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PAIRWISE STABLE MATCHING IN LARGE ECONOMIES
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We formulate a stability notion for two-sided pairwise matching problems with in-
dividually insignificant agents in distributional form. Matchings are formulated as joint
distributions over the characteristics of the populations to be matched. Spaces of char-
acteristics can be high-dimensional and need not be compact. Stable matchings exist
with and without transfers, and stable matchings correspond precisely to limits of stable
matchings for finite-agent models. We can embed existing continuum matching models
and stability notions with transferable utility as special cases of our model and stabil-
ity notion. In contrast to finite-agent matching models, stable matchings exist under a
general class of externalities.
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1. INTRODUCTION

THIS PAPER PROVIDES A NOVEL STABILITY NOTION for pairwise matchings in two-sided
matching markets modeled via the joint statistical distribution of the characteristics of
the agents involved. Stable matchings exist in full generality with and without transfers be-
tween agents and even in the presence of externalities. The stable matchings in our model
exactly capture the limit behavior of stable matchings in large finite matching markets in
terms of the joint distribution of characteristics. In matching models with transfers, our
stability notion is equivalent to existing stability notions specific to settings with transfers.
We also show that the model can be reformulated in terms of individual agents.

In the traditional theory of stable matchings, agents can be split into two sides. A match-
ing, in the simplest setting, specifies which agent on one side is matched to which agent
on the other side, if at all. The matching is stable if no two agents on opposing sides
would rather be matched to each other than to their current matches, and no agent would
rather be alone. This is, in essence, the marriage model of Gale and Shapley (1962). Ex-
tensions allow for transfers between the matched agents as in Shapley and Shubik (1971)
and Demange and Gale (1985). Stable matching models provide the natural frictionless
benchmark for the analysis of markets in which interacting participants can neatly be
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divided into two groups, characteristics of participants matter, and all interaction is be-
tween matched agents. One can match workers to firms, students to schools, and medical
residents to hospitals. None of these markets can be separated from the rest of the econ-
omy, but integrating matching theory with other economic models poses serious technical
problems due to matching theory being fundamentally discrete. Wine, milk, and hours
worked are divisible; people are not. From the perspective of matching theory, interac-
tions with the rest of the economy amount to externalities within the matching market.
But the combination of indivisibilities and externalities in matching problems is in general
incompatible with the existence of stable matchings. We deal with the problem the way
most economists deal with the molecular indivisibilities found in wine and milk: Scale the
analysis so that even people look divisible. Matching markets are taken to be so large that
individuals are negligible relative to market size. The economy is large; people are not.

Our approach is guided by the following desiderata:

Compatibility There is a rich existing literature on stable matching in large markets un-
der transferable utility. We do not want to provide an alternative to this literature; we
want to generalize it.

Generality We want to provide a unified framework for the study of stable matchings. As
such we allow for nontransferable utility, transferable utility, and everything in between.
Characteristics need not lie in a finite, one-dimensional, or compact set.

Approximability A model in which agents are negligible relative to market size is at best
an approximation to a model in which finitely many agents have little influence. Sta-
ble matchings in the large market model should be interpretable as the limit of stable
matchings of familiar finite-agent matching models.

Embeddability Embedding a matching model in a wider economic model reduces every-
thing outside the matching to externalities, so stable matchings should exist even in the
presence of externalities.

Existence Stable matchings should always exist. Otherwise, our model models nothing.

We show that these desiderata can be satisfied by choosing the right model and stabil-
ity notion. The most popular approach to modeling large economies is the individualistic
approach introduced by Aumann (1964) in general equilibrium theory and by Schmeidler
(1973) in noncooperative game theory. In this framework, the economy is represented by
a nonatomic probability space of agents and a function that maps agents to their charac-
teristics. We show below in Example 1 that naively adopting this approach to matching
theory gives us a model in which stable matchings need not exist. Such an individualistic
model is also hard to relate to finite-agent models. If the number of agents changes, the
dimension of the model changes and there is no common space for comparisons.

These problems can be overcome by adopting the distributional approach to model-
ing large economies. The distributional approach was introduced by Hart, Hildenbrand,
and Kohlberg (1974) and Hildenbrand (1975) in general equilibrium theory and by Mas-
Colell (1984) in nonooperative game theory. Closely related on a technical level is the
distributional formulation of Bayesian games by Milgrom and Weber (1985). The distri-
butional approach to modeling large economies disposes of the agents completely and
only uses the distribution of their characteristics as the data of the model. Since one can
compare distributions of characteristics independently of the set of agents having the
characteristics, this allows us to relate the limit model and its stable matchings to finite-
agent matching models and their stable matchings. Distributional matching models are
not new; the distributional approach has already proven useful in matching with trans-
ferable utility and even in unifying the econometric treatment of stable matchings; see
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Chiappori and Salanié (2016). But the distributional approach has not yet proven useful
for the analysis of matching markets without transfers. The problem is that it is unclear
what a stable matching should be in a distributional setting without transfers. In models
with transfers, stability has been defined in terms of the utility level an agent of a specific
type receives. Implicitly, it is assumed that agents of the same type end up equally well
off in any stable matching. Such a “law of one price” can only be guaranteed with trans-
fers. We show that, nevertheless, stable matchings can be defined in a natural way so that
stable matchings always exist (Theorem 1) and exist even with externalities (Theorem 5),
that stable matchings in the large economy correspond exactly to limits of stable match-
ings in finite matching models that approximate the large economy under the topology of
weak convergence of measures (Theorem 2), and that our stability notion agrees with the
widely used existing stability notion for distributional models with transfers mentioned
above when transfers are available (Theorem 3 and Theorem 4). Although we formulate
everything in terms of distributions, we show that one can reinterpret the distributional
model in individualistic terms (Theorem 7) by a purification argument.

Since many of the main ideas are more transparent in a simplified continuum version
of the marriage model of Gale and Shapley (1962), we provide an overview in that setting
in the next section. Throughout the paper, we rely heavily on concepts from the topology
of metrizable spaces and weak convergence of measures. A mathematical Appendix at
the beginning of the Online Supplementary Material (Greinecker and Kah (2021)) con-
tains the essentials. Proofs that are short and instructive are in the main text, the rest are
contained in Section 9. The Online Appendix containing the mathematical Appendix and
more specialized material is available in the Online Supplementary Material.

Related Literature

Much of the literature on stable matching in large economies focuses on the asymptotic
behavior of large finite matching models without ever using a limit model. We refer to Ko-
jima (2017) for an overview of this approach; here, we focus on limit matching models for
which existence results are available. Owing to our novel approach to stability, our paper
is the first to prove the existence of stable matchings in a large economy framework that
allows for (but does not require) nontransferable utility with general spaces of character-
istics and both sides representing individually insignificant agents. Other large economy
models of stable matching fall into three categories:

1. Finite-Type Models. Baïou and Balinski (2002), Echenique, Lee, and Shum (2010)
and Echenique, Lee, Shum, and Yenmez (2013) prove, among other things, the existence
of stable matchings in a distributional marriage model with finitely many types. Azevedo
and Hatfield (2015) prove the existence of stable matchings and nonemptiness of the core
for a many-to-many matching model with finitely many contracts and types. In compari-
son to finite-agent models, their model allows for complementarities. Galichon, Komin-
ers, and Weber (2019) prove the existence of stable matchings in a general two-sided
finite-type model that allows for both nontransferable utility and (imperfectly) transfer-
able utility and can be used for the econometric estimation of matching models. With
finitely many types, stable matchings can simply be defined in terms of some blocking pair
having positive mass in the distribution, something not possible when no type has positive
mass.
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2. One-Sided Continuum Models. Azevedo and Leshno (2016) have an individualistic
model in which a continuum of students is matched to a finite number of colleges and use
it to prove that there is generically a unique stable matching under a richness condition
on preferences and relate stable matchings to simple conditions for markets to clear.
Che, Kim, and Kojima (2019) study a similar setting in a distributional framework and
show, using fixed-point methods from nonlinear functional analysis, that stable matchings
exist even with complementarities. Fuentes and Tohmé (2018) show that the existence
result of Che, Kim, and Kojima (2019) for finitely many colleges implies existence for
countably many colleges. When colleges are large, one can directly apply the usual notion
of stability, so the conceptual problems of agents on both sides being insignificant play no
role. Indeed, each blocking possibility can be realized by one large college and a mass of
students. When agents on both sides are individually insignificant, this is not possible.

3. Two-Sided Continuum Models With Transfers. In the case of (perfectly) transferable
utility and finitely many agents, stable matchings can be identified with solutions to the
dual of a linear programming problem. There exists an infinite-dimensional version of
this linear programming problem in which one optimizes over spaces of measures, the
optimal transport problem of Kantorovich.1 Using a duality result for the Kantorovich
optimal transport problem, Gretsky, Ostroy, and Zame (1992, 1999) develop a distribu-
tional approach to stable matching under transferable utility for general compact metric
type spaces. Chiappori, McCann, and Nesheim (2010) provide further results and the
generalization to separable, completely metrizable type spaces.

An individualistic model of cooperative games that subsumes stable matching with im-
perfectly transferable utility is given by Kaneko and Wooders (1986). An existence result
under the assumption that characteristics lie in a compact metric space is given by Kaneko
and Wooders (1996). Feasible payoffs in the model may only be approximately realizable,
though, so the model is best interpreted as a model of approximately stable matchings (or
cores, in the more general setting).

Closest to our model is the distributional model of stable matching with imperfectly
transferable utility and compact metric type spaces by Nöldeke and Samuelson (2018).2

Nöldeke and Samuelson develop a general nonlinear duality theory and apply it to con-
tract theory and matching theory. Their matching model is less general than ours, and
their methods cannot be applied to models without transfers, but the additional structure
of their model allows them to obtain results on the lattice structure of stable matchings.

With transferable and imperfectly transferable utility, one traditionally defines stable
matchings in terms of the payoffs a type gets in a matching and this is how all papers
mentioned above define stability. This requires that payoffs in a matching depend on types
only, there is equal treatment of types and this is assumed in the papers just mentioned.
Without transfers, this is generally not possible, and stability has to be defined differently.
However, we can prove using our stability notion that equal treatment and a stronger
form of equal treatment is a consequence of stability and transfers; see Section 5. In this
paper, the “law of one price” is a result, not an assumption. This allows us to show that
our stability notion is equivalent to the ones used by Gretsky, Ostroy, and Zame (1992,
1999), Chiappori, McCann, and Nesheim (2010), and Nöldeke and Samuelson (2018).3

1An introduction to optimal transport theory geared toward economists and econometricians is given by
Galichon (2016). For advanced material on the mathematics of optimal transport, see Villani (2003) and Villani
(2009).

2We became aware of each others’ work only in July 2016 at the Game Theory Society World Congress.
3In the optimal transport context, we only nest those models in which the surplus function is continuous.
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Another literature deserves mention here: the literature on ex ante investments in com-
petitive matching markets. Many match-relevant investments are made before agents join
matching markets. People go to a university before they know which firm they are going to
work for eventually. Under imperfect competition, there will be a hold-up problem and
resulting inefficiencies. To isolate whether other inefficiencies are possible, one needs
a competitive matching model in which the classic hold-up problem cannot occur, and
perfect competition rarely obtains with finitely many agents. A number of papers have
studied whether other inefficiencies remain under perfectly competitive matching by us-
ing continuum models; the following list is not complete. Cole, Mailath, and Postlewaite
(2001) and Iyigun and Walsh (2007) study investments under transferable utility in the op-
timal transport framework but focus on one-dimensional characteristics. Dizdar (2018)
uses the general optimal transport framework to study investments under transferable
utility. Peters and Siow (2002) study investment in the nontransferable utility context in
which characteristics are one-dimensional and all agents rank agents on the other side the
same way. Matchings are assumed to be assortative, but no explicit stability argument is
given. We see in Example 2 that our model and stability notion provide appropriate foun-
dations. Nöldeke and Samuelson (2015) study investment under imperfectly transferable
utility. The present paper provides a unified competitive matching framework for this lit-
erature in which all these models can be embedded and analyzed with the same solution
concept.

2. OVERVIEW

In this section, we provide an overview of the central ideas and results of this paper in
a setting without transfers, both sides of the market having the same size, and individual
rationality constraints not binding. This allows us to focus on the central arguments with-
out getting lost in details. The only major part of the paper we do not discuss here are the
results on equal treatment of types that rely crucially on the availability of transfers.

The data of the classical, finite marriage model consist of a group of agents divided into
two subgroups, women and men.4 Women are assumed to have preferences over men and
the option to stay single and men are assumed to have preferences over women and the
option to stay single. In the simplest case, the one we focus on in this section, there are
exactly as many women as men, every woman prefers every man to being single, and every
man prefers every woman to being single. In that case, a matching simply pairs women
and men in a one-to-one way and the matching is stable if there is no woman and no man
who prefer each other strictly to their respective partners in the matching. All of these
definitions make sense even when the set of agents is infinite and one might try to obtain
a continuum version of the marriage model by simply assuming there to be a continuum
of agents on both sides and naively applying the usual stability notion. However, unlike in
the case of finitely many agents, stable matchings need not exist as the following example
shows.5

EXAMPLE 1: Let the set of women be AW = [0�1] and the set of men be AM =
[0�1/2] × {1�2}. All women have the same preferences and all men have the same pref-
erences. Every woman is indifferent between (x�1) and (x�2), but prefers (x�1) to (y�1)

4We focus on heterosexual marriage markets for ease of exposition. Clearly, this is not the only application
of interest.

5The absence of transfers in the example is inessential. Example 3 in the Online Appendix redoes the anal-
ysis under transferable utility.
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if x > y . Men prefer x to y if x > y . Everyone prefers being matched to someone to not
being matched at all. A matching in this context is simply a bijection f :AW →AM . Since
stable matchings will not exist in this example, we refrain from putting even more restric-
tions on a matching such as preserving measure. The matching f is stable if there is no
blocking pair, that is, there are no a ∈ AW and b ∈ AM such that a prefers b to f (a) and
b prefers a to f−1(b).

Now let f be any matching; we show it is not stable. Pick any x ∈ [0�1/2]. Without loss of
generality, assume that f−1(x�1) < f−1(x�2). Let a ∈ AW satisfy f−1(x�1) < a< f−1(x�2)
and let (y�m) = f (a). We must either have y > x or y < x. If y > x, then f−1(x�2) and
(y�m) can block the matching. If y < x, then a and (x�1) can block the matching.

If all women rank all men the same way and all men rank all women the same way, as
is the case in the example above, we would expect in analogy with finite-agent matching
models a stable matching to be positive assortative; higher-ranked women are matched
to higher-ranked men. But this is not possible here since it would require woman x to be
matched with both (x�1) and (x�2), which is impossible if we literally take x, (x�1), and
(x�2) to be indivisible agents.

But one does not have to literally think of a continuum of indivisible agents. Instead
of indivisible agents, we work with perfectly divisible types of agents; we formulate our
matching model in terms of the distributions of the characteristics of agents. In this, we
follow Gretsky, Ostroy, and Zame (1992, 1999). Each agent has, implicitly, a type that
specifies both their preferences over types of agents on the other side and characteristics
agents on the other side might care about. The matching model is then given in terms of
distributions over types. Formally, there are two sets of types W and M . For each w ∈ W
there is strict preference �w over M and for each m ∈ M there is a strict preference �m

over W . These preferences are assumed to be acyclic;6 this is, for example, guaranteed
if they are irreflexive and transitive. We assume in this section that everyone finds every-
one on the other side acceptable, so we need not include the option of staying single in
the preferences. We assume there are Polish (i.e., separable and completely metrizable)
topologies on W and M , respectively, such that the sets{(

w�m�m′) ∈ W ×M ×M |m �w m′}
and {(

m�w�w′) ∈ M ×W ×W | w �m w′}
are open in the corresponding product topologies, essentially a continuity assumption.
The first condition, for example, says that if a woman of type w prefers a man of type m
to a man of type m′ then a woman with a type sufficiently similar to w prefers a man of
type sufficiently similar to m to a man of type sufficiently similar to m′. The assumption
guarantees that the topologies on types provide the economically correct notion of sim-
ilarity. Finally, we close the model by specifying two Borel probability measures νW and
νM on W and M , respectively, as the population distributions. That νW and νM are proba-
bility measures means that we have the same number of women as men in our model, a
restriction we will drop for our general model.

For now, we define matchings so that everyone is matched, and a matching simply speci-
fies the joint distribution over matched types. Formally, a matching μ is a Borel probability

6Recall that the relation � on the set S is acyclic if there is no finite sequence 〈s1� s2� � � � � sn〉 with values in S
such that s1 � s2 � · · · � sn � s1.



PAIRWISE STABLE MATCHING IN LARGE ECONOMIES 2935

measure on W × M with W -marginal νW and M-marginal νM . The marginal conditions
correspond to accounting identities. For example, that μ has W -marginal νW means that
for every Borel set B ⊆ W , νW (B) = μ(B × M), so that the number of couples in which
the types of the woman lie in B and the type of the man lies in M is equal to the num-
ber of women whose type lies in B. Given the underlying assumption that all women are
matched in a matching, this must clearly be the case.

Having disposed of agents, we have also disposed of blocking pairs and, therefore, of
the usual stability notion. This is not a problem if there are only finitely many types, so that
all blocking possibilities occur, if at all, with positive mass. With transfers, other definitions
of stability are available but those do not translate to the nontransferable utility setting
in an obvious way. But the central point of this paper is that stability can be defined in a
natural way and that our stability notion actually agrees with the stability notion used for
distributional matching models with transfers; see Section 5. A matching μ is nothing but
a probability distribution over the pairs of types of matched agents. We define a matching
to be stable if the matching with finitely many types obtained by independently sampling
finitely many pairs of types from the distribution μ is stable with probability one. For this,
it suffices to look at samples consisting of two sampled pairs. Denoting the probability
distribution on (W ×M) × (W ×M) of two independent samples from W ×M according
to μ by μ⊗μ (the product measure, see the Mathematical Appendix), the matching μ is
stable if the set of all pairs of couple types ((w�m)� (w′�m′)) ∈ (W ×M) × (W ×M) such
that

m′ �w m and w �m′ w′

or

m�w′ m′ and w′ �m w

has μ ⊗ μ-probability zero. It does not really matter which couple type is sampled first
and which couple type is sampled second. As a consequence, it suffices to check only one
of the two conditions.

With this notion of stability, stable matchings always exist under minimal regularity as-
sumptions; Theorem 1. Our proof reduces the existence problem to the already solved
existence problem for finite-agent matching problems via finite approximations and a
compactness argument.

We illustrate our stability notion for a simple test case for which there is broad agree-
ment on what a stable matching should look like. We take a model in which all women
rank all men the same way and all men rank all women the same way. It represents the
Example 1 in a distributional way and does admit a stable matching. Such a model has
already been used in Peters and Siow (2002) and, more recently, Diamond and Agarwal
(2017). However, existing papers plainly assume stable matchings are positive assortative
in analogy with finite-agent matching models without providing a stability argument for
the continuum model. Our stability notion delivers just that.

EXAMPLE 2: We let W = M = [0�1] and νW = νM be the uniform distribution.7 More-
over, everyone prefers to be matched to someone with a higher number and being

7The restriction to uniform distributions of types is less restrictive than it might seem. As long as the distri-
butions of types on the real line have no atoms, the same argument works by interpreting x and y not as types
but as quantiles of types. The relevant material on quantile functions and copulas may be found in Galichon
(2016, Appendix C).
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matched to not being matched at all. Given the structure of the problem, we would expect
positive assortative matching to be the only stable matching. If F is the two-dimensional
cumulative distribution function of the matching μ, this amounts to F (x� y) = min{x� y}
for all x� y ∈ [0�1]. If μ fails to be positive assortative, there will be some x such that, with
obvious notation, μ(w < x�m > x) > 0 and μ(w > x�m < x) > 0, showing μ to be insta-
ble. Since stable matchings always exist, the positive assortative matching is the unique
stable matching.

Our stability notion allows us to relate stable matchings in the continuum model to sta-
ble matchings in finite-agent matching models. Let μ be a stable matching for our general
continuum model. We get with probability one a finite-type stable matching from n in-
dependent draws from μ given by the sample distribution. We can interpret the resulting
matching as a stable matching between n agents on either side. Moreover, it holds with
probability one that for large n the resulting finite type stable matching is close to μ in
the topology of weak convergence (see the Mathematical Appendix.) This way, we can
interpret μ as the limit of stable matchings with finitely many agents. Indeed, the stable
matchings in our continuum model are exactly the limits of finite-agent matching models
from the distributional point of view; Theorem 2. Therefore, every other stability notion
that captures the limiting distributional behavior of stable matchings of large finite-agent
models must be equivalent to ours.

It is useful to interpret the stable matchings of the continuum model not just as approx-
imations of stable matchings for large finite matching models but as genuine matchings
of infinitely many agents. The distributional model is easy to work with, but a model with
agents is easier to interpret. We will often explain concepts in terms of agents even though
our model formally has none. One can extend the model to a model in which actual in-
divisible individuals are matched. Example 1 above shows that just interpreting types as
individuals will not do. However, it is possible to find probability spaces (AW �AW �τW ) and
(AM�AM�τM) and measurable type functions tW : AW → W and tM : AM → M satisfying
νW = τW ◦ t−1

W and νM = τM ◦ t−1
M , respectively, such that for any matching μ there exists

a measurable bijection φ : AW → AM with a measurable inverse that preserves measure
and induces the distributional matching; the function w �→ (tW (w)� tM (φ(w))) has distri-
bution μ under τW . The general version of this result is Theorem 7. In words, φ matches
the actual agents in AW with the agents in AM in a one-to-one fashion and induces the
distributional matching μ. We can, therefore, think of our distributional matchings as the
empirical distributions of deterministic matchings of individuals. Looking at our stabil-
ity notion through the individualistic lens, a matching is stable if the probability that a
randomly chosen woman and a randomly chosen man can form a blocking pair is zero.
Blocking pairs may exist, but they will have a hard time finding each other.

So far, nothing in the continuum model has allowed us to go beyond what is possible in
finite-agent models. An area where this is possible is matching with externalities. We focus
on wide-spread externalities that only depend on the matching itself and, therefore, show
up at the distributional level. Implicitly, we will assume that the population is so large
that no pair of agents has an influence on the distribution and, therefore, the externality:
Individuals take externalities as given. Let M be the space of matchings, endowed with
the topology of weak convergence (see the Mathematical Appendix.) Now, for each w ∈
W , the preference relation �w is defined on M ×M and for each m ∈ M , the preference
relation �m is defined on W × M. Even though we assume that no agent can influence
the matching, welfare analysis requires that every agent has preferences also over the
matching they are part of. We strengthen the assumption that preferences are acyclic
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to preferences being asymmetric and negatively transitive. The corresponding continuity
assumption for the extended model is that the sets{(

w�m�m′�μ�μ′) ∈ W ×M ×M ×M×M | (m�μ) �w

(
m′�μ′)}

and {(
m�w�w′�μ�μ′) ∈ M ×W ×W ×M×M | (w�μ) �m

(
w′�μ′)}

are open in the corresponding product topologies. Everything else is kept as before. We
now call the matching μ stable if the set of all pairs of couple types ((w�m)� (w′�m′)) ∈
(W ×M) × (W ×M) such that(

m′�μ
) �w (m�μ) and (w�μ) �m′

(
w′�μ

)
or

(m�μ) �w′
(
m′�μ

)
and

(
w′�μ

) �m (w�μ)

has μ ⊗ μ-probability zero. In this setting, stable matchings still exist—Theorem 5. The
indivisibilities that might prevent existence with finitely many agents play no role at our
distributional level. The crucial step in the existence proof is proving existence first for
the case in which W and M are finite. We prove this case by a topological fixed-point ar-
gument. Jagadeesan (2017) has previously shown, 8 in a somewhat different context that
involves further complications, that one can formulate a suitable topological analog to
the order-theoretic method used by Fleiner (2003) and Hatfield and Milgrom (2005) to
obtain the existence of stable matchings for discrete distributional matching-models with
nontrivial indifferences. Since the space of matchings, and thus externalities is connected,
nontrivial indifferences are unavoidable. The approach is robust to taking account of ex-
ternalities in the preferences and this is how our proof works.

3. THE MODEL AND STABILITY

In this section, we introduce an extended matching model and prove the existence of
stable matchings. The extended matching model allows for unbalanced markets, binding
individual rationality constraints, and contract choices within matched pairs.

We start by defining the environment. As before, the model-relevant characteristics
of agents on both sides of the market are given by nonempty sets of types W and M ,
respectively. To allow agents to stay single, we use extended spaces W∅ = W ∪ {∅} and
M∅ = M ∪{∅} with ∅ /∈ W ∪ M being a dummy type. An agent matched with an agent of
type ∅ is really just an unmatched agent. We call a pair in W∅ ×M∅ a couple type. Matched
agents can enter contracts between them, and the contracts available to them may depend
on their couple type. Formally, there is a set C of contracts and a contract correspondence
C :W∅ ×M∅ → 2C specifying the set of contracts actually available to the matched agents.
Depending on the context, contracts might stand for intrahousehold allocations, transfers,
wages or, of course, contracts. A triple (w�m�c) with (w�m) a couple type and c ∈ C is
a couple-contract type. Types also specify (strict) preferences. For each w ∈ W , there is
a relation �w on M∅ × C, and for each m ∈ M , there is a relation �m on W∅ × C. That
(m�c) �w (m′� c′) means that a woman of type w prefers to enter contract c with a man of

8The paper Jagadeesan (2017) has been superseded by Jagadeesan and Vocke (2021).
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type m to entering contract c′ with a man of type m′. Similarly, (w�c) �m (w′� c′) means
that a man of type m prefers to enter contract c with a woman of type w to entering
contract c′ with a woman of type w′. Types play three roles: They specify the contracts
available to a couple, the preferences of an agent, and the characteristics of an agent that
agents on the other side of the market might care about.

We endow the sets W , M , and C with Polish (i.e., separable and completely metrizable)
topologies, providing us with a notion of closeness for types and contracts. The restriction
to Polish spaces of types and contracts is a relatively harmless technical restriction; almost
every space used in probabilistic modeling is Polish.9

We also endow W∅ and M∅ with the topologies that make ∅ an isolated point and such
that the topologies on W and M are just the respective subspace topologies. For nota-
tional convenience, we let �∅ be the empty relation under which no elements are compa-
rable, so that �w and �m are defined even when w = ∅ or m = ∅, respectively. Throughout
the paper, we make the following three assumptions:

Acyclicity of Preferences: The relation �w on M∅ × C is acyclic for each w ∈ W and the
relation �m on W∅ ×C is acyclic for each m ∈ M .

Continuity of Preferences: The set{(
m�c�m′� c′�w

) | (m�c) �w

(
m′� c′)}

is open in

M∅ ×C ×M∅ ×C ×W�

and the set {(
w�c�w′� c′�m

) | (w�c) �m

(
w′� c′)}

is open in

W∅ ×C ×W∅ ×C ×M�

Regularity of the Contract Correspondence: The correspondence C : W∅ × M∅ → 2C is
continuous with nonempty and compact values.

The assumption that preferences are acyclic is extremely weak but will suffice for most
of our results. The continuity assumption on preferences ties the notion of closeness spec-
ified by the topologies on W , M , and C to how the agents themselves view the types.10

In practice, it is usually more convenient to work with utility functions than preferences.
A sufficient condition for both assumptions on preferences to be satisfied is the existence
of continuous functions uW :W ×M∅ ×C →R and uM :W∅ ×M ×C →R such that

(m�c) �w

(
m′� c′) if and only if uW (w�m�c) > uW

(
w�m′� c′)

9Appendix E of Dudley (2002) contains a discussion of why Polish spaces are nowadays used as the basis for
probability theory and topological measure theory.

10Our continuity condition is equivalent to the functions mapping w to �w and m to �m, respectively, being
continuous in the Kannai topology introduced by Kannai (1970), which can be equivalently defined to be the
weakest topology that makes these preference functions continuous. However, the Kannai topology may fail
to be even Hausdorff without some form of local nonsatiation, so we will not work directly with the Kannai
topology.
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and

(w�c) �m

(
w′� c′) if and only if uM (w�m�c) > uM

(
w′�m� c′)�

If all preferences are asymmetric and negatively transitive (and, therefore, the asymmetric
part of complete and transitive preference relations), and W , M , and C are Euclidean or,
more generally, locally compact spaces, then this sufficient condition is also necessary
by a theorem of Mas-Colell (1977). Preferences can then always be represented by such
parametrized jointly continuous utility functions. We will use such utility representations
frequently in examples and assume them to hold when discussing (possibly imperfectly)
transferable utility.

To close the model, we specify nonzero, finite, Borel population measures νW and νM
on W and M , respectively. In general, we denote the space of finite Borel measures on a
Polish space X by M(X), so νW ∈M(W ) and νM ∈M(M). We do allow for unbalanced
markets in which νW (W ) �= νM (M) and the population measures need not be probability
measures. Our model is invariant to normalizing both measures jointly, so the absolute
numbers νW (W ) and νM (M) are economically meaningless. However, their relative size
νW (W )/νM (M) is meaningful and represents the number of women per man in the an-
alyzed population. Finite-agent models correspond to the case in which νW and νM both
have finite support, and all values are rational numbers. Indeed, by multiplying each of
these rational numbers by the least common multiple of all denominators, one obtains an
equivalent model in which types occur in positive integer quantities.

Before we go to the definitions of matchings and the stability notion, we briefly discuss
how our model relates to existing matching models. Our model subsumes widely used
models with nontransferable utility, transferable utility, and imperfectly transferable util-
ity. In the classic marriage model of Gale and Shapley (1962), no transfers or contracts are
allowed. In our framework, this corresponds to the degenerate case of a single contract
C = {c} and the contract correspondence C having the constant value C = {c}. Notation-
ally, we will suppress C and C when working with the classic marriage model.

Assume for now that preferences are given by jointly continuous functions uW : W ×
M∅ × C → R and uM : W∅ × M × C → R. We will require every couple type to make
(weakly) efficient contract choices so that it is not possible to make both agents involved
better off by choosing a different contract. If we only care about the utilities obtained, we
might let the couple choose directly from the utility possibility frontier. Under reasonable
sufficient conditions known from general equilibrium theory, the utility possibility frontier
will be homeomorphic to the unit interval.11

For the discussion of matching with transfers, we focus on the case that C = [0�1] and
that C is constant with value C. Note that under the formulation with C = [0�1], the
utility levels are not given net of the outside options; we do allow for the utility possibility
frontier to lie wholly below the utility levels the agents would get by staying unmatched. It
is even possible for the utility possibility frontier to lie wholly above the utility levels the
agents would get by staying unmatched; a possibility we will explicitly exclude in Section 5.
Examples for the possible shapes of utility possibility frontiers are given in the figures
below.

11Stated in terms of the set of feasible utility pairs, this set should be compact, comprehensive from below
(up to the outside utility levels of the agents), and the outside utility levels of the agents should be dominated
(in the weak Pareto sense) by every point in the utility possibility frontier. For a proof, see Arrow and Hahn
(1971, Chapter 5, Section 2) who show, more generally, that the utility possibility frontier for n agents is
homeomorphic to an n− 1-dimensional simplex.
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If the utility possibility frontier is a line with constant slope −1 for all w ∈ W and m ∈ M ,
as in the left figure, we have a model of transferable utility. Matching with transferable
utility has a long tradition, starting with the work of Koopmans and Beckmann (1957) and
Shapley and Shubik (1971). With transferable utility, the value uW (w�m�c)+uM (w�m�c)
does not depend on c and we can define a surplus function S :W ×M →R by

S(w�m) = uW (w�m�1) + uM (w�m�1)�

The surplus function, together with the utilities for staying single, carries all relevant in-
formation for the analysis of stability. As formulated here, transferable utility depends
on specific choices of the functions uW and uM and is not invariant under transforma-
tions that preserve ordinal rankings. The exact ordinal implications of transferable utility
have recently been characterized by Chiappori and Gugl (2020).12 Matching markets with
transferable utility have a very special structure. Maximizing aggregate surplus is a linear
program and the solutions to the dual program can be interpreted as stable matchings or
market equilibria. This duality holds even if types are not discrete, so transferable utility
is the one case in which existence has been known for two-sided continuum models with
general types for some time; see Gretsky, Ostroy, and Zame (1992, 1999) and Chiappori,
McCann, and Nesheim (2010).

For our purposes equally well behaved is the more general case of imperfectly trans-
ferable utility, as depicted in the middle figure. It is characterized by uW (w�m� ·) being
an increasing13 function and uM (w�m� ·) being a decreasing function for all w ∈ W and
m ∈ M . With imperfectly transferable utility, weak efficiency coincides with the more
stringent usual definition of efficiency: It is impossible to make any agent in a couple
better off without making the other worse off. Matching markets with imperfectly trans-
ferable utility have been studied in detail by Demange and Gale (1985). Existence proofs
for such markets with finitely many agents may be found in Crawford and Knoer (1981)
and Quinzii (1984). Parallel to our work, the existence of stable matchings under imper-
fectly transferable utility in a distributional model with continuum (but compact) type
spaces was shown by Nöldeke and Samuelson (2018). Nöldeke and Samuelson use a dif-
ferent stability notion than we do, but their stability notion coincides with ours under the
assumptions they make; see Theorem 3.

It is possible that weak efficiency and strict efficiency diverge, as in the figure on the
right. Importantly, the set of strictly efficient points might not be closed then. To guarantee
the existence of stable matchings in the full generality of our model, we need to be content
with weak efficiency.

An alternative to the approach taken in this section would be to let C =R
2 and uW and

uM be given by uW (w�m� (r� r ′)) = r and uM (w�m� (r� r ′)) = r ′. In that case, C would just

12For a gentle exposition, see Section 3.1 in Chiappori (2017).
13We take increasing functions to be strictly increasing and decreasing functions to be strictly decreasing.
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provide the feasible utility allocations. This is the approach used traditionally in coopera-
tive game theory with nontransferable utility, starting with the work of Aumann and Peleg
(1960). It is also the approach used by Galichon, Kominers, and Weber (2019) to provide
a general framework for the empirical analysis of matching problems with finitely many
types. For most purposes, the two approaches are equivalent. The assumption commonly
made in the literature on cooperative games that the set of feasible utility allocations is
comprehensive from below ensures that one can recover this set from the utility possibility
frontier.

Having specified the environment, our next task is to define matchings and what it
means for a matching to be stable. Given our distributional point of view, a matching
simply specifies how likely it is to observe certain couple types that have entered certain
contracts and is, therefore, a distribution of couple-contract types. A matching can still
be defined via some marginal conditions, but we now have to take account of singles and
make sure that couples only choose among contracts available to them. Let GC ⊆ W∅ ×
M∅ × C be the graph of the contract correspondence C. A matching is a Borel measure
μ ∈M(W∅ ×M∅ ×C) such that:

(i) νW (B) = μ(B ×M∅ ×C) for every Borel set B ⊆W ,
(ii) νM (B) = μ(W∅ ×B ×C) for every Borel set B ⊆ M ,

(iii) μ(W∅ ×M∅ ×C \GC) = 0, and
(iv) μ({(w�m�c) |w =m = ∅}) = 0.

Condition (iv) is simply a convenient normalization. We want to emphasize that nothing
in the definition of a matching is inherently “random.” We think of a matching (after
normalizing the measure) as the empirical distribution of couple-contract types induced
by a deterministic matching of agents. Section 7 supplies a formal foundation for this
point of view.

Finally, we define stability, the idea at the heart of this paper. Even if a matching μ
need not be a probability measure anymore, the product measure μ ⊗ μ is well-defined
and we call the matching μ stable if μ⊗μ(I) = 0 for a certain instability set I ⊆W∅ ×M∅ ×
C × W∅ × M∅ × C containing all pairs of couple-contract types witnessing to instability.
A pair of couple-contract types is witness to the instability of a matching if there exists a
blocking pair as before, if the contract choice is inefficient, or if an individual rationality
constraint is violated. There are two conditions specifying that blocking possibilities exist
between pairs (w�m�c) and (w′�m′� c′) of couple-contract types:(

m′� c′′) �w (m�c) and
(
w�c′′) �m′

(
w′� c′) for some c′′ ∈ C

(
w�m′)�(

m�c′′) �w′
(
m′� c′) and

(
w′� c′′) �m (w�c) for some c′′ ∈ C

(
w′�m

)
�

Both couple-contract types could have an inefficient contract choice, which gives us two
more conditions:(

m�c′′) �w (m�c) and
(
w�c′′) �m (w�c) for some c′′ ∈ C(w�m)�(

m′� c′′) �w′
(
m′� c′) and

(
w′� c′′) �m′

(
w′� c′) for some c′′ ∈ C

(
w′�m′)�

Lastly, each four of the (individual) types in the two couple-contract types could have
their individual rationality constraint violated, giving us four more conditions:(∅� c′′) �w (m�c) for some c′′ ∈ C(w�∅)�(∅� c′′) �w′

(
m′� c′) for some c′′ ∈ C

(
w′�∅)

�
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(
w′� c′) for some c′′ ∈ C

(
m′�∅)

�

A violation of individual rationality constraints could also come from an inefficient con-
tract choice of an unmatched agent, so these constraints serve double duty.

It follows from the continuity of preferences and the regularity of the contract corre-
spondence (namely, its lower hemicontinuity) that each of these eight conditions specifies
an open subset of W∅ ×M∅ ×C×W∅ ×M∅ ×C. We let I be the union of these sets. Clearly,
I is open.

An equivalent way to define stability would be to say that the matching μ is stable if
there are no couple contract types (w�m�c) and (w′�m′� c′) and neighborhoods V and V ′

of (w�m�c) and (w′�m′� c′), respectively, satisfying μ(V ) > 0, μ(V ′) > 0, and V ×V ′ ⊆ I.
The equivalence is a straightforward consequence of the topology of (W∅ × M∅ × C) ×
(W∅ ×M∅ ×C) having a countable basis of open rectangles and I being open.

Stable matchings exist. To prove this, we approximate a given matching problem by fi-
nite matching problems for which Lemma 3 will guarantee the existence of stable match-
ings. A compactness argument allows us then to extract a stable matching for the limit
matching problem. To make this argument work, we use the topology of weak conver-
gence of measures.14 Recall that the sequence 〈μn〉 of measures in M(X) with X Polish
converges to the measure μ ∈ M(X) under the topology of weak convergence of mea-
sures if

lim
n→∞

∫
gdμn =

∫
gdμ

for every bounded continuous function g : X → R. Whenever we make topological argu-
ments for spaces of measures, it will be understood that we are using the topology of weak
convergence of measures.

Our compactness argument can be split into two distinct parts. We first show that our
sequence of finite matching problems must have a subsequence converging to some limit
measure in Lemma 1 and then show using Lemma 2 that the limit measure will indeed be
a matching.

LEMMA 1: Let 〈νnW � νnM�μn〉 be a sequence in M(W ) ×M(M) ×M(W∅ ×M∅ ×C) such
that 〈νnW 〉 converges to νW ∈ M(W ), 〈νnM〉 converges to νM ∈ M(M), and μn is a matching
for population distributions νnW and νnM for each natural number n. Then a subsequence of
〈μn〉 converges.

The proof of Lemma 1 is a straightforward application of Prohorov’s characterization
of relative compactness in the topology of weak convergence of measures. Intuitively, we
need to make sure that no mass “escapes to infinity.” No mass can escape to infinity unless
mass of the sequence of population measures escapes to infinity, which is not possible
when population measures converge. The argument does not require W , M , or C to be
compact.

LEMMA 2: The following set is closed:{
(νW � νM�μ) ∈M(W ) ×M(M) ×M(W∅ ×M∅ ×C) |
μ is a matching for the population measures νW and νM

}
�

14The most important facts related to weak convergence can be found in the Mathematical Appendix.
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Most of the proof of Lemma 2 consists in showing that conditions (i) and (ii) in the
definition of a matching are preserved under taking limits. The topology of weak conver-
gence of measures does not guarantee convergence of the measure of every Borel set,
so we show that it suffices that convergence holds for an appropriately chosen class of
well-behaved Borel sets for which we actually get convergence.

To get the compactness argument off the ground, we prove that stable matchings exist
for discrete matching problems with finitely many agents by approximating the matching
problem with one in which there are only finitely many contracts.

LEMMA 3: A stable matching exists whenever νW and νM have finite supports and take on
only rational values.

We are now ready for the proof of our main existence theorem.

THEOREM 1: There is at least one stable matching.

PROOF: Let 〈νnW � νnM〉 be a sequence of pairs of measures on W and M , respectively,
such that 〈νnW 〉 converges to νW , 〈νnM〉 converges to νM and νnW and νnM have finite support
and only rational values for all n. This is possible since measures with finite supports are
dense in the space of all measures and, clearly, every measure with finite support is the
limit of a sequence of measures with the same finite support and rational values.

For each n, we can choose a stable matching μn for the finite matching problem given by
population distributions νnW and νnM by Lemma 3. By passing to a subsequence and using
Lemma 1, we can assume without loss of generality that 〈μn〉 converges to some measure
μ, which is again a matching for the population measures νW and νM by Lemma 2. The
continuity assumption on preferences and the lower hemicontinuity of C guarantee that I
is open. Therefore,

μ⊗μ(I) ≤ lim inf
n
μn ⊗μn(I) = 0

by the Portmanteau theorem (see the Mathematical Appendix) and the fact that taking
products preserves weak convergence. Q.E.D.

Importantly, our existence result needs no further compactness assumptions. Indeed,
Lemma 1 and Lemma 2 show that all the needed compactness is automatic in the space
of matchings. Nöldeke and Samuelson (2018) include value functions in their solution
concept and therefore need the space of value functions to be compact in an appropri-
ate topology. They do this by using their duality theory to show that the value functions
form a uniformly compact set of continuous functions independently of the population
distributions. Their argument depends crucially on type spaces being compact, which is
not needed here.

In the usual setting with finitely many agents, a stable matching continues to be stable
if we remove matched couples from the population. Indeed, this can only reduce the
blocking possibilities of other agents. The same holds true in our model, and we note the
following lemma for later reference.15

LEMMA 4: Let μ�λ ∈M(W∅ ×M∅ ×C), with μ being a stable matching and λ(B) ≤ μ(B)
for every Borel set B ⊆W∅ ×M∅ ×C. Then λ⊗ λ(I) = 0.

15See Villani (2009, Theorem 4.6) for a similar result in the optimal transport context.



2944 M. GREINECKER AND C. KAH

4. RELATION TO LARGE FINITE MATCHING MARKETS

We show in this section that stable matchings as defined in this paper are exactly the
limits of stable matchings of finite-agent matching problems that approximate our limit
matching model.

If a sequence of stable matchings for matching problems with finitely many agents con-
verges, it converges to a stable matching for the limiting population measures. If it does
not converge, a subsequence will. Indeed, we showed this much when proving Theorem 1.
Hence, at least one stable matching for the limiting population measures captures the lim-
iting behavior of a sequence of stable matchings for large, finite populations. Next, we
show that all stable matchings do so; they are all the limits of sequences of stable match-
ings for large, finite populations.

We first have to define what a matching problem is. We hold the type spaces, the set
of contracts, the contract correspondence, and the preferences fixed. So we only vary the
population measures and define a matching problem to be a pair (νW � νM) of population
measures. The matching problem (νW � νM) is finite if both νW and νM take on only rational
values and have a finite support.16 As already mentioned above, by multiplying both νW
and νM with a multiple of all denominators occurring in nonzero values, one obtains an
equivalent matching problem in which finitely many types occur in positive integer quan-
tities. Each of these quantities can be interpreted as the number of agents of this type.
Similarly, a matching μ is finite if it has a finite support and only rational values. Note that
a stable matching for a finite matching problem need not be finite.

THEOREM 2: Let μ be a matching for the matching problem (νW � νM). Then μ is stable if
and only if there are sequences 〈νnW 〉, 〈νnM〉, and 〈μn〉 such that:

(i) the matching problem (νnW � ν
n
M) is finite for each n and μn is a finite stable matching

for it,
(ii) the sequence 〈νnW 〉 converges to νW , the sequence 〈νnM〉 converges to νM , and 〈μn〉 con-

verges to μ.

PROOF: That (i) and (ii) imply that μ is stable was implicitly already shown in Lemma 2
and the proof of Theorem 1. For the converse, let μ be a stable matching. Normalize it
to a probability measure μ̄ ∈M(W∅ ×M∅ ×C) by letting μ̄(B) = μ(B)/μ(W∅ ×M∅ ×C)
for every Borel set B ⊆W∅ ×M∅ ×C. For each sequence ω= 〈ωn〉 ∈ (W∅ ×M∅ ×C)∞, we
can form the sequence 〈μ̄ω

n 〉 of sample distributions given by

μ̄ω
n (B) = n−1#{m≤ n | ωm ∈ B}

for every Borel set B ⊆ W∅ × M∅ × C and each natural number n. For each ω and each
natural number n, we have

μ̄ω
n ⊗ μ̄ω

n (I) = n−2#
{

(l�m) | (ωl�ωm) ∈ I and l�m≤ n
}
�

Since μ is stable, we have μ̄⊗ μ̄(I) = 0 and μ̄⊗ μ̄ is the marginal distribution of ⊗nμ̄ on
any pair of factors W∅ × M∅. Since there are only countably many pairs of such factors,
it follows that for ⊗nμ̄-almost all ω and each natural number n, μ̄ω

n ⊗ μ̄ω
n (I) = 0. More-

over, by Varadarajan’s version of the Glivenko–Cantelli theorem, Varadarajan (1958),

16It can be shown that a finite measure that takes on only rational values can take on only finitely many
values; see, for example, Tsakas (2014, Proposition 1). In the present context, such a measure must have a
finite support. Our definition of a finite matching problem contains, therefore, a redundancy.
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the sequence 〈μ̄ω
n 〉 converges to μ̄ for ⊗nμ̄-almost all ω. So we can choose some sequence

ω ∈ (W∅ ×M∅ ×C)∞ such that μ̄ω
n ⊗ μ̄ω

n (I) = 0 for each natural number n and such that
〈μ̄ω

n 〉 converges to μ̄. Indeed, ⊗nμ̄-almost every ω will do. Let 〈qn〉 be a sequence of pos-
itive rational numbers converging to μ(W∅ × M∅ × C). For each natural number n, let
μn = qn · μ̄ω

n and define νnW and νnM by

νnW (B) = μn(B ×M∅ ×C)

for every Borel set B ⊆W and

νnM (B) = μn(W∅ ×B ×C)

for every Borel set B ⊆ M , respectively. Clearly, 〈μn〉 converges to μ and μn is a finite
stable matching for the matching problem (νnW � ν

n
M) for each natural number n. It remains

to show that 〈νnW 〉 converges to νW and 〈νnM〉 converges to νM . Let B ⊆W be a νW -continuity
set. Then B ×M∅ ×C is a μ-continuity set and

lim
n
νnW (B) = lim

n
μn(B ×M∅ ×C) = μ(B ×M∅ ×C) = νW (B)�

It follows that 〈νnW 〉 converges to νW . Similarly, 〈νnM〉 converges to νM . Q.E.D.

Let us take a look at what Theorem 2 does not say. The sequences of population mea-
sures 〈νnW 〉 and 〈νnM〉 shown to exist do not just depend on the limiting population measures
νW and νM , they depend on the matching μ itself. What is not true is that for any popu-
lation measures νW and νM , we can find sequences of population measures 〈νnW 〉 and 〈νnM〉
converging to νW and νM , respectively, such that for every stable matching μ for the popu-
lation measures νW and νM , there exists a sequence 〈μn〉 converging to μ such that μn is a
stable matching for the population measures νnW and νnM for each natural number n. For-
mally, the correspondence that maps each matching problem to its set of stable matchings
may not be lower hemicontinuous.

This failure of lower hemicontinuity is not just an artifact of our distributional model;
the phenomenon is known to occur in finite matching theory. Indeed, Pittel (1989) has
shown in a model with randomly drawn preferences, no transfers, and the same number
of women and men, that the number of stable matchings grows incredibly fast with the
number of agents, but Pittel’s result is not robust to small changes of populations: Ashlagi,
Kanoria, and Leshno (2017) have shown that when the number of women differs from the
number of men by even one, the set of stable matchings collapses essentially to a unique
stable matching as the number of agents grows. A difference of only a single person in
population sizes must vanish in the limit, so a reasonable limit model cannot preserve the
distinction.

Our model is different,17 but we can use ideas inspired by Ashlagi, Kanoria, and Leshno
(2017) to construct an example in which a sequence of population measures converges,
but a stable matching for the limiting population measures is not the limit of any sequence
of stable matchings for the given sequence of population measures. This is Example 4 in
the Online Appendix. The solution correspondence fails to be lower hemicontinuous in
a substantial way. Examples where lower hemicontinuity fail have been known for quite

17Indeed, we explain in our concluding remarks that such random finite matching models cannot be analyzed
by our methods.



2946 M. GREINECKER AND C. KAH

some time in the setting of transferable utility. Indeed, the “master-servant”-example of
Edgeworth (1881) is such an example.

The failure of lower hemicontinuity of the solution correspondence shows that one can-
not simply transport the structure theory of stable matchings, as first reported by Knuth
(1976), from finite matching theory to the distributional model by limit arguments; the
limit of a sequence of men-optimal matchings for the sequence of “unbalanced” popu-
lations in our Example 4 is far from the men-optimal matching for the limit matching
problem. However, failure of lower hemicontinuity is not a robust phenomenon. This is
indeed a general phenomenon; the solution correspondence is continuous for a topologi-
cally large (residual) set of matching problems by a theorem of Fort (1949). This allows us
to recover some of the structure theory for the marriage model generically. We show in the
Online Appendix that if type spaces are compact and a weak assumption on preferences
holds, extremal matchings exist for a residual set of matching problems; Theorem G1.
Moreover, a version of the Lone Wolf Theorem of McVitie and Wilson (1970), which says
that the same agents are unmatched in every stable matching (a special case of the rural
hospital theorem), holds for a residual set of matching problems; Theorem G2. However,
our methods do not allow us to recover the full lattice structure even on a residual set;
lattice operations need not be continuous.

The situation is better when we allow for transfers. Stable matchings have, under rea-
sonable assumptions, the structure of a lattice in terms of payoff assignments. For trans-
ferable utility, this was shown by Gretsky, Ostroy, and Zame (1999). For imperfectly trans-
ferable utility, this was shown only recently by Nöldeke and Samuelson (2018). The case
of imperfectly transferable utility is considerably harder; under transferable utility one
can separate the matching between agents and the assignment of payoffs. In our general
model, there need not even be functions that assign payoffs to types. Transfers help here,
as we will see in the next section.

5. EQUAL TREATMENT

In large matching models with transferable or imperfectly transferable utility, stability
is usually defined in terms of functions that assign to each type of agent in a matching
the payoff they receive in the matching. In particular, agents with the same type must be
equally well off. While such an equal treatment of types is not guaranteed in our general
model, it holds under weak conditions in the presence of transfers for stable matchings.
Under transfers, the law of one price holds. This allows us to show that our stability notion
is equivalent to existing stability notions for models with transfers and provides a more
basic foundation for these stability notions.

Since type spaces come endowed with a topology, we can also think of a stronger form
of equal treatment in which similar types are similarly well off so that the function from
types to their obtained utilities is continuous. We get such a strong form of equal treat-
ment when type spaces are compact and population distributions have full support. This
allows us to give a characterization of stable matchings that coincides with the stability
notion used by Nöldeke and Samuelson (2018); see Theorem 3.18 The weaker form of
equal treatment holds without compactness assumptions, and we get a correspondingly
weaker characterization of stable matchings that coincides with the notion usually used
for transferable utility models based on optimal transport techniques.

18Indeed, this section grew out of our attempts to understand how the framework of Nöldeke and Samuelson
(2018) relates to ours.
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We will make two assumptions that guarantee enough possibilities for transferring util-
ity are available. The first assumption has already been discussed in Section 3.

Imperfectly Transferable Utility: We let C = [0�1], and for all w ∈W∅ and m ∈M∅, we let
C(w�m) = [0�1]. Preferences are represented by jointly continuous functions uW : W ×
M∅ ×C →R and uM :W∅ ×M ×C → R with uW increasing in the last coordinate and uM

decreasing in the last coordinate.

Our notion of imperfectly transferable utility does not require that every agent can
transfer all utility above their outside option to their partner; we need to assume this ex-
plicitly. The assumption holds automatically in other formulations of transferable utility,
such as the one used by Nöldeke and Samuelson (2018). For notational ease, we make
the outside payoff an agent can obtain explicit by functions u∅

W :W → R and u∅
M :M → R

defined by u∅
W (w) = uW (w�∅�1) and u∅

M (m) = uM (∅�m�0), respectively.

Bounds on Transfers do not Bind: For all w ∈ W and m ∈ M ,

uW (w�m�0) ≤ u∅
W (w) and uM (w�m�1) ≤ u∅

M (m)�

We are now ready to give our first characterization of stable matchings.

THEOREM 3: Assume imperfectly transferable utility, that bounds on transfers do not bind,
that W and M are compact, and that νW and νM have full support. Then a matching μ is
stable if and only if there are continuous functions VW :W → R and VM :M → R such that

VW (w) = uW (w�m�c)

for μ-almost all (w�m�c) ∈ W ×M∅ × [0�1] and

VM (m) = uM (w�m�c)

for μ-almost all (w�m�c) ∈ W∅ ×M × [0�1] and such that:
(i) VW (w) ≥ u∅

W (w) for all w ∈W ,
(ii) VM (m) ≥ u∅

M (m) for all m ∈M ,
(iii) uW (w�m�c) ≤ VW (w) if uM (w�m�c) ≥ VM (m) for all (w�m) ∈W ×M .

It follows from the duality theory of Nöldeke and Samuelson (2018) that any functions
VW and VM satisfying (i)–(iii) must automatically be continuous.

Most of the effort in proving Theorem 3 consists of showing that if μ is stable then there
exists a continuous function VW : W → R such that VW (w) = uW (w�m�c) for μ-almost
all (w�m�c) ∈ W × M∅ × [0�1]. We do this by taking a random sequence 〈(wn�mn� cn)〉
obtained from independent draws from μ (normalized). With probability one, no two
terms in the sequence combine to a pair in the instability set and the set of women types
sampled is dense in W . This can be shown to imply that the set {(wn�uW (wn�mn� cn)) |
n ∈N} is the graph of a uniformly continuous function on a dense subset of W . Extending
this function by continuity to all of W gives us the desired function VW . It should be noted
that in a (purely) transferable utility setting, Gretsky, Ostroy, and Zame (1992) prove
that when type spaces are compact and the surplus function continuous, then the solution
of the dual optimal transport problem can be taken to have continuous values. Their
method of proof is different from ours. They construct continuous value functions from
measurable value functions by what they call a “shrink-wrap”-argument. Our approach
delivers continuous value functions directly.
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General Polish spaces of types can be approximated from within by compact subspaces,
and this allows us to obtain a weak form of equal treatment and a corresponding charac-
terization of stable matchings with possibly discontinuous functions VW and VM .

THEOREM 4: Assume imperfectly transferable utility and that bounds on transfers do not
bind. Then a matching μ is stable if and only if there are measurable functions VW : W → R

and VM :M → R such that

VW (w) = uW (w�m�c)

for μ-almost all (w�m�c) ∈ W ×M∅ × [0�1],

VM (m) = uM (w�m�c)

for μ-almost all (w�m�c) ∈ W∅ ×M × [0�1], and such that:
(i) VW (w) ≥ u∅

W (w),
(ii) VM (m) ≥ u∅

M (m),
(iii) uW (w�m�c) ≤ VW (w) if uM (w�m�c) ≥ VM (m).

for νW ⊗ νM -almost all (w�m) ∈ W ×M .

Note that the conditions (i)–(iii) need to hold only almost surely in Theorem 4. In The-
orem 3, continuity of VW and VM and the full support conditions imply that the exceptional
sets of measure zero must be empty, something one cannot conclude when these functions
are only required to be measurable. The compactness assumptions in Theorem 3 cannot
be dispensed with; Example 5 in the Online Appendix shows that continuous versions of
VW and VM need not exist otherwise. For the existence of VW , the compactness of W is not
essential; see Proposition E1 in the Online Appendix.

In the optimal transport literature, stability is derived via Kantorovich duality from the
dual of a linear optimization problem, and the full force of the theory requires some
integral boundedness restrictions so that the value of the linear program stays finite; see
Villani (2009, Theorem 5.10). This is not required for our existence result Theorem 1
or Theorem 4. Our approach covers, therefore, even transferable utility problems not
covered by optimal transport techniques.

6. EXTERNALITIES

Our model can be extended to allow for widespread externalities in which the pref-
erences of agents depend on the matching itself. The externalities we consider are
widespread externalities no single agent can influence. Besides classical externalities and
peer effects, this allows for modeling market forms and institutions outside the matching
market under consideration. With finitely many agents, indivisibilities of the population
may preclude the existence of stable matchings; see Example 6 in the Online Appendix.

Apart from these problems with indivisibilities, externalities pose some conceptual
problems for matching markets with finitely many agents. In that case, each agent has
to have some notion of how their behavior impacts others and what kind of response it
might cause. Starting with Sasaki and Toda (1996), a number of authors have analyzed
such matching markets with finitely many agents and externalities using fairly sophisti-
cated farsightedness ideas. Our approach sidesteps the main problems occurring with
finitely many agents and allows for a much simpler treatment.

The idea that large aggregate externalities might be compatible with stability and
finitely many agents was explored by Fisher and Hafalir (2016), but they still had to make
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special assumptions to deal with indivisibilities. Closer to our approach is the treatment
of widespread externalities by Hammond, Kaneko, and Wooders (1989). The main differ-
ence is in how they topologize allocations or matchings. The topology used by them is not
compact and their solution concept is best interpreted as an approximate solution con-
cept. Most closely related to our approach is the treatment by Noguchi and Zame (2006)
who study the existence of Walrasian equilibria under widespread externalities.

We first have to adapt our environment and assumptions to a setting with externalities.
Preferences now include matchings and even more general measures over couple-contract
types. That agents have preferences even over nonmatchings is not needed for our exis-
tence result, Theorem 5. The space of matchings is closed and even compact. But to inter-
pret stable matchings as limits of finite approximately stable matchings in Theorem 6, we
need continuity on the larger space, so that preferences are well-defined in approximat-
ing matching problems.19 We also assume that preferences are asymmetric and negatively
transitive (and thus the asymmetric part of a complete and transitive weak preference
relation). This will greatly simplify the existence proof.

Rationality of Preferences With Externalities: The relation �w on M∅ × C × M(W∅ ×
M∅ × C) is asymmetric and negatively transitive for each w ∈ W and the relation �m on
W∅ ×C ×M(W∅ ×M∅ ×C) is asymmetric and negatively transitive for each m ∈M .

Continuity of Preferences With Externalities: The set{(
m�c�μ�m′� c′�μ′�w

) | (m�c�μ) �w

(
m′� c′�μ′)}

is open in

M∅ ×C ×M(W∅ ×M∅ ×C) ×M∅ ×C ×M(W∅ ×M∅ ×C) ×W�

and the set {(
w�c�μ�w′� c′�μ′�m

) | (w�c�μ) �m

(
w′� c′�μ′)}

is open in

W∅ ×C ×M(W∅ ×M∅ ×C) ×W∅ ×C ×M(W∅ ×M∅ ×C) ×M�

Regularity of the Contract Correspondence: The correspondence C : W∅ × M∅ → 2C is
continuous with nonempty and compact values.

The interpretation of these assumptions is similar to the interpretation in the model
without externalities, but the continuity of preferences in externalities is now a more sig-
nificant restriction.

Agents now have preferences over matchings and even over distributions over couple-
contract types that are not matchings. Fixing a matching μ and using the induced prefer-
ences, we have a standard matching problem that comes with an instability set I(μ). We
now say that the matching μ is stable if μ⊗μ(I(μ)) = 0.

THEOREM 5: There is at least one stable matching in the extended model with externalities.

19Since the space of actual matchings is closed, we can always extend preferences continuously to the ambi-
ent space.
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Without externalities, stable matchings correspond exactly to the limits of stable match-
ings for finite matching problems by Theorem 2. Clearly, this need not be the case
here. Indeed, there may be no stable matching at all in an approximating finite pop-
ulation of agents. But at least for compact spaces of types and contracts, and prefer-
ences that admit utility representations, each stable matching corresponds to the limit of
“nearly stable” finite matchings for finite matching problems.20 For each pair of jointly
continuous utility representations uW : W × M∅ × C × M(W∅ × M∅ × C) → R and
uM : W∅ × M × C × M(W∅ × M∅ × C) → R, each ε > 0, and each matching μ we de-
fine the ε-instability set Iε(μ) so that Iε(μ) replaces the strict preferences defining I(μ)
by strict inequalities in terms of uW and uM that have to hold with a gap of at least ε. For
example, we replace the condition(

m′� c′′�μ
) �w (m�c�μ) and

(
w�c′′�μ

) �m′
(
w′� c′�μ

)
for some c′′ ∈ C

(
w�m′)

in the definition of I(μ) by

uW

(
w�m′� c′′μ

)
> uW (w�m�c�μ) + ε and uM

(
w�m′� c′′�μ

)
> uM

(
w′�m′� c′�μ

) + ε

for the definition of Iε(μ). The notion of a matching problem translates directly to the
model with externalities; a matching problem is still a pair (νw� νM) of population measures
as in Section 4.

THEOREM 6: Assume in the extended model with externalities that W , M , and C are com-
pact and let uW :W ×M∅ ×C ×M(W∅ ×M∅ ×C) → R and uM :W∅ ×M ×C ×M(W∅ ×
M∅ × C) → R be (jointly) continuous utility representations. Let μ be a matching for the
matching problem (νW � νM). Then μ is stable if and only if there are sequences 〈νnW 〉, 〈νnM〉,
and 〈μn〉 such that:

(i) the matching problem (νnW � ν
n
M) is finite for each n and μn is a finite matching for it,

(ii) the sequence 〈νnW 〉 converges to νW , the sequence 〈νnM〉 converges to νM , and 〈μn〉 con-
verges to μ,

(iii) and for all ε > 0, there exists a natural number N such that μn ⊗μn(Iε(μn)) = 0 for
each n ≥N .

7. INDIVIDUALISTIC REPRESENTATION

We talked about agents, but our model has none. In this section, we show that one can
enrich the model so that matchings can be formulated at the level of individual agents.
There are measure spaces of women and men, and each matching matches a unique
woman to a unique man or lets her be by herself. This exercise has two purposes: First,
it shows there is nothing random about a matching in our distributional model; the un-
derlying matching of agents is deterministic. Second, it clarifies our notion of stability by
taking it to the level of agents. Nevertheless, our distributional model is much easier to
handle for practical purposes. Example 1 shows that we cannot simply interpret types as
agents.

In the individualistic representation of a matching, we require all couples and individu-
als to choose feasible contracts. Not even a measure zero set of exceptions is allowed. In
the individualistic representation of a stable matching, we further require all couples and

20The existence of the utility representations is needed for the given formulation; one could use a similar
result without them by using the mathematical machinery of uniform spaces.
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individuals to choose efficient feasible contracts. Again, not even a measure zero set of
exceptions is allowed. To make this precise, we first have to define what it means for a con-
tract to be efficient. This is straightforward, but requires some care in handling dummy
types. So let w ∈ W and m ∈ M . Then c ∈ C(w�m) is efficient if there is no c′ ∈ C(w�m)
such that both (m�c′) �w (m�c) and (w�c′) �m (w�c). We deal with unmatched agents
next. The contract c ∈ C(w�∅) is efficient if there is no c′ ∈ C(w�∅) such that c′ �w c, and
the contract c ∈ C(∅�m) is efficient if there is no c′ ∈ C(∅�m) such that c′ �m c. Finally,
every c ∈ C(∅�∅) is taken to be efficient.

We are now able to state our individualistic representation theorem.

THEOREM 7: There exist measure spaces (AW �AW �τW ) and (AM�AM�τM), and mea-
surable type functions tW : AW → W∅ and tM : AM → M∅ such that νW (B) = τW ◦ t−1

W (B)
for every Borel set B ⊆ W , such that νM (B) = τM ◦ t−1

M (B) for every Borel set B ⊆ M , and
such that for every matching μ, there is a pair of measurable functions φ : AW → AM and
χ :AW → C such that:

(i) the measurable function φ is a bijection with a measurable inverse that preserves mea-
sure; τM (S) = τW ◦φ−1(S) for every measurable set S ⊆AM ,

(ii) for every Borel set B ⊆W∅ ×M∅ ×C \{(∅�∅)}×C,

μ(B) = τW
({
aW ∈ AW | (tW (aW )� tM

(
φ(aW )

)
�χ(aW )

) ∈ B
})
�

(iii) and for every aW ∈AW ,

χ(aW ) ∈ C
(
tW (aW )� tM

(
φ(aW )

))
�

Moreover, if μ is stable, then φ and χ can be chosen to satisfy the following condition:
(iv) For every aW ∈ AW , the contract choice χ(aW ) is efficient.

Formally, proving Theorem 7 amounts to proving a so-called “purification”-theorem
for measure-valued maps. Our theorem is related to but does not follow from existing re-
sults on the purification of measure-valued maps such as Podczeck (2009), Loeb and Sun
(2009), Wang and Zhang (2012), and Greinecker and Podczeck (2015). The additional
complication we face comes from requiring the matching to be represented by a measur-
able, measure-preserving isomorphism. This requires, intuitively, having many agents of
every type.21 A related, somewhat weaker, such representation is given in Gretsky, Ostroy,
and Zame (1992, Section 1.5.1), but the individualistic matchings obtained there need not
be invertible and measurable in both directions.

We briefly sketch the proof of Theorem 7. The full proof is somewhat complex, but the
basic idea is not. We explain this idea for the simple marriage model without transfers,
both sides of the market having the same size, individual rationality constraints not bind-
ing, and, in addition, both W and M being finite. If both W and M are finite, we can
take the unit interval [0�1] endowed with the Borel sets and the uniform distribution λ
for both (AW �AW �τW ) and (AM�AM�τM). So let νW and νM be probability measures. It is

21Saturation or, equivalently, super-nonatomicity as in the purification results mentioned above does not
suffice. Every nonatomic Borel probability measure on a Polish space extends to a saturated (superatomless)
probability measure on a larger σ-algebra by the main result of the Appendix of Podczeck (2009). In particular,
Example 1 is compatible with the spaces of agents being saturated probability spaces. In contrast, saturation
is enough to derive individualistic Nash equilibria from distributional Nash equilibria in large games; see Car-
mona and Podczeck (2009) and Keisler and Sun (2009). Our additional assumption, homogeneity, has been
interpreted as an anonymity property in Khan and Sun (1999).
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easy to show that there are measurable functions tW : [0�1] → W and tM : [0�1] → M such
that νW = λ ◦ t−1

W and νM = λ ◦ t−1
M . Let μ ∈ P (W × M) be a matching for the matching

problem (νW � νM). We utilize two properties that will in general only hold when W and M
are finite:

1. If X and Y are finite sets, f : [0�1] →X a measurable function, and ρ ∈P (X×Y ) a
probability measure with X-marginal λ◦f−1, then there exists a measurable function
g : [0�1] → Y such that the function (f�g) : [0�1] → X × Y given by (f�g)(ω) =
(f (ω)� g(ω)) satisfies λ ◦ (f�g)−1 = ρ.

2. If X is a finite set and f : [0�1] → X and g : [0�1] → X are measurable functions
such that λ ◦ f−1 = λ ◦g−1, then there exists a measurable bijection h : [0�1] → [0�1]
with a measurable inverse that preserves measure, so λ = λ ◦ h−1, such that f (ω) =
g(h(ω)) for almost all ω ∈ [0�1].

The first property means there will be functions fW : [0�1] → W and fM : [0�1] → M
such that λ ◦ (tW � fM)−1 = μ = λ ◦ (fW � tM)−1. Now, the second property means there will
be a measure-preserving measurable bijection φ : [0�1] → [0�1] with measurable inverse
such that (tW (ω)� fM (ω)) = (fW (φ(ω))� tM (φ(ω))). The function φ can then be taken
to be our individualistic matching. Now, the two properties we used hold for the unit
interval with the Borel sets and the uniform distribution in general only when X and
Y are finite or, for the first property, at most countable. But there do exist probability
spaces such that both properties hold for arbitrary Polish spaces X and Y ; such probability
spaces differ a lot from most probability spaces one usually encounters. In particular,
they cannot be Polish themselves. One example of such a probability space is given by
the product measure on {H�T}R corresponding to a continuum of independent fair coin-
flips. The proof for the simple marriage model without transfers, both sides of the market
having the same size, individual rationality constraints not binding, and general Polish
types spaces can then directly be given as here. To prove Theorem 7 in full generality,
one needs to take account of unmatched agents and patch up violations of (iii) and (iv)
on sets of measure zero. For this, one uses appropriate measurable selections from the
correspondence mapping types of couples to feasible contracts and efficient contracts,
respectively. Finally, a close look at the proof shows that we can arbitrarily change the
type functions tW and tM and the same spaces of agents will still work for the resulting
matching problem.

In our representation for stable matchings, there might still be some “blocking pairs.”
What the representation does ensure is that two agents that could form a blocking pair
have a hard time finding each other. It is tedious but straightforward to verify that the
set of aW ∈ AW and aM ∈ AM that could form a blocking pair has τW ⊗ τM -measure zero.
Part of the tedium is that one has to define blocking pairs for pairs of agents and take
account of the outside options ∅. We sketch the argument for the simplest case, the case
of the marriage model without contracts, nonbinding individual rationality constraints,
and both νW and νM being probability measures. Let μ be a stable matching. Then φ :
AW → AM is a measure-preserving measurable bijection with a measurable inverse such
that the function aW �→ (tW (aW )� tM (φ(aW ))) has τW -distribution μ. That φ preserves
measure implies that the function aM �→ (tW (φ−1(aM))� tM (aM)) has τM -distribution μ,
too. It follows that the function (aW �aM) �→ (tW (aw)� tM (φ(aW ))� tW (φ−1(aM))� tM (aM))
has τW ⊗ τM -distribution μ⊗μ. So for τW ⊗ τM -almost all aW and aM ,(

tW (aw)� tM
(
φ(aW )

)
� tW

(
φ−1(aM)

)
� tM (aM)

)
/∈ I

since μ⊗μ(I) = 0. And for such aW and aM , it is not the case that aW prefers aM to φ(aW )
and aM prefers aW to φ−1(aM).
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8. CONCLUDING REMARKS

We have provided foundations for large two-sided matching markets from the distribu-
tional point of view. Our model represents exactly the distributional properties of large
finite matching markets that are preserved under weak convergence. Even though indi-
vidual agents are negligible, stability has a simple and natural interpretation in the limit
model, and we nest existing models with transfers. Stable matchings exist and exist even
in the presence of widespread externalities. We also provided an individualistic interpre-
tation of our distributional model and used it to clarify the economic meaning of our
stability notion.

It is time to take a look at what our stability notion does not deliver. There is a problem
in treating our model as a limit model of econometric matching models. In econometric
models of matching, the payoff usually includes an idiosyncratic additive component that
is stochastically independent between pairs of agents that might be matched. This implies
in our distributional framework that there is a jointly measurable function ε :W ×M →R,
representing the purely idiosyncratic part, such that for νW -almost all w and νW -almost all
w′ ∈ W , the random variables ε(w� ·) and ε(w′� ·) are stochastically independent. By Sun
(1998, Proposition 1.1), the random variable ε(w� ·) must be constant for νW -almost all w
and therefore deterministic; a degenerate case. One approach to deal with the problem
is to characterize the projection of stable matchings onto observable characteristics, not
to worry whether unobservable characteristics converge or not, and only look at the limit
of the observable part. In a special econometric version of the marriage model, Menzel
(2015) did exactly that. The details of how the idiosyncratic part of preferences is modeled
will generally matter. A technical hurdle in adapting our approach to this more general
problem is that we make much use of the instability set being open. When only some
characteristics are observable, we have to work with the projection of an open set, and
such a projection need not be open. These problems are, of course, not particular to our
approach, they haunt all the existing models nested by ours.

The source of the problem just mentioned is that the idiosyncratic component of payoffs
depends on both sides. In the econometric transferable utility model of Choo and Siow
(2006), this problem does not arise and our methods guarantee existence in a generaliza-
tion of the model of Choo and Siow (2006) to imperfectly transferable utility.22 There are
nonempty finite sets I and J of categories of women and men, respectively. Every agent
has an idiosyncratic additional payoff for each category on the other side and the option
to remain unmatched. To reflect this in our distributional approach, we let W = I ×R

#J+1

and M = J ×R
#I+1, and we let νW and νM be strictly positive, finite Borel measures on W

and M , respectively. We identify for each i ∈ I the measure νi on R
#J+1 given by

μi(B) = νW
(
{i}×B

)
/νW

(
{i}×R

#J+1
)

for each Borel set B ⊆ R
#J+1 with the distribution of the idiosyncratic payoff component.

Implicitely, there is some law of large numbers in action that guarantees that the ex post
distribution of the idiosyncratic component equals the ex ante distribution. We can define
and interpret νj similarly for j ∈ J. We also let Fij :R → R be a strictly decreasing contin-
uous surjection for each i ∈ I and j ∈ J. We can then define a continuous correspondence

22We are grateful to Pierre-André Chiappori for suggesting this model.
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with nonempty and compact values C :W ×M → R
2 by

C(w�m) = C
(
(i�α1� � � � �α#J�α0)� (j�β1� � � � �β#I)�β0

)
= {

(u�v) ∈ R
2 | u= Fij(v−βi) + αj�u ≥ α0� v ≥ β0

} ∪{α0 − 1�β0 − 1}�

We extend C to all of W∅ ×M∅ by letting C(∅�∅) be an arbitrary pair of numbers, C(w�∅) =
{(α0�0)} and C(∅�m) ={(0�β0)}. Payoffs will then depend only on contracts and are given
by the coordinate projections.

For technical reasons related to the problem of having two-sided idiosyncratic payoff-
components, our model cannot be used to study the asymptotic stochastic behavior of
large finite marriage models in which every agent’s preferences are independently and
uniformly chosen from the set of strict rankings of agents on the other side, the approach
of Pittel (1989) and many subsequent papers. For simplicity, we look at the classical mar-
riage model with nonbinding individual rationality constraints and balanced populations.
Define the women’s rank function RW :W ×M → [0�1] by

RW (w�m) = νM
({
m′ ∈ M | m�w m′})�

The measurability of the rank function follows from Fubini’s theorem.23 Now take a large
finite matching problem in which preferences of every agent are independently selected
from a uniform distribution over all strict rankings of agents on the other side. Take α
and α′ between 0 and 1 and choose m and m′ at random from the population of men. For
a large population, the probability that an individual woman ranks m above α is almost
independent of the probability that she ranks m′ above α′. So for a large population, the
fraction of women who rank m above α and m′ above α′ is, with high probability, close to
the product of the fraction of women who rank m above α times the fraction of women
who rank m′ above α′. This means that with high probability, RW (·�m) and RW (·�m′) are
close to independent for m and m′ chosen at random. If we want to have a limit model that
takes account of this asymptotic independence, we need to specify Polish spaces W and
M , appropriate preferences, and population measures νW and νM such that for νM ⊗ νM -
almost all (m�m′), the random variables RW (·�m) and RW (·�m′) are independent. Again,
it follows from Sun (1998, Proposition 1.1) that for νM -almost all m ∈ M , the function
R(·�m) is constant νW -almost surely. In particular, almost all women rank almost all men
exactly the same way. This is as far from the model of Pittel (1989) as can be. Indeed, for
large n, most agents will have ranking functions that are close to uniformly distributed.

We see the definition of stability as the main contribution of this paper. This definition
allows us to work in a distributional model with a rich set of types even though all effective
coalitions are finite and seemingly invisible at the level of analysis. There is no reason to
think this approach is restricted to matching theory alone. In club theory as developed
in Cole and Prescott (1997) and Ellickson, Grodal, Scotchmer, and Zame (1999), agents
in individualistic continuum economies form clubs with finitely many members to orga-
nize their consumption and production decisions. A major restriction in this literature
is that the external characteristics of agents (those relevant to other agents) and charac-
teristics of clubs must belong to a finite set, a restriction that could be overcome by the
distributional approach when unstable club internal decisions can be identified by random
sampling as in our stability definition.

23Let G ={(w�m�m′) |m� m′}. By Fubini’s theorem, νW ⊗ νM ⊗ νM (G) = ∫ ∫ ∫
1G dνW dνM dνM . In partic-

ular, the function (w�m) �→ ∫
1G(w�m� ·) dνM =RW (w�m) is measurable.
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9. OMITTED PROOFS

9.1. Proofs Omitted From Section 3

PROOF OF LEMMA 1: It suffices to show that the sequence 〈μn〉 is tight. Take some ε >
0. Since the families {νnW} and {νnM} of population distributions come from converging
sequences, they have compact closure and are therefore tight. So there are compact sets
KW ⊆ W and KM ⊆ M such that both νnW (W \ KW ) < ε/2 and νnM (M \ KM) < ε/2 holds
for every natural number n. Let K∅

W =KW ∪{∅} and K∅
M = KM ∪{∅}. Now

C
(
K∅

W ×K∅
M

) =
⋃

(w�m)∈K∅
W ×K∅

M

C(w�m)

is compact as the forward image of a compact set under a compact-valued upper hemi-
continuous correspondence; Aliprantis and Border (2006, 17.8). We show that

μn

(
W∅ ×M∅ ×C

∖
K∅

W ×K∅
M × C

(
K∅

W ×K∅
M

))
< ε

for every natural number n. Indeed, in order for a couple-contract type to be in W∅ ×
M∅ × C but not in K∅

W × K∅
M × C(K∅

W × K∅
M) it has to either have a first term not in K∅

W

and therefore be in W∅ \ K∅
W × M∅ × C, or it has to have a second term not in K∅

M and,
therefore, be in W∅ × (M∅ \K∅

M) ×C, or it has to have both first two terms in K∅
W ×K∅

M but
the third term not in C(K∅

W ×K∅
M) and, therefore, be in K∅

W ×K∅
M ×C \C(K∅

W ×K∅
M). Now

W∅ \ K∅
W × M∅ × C has μn-measure νnW (W \ KW ) < ε/2 by condition (i) in the definition

of a matching, W∅ × (M∅ \K∅
M) ×C has μn-measure νnM (M \KM) < ε/2 by condition (ii)

in the definition of a matching, and finally, K∅
W ×K∅

M ×C \ C(K∅
W ×K∅

M) has μn measure
zero by condition (iii) in the definition of a matching. Now ε/2+ε/2+0 = ε, so we obtain
the desired inequality and, therefore, the tightness of the sequence 〈μn〉. Q.E.D.

PROOF OF LEMMA 2: Since the topology of weak convergence of measures is metriz-
able, it suffices to prove that the limit (νW � νM�μ) of a convergent sequence 〈νnW � νnM�μn〉
with values in the set must again lie in the set.

We first show that for every Borel set B ⊆ W , we have μ(B ×M∅ ×C) = νW (B), which
is equivalent to showing μ ◦ π−1

W (B) = νW (B), with πW : W × M∅ × C → W being the
canonical projection. Since Borel measures on Polish spaces are tight, for each Borel set
B ⊆ W ,

μ ◦π−1
W (B) = sup

{
μ ◦π−1

W (K) |K compact and K ⊆ B
}
�

and

νW (B) = sup
{
νW (K) |K compact and K ⊆ B

}
�

It therefore suffices to prove the result for B compact. So let B be compact and d :
W × W → R be a compatible metric. For each δ > 0, let Bδ = {x ∈ W | d(x�B) < δ}.
Note that Bδ ↓ B as δ ↓ 0. For each x ∈ B and ε > 0, the boundary ∂Bε(x) of the ball
Bε(x) is a subset of the sphere Sε(x) = {y ∈ W | d(x� y) = ε}. This boundary can there-
fore only have positive μ ◦ π−1

W -measure or νW -measure for countably many ε, since no
finite measure space can allow for an uncountable disjoint family of measurable sets with
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positive measure.24 For each x ∈ B, there is therefore some ε1
x such that 0 < ε1

x < 1 and

μ ◦π−1
W

(
∂Bε1

x
(x)

) = νW
(
∂Bε1

x
(x)

) = 0�

The family {Bε1
x
| x ∈ B} is an open cover of the compact set B and has, therefore, a finite

subcover. Let B1 be the union of this subcover. Then B ⊆ B1 ⊆ B1, B1 is open and since
the boundary of a finite union of sets is a subset of their boundaries, we have

μ ◦π−1
W

(
∂B1

) = νW
(
∂B1

) = 0�

Given that Bn is defined, we can repeat the procedure to obtain Bn+1 so that Bn+1 ⊆ Bn

and Bn+1 ⊆ B1/n and

μ ◦π−1
W

(
∂Bn

) = νW
(
∂Bn

) = 0�

By the Portmanteau theorem,

μ ◦π−1
W

(
Bn

) = lim
m

μm ◦π−1
W

(
Bn

) = lim
m

νmW
(
Bn

) = νW
(
Bn

)
for all n. Now, since measures are downward-continuous,

μ ◦π−1
W (B) = lim

n
μ ◦π−1

W

(
Bn

) = lim
n
νW

(
Bn

) = νW (B)�

Similarly, one can show that μ(W∅ ×B ×A) = νM (B) for every Borel set B ⊆ M .
Finally, since GC is closed as the graph of a compact-valued and upper hemicontin-

uous correspondence, W∅ × M∅ × C \ GC is open and, therefore, by another use of the
Portmanteau theorem,

μ(W∅ ×M∅ ×C \GC) ≤ lim inf
n
μn(W∅ ×M∅ ×C \GC) = 0� Q.E.D.

PROOF OF LEMMA 3: We can assume without loss of generality that W = suppνW and
M = suppνM . For each w ∈ W∅ and m ∈ M∅, let 〈cnwm〉 be a sequence in C(w�m) such that
{cnwm | n ∈ N} is dense in C(w�m). Define Cn : W∅ ×M∅ → 2C by Cn(w�m) = {ckwm | k ≤ n}.
A stable matching exists when we replace C by Cn. To see this, represent the matching
problem by an individualistic matching problem with actual agents. This is possible since
νW and νM have finite support and take on only rational values. Extend all preferences
to strict linear orders. This is possible since preferences are acyclic. With strict linear or-
ders, weakly efficient and strictly efficient contract choices coincide. So one can apply the
extended deferred acceptance algorithm with wages of Crawford and Knoer (1981) and
Kelso and Crawford (1982) with the set of efficient contracts to obtain a stable matching
for the extended preferences. Since extending preferences cannot reduce blocking possi-
bilities, the matching continues to be stable under the original preferences. The induced
distribution of couple-contract types gives us a distributional stable matching.

Note that every matching, stable or not, for the restricted correspondence Cn is also a
not necessarily stable matching for the unrestricted correspondence C. So we can find a

24Indeed, if F is a disjoint family of measurable sets, the family of all F ∈ F whose measure exceeds 1/n
must be finite for every natural number n. Since the countable union of finite sets is countable, the conclusion
follows.
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sequence 〈μn〉 of matchings such that μn is a stable matching for the restricted correspon-
dence Cn. By passing to a subsequence and using Lemma 1, we can assume without loss of
generality that 〈μn〉 converges to some measure μ, which is again a matching by Lemma 2.

It remains to prove that μ is stable. For each n ∈ N, let In be the instability set for the
matching problem with contracts involved in the instability conditions of the form “for
some c′′ ∈ C(w�m)” taken from the restricted correspondence Cn. Note that In itself can
still contain contracts not available under Cn. The continuity assumption on preferences
guarantees that In is open for every natural number n, and together with

⋃
n Cn(w�m) =

{cnwm | n ∈ N} being dense in C(w�m), also that I = ⋃
n In. If k ≤ n, then Ik ⊆ In, so μn ⊗

μn(Ik) = 0 for k ≤ n. Therefore,

μ⊗μ(Ik) ≤ lim inf
n
μn ⊗μn(Ik) = 0

by the Portmanteau theorem. Finally,

μ⊗μ(I) = μ⊗μ

(⋃
k

Ik

)
≤

∑
k

μ⊗μ(Ik) = 0�
Q.E.D.

PROOF OF LEMMA 4: Clearly, λ is absolutely continuous with respect to μ and has a
Radon–Nikodym derivative g with values in [0�1]. Using Fubini’s theorem,

λ⊗ λ(I) =
∫

1I dλ⊗ λ

=
∫ ∫

1I(x� y) dλ(x) dλ(y)

=
∫

g(y)
∫

g(x)1I (x� y) dμ(x) dμ(y)

=
∫

g(x)g(y)1I (x� y) dμ⊗μ(x� y)

≤
∫

1I dμ⊗μ

= μ⊗μ(I)

= 0� Q.E.D.

9.2. Proof of Theorem 3 and Theorem 4

We will prove Theorem 3 and Theorem 4 in two parts each. For Theorem 3, we first
show, under the given assumptions, that there exist for each stable matching continuous
functions VW : W → R and VM : M → R such that VW (w) = uW (w�m�c) for μ-almost
all (w�m�c) ∈ W × M∅ × [0�1] and VM (m) = uM (w�m�c) for μ-almost all (w�m�c) ∈
W∅ ×M× [0�1]. This is done in Lemma 9. We then show that if there exist such continuous
functions for a matching μ, stable or not, and if population distributions have full support,
then stability is characterized by (i)–(iii) of Theorem 3. This is done in Lemma 11.

Similarly, we prove Theorem 4 by first showing that under the given assumptions there
are for each stable matching measurable functions VW : W → R and VM : M → R such
that VW (w) = uW (w�m�c) for μ-almost all (w�m�c) ∈ W × M∅ × [0�1] and VM (m) =
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uM (w�m�c) for μ-almost all (w�m�c) ∈ W∅ ×M × [0�1]. This is done in Lemma 10. We
then show that if there exist such measurable functions for a matching μ, stable or not,
then stability is characterized by (i)–(iii) of Theorem 4. This is done in Lemma 12.

By far, the most work is required in proving Lemma 9. Lemma 10 is mostly a corollary,
obtained by approximating general type spaces by compact subspaces. We formulate the
arguments in a one-sided way, proving the existence of an appropriate function VW .

The proof of Lemma 9 will require some preliminary work. To simplify stability ar-
guments, we want every woman to be able to provide every man with every utility level
the man might get in some stable matching. In general, this will not be possible. But we
can extend the model by adding additional contracts in a way that makes this possible
while not changing the set of stable matchings. We do this by making sure that the addi-
tional contracts will violate the individual rationality constraints. This is done in Lemma 5.
In the extended model, there are continuous compensation functions selecting the right
contract to do the compensating; see Lemma 6. We then construct a continuous func-
tion that serves as a kind of “modulus of continuity” for the payoffs in a stable matching;
see Lemma 7. If randomly selected pairs of points in a compact metrizable space and
real numbers satisfy a given modulus of continuity, we can obtain a continuous function
satisfying the modulus continuity almost surely by sampling countably many points. This
will almost surely give us the graph of a continuous function on a dense subset, which we
can extend by continuity to the whole compact metrizable space. The underlying distri-
bution of pairs will be supported on the graph of this continuous function; see Lemma 8.
Applying this lemma to the matching context gives us then Lemma 9.

LEMMA 5: Let W and M be compact. There exist α> 0 and continuous functions

u∗
W :W ×M∅ × [0 − α�1 + α] → R

and

u∗
M :W∅ ×M × [0 − α�1 + α] → R

such that:
(i) u∗

W (w�m�c) = uW (w�m�c) and u∗
M (w�m�c) = uM (w�m�c) for all w ∈ W , m ∈ M ,

and c ∈ [0�1],
(ii) uW (w�∅�1 + α) = u∅

W (w) for all w ∈ W and u∗
M (∅�m�0 − α) = u∅

M (m) for all m ∈
M ,

(iii) uW is increasing in the third coordinate and uM is decreasing in the third coordinate,
(iv) There are numbers b, t satisfying 0 − α< b< t < 1 + α such that

u∗
M (w�m� t) < u∅

M (m) and u∗
W (w�m�b) < u∅

W (w)

for all w ∈ W and m ∈ M and such that

u∗
M (w�m�1 + α) < u∗

M

(
w′�m� t

)
and u∗

M (w�m�0 − α) > u∗
M

(
w′�m�b

)
for all w�w′ ∈ W and m ∈ M .

PROOF: Since outside options are isolated points in the type spaces, we only have to
consider the extension for w ∈ W and m ∈ M , for outside options we simply rescale
contracts. Take an arbitrary α > 0 and for all w ∈ W , m ∈ M , and δ ∈ [0�α], we let
u∗
W (w�m�1 + δ) = uW (w�m�1) + δ, u∗

M (w�m�1 + δ) = uM (w�m�1) − δ, u∗
W (w�m�0 −
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δ) = uW (w�m�0)−δ, and u∗
M (w�m�0−δ) = uM (w�m�0)+δ. Then it is clear that u∗

W and
u∗
M are continuous and satisfy (i)–(iii). Moreover, a simple continuity and compactness ar-

gument shows that (iv) is satisfied for α large enough, since the continuous functions u∅
W

and u∅
M are bounded on the compact spaces W and M , respectively. Q.E.D.

It follows from (i), (iii), and the assumption that bounds on transfers do not bind that
all additional contracts violate the individual rationality constraint. As a consequence, the
complement of the instability set in the extended model will be the same as the comple-
ment of the instability set of the original model.

LEMMA 6: In any extended model as shown to exist in Lemma 5, there exists a unique
function χ :W × (W ×M × [b� t]) → [0 − α�1 + α] such that

u∗
M (w�m�c) = u∗

M

(
w′�m�χ

(
w′� (w�m�c)

))
for all w, m, c, w′. The function χ is continuous.

We call the unique function χ : W × (W × M × [b� t]) → [0 − α�1 + α] shown to exist
in Lemma 6 the compensation function. For notational ease, we write χw′ (w�m�c) for
χ(w′� (w�m�c)).

PROOF OF LEMMA 6: For each w�w′ ∈ W , m ∈M and c ∈ [b� t],

u∗
M

(
w′�m�0 − α

) ≥ u∗
M (w�m�c) ≥ u∗

M

(
w′�m�1 + α

)
by (iii) and (iv) of Lemma 5. By the intermediate value theorem, there exists c′ ∈
[0 − α�1 + α] such that u∗

M (w�m�c) = u∗
M (w′�m� c′). Since u∗

M is decreasing in its third
argument, there can be at most one such c. Therefore, χ is well-defined and unique. To
see that χ is continuous, note that

χ
(
w′� (w�m�c)

) = arg min
c′∈[0−α�1+α]

∣∣u∗
M (w�m�c) − u∗

M

(
w′�m� c′)∣∣

and apply the maximum theorem. Q.E.D.

LEMMA 7: Let W and M be compact. There exists a continuous function ω : W × W →
R+ such that ω(w�w) = 0 for all w ∈ W and such that∣∣uW (w�m�c) − uW

(
w′�m′� c′)∣∣ ≤ω

(
w�w′)

for all (
(w�m�c)�

(
w′�m′� c′)) ∈W ×M∅ × [0�1] ×W ×M∅ × [0�1]

that are not in the instability set I.

PROOF: We work in the extended model as shown to exist by Lemma 5. Since this does
not change the complement of the instability set, the results apply to the original model,
too. By abuse of notation, we write uW and uM for the extensions u∗

W and u∗
M .

Let ((w�m�c)� (w′�m′� c′)) /∈ I. We derive a number of inequalities by simple stability
and continuity arguments. If both m ∈ M and m′ ∈ M , then

uW (w�m�c) ≥ uW

(
w�m′�χw

(
w′�m′� c′))�

uW

(
w′�m′� c′) ≥ uW

(
w′�m�χw′ (w�m�c)

)
�
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which implies∣∣uW (w�m�c) − uW

(
w′�m′� c′)∣∣ ≤ ∣∣uW (w�m�c) − uW

(
w′�m�χw′ (w�m�c)

)∣∣
+ ∣∣uW

(
w′�m′� c′) − uW

(
w�m′�χw

(
w′�m′� c′))∣∣�

If m = ∅ = m′, then∣∣uW (w�m�c) − uW

(
w′�m′� c′)∣∣ = ∣∣u∅

W (w) − u∅
W

(
w′)∣∣�

If m ∈M and m′ = ∅, then

uW (w�m�c) − uW

(
w′�m′� c′) ≤ uW (w�m�c) − uW

(
w′�m�χw′ (w�m�c)

)
�

uW

(
w′�m′� c′) − uW (w�m�c) = u∅

W

(
w′) − uW (w�m�c) ≤ u∅

W

(
w′) − u∅

W (w)�

Similarly, if m = ∅ and m′ ∈ M , then

uW

(
w′�m′� c′) − uW (w�m�c) ≤ uW

(
w′�m′� c′) − uW

(
w�m′�χw′ (w�m�c)

)
�

uW (w�m�c) − uW

(
w′�m′� c′) = u∅

W (w) − uW

(
w′�m′� c′) ≤ u∅

W (w) − u∅
W

(
w′)�

Collecting inequalities, we obtain∣∣uW (w�m�c) − uW

(
w′�m′� c′)∣∣ ≤ ∣∣uW (w�m�c) − uW

(
w′�m�χw′ (w�m�c)

)∣∣
+ ∣∣uW

(
w′�m′� c′) − uW

(
w�m′�χw

(
w′�m′� c′))∣∣

+ ∣∣u∅
W (w) − u∅

W

(
w′)∣∣�

with the first two terms only being effective if m ∈ M or m′ ∈ M , respectively. A fortiori,
|uW (w�m�c) − uW (w′�m′� c′)| can be no larger than

max
m∈M�c∈[b�t]

∣∣uW (w�m�c) − uW

(
w′�m�χw′ (w�m�c)

)∣∣
+ max

m′∈M�c′∈[b�t]

∣∣uW

(
w′�m′� c′) − uW

(
w�m′�χw

(
w′�m′� c′))∣∣

+ ∣∣u∅
W (w) − u∅

W

(
w′)∣∣�

This last expression depends only on w and w′ and we take it to be the value of ω(w�w′).
Clearly, ω(w�w′) = 0 if w =w′. The continuity of ω follows from the maximum theorem.

Q.E.D.

LEMMA 8: Let K be a compact metrizable space and ω : K ×K → R a continuous func-
tion such that ω(x�x) = 0 for all x ∈ K. If μ is a Borel measure on K × R such that
|r − r ′| ≤ ω(x�x′) for μ ⊗ μ-almost all pairs ((x� r)� (x′� r ′)), then μ is supported on the
graph of a unique continuous function from the support of the K-marginal of μ to R.

PROOF: Without loss of generality, we can assume that μ is a probability measure.
Consider the space (K × R)∞ endowed with the product measure μ∞ = ⊗

n μ and let
〈xn� rn〉 ∈ (K ×R)∞ be a random sequence.
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The space K has a countable basis; pick an open set O in such a basis. If μ(O ×R) = 0,
then μ∞-almost surely xn /∈ O for each natural number n. If μ(O × R) > 0, then μ∞-
almost surely xn ∈ O for some natural number n. So μ∞-almost surely, the closure of the
random set {xn | n ∈ N} equals the support of the K-marginal of μ.

Now μ∞-almost surely, |rm − rn| ≤ ω(xm�xn) for m�n ∈ N. Indeed, this holds, by as-
sumption, for fixed m and n, and there are only countably many such pairs of natural
numbers. In particular, rm = rn whenever xm = xn holds μ∞-almost surely, so the ran-
dom set {(xn� rn) | n ∈ N} is μ∞-almost surely the graph of a function g∞. Let d be any
metric that metrizes K. We show that g∞ is uniformly continuous with respect to d. Let
ε > 0. The set ω−1([0� ε)) is an open neighborhood of the diagonal DK ={(x� y) ∈ K×K |
x = y}. Define the metric d1 on K × K by d1((x� y)� (x′� y ′)) = d(x�x′) + d(y� y ′) and
observe that d1((x� y)�DK) = d(x� y). Since DK is compact and the function (x�x) �→
d1((x�x)�ω−1([ε�∞))) continuous, the function must take on a minimal value δ > 0.
Then for d(xm�xn) < δ, we get ω(xm�xn) < ε, and since |rm − rn| ≤ ω(xm�xn), also
|rm − rn|< ε. So g∞ is uniformly continuous and extends, by Aliprantis and Border (2006,
3.11), to a unique continuous function g defined on the closure of {xn | n ∈ N}, which
equals the support of the K-marginal of μ. Now for μ-almost all (x� r), we must have
|r− rn|≤ω(x�xn) for each natural number n. But this implies that (x� r) lies on the graph
of g, since g is continuous.

Next, to see that g is unique, assume that g′ is another continuous function from the
support of the K-marginal of μ to R whose graph supports μ. Take another random se-
quence 〈x′

n� r
′
n〉 ∈ (K × R)∞. Now μ∞-almost surely, the closure of the set {x′

n | n ∈ N}
equals the support of the K-marginal of μ as above. Since g and g′ coincide μ∞-almost
surely, we have μ∞-almost surely that g(x′

n) = r ′
n = g′(x′

n) for each natural number n. But
two continuous functions that agree on a dense set must coincide, so g′ = g. Q.E.D.

LEMMA 9: Let W and M be compact and let μ be a stable matching. Then there exists a
unique continuous function VW : suppνW → R such that

VW (w) = uW (w�m�c)

for μ-almost all (w�m�c) ∈ W ×M∅ × [0�1].

PROOF: Let ω : W × W → R+ be a function as guaranteed to exist by Lemma 7. Let
μW be the trace of μ on W × M∅ × [0�1]. That is, μW (B) = μ(B ∩ W × M∅ × [0�1]) for
every Borel set B ⊆W∅ ×M∅ × [0�1]. Define h :W ×M∅ × [0�1] →W∅ ×M∅ × [0�1] ×R

by

h(w�m�c) = (
w�m�c�uW (w�m�c)

)
�

We show that the W × R-marginal of μW ◦ h−1 satisfies the conditions of Lemma 8. To
see this, let π : W × M∅ × [0�1] × R → W × R be the canonical projection. The W × R-
marginal of μW ◦ h−1 is then simply μW ◦ h−1 ◦π−1. Now

μW ◦ h−1 ◦π−1 ⊗μW ◦ h−1 ◦π−1
({(

(w� r)�
(
w′� r ′)) | ∣∣r − r ′∣∣>ω

(
w�w′)})

= μW ◦ h−1 ⊗μW ◦ h−1
({(

(w�m�c� r)�
(
w′�m′� c′� r ′)) | ∣∣r − r ′∣∣>ω

(
w�w′)})

≤ μW ◦ h−1 ⊗μW ◦ h−1
({(

(w�m�c� r)�
(
w′�m′� c′� r ′)) | (w�m�c)�

(
w′�m′� c′) ∈ I

})
= μW ⊗μW (I) ≤ μ⊗μ(I) = 0�
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Let VW : suppνW → R be the unique function shown to exist by Lemma 8. We have

0 = μW ◦ h−1 ◦π−1
({

(w� r) | VW (w) �= r
})

= μW
({

(w�m�c) | VW (w) �= uW (w�m�c)
})
�

so VW has the desired properties. Moreover, since any other function V ′
W with the desired

properties must satisfy the last two equations in place of VW , uniqueness follows from the
uniqueness part of Lemma 8. Q.E.D.

LEMMA 10: Let μ be a stable matching. Then there exists a measurable function VW :
W → R such that

VW (w) = uW (w�m�c)

for μ-almost all (w�m�c) ∈ W ×M∅ × [0�1].

PROOF: Since νW and νM are tight, there exist increasing sequences 〈Kn
W 〉 and 〈Kn

M〉 of
compact subsets of W and M , respectively, such that νW (W ) = limn νW (Kn

W ) and νM (M) =
limn νM (Kn

M). Let Kn
W ∅ = Kn

W ∪{∅} and Kn
M∅ =Kn

M ∪{∅}. For each natural number n, define
μn by

μn(B) = μ
(
B ∩Kn

W ∅ ×Kn
M∅ × [0�1]

)
for every Borel set B ⊆ W∅ × M∅ × [0�1]. Then μn is a stable matching for appropriately
chosen population measures supported on compact sets by Lemma 4. By Lemma 9, there
exists for each natural number n a measurable function Vn : W → R such that Vn(w) =
uW (w�m�c) for μn-almost all (w�m�c) ∈ Kn

W × Kn
M∅ × [0�1]. Let V : W → R ∪ {∞} be

given by V (w) = lim supn Vn(w). Construct VW from V by changing the value ∞ to some
real number. We claim that VW has the desired property. Consider the set

N = {
(w�m�c) ∈W ×M∅ × [0�1] | VW (w) �= uW (w�m�c)

}
�

It suffices to show that μ(N) = 0. Suppose not. Since μ(N) = limn μn(N), there exists
some natural number k such that μk(N) > 0. Let n ≥ k. We claim that Vk(w) = Vn(w)
for μk-almost all (w�m�c) ∈Kk

W ×Kk
M∅ × [0�1]. Indeed, every set of μn-measure zero has

μk-measure zero, so Vn(w) = uW (w�m�c) = Vk(w) for μk-almost all (w�m�c) ∈ Kk
W ×

Kk
M∅ × [0�1]. It follows that VW (w) = limn Vn(w) = Vk(w) for μk-almost all (w�m�c) ∈

Kk
W ×Kk

M∅ × [0�1]. Therefore, μk(N) > 0 is equivalent to

μk

({
(w�m�c) ∈ W ×M∅ × [0�1] | Vk(w) �= uW (w�m�c)

})
> 0�

which is impossible. Q.E.D.

LEMMA 11: Let μ be a matching. If νW and νM have full support and VW : W → R and
VM :M → R are continuous functions such that

VW (w) = uW (w�m�c)

for μ-almost all (w�m�c) ∈ W ×M∅ × [0�1] and

VM (m) = uM (w�m�c)

for μ-almost all (w�m�c) ∈ W∅ × M × [0�1], then μ is a stable matching if and only if the
following conditions are satisfied:
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(i) VW (w) ≥ u∅
W (w) for all w ∈W ,

(ii) VM (m) ≥ u∅
M (m) for all m ∈M ,

(iii) uW (w�m�c) ≤ VW (w) whenever uM (w�m�c) ≥ VM (m).

PROOF: We first show that (i)–(iii) are satisfied if μ is stable. Let

N = {
(w�m�c) ∈W ×M∅ × [0�1] | uW (w�m�c) < u∅

W (w)
}
�

Now, N × N ⊆ I. Since μ ⊗ μ(I) = 0, we get μ ⊗ μ(N × N) = μ(N)μ(N) = 0 and,
therefore, μ(N) = 0. Together with VW (w) = uW (w�m�c) for μ-almost all (w�m�c) ∈
W ×M∅ × [0�1], this implies

μ
({

(w�m�c) ∈ W ×M∅ × [0�1] | VW (w) < u∅
W (w)

}) = 0�

Since μ is a matching, the open set {w ∈ W | VW (w) < u∅
W (w)} has therefore νW -measure

zero. But since νW has full support, every open set with νW -measure zero must be empty.
This proves (i) and an analogous argument applies to (ii).

Next, we deal with (iii). Suppose that uM (w�m�c) ≥ VM (m), but uW (w�m�c) > VW (w).
We know from (i) and (ii) and the assumption that bounds on transfers do not bind that
we can assume c �= 0. So there is some c∗ slightly smaller than c such that VM (m) <
uM (w�m�c∗) and VW (w) < uW (w�m�c∗) by continuity. Also by continuity, there ex-
ists open neighborhoods Ow of w and Om of m, such that VM (m′) < uM (w′�m′� c∗) and
VW (w′) < uW (w′�m′� c∗) for all w′ ∈Ow and m′ ∈Om. Now Ow ×M∅ × [0�1] ×W∅ ×Om ×
[0�1] is a subset of{(

(w�m�c)�
(
w′�m′� c′)) ∈ W ×M∅ × [0�1] ×W∅ ×M × [0�1] |

uW

(
w�m′� c∗)> VW (w) and uM

(
w�m′� c∗) > VM

(
m′)}

and the latter set coincides μ⊗μ-almost surely with{(
(w�m�c)�

(
w′�m′� c′)) ∈W ×M∅ × [0�1] ×W∅ ×M × [0�1] |

uW

(
w�m′� c∗)> uW (w�m�c) and uM

(
w�m′� c∗)> uM

(
w′�m′� c′)}�

a subset of the instability set I. It follows that

μ⊗μ
(
Ow ×M∅ × [0�1] ×W∅ ×Om × [0�1]

) = 0�

Since this is the measure of a measurable rectangle and μ is a matching, this shows that

0 = μ
(
Ow ×M∅ × [0�1]

)
μ

(
W∅ ×Om × [0�1]

) = νW (Ow)νM (Om)�

so νW (O) = 0 or νM (Om) = 0. If νW (Ow) = 0, then Ow is empty since νW has full support.
If νM (Om) = 0, then Om is empty since νM has full support. In either case, we obtain a
contradiction.

For the other direction, assume that (i)–(iii) hold. Proving that μ ⊗ μ(I) = 0 is some-
what tedious since I is defined by no less than eight conditions. Each of these conditions
defines an open subset of W∅ ×M∅ ×C ×W∅ ×M∅ ×C and I is the union of these eight
open sets. It suffices, therefore, to show separately that each of these eight open sets has
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μ⊗μ-measure zero. We do one case here and leave the others to the industrious reader.25

So let

I ′ = {(
(w�m�c)�

(
w′�m′� c′)) ∈W∅ ×M∅ ×C ×W∅ ×M∅ ×C |(

m′� c′′) �w (m�c) and
(
w�c′′) �m′

(
w′� c′) for some c′′}�

We show that μ⊗μ(I ′) = 0. We can rewrite I ′ as

{(
(w�m�c)�

(
w′�m′� c′)) ∈ W∅ ×M∅ ×C ×W∅ ×M∅ ×C |

uW

(
w�m′� c′′)> uW (w�m�c) and uM

(
w�m′� c′′)> uM

(
w′�m′� c′) for some c′′}�

which μ⊗μ-almost surely coincides with

{(
(w�m�c)�

(
w′�m′� c′)) ∈ W∅ ×M∅ ×C ×W∅ ×M∅ ×C |

uW

(
w�m′� c′′)> VW (w) and uM

(
w�m′� c′′)> VM

(
m′) for some c′′}�

This last set must be empty by (iii) and, therefore, have μ⊗μ-measure zero. Q.E.D.

LEMMA 12: Let μ be a matching. If VW : W → R and VM : M → R are measurable func-
tions such that

VW (w) = uW (w�m�c)

for μ-almost all (w�m�c) ∈ W ×M∅ × [0�1] and

VM (m) = uM (w�m�c)

for μ-almost all (w�m�c) ∈ W∅ × M × [0�1], then μ is a stable matching if and only if the
following conditions are satisfied for νW ⊗ νM -almost all (w�m) ∈ W ×M :

(i) VW (w) ≥ u∅
W (w),

(ii) VM (m) ≥ u∅
M (m),

(iii) uW (w�m�c) ≤ VW (w) if uM (w�m�c) ≥ VM (m).

PROOF: Showing that (i)–(iii) hold almost surely if μ is stable, follows almost exactly as
in the proof of Theorem 3. But whenever we showed that some set violating the condition
is an open set of measure zero and, therefore, empty under the full support assumption,
it now suffices that the set is measurable with measure zero.

Showing that μ is stable if conditions (i)–(iii) hold, works exactly as in the proof of
Theorem 3, with the tiny modification that the set discussed at the end may not be empty
but is already assumed to have measure zero. Neither the continuity of the value function
nor the support being full played any other role in proving that direction. Q.E.D.

25The other condition involving blocking pairs is completely analogous to the one we verify here, showing
that the four individual rationality conditions hold is straightforward, and the two conditions concerning effi-
cient contract choices for both couples hold vacuously since there can be no inefficient contract choices under
the assumption of imperfectly transferable utility.
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9.3. Proof of Theorem 5

We prove Theorem 5 by first proving it for the special case that W , M , and C are all fi-
nite in Lemma 13. We then extend the result by approximation arguments to the case that
νW and νM have finite support in Lemma 14, and then to the general case. The proof of
Lemma 13 does most of the work. Similar to Jagadeesan (2017), we give a topological ver-
sion of the operators in Fleiner (2003) and Hatfield and Milgrom (2005) and obtain stable
matchings from appropriate fixed points that can be shown to exist by Kakutani’s fixed-
point theorem.26 The argument is robust to preferences getting continuously modified via
externalities, and this allows us to include externalities. The assumption that preferences
are asymmetric and negatively transitive allows us to construct a “choice correspondence”
for the group of agents on one side that behaves much like the choice correspondence of
an individual facing a decision problem and automatically takes care of issues such as the
optimal rationing of agents of the same type.

LEMMA 13: A stable matching exists in the model with externalities if W , M , and C are
finite.

PROOF: It will be convenient to slightly reformulate the existence problem and model;
the resulting model is clearly equivalent in this special setting. We let � be the graph
of C. Let νW and νM be measures on W and M , respectively. Let κ̄ ∈ R

W ×M×C be a vector
such that κ̄(w�m�c) ≥ min{νW (w)� νM (m)} for all (w�m�c) ∈ � and κ̄(w�m�c) = 0 for all
(w�m�c) /∈ �. Let

K = {
κ ∈R

W ×M×C | 0 ≤ κ(w�m�c) ≤ κ̄(w�m�c)
}
�

Also, let

M=
{
κ ∈K

∣∣∣ ∑
m∈M�c∈C

κ(w�m�c) ≤ νW (w) and

∑
w∈W�c∈C

κ(w�m�c) ≤ νM (m) for all w ∈W�m ∈ M

}
�

M is the space of matchings and is a nonempty, convex, and compact subset of RW ×M×C .
Let uW :W ×M∅ ×C ×M→ R and uM :W∅ ×M ×C ×M→ R be continuous functions
representing the preferences. Such functions exist by the main result of Mas-Colell (1977).
For the purpose of the proof, we can assume without loss of generality that

max
c∈C(w�∅)

uW (w�∅� c�κ) = max
c∈C(∅�m)

uM (∅�m� c�κ) = 0

for all w ∈W , m ∈ M , and κ ∈M. For the first case, just subtract the continuous function
(w�κ) �→ maxc∈C(w�∅) uW (w�∅� c�κ) from uW . The resulting function will in general not
represent the same preferences over matchings, but for stability, only the induced pref-
erences over M∅ × C given each matching matter. Since W × M × C × M is a compact
subset of W ×M ×C ×R

W ×M×C and uW and uM are, therefore, bounded, we can assume

26As Jagadeesan (2017) explains, other topological approaches such as the one used by Azevedo and Hat-
field (2015) cannot be as easily adopted to allow for indifferences. Allowing for indifferences is necessary in
the context of externalities.
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by the Tietze extension theorem, Aliprantis and Border (2006, 2.47), that uW and uM are
defined, continuous, and bounded on all of W ×M ×C ×R

W ×M×C .
For each (κW �κM) ∈K×K, let

DW (κW �κM) =
{
τ ∈K

∣∣∣ τ maximizes
∑

w∈W�m∈M�c∈C
uW (w�m�c�κW + κM − κ̄)τ(w�m�c)

under the constraints that
∑

m∈M�c∈C
τ(w�m�c) ≤ νW (w)

and τ(w�m�c) ≤ κW (w�m�c) for all w ∈ W�m ∈ M�c ∈C

}
�

It is easy to see (use the maximum theorem) that DW : K ×K → 2K is a correspondence
with nonempty, convex, and compact values. Similarly, define DM :K×K → 2K by

DM (κM�κW ) =
{
τ ∈K

∣∣∣ τ maximizes
∑

w∈W�m∈M�c∈C
uM (w�m�c�κW + κM − κ̄)τ(w�m�c)

under the constraints that
∑

w∈W�c∈C
τ(w�m�c) ≤ νM (m)

and τ(w�m�c) ≤ κM (w�m�c) for all w ∈ W�m ∈M�c ∈ C

}
�

Define φW :K×K → 2K by

φW (κW �κM) = κ̄− κW +DW (κW �κM)

and φM :K×K → 2K by

φM (κM�κW ) = κ̄− κM +DM (κM�κW )�

Finally, define φ :K×K → 2K×K by

φ(κW �κM) =φM (κM�κW ) ×φW (κW �κM)�

By Kakutani’s fixed-point theorem, φ has a fixed point (κ∗
W �κ

∗
M). Let μ = κ∗

W + κ∗
M − κ̄.

We show that μ is a stable matching. So let (κ∗
W �κ

∗
M) satisfy the fixed-point conditions

κ∗
W ∈φM

(
κ∗
M�κ

∗
W

) = κ̄− κ∗
M +DM

(
κ∗
M�κ

∗
W

)
and

κ∗
M ∈ φW

(
κ∗
W �κ

∗
M

) = κ̄− κ∗
W +DW

(
κ∗
W �κ

∗
M

)
�
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Define D∗
W :K → 2K by

D∗
W (κW ) =

{
τ ∈K

∣∣∣ τ maximizes
∑

w∈W�m∈M�c∈C
uW (w�m�c�μ)τ(w�m�c)

under the constraints that
∑

m∈M�c∈C
τ(w�m�c) ≤ νW (w)

and τ(w�m�c) ≤ κW (w�m�c) for all w ∈W�m ∈ M�c ∈ C

}
�

and define D∗
M :K → 2K by

D∗
M (κM) =

{
τ ∈K

∣∣∣ τ maximizes
∑

w∈W�m∈M�c∈C
uM (w�m�c�μ)τ(w�m�c)

under the constraints that
∑

w∈W�c∈C
τ(w�m�c) ≤ νM (m)

and τ(w�m�c) ≤ κM (w�m�c) for all w ∈ W�m ∈ M�c ∈C

}
�

D∗
W and D∗

M represent the “choice correspondences” for the preferences induced by
our candidate stable matching. Note that this means the maximization problem is also
solved for each w ∈ W and for each m ∈ M , respectively, separately. Note also that these
correspondences will only put weight on individually rational couple-contract types (for
the preferences induced by μ). For example, if τ ∈ D∗

W (κW ) and τ(w�m�c) > 0, then
uW (w�m�c�μ) ≥ 0 = maxc∈C(w�∅) uW (w�∅� c�μ).

Now, the fixed-point conditions imply

μ = κ∗
W + κ∗

M − κ̄ ∈ DW

(
κ∗
W �κ

∗
M

) ∩DM

(
κ∗
M�κ

∗
W

) =D∗
W

(
κ∗
W

) ∩D∗
M

(
κ∗
M

)
�

Since

μ= κ∗
W + κ∗

M − κ̄ ∈DW

(
κ∗
W �κ

∗
M

)
�

we have ∑
m∈M�c∈C

μ(w�m�c) ≤ νW (w)

for all w ∈W and, similarly, ∑
w∈W�c∈C

μ(w�m�c) ≤ νM (m)

for all m ∈ M . Also, μ is nonnegative and satisfies μ(w�m�c) = 0 for (w�m�c) /∈ � for the
same reason and is, therefore, a matching. It remains to show that it is a stable matching.
That individual rationality constraints are satisfied follows from μ ∈D∗

W (κ∗
W ) ∩D∗

M (κ∗
M).

It remains to show that there are no blocking pairs. Assume for the sake of contradic-
tion that there are (w�m�c) with μ(w�m�c) > 0 and (w′�m′� c′) with μ(w′�m′� c′) > 0
such that for some c′′ ∈ C(w�m′) both(

m′� c′′�μ
) �w (m�c�μ)
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and (
w�c′′�μ

) �m′
(
w′� c′�μ

)
hold. Because μ(w�m�c) > 0 and μ is a matching, we have μ(w�m′� c′′) < νW (w). Simi-
larly, μ(w�m′� c′′) < νM (m′). Together, we have

μ
(
w�m′� c′′)< min

{
νW (w)� νM

(
m′)} ≤ κ̄

(
w�m′� c′′)�

Since (w�c′′�μ) �m′ (w′� c′�μ), μ(w′�m′� c′) > 0, and μ ∈ D∗
M (κ∗

M), we must have
μ(w�m′� c′′) = κ∗

M (w�m′� c′′); the inferior option cannot be chosen by the correspon-
dence D∗

M from κ∗
M if more of the better option is available. Similarly, we must have

μ(w�m′� c′′) = κ∗
W (w�m′� c′′). Together with the definition of μ, we get

μ
(
w�m′� c′′) = κ∗

W

(
w�m′� c′) + κ∗

M

(
w�m′� c′′) − κ̄

(
w�m′� c′′)

= 2μ
(
w�m′� c′′) − κ̄

(
w�m′� c′′)

<μ
(
w�m′� c′′)�

where the strict inequality follows from μ(w�m′� c′′) < κ̄(w�m′� c′′). This contradiction
proves that there are, indeed, no blocking pairs under μ, and μ is a stable matching.

Q.E.D.

LEMMA 14: A stable matching exists when νW and νM have finite support.

PROOF: We can assume without loss of generality that W = suppνW and M = suppνM .
For each w ∈ W∅ and m ∈ M∅, let 〈cnwm〉 be a sequence in C(w�m) such that {cnwm | n ∈ N}
is dense in C(w�m). Define Cn : W∅ × M∅ → 2C by Cn(w�m) = {ckwm | k ≤ n}. A stable
matching exists when we replace C by Cn by Lemma 13.

Note that every matching, stable or not, for the restricted correspondence Cn is also a
not necessarily stable matching for the unrestricted correspondence C. So we can find a
sequence 〈μn〉 of matchings such that μn is a stable matching for the restricted correspon-
dence Cn. By passing to a subsequence and using Lemma 1, we can assume without loss of
generality that 〈μn〉 converges to some measure μ, which is again a matching by Lemma 2.

It remains to prove that μ is stable. For each pair p= ((w�m�c)� (w′�m′� c′)) of couple-
contract types in I(μ), there exists some contract c∗ in C(w∗�m∗), with w∗ = w�w′�∅,
and m∗ = m�m′�∅ that ensures that one of the conditions witnessing to the instability
of p holds. By the continuity condition on preferences, one can choose this contract
to be of the form ckw∗m∗ for some k. We can choose by our strengthened continuity as-
sumption an open neighborhood Op of p and an open neighborhood Up of μ such that
every p′ ∈ Op can be blocked by the contract ckw∗m∗ whenever preferences are induced
by some μ′ ∈ Up. For n large enough, ckw∗m∗ ∈ Cn(w�m) and μn ∈ Up. It follows that
μ(Op) ≤ lim infn μn(Op) = 0 by the Portmanteau theorem.

Now suppose for the sake of contradiction that μ⊗μ(I(μ)) > 0. Since Borel measures
are regular, there exists then a compact set K ⊆ I(μ) such that μ ⊗ μ(K) > 0. Now the
family (Op)p∈K is an open cover of K and K is therefore covered by finitely many open
sets of μ⊗μ-measure zero, in contradiction to μ⊗μ(K) > 0. Q.E.D.

PROOF OF THEOREM 5: Let 〈νnW � νnM〉 be a sequence of pairs of measures on W and M ,
respectively, such that 〈νnW 〉 converges to νW , 〈νnM〉 converges to νM and νnW and νnM have
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finite support n. This is possible since measures with finite supports are dense in the space
of all measures.

For each n, we can choose a stable matching μn for the finite matching problem given by
population distributions νnW and νnM by Lemma 14. By passing to a subsequence and using
Lemma 1, we can assume without loss of generality that 〈μn〉 converges to some measure
μ, which is again a matching for the population measures νW and νM by Lemma 2. So far,
everything works as in the proof of Theorem 1.

The matching μ is stable. Indeed, for each pair p = ((w�m�c)� (w′�m′� c′)) of couple-
contract types in I(μ) we can choose by our strengthened continuity assumption and the
lower hemicontinuity of C an open neighborhood Op of p and an open neighborhood Up

of μ such that Op ⊆ I(μ′) for μ′ ∈ Up. Since μn ∈ Up for n large enough, we have Op ⊆
I(μn) for n large enough. Hence, μ⊗μ(Op) ≤ lim infn μn ⊗μn(Op) = 0 by the Portman-
teau theorem. We can conclude as in the proof of Lemma 14 that μ⊗μ(I(μ)) = 0. Q.E.D.

9.4. Proof of Theorem 6

PROOF OF THEOREM 6: We first show that (i)–(iii) implies that μ is stable. Now I(μ) =⋃
ε↓0 Iε(μ), so μ⊗μ(I(μ)) > 0 would imply μ⊗μ(Iε(μ)) > 0 for some ε > 0. But exactly

as in the proof of Theorem 5, one can show μ⊗μ(Iε(μ)) = 0.
For the other direction, assume that μ(I(μ)) = 0. As in the proof of Theorem 2, we can

show that there are sequences 〈νnW 〉, 〈νnM〉, and 〈μn〉 such that (i) and (ii) hold and such
that μn ⊗μn(I(μ)) = 0 for all n. We show that (iii) holds, too, for fixed ε > 0.

For this, we show that the functions φW : M(W∅ × M∅ × C) → C(W × M∅ × C) and
φM : M(W∅ × M∅ × C) → C(W∅ × M × C) given by φW (μ) = uW (· · · �μ) and φM (μ) =
uM (· · · �μ), respectively, are continuous when the range is endowed with the sup-norm.
To see this, for example, for φW , note that the function

μ �→ sup
w�m�c

∣∣uW (w�m�c�μ) − uW

(
w�m�c�μ′)∣∣

is continuous for each μ′ by the maximum theorem since uW is continuous and W , M , and
C are compact. It follows that there exists a neighborhood U of μ in M(W∅ × M∅ × C)
such that

sup
w�m�c

∣∣uW (w�m�c�μ) − uW

(
w�m�c�μ′)∣∣< ε/2

and

sup
w�m�c

∣∣uM (w�m�c�μ) − uM

(
w�m�c�μ′)∣∣< ε/2

for all μ′ ∈ U . Note that μn ⊗ μn(I(μ)) = 0 is equivalent to I(μ) ∩ suppμn × suppμn =
∅ for each n since μn is finite. Similarly, μn ⊗ μn(Iε(μn)) = 0 is equivalent to Iε(μn) ∩
suppμn × suppμn = ∅. Let N be such that μn ∈ U for n ≥ N . It is straightforward but
slightly tedious to verify that Iε(μn) ∩ suppμn × suppμn = ∅ for n ≥N . Q.E.D.

It should be noted that we only used the compactness to show that the functions φW

and φM are continuous. For fixed utility representations, we could make this an explicit
assumption and can prove an analogous result without compactness assumptions.
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9.5. Proof of Theorem 7

We need some definitions for the proof of Theorem 7. A probability space (����τ)
is saturated if for every two Polish spaces X and Y , every Borel probability measure μ
on X × Y and every measurable function f : � → X with distribution equal to the X-
marginal of μ, there exists a measurable function g :� → Y such that the function (f�g) :
� → X ×Y given by (f�g)(ω) = (f (ω)� g(ω)) has distribution μ, that is, μ= τ ◦ (f�g)−1.

An automorphism of the probability space (����τ) is a measurable bijection h :� → �
with measurable inverse such that τ(A) = τ(h(A)) for all A ∈ �. A probability space
(����τ) is homogeneous if for every two measurable functions f : � → X and g : � →
X with X Polish such that τ ◦ f−1 = τ ◦ g−1, there exists an automorphism h such that
f (ω) = g(h(ω)) for almost all ω.

An extensive discussion of these concepts can be found in Fajardo and Keisler (2002),
where it is also shown that probability spaces that are both saturated and homogeneous
exist.27

PROOF OF THEOREM 7: We first ignore (iii) and (iv) and then patch up our solution so
that even these conditions hold. Extend νW to all of W∅ by assigning mass νM (M) to the
point ∅ ∈W∅, and extend νM to all of M∅ by assigning mass νW (W ) to the point ∅ ∈ M∅. The
measures νW and νM thus extended satisfy νW (W∅) = νW (W ) + νM (M) = νM (M∅) and we
take them without loss of generality to be probability measures. We take (AW �AW �τW )
and (AM�AM�τM) to be the same saturated and homogeneous, but otherwise arbitrary,
probability space (����τ).

Let X be any Polish space and g : � → X be any measurable function. By saturation,
there exists h : � → W∅ such that τ ◦ (g�h)−1 = τ ◦ g−1 ⊗ νW . In particular, τ ◦ h−1 = νW
and we can take tW to be h. Similarly, we can find a function tM : � → M∅ such that
τ ◦ t−1

M = νM .
Now let μ be a matching and let μ∅ be the measure on W∅ × M∅ ×C obtained from μ

by letting μ∅(B) = μ(B) for every Borel set B ⊆W∅ ×M∅ ×C \{∅�∅}×C, but

μ∅(W∅ ×M∅ ×C) = 1

and such that μ∅(GC) = 1. So μ∅(W∅ ×M∅ ×C) = 1, the W∅-marginal of μ∅ is νW , and the
M∅-marginal of μ∅ is νM . By saturation, there exist measurable functions fW : � → M∅,
χW :� → C, fM :� → W∅, and χM :� →C such that

τ ◦ (tW � fW �χW )−1 = μ∅ = τ ◦ (fM� tM�χM)−1�

By homogeneity, there exists an automorphism φ :� → � such that(
tW (ω)� fW (ω)�χW (ω)

) = (
fM

(
φ(ω)

)
� tM

(
φ(ω)

)
�χM

(
φ(ω)

))
for τ-almost all ω ∈�. In particular,

τ ◦ (
tW � tM

(
φ(ω)

)
�χW

)−1 = μ∅�

27The notion of homogeneity used in Fajardo and Keisler (2002) is more permissive in that they require only
automorphisms of sets of measure 1 that may be smaller than the whole probability space. But in their proof
of their Theorem 3B.12, which shows that homogeneous and saturated probability spaces exist, they obtain
the automorphisms as the realization of automorphisms of the underlying measure algebra using a result from
Maharam (1958), which actually delivers automorphisms in our stronger sense.
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There might still be some ω ∈ � such that χW (ω) /∈ C(tW (ω)� tM (φ(ω))). The correspon-
dence C :W∅ ×M∅ → 2C is upper hemicontinuous with nonempty and compact values and
therefore also measurable with nonempty and closed values. By the Kuratowski–Ryll-
Nardzewski measurable selection theorem, Aliprantis and Border (2006, 18.13), there
exists a measurable function s :W∅ ×M∅ → C such that s(w�m) ∈ C(w�m) for all w ∈ W∅
and w ∈W∅. Let

N = {
ω ∈ � | χW (ω) /∈ C

(
tW (ω)� tM

(
φ(ω)

))}
= {

ω ∈ � | (tW (ω)� tM
(
φ(ω)

)
�χW (ω)

)
/∈ GC

}
�

Since μ∅(GC) = 1, we have τ(N) = 0. Define χ :� → C by

χ(ω) =
{
s
(
tW (ω)� tM

(
φ(ω)

))
if ω ∈N�

χW (ω) otherwise.

The functions φ and χ have the desired properties apart from, possibly, (iv).
Now assume that μ is in addition stable. Let E : W∅ ×M∅ → 2C be the correspondence

such that E(w�m) consists of all efficient c ∈ C(w�m). Note that efficient contract choices
are maximal elements under the weak Pareto ordering for couples and this ordering is
acyclic with an open graph. It follows from a version of the maximum theorem that E
is upper hemicontinuous with nonempty and compact values, Hildenbrand (1974, Theo-
rem 3 on p. 29).28 In particular, E is a measurable correspondence with nonempty closed
values. By the Kuratowski–Ryll-Nardzewski measurable selection theorem, there exists a
measurable function s′ : W∅ × M∅ → C such that s′(w�m) ∈ E(w�m) for all w ∈ W∅ and
m ∈M∅. Now let

N ′ = {
ω ∈ � | χW (ω) /∈E

(
tW (ω)� tM

(
φ(ω)

))}
�

We show that τ(N ′) = 0. Since μ is stable, we have μ ⊗ μ(I) = 0 and, therefore, also
μ∅ ⊗μ∅(I) = 0. Define I ′ ⊆ I by

I ′ = {(
(w�m�c)�

(
w′�m′� c′)) ∈W∅ ×M∅ ×C ×W∅ ×M∅ ×C |

c /∈E(w�m) or c′ /∈ E
(
w′�m′)}�

Note that

μ∅
({

(w�m�c) : c /∈E(w�m)
}) ≤ μ∅ ⊗μ∅

(
I ′) ≤ μ∅ ⊗μ∅(I) = 0�

Since μ∅ = τ ◦ (tW � tM (φ(ω))�χW )−1, we must have τ(N ′) = 0. In the present case, define
χ :� → C by

χ(ω) =
{
s′(tW (ω)� tM

(
φ(ω)

))
if ω ∈ N ′�

χW (ω) otherwise.

The functions φ and χ have the desired properties. Q.E.D.

28The cited result assumes that preferences are transitive and irreflexive, not merely acyclic. But the proof
works without modification for acyclic preferences using the fact that maximal elements exist for acyclic rela-
tions on nonempty finite sets.
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[2944]
VILLANI, C. (2003): Topics in Optimal Transportation. Graduate Studies in Mathematics, Vol. 58. Providence,

RI: American Mathematical Society. ISBN 0-8218-3312-X. [2932]
(2009): Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften, Vol. 338.

Berlin: Springer-Verlag. ISBN 978-3-540-71049-3. [2932,2943,2948]
WANG, J., AND Y. ZHANG (2012): “Purification, Saturation and the Exact Law of Large Numbers,” Economic

Theory, 50, 527–545. [2951]

Co-editor Dirk Bergemann handled this manuscript.

Manuscript received 3 April, 2018; final version accepted 27 June, 2021; available online 15 July, 2021.

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:60/zbMATH03356774&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:61/MR3357481&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:62/MR812820&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:63/TE20060143&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:64/MR3357480&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:65/NoeSam&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:66/peters2002competing&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:67/MR1018538&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:68/MR2461672&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:69/MR741585&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:70/MR1399244&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:71/MR0465225&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:72/zbMATH03375272&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:73/MR1660898&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:74/MR3191511&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:75/MR0094839&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:78/MR2959114&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:60/zbMATH03356774&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:62/MR812820&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:63/TE20060143&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:64/MR3357480&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:65/NoeSam&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:66/peters2002competing&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:67/MR1018538&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:69/MR741585&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:70/MR1399244&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:72/zbMATH03375272&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:73/MR1660898&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:78/MR2959114&rfe_id=urn:sici%2F0012-9682%282021%2989%3A6%3C2929%3APSMILE%3E2.0.CO%3B2-7

	Introduction
	Related Literature
	1. Finite-Type Models
	2. One-Sided Continuum Models
	3. Two-Sided Continuum Models With Transfers


	Overview
	The Model and Stability
	Relation to Large Finite Matching Markets
	Equal Treatment
	Externalities
	Individualistic Representation
	Concluding Remarks
	Omitted Proofs
	Proofs Omitted From Section 3
	Proof of Theorem 3 and Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	References

