps(θ) = 0 when MIDθs = 1 and ρθs = ρs, and MIDθs is as defined in Section 3, applied
to a single tie-breaker.

Common uniform lottery tie-breaking for all schools further simplifies the DA propen-
sity score. When v(s) = 1 for all s, FR(MIDθs) = MIDθs and FR(τs|θ) = τs, as in the Denver
match analyzed by Abdulkadiroğlu et al. (2017a).

Proof of Proposition 1

We prove Proposition 1 using a strategy analogous to that used in the proof of Theorem
1 in Abdulkadiroğlu et al. (2017a). Note first that admissions cutoffs ξ in a large market do
not depend on the realized tie-breakers riv’s: DA in the large market depends on the riv’s
only through G(I0), defined as the fraction of applicants in set I0 = {i ∈ I|θi ∈ �0� riv ≤
rv for all v} with various choices of �0 and rv. In particular, G(I0) does not depend on
tie-breaker realizations in the large market. For the empirical CDF of each tie-breaker
conditional on each type, F̂v(·|θ), the Glivenko–Cantelli theorem for independent but
non-identically distributed random variables implies F̂v(·|θ) = Fv(·|θ) for any v and θ
(Wellner, 1981). Since cutoffs ξ are constant, marginal priority ρs is also constant for
every school s.

Now, consider the propensity score for school s. First, applicants who do not rank s
have ps(θ) = 0. If ρθs > ρs, then πi > ξs for all i with θi = θ. Therefore,

ps(θ) = 0 if ρθs > ρs or θ does not rank s	

Second, if ρθs ≤ ρs, then the type θ applicant may be assigned a preferred school s̃ ∈
Bθs, where ρθs̃ = ρs̃. For each tie-breaker v, the proportion of type θ applicants assigned
some s̃ ∈ Bvθs where ρθs̃ = ρs̃ is Fv(MIDv

θs|θ). This means that for each v, the probability
of not being assigned any s̃ ∈ Bvθs where ρθs̃ = ρs̃ is 1 − Fv(MIDv

θs|θ). Since tie-breakers
are assumed to be distributed independently of one another, the probability of not being
assigned any s̃ ∈ Bθs where ρθs̃ = ρs̃ for a type θ applicant is 
v(1 − Fv(MIDv

θs|θ)). Every
applicant of type θ with ρθs < ρs who is not assigned a preferred choice is assigned s
because ρθs < ρs. So

ps(θ) =
v

(
1 − Fv

(
MIDv

θs|θ
))

if ρθs < ρs	

Finally, consider applicants of type θ with ρθs = ρs who are not assigned a choice pre-
ferred to s. The fraction of type θ applicants with ρθs = ρs who are not assigned a preferred
choice is 
v(1 − Fv(MIDv

θs|θ)). Also, the values of the tie-breaking variable v(s) of these
applicants are larger than MIDv(s)

θs . If τs < MIDv(s)
θs , then no such applicant is assigned s.

If τs ≥ MIDv(s)
θs , then the fraction of applicants who are assigned s within this set is given

by
Fv(s) (τs|θ)−Fv(s) (MIDv(s)

θs |θ)

1−Fv(s) (MIDv(s)
θs |θ)

. Hence, conditional on ρθs = ρs and not being assigned a choice
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higher than s, the probability of being assigned s is given by max{0�
Fv(s) (τs|θ)−Fv(s) (MIDv(s)

θs |θ)

1−Fv(s) (MIDv(s)
θs |θ)

}.

Therefore,

ps(θ) =
∏
v �=v(s)

(
1 − Fv

(
MIDv

θs|θ
)) × max

{
0�Fv(s) (τs|θ) − Fv(s)

(
MIDv(s)

θs |θ
)}

if ρθs = ρs	

C.2. Proof of Theorem 2

The proof uses lemmas established below. The first lemma shows that the vector of DA
cutoffs computed for the sampled finite market, ξ̂N , converges to the vector of cutoffs in
the continuum.

LEMMA 1—Cutoff Almost Sure Convergence: ξ̂N
a	s	−→ ξ where ξ denotes the vector of

continuum market cutoffs.

This result implies that the estimated score converges to the large-market local score
as market size grows and bandwidth shrinks.

LEMMA 2—Estimated Local Propensity Score Convergence: For any type θ and tie-
breaker classification T , consider applications with θi = θ and Ti(δN) = T . Then for all
schools s, we have ψ̂s(θi�Ti(δN))

p−→ψs(θ�T ) as N → ∞ and δN → 0.

The next lemma shows that the true finite market score with a fixed bandwidth, defined
as ζNs(θ�T ;δN) ≡ EN[Di(s)|θi = θ�Ti(δN) = T ], also converges to ψs(θ�T ) as market
size grows and bandwidth shrinks. Recall the notation for the true local DA score for a
finite market of size N : ψNs(θ�T ) = limδ→0EN[Di(s)|θi = θ�Ti(δ) = T ]. This expression
takes the limit of the true finite market score defined above as the bandwidth shrinks to
zero.

LEMMA 3—Bandwidth-Specific Propensity Score Convergence: For all θ� s�T , and δN
such that δN → 0 and NδN → ∞ as N → ∞, we have ζNs(θ�T ;δN)

p−→ψs(θ�T ) as N →
∞.

Finally, note that ζNs(θ�T ;δN) uses any fixed δN > 0 while ψNs(θ�T ) takes the limit as
δN → 0. Therefore, the definitions of ζNs(θ�T ;δN) and ψNs(θ�T ) imply that for any fixed
finite sampled market, |ζNs(θ�T ;δN) − ψNs(θ�T )|

p−→ 0 as δN → 0. Combining these
results shows if we take any sequence such that δN → 0 and NδN → ∞ as N → ∞, then
for any type θ and tie-breaker classification T for applications with θi = θ and Ti(δN) = T ,
we have ∣∣ψ̂s(θi�Ti(δN)

) −ψNs(θ�T )
∣∣

= ∣∣ψ̂s(θi�Ti(δN)
) − ζNs(θ�T ;δN) + ζNs(θ�T ;δN) −ψNs(θ�T )

∣∣
≤ ∣∣ψ̂s(θi�Ti(δN)

) − ζNs(θ�T ;δN)
∣∣ + ∣∣ζNs(θ�T ;δN) −ψNs(θ�T )

∣∣
p−→ ∣∣ψs(θ�T ) −ψs(θ�T )

∣∣ + 0

= 0	

This yields the theorem.
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Proof of Lemma 1

The proof of Lemma 1 is analogous to the proof of Lemma 3 in Abdulkadiroğlu et al.
(2017a). The main difference is that to deal with multiple non-lottery tie-breakers, the
proof of Lemma 1 needs to invoke the continuous differentiability of Fiv(r|e) and the
Glivenko–Cantelli theorem for independent but non-identically distributed random vari-
ables (Wellner, 1981).

Proof of Lemma 2

ψ̂s(θ�T (δN)) is almost everywhere continuous in finite sample cutoffs ξ̂N , finite sample
MIDs (MIDv

θs), and bandwidth δN . Since every MIDv
θs is almost everywhere continuous in

finite sample cutoffs ξ̂N , ψ̂s(θ�T (δN)) is almost everywhere continuous in finite sample
cutoffs ξ̂N and bandwidth δN . Recall δN → 0 by assumption while ξ̂N

p−→ ξ by Lemma 1.
Therefore, by the continuous mapping theorem, as N → ∞, ψ̂s(θ�T (δN)) converges in
probability to ψ̂s(θ�T (δN)) with ξ replacing ξ̂N , which converges to ψs(θ�T ) as δN → 0.

Proof of Lemma 3

We use the following fact, which is implied by Example 19.29 in van der Vaart (2000).

LEMMA 4: Let X be a random variable distributed according to some CDF F over [0�1].
Let F (·|X ∈ [x − δ�x + δ]) be the conditional version of F conditional on X being in a
small window [x− δ�x+ δ] where x ∈ [0�1] and δ ∈ (0�1]. Let X1� 	 	 	 �XN be i.i.d. draws
from F . Let F̂N be the empirical CDF of X1� 	 	 	 �XN . Let F̂N (·|X ∈ [x− δ�x+ δ]) be the
conditional version of F̂N conditional on a subset of draws falling in [x− δ�x+ δ], that is,
{Xi|i= 1� 	 	 	 � n�Xi ∈ [x−δ�x+δ]}. Suppose (δN) is a sequence with δN ↓ 0 and δN ×N →
∞. Then F̂N (·|X ∈ [x−δN�x+δN]) uniformly converges to F (·|X ∈ [x−δN�x+δN]), that
is,

sup
x′∈[0�1]

∣∣F̂N(
x′|X ∈ [x− δN�x+ δN]

) − F(
x′|X ∈ [x− δN�x+ δN]

)∣∣ →p 0

as N → ∞ and δN → 0	

PROOF OF LEMMA 4: We first prove the statement for x ∈ (0�1). Let P be the proba-
bility measure of X and P̂N be the empirical measure of X1� 	 	 	 �XN . Note that

sup
x′∈[0�1]

∣∣F̂N(
x′|X ∈ [x− δN�x+ δN]

) − F(
x′|X ∈ [x− δN�x+ δN]

)∣∣
= sup

t∈[−1�1]

∣∣F̂N(
x+ tδN|X ∈ [x− δN�x+ δN]

) − F(
x+ tδN|X ∈ [x− δN�x+ δN]

)∣∣

= sup
t∈[−1�1]

∣∣∣∣ P̂N[x− δN�x+ tδN]

P̂N[x− δN�x+ δN]
− PX[x− δN�x+ tδN]
PX[x− δN�x+ δN]

∣∣∣∣
= 1

P̂N[x− δN�x+ δN]PX[x− δN�x+ δN]

× sup
t∈[−1�1]

∣∣P̂N[x− δN�x+ tδN]PX[x− δN�x+ δN]
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− P̂N[x− δN�x+ δN]PX[x− δN�x+ tδN]
∣∣

= 1

P̂N[x− δN�x+ δN]PX[x− δN�x+ δN]

× sup
t∈[−1�1]

∣∣P̂N[x− δN�x+ tδN]
(
PX[x− δN�x+ δN] − P̂N[x− δN�x+ δN]

)

+ P̂N[x− δN�x+ δN]
(
P̂N[x− δN�x+ tδN] − PX[x− δN�x+ tδN]

)∣∣
≤ 1

P̂N[x− δN�x+ δN]PX[x− δN�x+ δN]

×
{

sup
t∈[−1�1]

P̂N[x− δN�x+ tδN]
∣∣P̂N[x− δN�x+ δN] − PX[x− δN�x+ δN]

∣∣

+ sup
t∈[−1�1]

P̂N[x− δN�x+ δN]
∣∣P̂N[x− δN�x+ tδN] − PX[x− δN�x+ tδN]

∣∣}

= 1
PX[x− δN�x+ δN]

×
{∣∣P̂N[x− δN�x+ δN] − PX[x− δN�x+ δN]

∣∣
+ sup

t∈[−1�1]

∣∣P̂N[x− δN�x+ tδN] − PX[x− δN�x+ tδN]
∣∣}

= AN

PX[x− δN�x+ δN]
�

where

AN = ∣∣P̂N[x− δN�x+ δN] − PX[x− δN�x+ δN]
∣∣

+ sup
t∈[−1�1]

∣∣P̂N[x− δN�x+ tδN] − PX[x− δN�x+ tδN]
∣∣	

The above inequality holds by the triangle inequality and the second last equality holds
because supt∈[−1�1] P̂N[x− δN�x+ tδN] = P̂N[x− δN�x+ δN].

We show that AN/PX[x − δN�x + δN]
p−→ 0. Example 19.29 in van der Vaart (2000)

implies that the sequence of processes {
√
n/δN (P̂N[x − δN�x + tδN] − PX[x − δN�x +

tδN]) : t ∈ [−1�1]} converges in distribution to a Gaussian process in the space of bounded
functions on [−1�1] asN → ∞. We denote this Gaussian process by {Gt : t ∈ [−1�1]}. We
then use the continuous mapping theorem to obtain

√
n/δNAN

d−→ |G1| + sup
t∈[−1�1]

|Gt |

asN → ∞. Since {Gt : t ∈ [−1�1]} has bounded sample paths, it follows that|G1|<∞ and
supt∈[−1�1]|Gt|<∞ for sure. By the continuous mapping theorem, under the condition that
NδN → ∞,

(1/δN)AN = (1/
√
NδN) × √

n/δNAN

d−→ 0 ×
(
|G1| + sup

t∈[−1�1]
|Gt |

)

= 0	



8 ABDULKADİROĞLU, ANGRIST, NARITA, AND PATHAK

This implies that (1/δN)AN

p−→ 0, because for any ε > 0,

Pr
(∣∣(1/δN)AN

∣∣> ε) = Pr
(
(1/δN)AN <−ε) + Pr

(
(1/δN)AN > ε

)
≤ Pr

(
(1/δN)AN ≤ −ε) + 1 − Pr

(
(1/δN)AN ≤ ε)

→ Pr(0 ≤ −ε) + 1 − Pr(0 ≤ ε)
= 0�

where the convergence holds since (1/δN)AN
d−→ 0. To show that AN/PX[x − δN�x +

δN]
p−→ 0, it is therefore enough to show that limN→∞(1/δN)PX[x− δN�x+ δN]> 0. We

have

(1/δN)PX[x− δN�x+ δN] = (1/δN)
(
FX (x+ δN) − FX (x− δN)

)
= (1/δN)

(
2f (x)δN + o(δN)

)
= 2f (x) + o(1)

→ 2f (x)

> 0�

where we use Taylor’s theorem for the second equality and the assumption of f (x) > 0
for the last inequality.

We next prove the statement for x= 0. Note that

sup
x′∈[0�1]

∣∣F̂N(
x′|X ∈ [−δN�δN]

) − F(
x′|X ∈ [−δN�δN]

)∣∣

= sup
t∈[0�1]

∣∣F̂N(
tδN|X ∈ [0� δN]

) − F(
tδN|X ∈ [0� δN]

)∣∣

= sup
t∈[0�1]

∣∣∣∣ F̂N (tδN)

F̂N (δN)
− FX (tδN)
FX (δN)

∣∣∣∣
= 1

F̂N (δN)FX (δN)
sup
t∈[0�1]

∣∣F̂N (tδN)FX (δN) − F̂N (δN)FX (tδN)
∣∣

= 1

F̂N (δN)FX (δN)
sup
t∈[0�1]

∣∣F̂N (tδN)
(
FX (δN) − F̂N (δN)

) + F̂N (δN)
(
F̂N (tδN) − FX (tδN)

)∣∣

≤ 1

F̂N (δN)FX (δN)

{
sup
t∈[0�1]

F̂N (tδN)
∣∣F̂N (δN) − FX (δN)

∣∣

+ sup
t∈[0�1]

F̂N (δN)
∣∣F̂N (tδN) − FX (tδN)

∣∣}

= 1
FX (δN)

{∣∣F̂N (δN) − FX (δN)
∣∣ + sup

t∈[0�1]

∣∣F̂N (tδN) − FX (tδN)
∣∣} = A0

N

FX (δN)
�
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whereA0
N =|F̂N (δN) −FX (δN)|+ supt∈[0�1]|F̂N (tδN) −FX (tδN)|. By the argument used in

the above proof for x ∈ (0�1), we have (1/δN)A0
N

p−→ 0. It also follows that

(1/δN)FX (δN) = (1/δN)
(
f (0)δN + o(δN)

)
= f (0) + o(1)

→ f (0)

> 0	

Thus, A0
N

FX (δN )

p−→ 0, and hence supx′∈[0�1]|F̂N (x′|X ∈ [−δN�δN]) − F (x′|X ∈ [−δN�
δN])|

p−→ 0. The proof for x= 1 follows from the same argument. Q.E.D.

Consider any deterministic sequence of economies {gN} such that gN →G where G is
the continuum population market. Let (δN) be an associated sequence of positive num-
bers (bandwidths) such that δN → 0 and NδN → ∞ as N → ∞.

For Lemma 3, it is enough to show deterministic convergence of the finite-market
bandwidth-specific propensity score for particular gN and δN , that is, ζNs(θ�T ;δN) →
ψs(θ�T ) as gN →G and δN → 0. To see this, letGN be the distribution over I(�0� r0� r1)’s
induced by randomly drawing N applicants from G, where I(�0� r0� r1) ≡ {i|θi ∈�0� r0 <
ri ≤ r1}.

Note that GN is random and that GN
a	s	→G by Wellner (1981)’s Glivenko–Cantelli the-

orem for independent but non-identically distributed random variables. GN

p→ G and
ζNs(θ�T ;δN) →ψs(θ�T ) allow us to apply the Extended Continuous Mapping Theorem
(Theorem 18.11 in van der Vaart (2000)) to obtain ψ̃Ns(θ�T (δN))

p−→ ψs(θ�T ) where
ψ̃Ns(θ�T (δN)) is the random version of ζNs(θ�T ;δN) defined for GN .

For notational simplicity, consider the single-school RD case, where there is only one
school s making assignments based on a single non-lottery tie-breaker v(s) (without using
any priority). An argument with additional notation analogous to the proof of Lemma 4
in Abdulkadiroğlu et al. (2017a) extends the result to DA with general tie-breaking.

For any δN > 0, whenever Ti(δN) = a, it is the case that Di(s) = 1. As a result,

ζNs(θ�Ti = a;δN) ≡EN
[
Di(s)|θi = θ�Ti(δN) = a] = 1 ≡ψs(θ�a)	

Therefore, ζNs(θ�Ti = a;δN) →ψs(θ�a) as N → ∞, where → is deterministic conver-
gence. Similarly, for any δN > 0, whenever Ti(δN) = n, it is the case that Di(s) = 0. As a
result,

ζNs(θ�Ti = n;δN) ≡EN
[
Di(s)|θi = θ�Ti(δN) = n] = 0 ≡ψs(θ�n)	

Therefore, ζNs(θ�Ti = n;δN) →ψs(θ�n) as N → ∞. Finally, when Ti(δN) = c, let

FN�v(s) (r|θ) ≡

N∑
i=1

1{θi = θ}Fiv(s) (r)

N∑
i=1

1{θi = θ}
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be the aggregate tie-breaker distribution conditional on each applicant type θ in the finite
market. ξ̃Ns denotes the random cutoff at school s in a realized economy gN . For any ε,
there exists N0 such that for any N >N0, we have

ζNs(θ�Ti = c;δN) ≡EN
[
Di(s)|θi = θ�Ti(δN) = c]

= PN
[
Riv(s) ≤ ξ̃Ns|θi = θ�Riv(s) ∈ (ξ̃Ns − δN� ξ̃Ns + δN]

]
∈ (
P

[
Riv(s) ≤ ξs|θi = θ�Riv(s) ∈ (ξs − δN�ξs + δN]

] − ε/2�
P

[
Riv(s) ≤ ξs|θi = θ�Riv(s) ∈ (ξs − δN�ξs + δN]

] + ε/2)
�

where ξs is school s’s continuum cutoff, P is the probability induced by the tie-breaker dis-
tributions in the continuum economy, and the inclusion is by Assumption 2 and Lemmata
1 and 4. Again for any ε, there exists N0 such that for any N >N0, we have
(
P

[
Riv(s) ≤ ξs|θi = θ�Riv(s) ∈ (ξs − δN�ξs + δN]

] − ε/2�
P

[
Riv(s) ≤ ξs|θi = θ�Riv(s) ∈ (ξs − δN�ξs + δN]

] + ε/2)

=
(

Fv(s) (ξs|θ) − Fv(s) (ξs − δN|θ)
Fv(s) (ξs + δN|θ) − Fv(s) (ξs − δN|θ)

− ε/2�

Fv(s) (ξs|θ) − Fv(s) (ξs − δN|θ)
Fv(s) (ξs + δN|θ) − Fv(s) (ξs − δN|θ)

+ ε/2
)

=
( {

Fv(s) (ξs|θ) − Fv(s) (ξs − δN|θ)
}
/δN{

Fv(s) (ξs + δN|θ) − Fv(s) (ξs|θ)
}
/δN + {

Fv(s) (ξs|θ) − Fv(s) (ξs − δN|θ)
}
/δN

− ε/2�
{
Fv(s) (ξs|θ) − Fv(s) (ξs − δN|θ)

}
/δN{

Fv(s) (ξs + δN|θ) − Fv(s) (ξs|θ)
}
/δN + {

Fv(s) (ξs|θ) − Fv(s) (ξs − δN|θ)
}
/δN

+ ε/2
)

∈ (0	5 − ε�0	5 + ε)
= (
ψs(θ� c) − ε�ψs(θ� c) + ε)�

where the inclusion is by the continuous differentiability of Fv(s) (·|θ) and L’Hôpital’s rule
(recall the proof of Theorem 1 in the main body). This completes the proof.

APPENDIX D: EMPIRICAL APPENDIX

D.1. Data

The NYC DOE provided data on students, schools, the rank-order lists submitted by
match participants, school assignments, and outcome variables. Applicants and programs
are uniquely identified by a number that can be used to merge data sets. Students with a
record in assignment files who cannot be matched to other files are omitted.

D.1.1. Applicant Data

We focus on first-time applicants to the NYC public (unspecialized) high school system
who live in NYC and attended a public middle school in eighth grade. The NYC high
school match is conducted in three rounds. The data used for the present analyses are
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from the first assignment round, which uses DA. We refer to this as the main round.
Applicants unassigned in the main match apply to any remaining seats in a subsequent
supplementary round. Students who remain unassigned in the supplementary round are
then assigned on a case-by-case basis in the final administrative round.

Assignment, Priorities, and Ranks. Data on the assignment system come from the
DOE’s enrollment office, and report assignments for our two cohorts. The main appli-
cation data set details applicant program choices, eligibility, priority group and rank, as
well as the admission procedure used at the respective program. Lottery numbers and de-
tails on assignments at Educational Option (Ed-Opt) programs are provided in separate
data sets.

Student Characteristics. NYC DOE students files record grade, gender, ethnicity, and
whether students attended a public middle school. Separate files include (i) student scores
on middle school standardized tests, (ii) English language learner and special education
status, and (iii) subsidized lunch status. Our baseline middle school scores are from sixth
grade math and English exams. If a student re-took a test, the latest result is used. Our
demographic characteristics come from the DOE’s snapshot for eighth grade.

D.1.2. School-Level Data

School Letter Grades. School grades are drawn from NYC DOE School Report Cards
for 2010/11, 2011/12, and 2012/13. For each application cohort, we grade schools based on
the report cards published in the school year prior to the application school year: for the
2011/12 application cohort, for instance, schools are assigned grades published in 2010/11,
and similarly for the other two cohorts.

School Characteristics. School characteristics were taken from report card files pro-
vided by the DOE. These data provide information on enrollment statistics, racial com-
position, attendance rates, suspensions, teacher numbers and experience, and graduat-
ing class Regents Math and English performance. A unique identifier for each school
allows these data to be merged with data from other sources. Teacher experience and
education reported in Table II of this publication are based on the School-Level Mas-
ter File 1996–2016, a data set compiled by the Research Alliance for NYC Schools at
New York University’s Steinhardt School of Culture, Education, and Human Develop-
ment (www.ranycs.org). All data in the School-Level Master File are publicly available.
The Research Alliance takes no responsibility for potential errors in the data set or the
analysis. The opinions expressed in this publication are those of the authors and do not
represent the views of the Research Alliance for NYC Schools or the institutions that
posted the original publicly available data.1

Defining Screened and Lottery Schools. We define lottery schools as any school hosting
at least one program for which the lottery number is used as the tie-breaker. Screened
schools are those not defined as lottery. Some schools allow students to share a screened
tie-breaker rank, breaking screening-variable ties with lottery numbers. Propensity scores
for such schools are computed using the lottery tie breaker and these schools are coded
as lottery schools in any analysis that makes this substantive distinction. Specialized high

1Research Alliance for New York City Schools (2017). School-Level Master File 1996–2016 [Data file and
code book]. Unpublished data.

http://www.ranycs.org
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schools are considered screened schools.2 Most charter schools are lottery schools, but
these make offers outside the main match.

A related consideration involves interactions between bandwidth determination and
screening status when implementing local linear tie-breaker control for non-lottery tie-
breakers. Recall that the bandwidth for screened programs is set to zero when there are
fewer than five in-bandwidth observations on one or the other side of the relevant cutoff.
For programs where this occurs, local linear control is omitted for screened-school tie-
breakers.

The main NYC DOE high school match does not assign seats at specialized or charter
schools. But match participants who also applied to these schools may receive charter
and/or exam offers as well as being offered a seat at schools in the main match. Match
participants enrolled at Grade A charter and exam schools are therefore included in the
set of applicants indicated by a Grade A enrollment dummy.

D.1.3. SAT and Graduation Outcomes

SAT Tests. The NYC DOE has data on SAT scores for test-takers from 2006 to 2017.
These data originate with the College Board. We use the first test for multiple takers. For
applicants tested in the same month, we use the highest score. During our sample period,
the SAT has been redesigned. We re-scale scores of SAT exams taken prior to the reform
according to the official re-scaling scheme provided by CollegeBoard.3

Graduation. The DOE Graduation file records the discharge status for public school
students enrolled from 2005 to 2018. Data on graduation outcomes are available for all
three cohorts.

College- and Career-preparedness and College-readiness. The DOE provided us with
individual-level indicators for college- and career-preparedness as well as college-
readiness for public school students enrolled from 2005 to 2017. Since these data are not
yet available for the youngest (2013/14) cohort, the results are for the two older cohorts
only. Table D.I gives an overview of the criteria for the two indicators.

D.1.4. Replicating the NYC Match

NYC uses the student-proposing DA algorithm to determine assignments. The three
ingredients for this algorithm are: student’s ranking of up to 12 programs, program ca-
pacities and priorities, and tie-breakers.

Program Assignment Rules. Programs use a variety of assignment rules. Lottery, Lim-
ited Unscreened, and Zoned programs order students first by priority group, and within
priority group by lottery number. Screened and Audition programs order students by pri-
ority group and then by a non-lottery tie-breaker, referred to as running or rank variable.

2There are nine specialized high schools: Brooklyn Latin School, Brooklyn Technical High School, Fiorello
H. LaGuardia High School of Music & Art and Performing Arts, High School of American Studies at Lehman
College, High School for Mathematics, Science and Engineering at City College, Staten Island Technical High
School, Stuyvesant High School, The Bronx High School of Science, and Queens High School for the Sciences
at York College. With the exception of Brooklyn Latin School in years 2012–2014 and Brooklyn Technical High
School in years 2012–2013, these are all Grade A schools.

3See https://collegereadiness.collegeboard.org/educators/higher-ed/scoring/concordance for the conversion
scale.

https://collegereadiness.collegeboard.org/educators/higher-ed/scoring/concordance
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TABLE D.I

CRITERIA FOR COLLEGE- AND CAREER-PREPAREDNESS AND COLLEGE-READINESS INDICATORS.

College- and Career-preparedness
Any of the following:
– Scored 65+ on the Algebra II, Math B, Chemistry, or Physics Regents exam
– Scored 3+ on any Advanced Placement (AP) or 4+ on any International Baccalaureate (IB) exam
– Earned “C” or higher in a college credit-bearing course or passed another course certified by the DOE
– Earned a diploma with a Career and Technical Education (CTE) endorsement
– Earned a diploma with an Arts endorsement; or passed an industry-recognized technical assessment

College-readiness
For ELA, any of the following:
– SAT Evidence-Based Reading and Writing (EBRW) section score of 480+
– ACT English score of 20+ or NY State English Regents score of 75+
For Math, any of the following:
– SAT Math Section score of 530+
– ACT Math score of 21+
– Common Core Regents: Score of 70+ in Algebra I or 70+ in Geometry or 65+ in Algebra 2
– Other Regents: Score of 80+ in Integrated Algebra or Geometry or Algebra 2/Trigonometry and successful

completion of the Algebra 2/Trigonometry or higher-level course
– Score of 75+ in Regents Math A or Math B, or Sequential II or Sequential III

We observe these in the form of an ordering of applicants provided by Screened and Au-
dition programs. Ed-Opt programs use two tie-breakers, which are described into more
detail below. Finally, as mentioned above, some schools allow students to share a screened
tie-breaker rank, breaking screening-variables ties with lottery numbers.

Program Capacities and Priorities. Program capacities must be imputed. We assume
program capacity equals the number of assignments extended. Program type determines
priorities. The priority group is a number assigned by the NYC DOE depending on ad-
dresses, program location, siblings, among other considerations, including, in some cases,
whether applicants attended an information session or open house (for Limited Un-
screened programs).

Lottery Numbers. The lottery numbers are provided by the NYC DOE in a separate
data set. Lottery tie-breakers are reported as unique alphanumeric string and scaled to
[0�1]. Lottery numbers are missing for some; we assign these applicants a randomly drawn
lottery number and use it in our replicated match. It is this replicated match that is used
to construct assignment instruments and their associated propensity scores.

Ranks. Screened, Audition, and half of the seats at Ed-Opt programs assign students
a rank, based on various diverging criteria, such as former test performance. Ranks are
reported as an integer reflecting raw tie-breaker order in this group. We scale these so
as to lie in (0�1] by transforming raw tie-breaking realizations Riv into [Riv − minj Rjv +
1]/[maxj Rjv − minj Rjv + 1] for each tie-breaker v. At some screened programs, the rank
numbers of applicants have gaps, that is, the distribution of running variable values is
discontinuous. Potential reasons include (i) human error when school principals submit
applicant rankings to the NYC DOE, and (ii) while running variables are assigned at the
program level, applications at Ed-Opt programs are treated as six separate buckets (i.e.,
distinct application choices), leading to artificial gaps in rank distributions (see discussion
of assignment at Ed-Opt programs below).
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TABLE D.II

ED-OPT APPLICANTS’ ASSIGNED RANKING OF ED-OPT BUCKETS.

Choice order High performers Middle performers Low performers

1 High Select Middle Select Low Select
2 High Random Middle Random Low Random
3 Middle Select High Select High Select
4 Middle Random High Random High Random
5 Low Select Low Select Middle Select
6 Low Random Low Random Middle Random

Assignment at Educational Option Programs. Ed-Opt programs use two tie-breakers.
Applicants are first categorized into high performers, middle performers, and low per-
formers by scores on a seventh grade reading test. Ed-Opt programs aim to have an en-
rollment distribution of 16% high performers, 68% middle performers, and 16% low per-
formers. Half of Ed-Opt seats are assigned using the lottery tie-breaker. These seats are
called “random.” The other half uses a rank variable such as those used by other screened
programs. These seats are called “select.”

We refer to the resulting six combinations as “buckets.” Ed-Opt applicants are treated
as applying to all six. A separate data set details which bucket applicants were offered.
Buckets have their own priorities and capacities. The latter are imputed based on the
observed assignments to buckets.

Tables D.II and D.III show applicants’ choice order of and priorities at Ed-Opt buckets,
respectively. Both are based on consultations with the NYC DOE and our simulations of
the match.

High performers rank high buckets first, while medium and low performers apply to
medium and low buckets first, respectively.

High performers have highest priority (priority group 1) at high buckets, while medium
and low performers receive highest priority at medium and low buckets, respectively.

Miscellaneous Sample Restrictions. The analysis sample is limited to first-time eighth
grade applicants for ninth grade seats. Ineligible applications (as indicated in the main
application data set) are dropped. Applicants with special education status compete for a
different set of seats and are thus dropped in the analysis.

Students in the top 2% of scorers on the seventh grade reading are automatically admit-
ted into any Ed-Opt program they rank first. We gather these assignments in a separate
Ed-Opt bucket, thereby leaving the admission process to the other six unaffected.

Table D.IV records the proportion of applicants whose match status we replicated.

TABLE D.III

PRIORITIES AT ED-OPT BUCKETS.

Priority Group High Middle Low

Random or Select Random or Select Random or Select

1 High performers Middle performers Low performers
2 Middle performers Low performers Middle performers
3 Low performers High performers High performers



BREAKING TIES 15

TABLE D.IV

REPLICATION RATES.

Application Cohort

2011/2012 2012/2013 2013/2014
(1) (2) (3)

All schools 0.967 0.959 0.967
Grade A schools 0.971 0.962 0.974
Grade A screened schools 0.991 0.988 0.991
Grade A lottery schools 0.964 0.956 0.965

Note: This table shows replication rates for the New York City match for the three application cohorts in the analysis sample. A
replicated offer is one where the offer generated by our run of the match coincides with the offer received.

D.2. Additional Empirical Results

Grade A risk has a mode at 0.5, but takes on many other values as well. A probability
of 0.5 arises when the overall Grade A propensity score is generated by a single Grade
A screened school. This can be seen in Figure D.1, which tabulates the estimated prob-
ability of assignment to a Grade A school for applicants in all cohorts (2012–2014) with
a probability strictly between 0 and 1 calculated using the formula in Theorem 1. There
are 26,555 students with the estimated assignment probability equal to 1, 87,742 students
with the propensity score equal to 0, and 32,866 students with Grade A risk. The propen-
sity score of 0.5 arises when the overall Grade A propensity score is generated by a single
Grade A screened school.

Table D.V reports estimates of the effect of Grade A assignments on attrition, com-
puted by estimating models like those used to gauge balance. Applicants who receive
Grade A school assignments have a slightly higher likelihood of taking the SAT. Decom-
posing Grade A schools into screened and lottery schools, applicants who receive lottery
Grade A school assignments are 1.6 percent more likely to have SAT scores, while as-
signments to Grade A screened schools do not correspond to a statistically significant dif-

FIGURE D.1.—Distribution of Grade A Risk.
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TABLE D.V

DIFFERENTIAL ATTRITION.

Non-offered
mean

Grade A School Type

Any Screened Lottery
(1) (2) (3) (4)

Took SAT exam 0.765 0.015 −0	004 0	016
(0.006) (0	011) (0	007)

N 32,866 12,002 27,269

Enrolled in ninth grade 0.986 0.005 −0	001 0	006
(0.002) (0	003) (0	002)

N 32,866 12,002 27,269

Note: This table reports differential attrition estimates, computed by regressing covariates on dummies indicating a Grade A offer
and an ungraded school offer, controlling for saturated Grade A and ungraded school propensity scores (columns 2–4), and running
variable controls (columns 2 and 3). Robust standard errors are in parentheses.

ference in the likelihood of having follow-up SAT scores. This modest difference seems
unlikely to bias the 2SLS Grade A estimates reported in Tables IV and V.

Table D.VI reports estimates of the effect of enrollment in an ungraded high school.
These use models like those used to compute the estimates presented in Table IV. OLS
estimates show a small positive effect of ungraded school attendance on SAT scores and
a strong negative effect on graduation outcomes. 2SLS estimates, by contrast, suggest
ungraded school attendance is unrelated to these outcomes.

TABLE D.VI

2SLS ESTIMATES OF THE EFFECT OF ATTENDING AN UNGRADED SCHOOL.

All Applicants Applicants With Grade A Risk

Non-enrolled
mean OLS

Non-offered
mean 2SLS

(1) (2) (3) (4)

SAT Math 474 1	20 517 1	41
(200–800) (103) (0	189) (109) (1	79)
SAT Reading 474 1	06 512 0	237
(200–800) (90) (0	176) (93) (1	72)

N 124,902 24,707
Graduated 0.739 −0	236 0.825 0	034

(0	003) (0	025)
N 183,526 31,976

College- and Career-prepared 0.429 −0	134 0.595 0	034
(0	003) (0	037)

College-ready 0.374 −0	096 0.550 0	021
(0	003) (0	036)

N 121,416 20,664

Note: This table reports OLS and 2SLS estimates of ungraded school effects produced by the models reported in Table IV. Robust
standard errors are in parentheses.
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ABDULKADIROĞLU, A., J. D. ANGRIST, Y. NARITA, AND P. A. PATHAK (2017a): “Research Design Meets
Market Design: Using Centralized Assignment for Impact Evaluation,” Econometrica, 85 (5), 1373–1432. [3,
4,6,9]

VAN DER VAART, A. W. (2000): Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathe-
matics. Cambridge: Cambridge University Press. [6,7,9]

WELLNER, J. A. (1981): “A Glivenko-Cantelli Theorem for Empirical Measures of Independent but Non-
Identically Distributed Random Variables,” Stochastic Processes and Their Applications, 11 (3), 309–312. [4,
6,9]

Co-editor Aviv Nevo handled this manuscript.

Manuscript received 6 March, 2019; final version accepted 24 March, 2021; available online 6 April, 2021.

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282022%2990%3A1%2B%3C1%3ASTBTRD%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/mdrd1:17&rfe_id=urn:sici%2F0012-9682%282022%2990%3A1%2B%3C1%3ASTBTRD%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/wellner1981glivenko&rfe_id=urn:sici%2F0012-9682%282022%2990%3A1%2B%3C1%3ASTBTRD%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/mdrd1:17&rfe_id=urn:sici%2F0012-9682%282022%2990%3A1%2B%3C1%3ASTBTRD%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/wellner1981glivenko&rfe_id=urn:sici%2F0012-9682%282022%2990%3A1%2B%3C1%3ASTBTRD%3E2.0.CO%3B2-B

	Appendix B: Understanding Theorem 1
	Appendix C: Additional Results and Proofs
	The DA Propensity Score
	Proof of Proposition 1

	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3


	Appendix D: Empirical Appendix
	Data
	Applicant Data
	Assignment, Priorities, and Ranks
	Student Characteristics

	School-Level Data
	School Letter Grades
	School Characteristics
	Deﬁning Screened and Lottery Schools

	SAT and Graduation Outcomes
	SAT Tests
	Graduation
	College- and Career-preparedness and College-readiness

	Replicating the NYC Match
	Program Assignment Rules
	Program Capacities and Priorities
	Lottery Numbers
	Ranks
	Assignment at Educational Option Programs
	Miscellaneous Sample Restrictions


	Additional Empirical Results

	References

