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1 Non-Homotheticity Condition
Suppose that consumers select grocery consumption quantities, Q = {{qmg} g∈Gm

}m∈M , and non-
grocery expenditure, Z, by maximizing:

(E.1) f(UiG(Q,Z), Z) subject to
∑
m∈M

∑
g∈Gm

pmgqmg + Z ≤ Yi, qmg ≥ 0 ∀ mg ∈ G
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I break this problem into two parts, first solving for the consumer’s optimal grocery consumption quan-
tities conditional on their non-grocery expenditure Z:

max
Q,Z

UiG(Q, Z) =
∏

m∈M

 ∑
g∈Gm

qmg exp(γm(Z)βmg + µm(Z)εimg)

λm

subject to
∑
m∈M

∑
g∈Gm

pmgqmg ≤ Yi − Z, qmg ≥ 0 ∀ mg ∈ G(E.2)

where γm(Z) = (1 + γm lnZ) and µm(Z) = 1
α0

m+α1
m lnZ . Equations (7) and (E.18) define the optimal

grocery bundle, Q∗(Z) =
{{

q∗mg(Z)
}

g∈G,

}
m∈M and can be summarized as follows:

q∗img(Z) =


λm(Yi−Z)

pmg
if g = arg max

g∈Gm

p̃img

0 otherwise

where

p̃img =
exp(γm(Z)βmg + µm(Z)εig)

pmg

Plugging this solution into UiG(Q, Z) yields the consumer’s indirect utility from grocery consumption,
conditional on their non-grocery expenditure:

ŨiG(Z) = UiG(Q∗(Z), Z)

=

{∑
m∈M

[(
(Yi − Z)

(p̃img)
σ

Pi(Z)1−σ

)
I
[
g = arg max

g∈Gm

p̃img

]]σ−1

σ

} σ

σ−1

=
Yi − Z

Pi(Z)1−σ

{∑
m∈M

[
p̃σimgI

[
g = arg max

g∈Gm

p̃img

]]σ−1

σ

} σ

σ−1

=
Yi − Z

Pi(Z)1−σ

{∑
m∈M

(
max
g∈Gm

p̃img

)σ−1
} σ

σ−1

=
Yi − Z

Pi(Z)
(E.3)

We can now express problem (E.1) to be a choice over one variable, Z:

(E.4) max
Z

f(ŨiG(Z), Z)

The first order condition to the utility maximization problem defined in problem (E.4) with respect to Z

is:

f1(Ũ iG(Z), Z)
∂Ũ iG(Z)

∂Z
+ f2(Ũ iG(Z), Z) = 0

Substituting the maximized grocery expenditure conditional on Z, ŨiG(Z), from equation (E.3) into this
first order condition yields a function that implicitly defines the optimal non-grocery expenditure, Zi, in
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terms of household income, Yi, the consumer’s idiosyncratic utility draws, εi, and model parameters:

Yi = Z − Pi(Z)

P
′

i (Z)
+

f2(Ũ iG(Z), Z)

f1(Ũ iG(Z), Z)

Pi(Z)2

P
′

i (Z)

Taking the derivative of income with respect to non-grocery expenditure, Z, we can see that the non-
grocery will be normal if the price vector and aggregate utility function are such that:

∂

∂Z

[
Pi(Z)

P
′

i (Z)
+

f2(Ũ iG(Z), Z)

f1(Ũ iG(Z), Z)

Pi(Z)2

P
′

i (Z)

]
< 1

It is computationally infeasible to show that this condition holds generally (there will be a different
price index Pi(Z) for each of universe of potential price vectors), but I can show that it holds in the data
by simply demonstrating that non-grocery expenditures are increasing in household income. I annualize
the observed grocery expenditure for each household and measure annual non-grocery expenditures as
the difference between the mid-point of each household’s reported income category and the household’s
annual grocery expenditures. After controlling for household demographics with dummies for household
size, marital status, education and age of the male and female heads of household, race, and Hispanic
origin, the elasticity of observed non-grocery expenditures, Zi, with respect to household income, Yi, is
1.19 with a standard error of 0.003.

Figure E.1 demonstrates that households earning higher incomes spend a smaller share of their
income on grocery products. Within income groups, however, the average grocery expenditure share
does not vary much across cities and, in particular, Table E.I confirms that the average grocery share of
an income group in a city does not vary systematically with city income.
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Figure E.1: Income-Specific Grocery Expenditure Shares Across Markets
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$30,000 $40,000 $50,000
CBSA Per Capita Income

1: $2500−$17500 (slope = 0.0111, se: 0.0190) 4: $26516−$31754 (slope = 0.0059, se: 0.0100)

7: $42500−$49074 (slope = 0.0005, se: 0.0061) 10: $75055−$130000 (slope = −0.0016, se: 0.0032)

Income Deciles:

Note: Each point reflects the mean grocery expenditure share of households in each income decile that reside in households at each CBSAs at
each vigntile of the CBSA per capita income distribution plotted against the mean CBSA per capital income of that vigntile. The household
expenditure share is calculated as the annual reported expenditures on groceries (for households reporting trips in all 12 months of the year)
divided by their reported income. For the purposes of visual clarity, only a representative sample of deciles are represented. The coefficient of
variation of household grocery expenditure shares is 71 across all households in the sample, but drops to between 42 and 52 when you only
consider households within each income decile. For the purposes of visual clarity, only a representative sample of deciles are represented.

Table E.I: Income-Specific Grocery Expenditure Shares Across Markets

Dependent Variable: Mean Grocery Expenditure Share of Households in Income Decile
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Ln(CBSA PC Income) 0.011 -0.0034 -0.0045 0.0059 0.0048 -0.0051 0.00046 0.0075* 0.0060 -0.0016
(0.019) (0.012) (0.013) (0.010) (0.0095) (0.0072) (0.0061) (0.0042) (0.0056) (0.0032)

Observations 383 321 325 356 316 318 313 356 170 225

Notes: Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001. This table reports the correlation between the grocery expenditure
share of Nielsen household panelists from each income decile and the per capita income of the CBSA where they reside. Observations are at
the decile-by-CBSA level. The nth column reports regression for nth income decile.
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2 Connection to CES Utility Function
In Section 4 of the paper, I model consumer demand assuming that a consumer i’s utility from gro-
cery consumption, conditional on their non-grocery expenditure Z, is a Cobb-Douglas aggregate over
consumer-specific module-level utilities that are, in turn, additive in product-level log-logit utilities. This
utility function is presented in equations (1), (2), and (3) and can be summarized as:

UiG(Q, Z) =
∏

m∈M
(uim (Qm, Z))λm

=
∏

m∈M

 ∑
g∈Gm

uimg(Qm, Z)

λm

=
∏

m∈M

 ∑
g∈Gm

qmg exp(γm(Z)βmg + µm(Z)εimg)

λm

=
∏

m∈M

 ∑
g∈Gm

qmg exp(γm(Z)βmg +
εimg

σm(Z)− 1
)

λm

(E.5)

where qmg is the consumption quantity of each product g in module m; βmg is the quality of product
g in module m; εimg is the idiosyncratic utility of consumer i from product g in module m; γm(Z)

and µm(Z) = 1
σm(Z)−1 > 0 are weights that govern the extent to which consumers with non-grocery

expenditure Z care about product quality and their idiosyncratic utility draws; σm(Z) is the elasticity of
substitution between products in the same module m for a consumer with non-grocery expenditure Z;
and λm are module-level Cobb-Douglas weights.

Consider the utility of the representative agent for consumers with non-grocery expenditure Z. This
agent’s utility function from grocery consumption is defined in equation (E.20) in Section 5.1 as follows:

(E.6) UCES
G (Q, Z) =

∏
m∈M

 ∑
g∈Gm

[qmg exp(βmgγm(Z))]
σm(Z)−1

σm(Z)


(

σm(Z)

σm(Z)−1

)
λm

,

where qmg, βmg, γm(Z), σm(Z), and λm take the same definitions as in equation (E.5) above.
Suppose that this representative consumer with the Cobb Douglas-nested CES utility function UCES

G (Q, Z)

defined in equation (E.6) faces the same prices P and has the same non-grocery expenditure Z as a group
of “idiosyncratic” consumers with the Cobb Douglas-nested log-logit utility UiG(Q, Z) defined in equa-
tion (E.5). A simple extension of Anderson et al. (1987) shows that the representative consumer and
the group of “idiosyncratic” consumers will allocate expenditures across products within modules and
across modules identically.

First consider the within-module expenditure allocations. Denote the share of module m expendi-
tures that the representative consumer allocates to product g as sCES

mg|m(Z) and the share of total grocery
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expenditures the representative consumer allocates to module m as sCES
m (Z). This share is equal to

sCES
mg|m(Z) =

[ pmg

exp(βmgγm(Z))

PCES
m (Z,Pm)

]1−σm(Z)

where PCES
m (Z,Pm) is a module-level CES price index. The relative log share that the representative

consumer optimally allocates to product g in module m relative to some other product ḡ in the same
module is, therefore,

(E.7) ln sCES
mg|m(Z)− ln sCES

mḡ|m(Z) = (1− σm(Z)) ((ln pmg − ln pmḡ)− (βmg − βmḡ)γm(Z))

The expected relative module expenditure share of a group of “idiosyncratic” consumers with non-
grocery expenditure Z facing the same prices pmg and pmḡ is derived in Appendix (C.2) as:
(E.8)
Eε

[
ln(simg|m(Z,Pm))− ln(simḡ|m(Z,Pm))

]
= (σm(Z)− 1) [(βmg − βmḡ)γm(Z)− (ln pmg − ln pmḡ)]

where I have substituted σm(Z) and γm(Z) for their log-linear parametric forms
(
1 + α0

m + α1
m lnZ

)
and (1 + γm lnZ), respectively. We can multiply both terms of the right-hand side of (E.8) to show that
it is equivalent to the right-hand side of equation (E.7):

Eε

[
ln(simg|m(Z,Pm))− ln(simḡ|m(Z,Pm))

]
= (σm(Z)− 1) [(βmg − βmḡ)γm(Z)− (ln pmg − ln pmḡ)]

= (1− σm(Z)) ((ln pmg − ln pmḡ)− (βmg − βmḡ)γm(Z))

= ln sCES
mg|m(Z)− ln sCES

mḡ|m(Z)

whereby showing that the representative consumer allocates expenditures across products in the same
module identically to a group of the “idiosyncratic” consumers.

Now consider the between-module expenditure allocations. Denote the share of total grocery expen-
ditures the representative consumer allocates to module m as sCES

m (Z). The relative log share that the
representative consumer optimally allocates to module m relative to some other module m̄ is

(E.9) ln sCES
m (Z)− ln sCES

m (Z) = (1− σ)
(
ln
(
PCES
m (Z,Pm)

)
− ln

(
PCES
m̄ (Z,Pm̄)

))
where PCES

m (Z,Pm) is a module-level CES price index defined as:

(E.10) PCES
m (Z,Pm) =

 ∑
g∈Gm

(
pmg

exp(βmgγm(Z))

)(1−σm(Z))
 1

(1−σm(Z))

The expected relative module expenditure share of a group of “idiosyncratic” consumers with non-
grocery expenditure Z facing the same sets of prices Pm and Pm̄ faced by the representative consumer
is derived in Appendix (5.4.2) as:

Eε [ln sim(Z,P)− ln sim̄(Z,P)] = (σ − 1) [lnVm(Z,Pm)− lnVm̄(Z,Pm̄)](E.11)
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where Vm(Z,Pm) is a CES-style index over price-adjusted product qualities:

(E.12) Vm(Z,Pm) =

 ∑
g∈Gm

(
exp(βmgγm(Z))

pmg

)(σm(Z)−1)
 1

(σm(Z)−1)

To see that the right-hand sides of equations (E.9) and (E.11) are identical first note that we can re-write
the equation (E.11) as

Eε [ln sim(Z,P)− ln sim̄(Z,P)] = (1− σ) [− lnVm(Z,Pm) + lnVm̄(Z,Pm̄)]

= (1− σ)
[
ln
(
[Vm(Z,Pm)]−1

)
− ln

(
[Vm̄(Z,Pm̄)]−1

)]
In fact, the right-hand sides of equations (E.9) and (E.11) will be identical as long as the quality-adjusted
price levels defined in equation (E.10) are equal to the inverse of the price-adjusted quality levels defined
in equation (E.12), i.e., PCES

m (Z,Pm) = [Vm(Z,Pm)]−1. We can see this is the case below:

PCES
m (Z,Pm) =

 ∑
g∈Gm

(
pmg

exp(βmgγm(Z))

)(1−σm(Z))
 1

(1−σm(Z))

=

 ∑
g∈Gm

(
exp(βmgγm(Z))

pmg

)(σm(Z)−1)
 1

(1−σm(Z))

=


 ∑
g∈Gm

(
exp(βmgγm(Z))

pmg

)(σm(Z)−1)
 1

(σm(Z)−1)


−1

= [Vm(z,Pm)]−1

The representative consumer therefore allocates expenditures across modules in identical proportions to
a group of the “idiosyncratic” consumers.

The algebra above has shown that the Cobb Douglas-nested log-logit utility function yields identical
relative expenditure share equations, both across and within modules, to the Cobb Douglas-nested CES
utility function assumed for the representative agent. In particular, note that the model parameters play
identical roles in the Cobb Douglas-nested CES and Cobb Douglas-nested log-logit expenditure share
equations, so the parameter estimates identified using moments based on these equations can be used as
direct inputs into the Cobb Douglas-nested CES price indexes that form the basis for the main results
presented above.
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3 Estimation Procedure
In this appendix I describe the details involved in the estimation and statistical inference of the lower-
level parameters, θ1 =

{
α0
m, α1

m, γm, {βmg − βmḡm}
}
m=1,...,M

. This set of demand parameters is parti-
tioned into M sets of lower-level module-specific parameters, θ1m for each module m, that are identified
using module-specific sub-samples of the data. The upper-level parameters – Cobb-Douglas module ex-
penditure weights, θ2 = {λm}m=1,...,M – is calibrated to the module-level sales shares in the estimation
sample.

I obtain θ̂1 using a two-stage GMM procedure based on the following exogeneity restriction:

(E.13) E[g(X; θ1)] = 0

where g(X; θ1)=[g1(X; θ), g2(X; θ), g3(X; θ)] consists of three vectors of module-specific moments,
gk(X; θ) = [gk(X1; θ1), ..., g

k(XM ; θM )].
The first vector of moments is calculated using market-level data. They are defined as:

ḡ1(Xm; θ1m) =
1

n

∑
mg,t

g1mgt(Xm; θ1m) =
1

n

∑
mg,t

ξ̃mgt(Xm; θ1m)Z̃1
mgt

where n is the number of product-market observations; ξmgt(Xm; θNL
1m ) are transient market-specific

product taste shocks defined below; and Z1
mgt is a vector of L1

m pre-determined variables including
product fixed effects and price instruments. The tilde denotes that a variable has been differenced from
the respective value for the base product in each module, ḡm, e.g., ξ̃mgst(Xm; θ1m) = ξmgst(Xm; θ1m)−
ξmḡmst(Xm; θ1m).

The second and third vectors of moments are designed to employ the Nielsen data on household-
level product choices. The second set of moments equalizes the predicted uncentered covariance be-
tween product quality and household non-grocery expenditure for Nielsen HMS sample households.
The sample analog of this covariance is:

ḡ2(Xm; θ1m) =
1

Nm

∑
mg

g2mg(Xm; θ1m) =
1

Nm

∑
mg

Nmgβmg

 1

Nmg

nmg∑
img=1

Zimg
− E[Z|y = mg, θ]


where img denotes one of the Nmg units of product g in module m that is purchased in the Nielsen HMS
sample; i denotes one of the Nm units of any product in module m that is purchased in the Nielsen
HMS sample; and Zi denotes the non-grocery expenditure of the Nielsen HMS panelist purchasing unit
i. Similarly, the third set of moments equalizes the predicted uncentered covariance between unit price
paid and household non-grocery expenditure. The sample analog of this covariance is:

ˆ̄g3(Xm; θ1m) =
1

Nm

∑
i

(
Zi − Z̄

)∑
t

(
(p̃imt − E[p̃imt|θ1m])− 1

Nm

∑
i

∑
t

(p̃imt − E[p̃imt|θ1m])

)

The sample analogs of the three moment conditions defined above are:
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ˆ̄g1(Xm; θ1m) =
1

n

∑
mg,t

ˆ̃
ξmgt(Xm; θ1m)Z̃mgt

ˆ̄g2(Xm; θ1m) =
1

Nm

∑
mg

Nmg

βmg

 1

Nmg

Nmg∑
img=1

Zimg
− 1

Nm

Nm∑
i=1

ZiPmg(Zi,Pt, θ1m, β̂t)


2

ˆ̄g3(Xm; θ1m) =
1

Nm

∑
i

(
Zi − Z̄

)∑
t

(
(p̃imt − E[p̃imt|θ1m])− 1

Nm

∑
i

∑
t

(p̃imt − E[p̃imt|θ1m])

)

where Z̄ = 1
Nm

∑
i Z̄i is the unit-weighted mean non-grocery expenditure of sample households; p̃imt =

(pimgt − p̄mt) is the relative unit value paid by a household i in module m in market t, where p̄mt =∑
g∈Gmt

wmgtpmgt and wmgt = smg/
∑

g∈Gmt
smg, and E[p̃imt|θ1m] is the predicted relative unit value

paid by household i in module m in market t defined as:2

E[p̃imt|θ1m] =
∑

g∈Gmst

p̃mgtPmg(Zi,Pt, θ1m, β̂t)

To obtain estimates for the quality parameters β̃mg(θ
NL
1m ) that enter the micro moments, I first follow

Berry et al. (1995) inverting simulated market shares to obtain the vector product- and market-specific
taste parameters β̃mgt(θ

NL
1m ) that rationalizes the observed product shares in each market conditional on a

given set of non-linear parameter vector θNL
1m =

{
α0
m, α1

m, γm
}

. Details on the simulation and inversion

procedure are provided below.3 I project the estimated taste parameters, ˆ̃ξmgt(θ
NL
1m ), on brand as well

as market dummies to control for market-level variation in the quality of the products included in the
base good. The coefficients on the brand dummies are used as estimates for the product-specific quality
parameters, β̃mg(θ

NL
1m ), employed in the quality micro moment. The residuals from these regressions

provide estimates for the transitory shocks, ξmgt(θ
NL
1m ), which are in turn used to calculate the macro

(store-level) moment conditions.
The fact that all three sets of moments depend only on module-specific data, Xm, and parameters,

θ1m, enables me to partition E.13 into module-specific auxiliary moments:

E[g(Xm; θ1m)] = 0

This partition allows me to estimate the K1m parameters, θ1m =
{
α0
m, α1

m, γm, {β̃mg}g∈Gm,g ̸=ḡm

}
,

for each module m in separate but parallel minimization procedures. Consistent estimates of the elas-

2I can only calculate the probability of purchase, Pmg(Zi,Pt, θ1m, β̂t), employed in the calculation of the
micro moments (ˆ̄g2(Xm; θ1m) and ˆ̄g3(Xm; θ1m)), when I observe the full choice set available to the Nielsen
household panelist i; that is, the set of products and prices available to the customer in the store and time period
that they are observed to make their purchase (Pt). I observe these choice sets for the stores and time periods in the
Nielsen RMS data, so calculate the micro moments using household transactions in these stores and time periods
alone.

3I also attempted estimating these taste shocks using a fourth set of moments equalizing the predicted expen-
diture shares of a simulated set of customers at each store in each time period with the observed sales shares for the
respective stores and time periods following Dubé et al. (2012)’s implementation of Berry et al. (1995). I ran into
difficulties getting this model to converge across many modules, however, given the non-linearity of the problem.
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ticity parameters, θNL
1m =

{
α0
m, α1

m, γm
}

, are obtained by minimizing module-specific GMM objective
functions as follows:

θ̂NL
1m = arg min

θNL
1m

ˆ̄g(Xm; θ1m)′Ŵ1m ˆ̄g(Xm; θ1m)

where ˆ̄g(Xm; θ1m) is the sample analog of the L1
m + 1 ≥ K1m moments, ḡ(Xm; θ1m) and Ŵ1m is the

efficient weighting matrix.
The weighting matrix, Ŵ1

1m, is block-diagonal since the three moments are calculated using differ-
ent datasets:

Ŵ1
1m =

 Ŵ 11
1m(Xm; θ̃1m) 0 0

0 Ŵ 12
1m(Xm; θ̃1m) 0

0 0 Ŵ 13
1m(Xm; θ̃1m)


−1

for

Ŵ 11
1m(Xm; θ̃1m) =

1

n

∑
mg,t

ĝ1mgt(Xm; θ̃1m)ĝ1mgt(Xm; θ̃1m)′

Ŵ 12
1m(Xm; θ̃1m) =

1

Nm

∑
mg

ĝ2mg(Xm; θ̃1m)ĝ2mg(Xm; θ̃1m)′

Ŵ 13
1m(Xm; θ̃1m) =

1

Nm

∑
mg

ĝ3mg(Xm; θ̃1m)ĝ3mg(Xm; θ̃1m)′

Each of these components is calculated using consistent first-stage estimates of θNL
1m :

θ̃NL
1m = arg min

θNL
1m

ˆ̄g(Xm; θ1m)′W1m ˆ̄g(Xm; θ1m)

for

W1m =


 1

n

∑
mg,t

∑
g∈Gmt

Z̃
1
mgt

(
Z̃

1
mgt

)′

−1

0 0

0 1 0

0 0 1


.

After estimating the non-linear parameters, θ̂NL
1m , I project the product-store-time specific taste

shocks implied by these parameters, β̃mgt(θ̂
NL
1m ), onto brand dummies in order to extract estimates of

the product quality parameters, {β̃mg}g∈Gm,g ̸=ḡm .
Assuming that the random components of the M module-specific auxiliary models are independent,
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the variance-covariance matrix of θ̂1, Ω1, can be written as:

Ωθ1 =



Ωθ11 0
. . .

Ωθ1m
. . .

0 Ωθ1M


where Ωθ1m is the variance-covariance matrix of θ1m for each m = 1, ...,M . The consistent estimator
for each of these sub-matrices is:

Ω̂θ1m =
(
F̂θ1m V̂

−1
ff F̂ ′

θ1m

)−1

where F̂θ1m =
[
F̂ 1
θ1m

F̂ 2
θ1m

]′
for

F̂ 1
θ1m =

1

n

∑
mg,t

∇θ1m ĝ
1
mgt(Xm; θ̂1m)

and
F̂ 2
θ1m =

1

Nm

∑
mg

∇θ1m ĝ
2
mg(Xm; θ̂1m)

and

V̂ff =

 1
n

∑
mg,t ĝ

1
mgt(Xm; θ̂1m)ĝ1mgt(Xm; θ̂1m)′ 0

0 1
Nm

∑
mg ĝ

2
mg(Xm; θ̂1m)ĝ2mg(Xm; θ̂1m)′


Inversion Algorithm In order to evaluate the objective function at a given parameter vector θNL

1m , it
is necessary to invert the following system of non-linear equations:

(E.14) βmgt(θ1m) → ln smgt(βt; θ
NL
1m ) = ln ŝmgt

where smgt(βt; θ
NL
1m ) is the model predicted market share of product g in market t, θNL

1m =
{
α0
m, α1

m, γm
}

is the subset of elasticity parameters that must be estimated using non-linear moments, and ŝmgt is the
observed share. For each guess of θNL

1m , I calculate the model predicted market share as the average
probability of purchase predicted for a quadrature of K points from the market-specific income distri-
bution (recall that income is used to proxy for non-grocery expenditure Zi) each with income Yk and
weight wk:

(E.15) smgt(βt; θ
NL
1m ) =

K∑
k=1

wkPmg(Yk,P, θm)

It is well known that this inversion does not work for products with small sales shares (see, e.g.,

11



Gandhi et al. (2019)). I therefore group all of the products that fall into the left tail of the average sales
distribution an outside product. This grouping could impact my estimates in three ways. First, Gandhi
et al. (2019) have demonstrated that ignoring the low end of the sales distribution in this manner yields
a downward bias on price elasticity estimates. Second, variation in the quality of the outside goods sold
in different stores could bias my average product quality estimates as discussed under identification in
Section 5.3.1. Finally, I will not estimate product quality parameters for products that always appear
in the low end of the sales distribution and, therefore, am unable to include them in the market price
indexes. To test the impact of these biases on my results, I study how the estimated price elasticities
and product quality gradients vary depending on the share of products that are grouped into this outside
product, varying this set between 40, 60, and 80 percent of products in each store-week (reflecting 6, 15,
and 33 percent of aggregate product sales, respectively) in the robustness exercises presented in Section
6.4.1.

Starting Values I estimate a linear approximation of the store-level market share equation to obtain
starting values for the non-linear parameters, θNL

1m =
{
α0
m, α1

m, γm
}

. When the optimization routine
returns estimates within 0.03 log units of the bounds for these non-linear estimates –α0

m ∈ (0.05, 30),
α1
m ∈ (−5, 5), and γm ∈ (−5, 5) – or otherwise fails, I instead conduct a grid search. Specifically, I run

the optimization routine using a range of starting values for the mean price elasticity, α0,start
m between 1

and 4, keeping the starting values for the non-homotheticity parameters of γstartm = 1.5 and α1,start
m = 2

(or zero, in the constrained model). If this yields multiple sets of interior estimates, I select the estimates
minimize the objective function.
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4 Additional Results

4.1 Full Distribution of Non-Homothetic Parameter Estimates

Figure E.2: Distribution of Parameter Estimates Across Modules
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Notes: The left-hand plot above depicts the distribution of the γm estimates, for the model allowing for non-homotheticity in the demand for
quality alone (i.e., restricting that α1

m=0) on the left and for the model allowing non-homotheticity in both the demand for quality and price
sensitivity (i.e., allowing both γm and α1

m to be non-zero) on the right. The right-hand plot above depicts the distribution of the α1
m

estimates, for the model allowing for non-homotheticity in price sensitivity alone (i.e., restricting that γm =0) on the left and for the model
allowing non-homotheticity in both the demand for quality and price sensitivity (i.e., allowing both γm and α1

m to be non-zero) on the right.
Attention is limited to modules for which the estimation procedure converged at interior estimates for all relevant parameters.

4.2 Out-of-Sample Fit
The model is currently estimated using data describing sales in a random sample of 1000 CBSA-month
markets for each product module. This leaves plenty of data to study the out-of-sample fit. The analysis
below studies the out-of-sample fit for the baseline model used for the price index analysis (i.e., the
model that allows non-homotheticity in the demand for quality, but not price sensitivity).

Figure E.3 compares the distribution of the unexplained component of store-month sales, which take
the structural interpretation of transient taste shocks, in the estimation sample with that in a secondary
sample of 1000 CBSA-month markets for each product module. The two distributions–truncated at the
1st and 99th percentiles–are very similar to one another.

This fit is summarized in the J-statistics of the macro moments.4 Figure E.4 compares the J-statistics
calculated using the model estimates for α0

m and γm in the secondary sample to the J-statistics for the
estimation sample. The average fit is, as expected, worse out-of-sample, but, barring some outliers, the
fit of the macro moments is highly correlated across modules between the estimation and secondary
samples.

4The CBSA-month sampling procedure prioritizes CBSA-months where HMS households are observed to
make product purchases, so there is not a secondary sample of household purchases with which I can calculate
out-of-sample micro moments.
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Figure E.3: Transient Taste Shocks (ξmgt − βmg) Predicted In-Sample and Out-of-Sample
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Notes: This plot shows the distribution of transient CBSA-month tastes for products, estimated using sales in the base sample of 1000
CBSA-month markets (in-sample) and then calculated using the same non-linear parameter estimates in a hold-back sample of 1000 different
CBSA-month markets (out-of-sample). This out-of-sample check is for the baseline model that allows for non-homotheticity in the demand
for quality but not in price sensitivity (i.e., restricting that α1

m=0).

Figure E.4: J-Statistics for CBSA-Level Moments In-Sample and Out-of-Sample
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Notes: This plot compares the fit of the CBSA-level moments estimated using sales in the base sample of 1000 CBSA-month markets (the
“estimation” sample) and then calculated using the same non-linear parameter values but for a hold back sample of 1000 different
CBSA-month markets (the “secondary” sample) across different modules. The fit of these moments in each sample is summarized with a
module-level J statistic calculated with the weighting matrix and CBSA-level moment conditions described above in Appendix Section 3.
This out-of-sample check is for the baseline model that allows for non-homotheticity in the demand for quality but not in price sensitivity (i.e.,
restricting that α1

m=0).
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4.3 Non-Parametric Price Index Results
The regression estimated in Table IV imposes that the elasticity of the income-specific price index with
respect to city income is log-linear in income. There is no reason for this to be the case. To obtain
non-parametric estimates of these elasticities at different income levels, I estimate the main regression
specification but with a household income dummy interacted with per capita city income instead of the
household income level interacted with per capita city income:

(E.16) ln P̂ (Pc, yk) = δk + β1yc + β2kyc + ϵkc,

I estimate this regression separately for each set of 100 bootstrapped samples of 50 random stores from
each CBSA. Figure E.5 plots the mean of the resulting β2k elasticity parameter estimates against log
household income, yk. These results indicate that there is indeed a linear relationship between this
elasticity and household income. Figure E.6 further shows the log linear relationship between the semi-
elasticity of price indexes with respect to market income and CBSA income; i.e., β2c in ln P̂ (Pc, yk) =

δc + β1yk + β2cyk + ϵkc.
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Figure E.5: Variation Across Bootstrap Samples in the Elasticity of Grocery Price Index with
respect to CBSA Income for Households at Different Size-Adjusted Income Levels
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Notes: This plot shows the elasticity of income- and CBSA-specific price indexes with respect to CBSA per capita income for households at
compares the different income levels. The point shows the mean elasticity estimated across 100 bootstrap iterations of price index calculations
(each drawing a random sample of 50 stores in each CBSA) and the bands show the 95 percent confidence intervals around this mean. The
price indexes are calculated using the baseline model that allows for non-homotheticity in the demand for quality but not in price sensitivity
(i.e., restricting that α1

m=0).

Figure E.6: Variation Across Bootstrap Samples in the Elasticity of Grocery Price Index with
respect to Household Income for CBSAs with Different Per Capita Income
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Notes: This plot shows the elasticity of household income- and CBSA-specific price indexes with respect to household income in CBSAs with
different per capita incomes. The point shows the mean elasticity estimated across 100 bootstrap iterations of price index calculations (each
drawing a random sample of 50 stores in each CBSA) and the bands show the 95 percent confidence intervals around this mean. The price
indexes are calculated using the baseline model that allows for non-homotheticity in the demand for quality but not in price sensitivity (i.e.,
restricting that α1

m=0). The marker labels for each CBSA are acronyms linked to the full CBSA name in Appendix A.4.
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5 Alternative Functional Form: CES Upper-Tier
In the main text of the paper, I assume that substitution between product modules is governed by Cobb-
Douglas utility. In this appendix, I present the model, estimation procedure, and results under the alter-
native assumption of CES utility. The results are similar to the baseline because the estimated elasticity
of substitution between modules is close to one.

5.1 Model
Under CES demand, a consumer i’s utility from grocery consumption, conditional on their non-grocery
expenditure Z, is a CES aggregate over consumer-specific module-level utilities:

(E.17) UiG(Q, Z) =

{∑
m∈M

uim (Qm, Z)
σ−1

σ

} σ

σ−1

where σ > 1 is the elasticity of substitution between modules and module-level utility is as defined in
the main text (equations (2) and (3)).

5.1.1 Individual Utility Maximization Problem

Consumers then solve for their optimal grocery consumption bundle for a given non-grocery expenditure
level Z by maximizing grocery utility subject to budget and non-negativity constraints (equation (6)).
The solution to this problem is a vector of optimal product selections (one for each module), g∗

i (Z) =

(g∗i1(Z), ..., g∗iM (Z)), and module-level expenditures, w∗
i (Z) = (w∗

i1(Z), ..., w∗
iM (Z)). The optimal

product selections are invariant to the upper-tier utility assumption, so defined as in equation (7) in the
main text:

g∗im(Z) = arg max
g∈Gm

(γm(Z)βmg + µm(Z)εimg) /pmg

The optimal module-level expenditures under the CES assumption are derived in appendix (5.4.1) below
to be:

w∗
im(Z) = (Yi − Z)

(
max
g∈Gm

(γm(Z)βmg + µm(Z)εimg) /pmg

)σ−1

P (P, Z, εi)1−σ
(E.18)

where P (P, Z, εi) is a CES price index over the grocery products that a consumer i optimally consumes
in each module:

(E.19) P (P, Z, εi) =

[∑
m∈M

(
max
g∈Gm

(γm(Z)βmg + µm(Z)εimg) /pmg

)σ−1
] 1

1−σ
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5.1.2 Measuring Relative Utility Across Markets

I measure relative grocery costs across cities using the price index faced by a representative consumer.
The representative consumer’s utility from consuming a grocery bundle Q is a nested-CES function
conditional on their non-grocery expenditure Z defined as:

(E.20) UCES
G (Q, Z) =


∑
m∈M

 ∑
g∈Gm

[qmg exp(βmgγm(Z))]
σm(Z)−1

σm(Z)


(

σm(Z)

σm(Z)−1

)
(σ−1

σ )


σ

σ−1

,

In appendix 2 below , I show that this income-specific, nested, asymmetric CES utility function yields
identical within-grocery budget shares as the CES-nested log-logit utility function that I estimate.

The indirect utility of this representative consumer from income Yi and prices and products Pt,
V CES(Pt, Yi), can be expressed as the ratio of the consumer’s grocery expenditure to a price index that
summarizes the consumer’s marginal utility from expenditure given the prices and products available in
the market:

(E.21) V CES(Pt, Yi, Zit) =
(Yi − Zit)

PCES(Pt, Zit)
,

where

PCES(Pt, Zit) =

∑
m∈M


 ∑
g∈Gmt

(
pmgt

exp(βmgγm(Zit))

)(1−σm(Zit))
 1−σ

1−σm(Zit)




1

1−σ

for pmgt equal to the unit price at which product g in module m is sold in market t.

5.2 Parameter Estimation
The routine for estimating the parameters that govern demand allocations across products within mod-
ules (θ1) are unchanged from that presented in section 5.3 of main text. The parameters that goven
cross-module expenditure allocations with the CES upper-tier are the cross-module substitution param-
eter, σ, and the quality of the base product in each module, βmḡm , for all modules m ∈ M, except for
the base module m̄.5 I denote this set of parameters by θ2:

θ2 =
{
σ, {βmḡm}m∈M,m̸=m̄

}
To estimate these parameters, I use a single set of moments that fit the predicted store-level module sales
shares observed in the Nielsen RMS data to those predicted by the model.

The expected log expenditure share in module m relative to m̄ for a group of households with the
same non-grocery expenditure, Zi, facing a common vector of grocery prices, P, is derived below in
Appendix 5.4.1. Adjusting this expression to reflect time-varying market-specific pricing and promotion

5I normalize the fixed quality of the base product in the base module (butter), βm̄ḡm̄ , to equal zero.
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activity yields:

(E.22) Eε [ln simt − ln sim̄t] = (σ − 1) ln Ṽm(Zi,Pmt,Pm̄t)

where Ṽmt(Zi,Pmt,Pm̄t) = Vmt(Zi,Pmt)/Vm̄t(Zi,Pm̄t). Vmt(Zi,Pmt) is a CES-style index over price-
adjusted product qualities:

(E.23) Vm(Zi,Pmt) =

 ∑
g∈Gm

(
exp(γimβmgt)

pmgt

)−αim

 1

−αim

Note that the inclusive value is a function of the parameters estimated in both the first and second stage,
i.e., θ1 and θ2. To see this recall that αim =

(
α0
m + α1

m lnZi

)
and γim = (1 + γm lnZi) and each

market-specific product quality shock, βmgt, is the the sum of (βmgt − βmḡmt), estimated in stage 1,
and an unknown base product quality shock, βmḡmt. We can express the inclusive value function as
the product of the base product quality parameter, βmḡmt, to be estimated in the second stage and an
inclusive value function calculated using only elements of θ1m estimated in the first stage:

Vm(Zi,Pmt) = exp(γimβmḡmt)V1m(Zi,Pmt)

where

(E.24) V1m(Zi,Pmt) =

 ∑
g∈Gm

(
exp(γimβ̃mgt)

pmgt

)−αim

 1

−αim

and β̃mgt = βmgt − βmḡmt. Under the normalization that βm̄ḡm̄t = 0 for all t, and using the decomposi-
tion of the inclusive value function above, we can now rewrite equation (E.22) as:

(E.25) Eε [ln simt − ln sim̄t] = (σ − 1)
(
γimβmḡmt + ln Ṽ1mt(Zi,Pmt,Pm̄t)

)
where ln Ṽ1mt(Zi,Pmt,Pm̄t) = lnV1m(Zi,Pmt)− lnV1m̄(Zi,Pm̄t).

The predicted log expenditure share of module m relative to module m̄ in market t is obtained by
aggregating i-specific expected relative shares over the units purchased by customers at each non-grocery
expenditure level:

Ez [Eε [ln simt − ln sim̄t]] = βmḡmt (σ − 1) γmt + (σ − 1) ṽmt(E.26)

where γmt =
∫
γimdF (Z|t) and ṽmt =

∫
ln Ṽ1mt(Zi,Pmt,Pm̄t)dF (Z|t) can be calculated using price

data and parameter estimates for θ1 obtained in stage 1 above.
The moment equation is then defined as:

h̄(θ2) =
1

n

∑
m,t

hmt(θ2) =
1

n

∑
m,t

umt(X; θ̂1, θ2)Wmt
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where n is the number of (market-module) observations; Wmt includes the average market-level quality
coefficient γmt interacted with module fixed effects and an instrument for the average relative inclusive
value for the module, ṽmt, described below; and umt denotes the difference between the observed log
relative module shares between modules m and m̄ in market t and their predicted values, i.e.,

(E.27) umt(X; θ̂1, θ2) = ln (smt/sm̄t)− βmḡm (σ − 1) γmt(θ̂1)− (σ − 1) ṽmt(θ̂1)

Identification of σ and βmḡm relies on the assumption that the errors in the model predicted shares
(umt) are orthogonal from Wmt. The umt errors can be broken into two components, umt = u1mt +

u2mt. The first, u1mt = (σ − 1)
(
βmḡm

(
γmt − γmt(θ̂1)

)
+ ṽmt − ṽmt(θ̂1)

)
, reflect errors in the first

stage estimates, while the second, u2mt = ξmḡmt (σ − 1) γmt for ξmḡmt = βmḡmt − βmḡm , reflect the
transitory components of the product-market taste shocks that are not estimated directly. To deal with the
endogeneity of prices with respect to these transitory taste shocks, I instrument for the average inclusive
value, vmt, using a data analog calculated with the same contemporaneous chain-specific national cost
shock instruments that are used in the module-level estimation in place of market-specific price data.

The σ substitution elasticity parameter is identified by the extent to which relative module shares
react to national chain-specific cost shocks for each module. Recall that the relative inclusive value,
ṽmt, is scaled up or down by the quality of the base product, ḡm, in a module m relative to the quality
of the base product, ḡm̄, in the base module m̄, butter (a product type sold in most stores), which is
normalized to equal zero. Any difference between the expenditure share of module m relative to butter
and what would be expected given the relative inclusive value of the two modules and the σ estimate
will identify the quality of the base product in the module, βmḡm , scaled by the market average taste
for quality, γmst. Together with the relative product quality estimates from the first stage of estimation,
βmg − βmḡm , the base product quality estimates define the quality of each product in the dataset relative
to the quality of the base product in the base module.

The upper-level estimation yields between-module elasticity σ estimates reported in Table E.II. As
expected, products in different modules are less substitutable than products in the same module, with
between-module substitution elasticities close to one.

Table E.II: Upper-Level Substitution Elasticity Estimates

Model Name σ

Homothetic 1.007
[0.137]

Non-Homothetic in Price 1.019
[0.162]

Non-Homothetic in Quality 1.002
[0.004]

Non-Homothetic in Quality and Price 1.001
[0.000]

Note: This table shows the estimates for the elasticity of substitution between modules.
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5.3 Results
Table E.III compares the main result of the paper using the baseline indexes that assume Cobb-Douglas
upper-tier (in columns [1] and [2]) with these results using indexes assuming a CES upper-tier (in
columns [3] and [4]). The cross-elasticity of grocery costs with respected to city and household in-
come estimated without controls is higher with CES demand (-0.26 in column [3] vs. -0.20 in column
[1]) but the difference is not statistically significant and the two coefficients converge once population
controls are added in columns [2] and [4]. This is not surprising, given how close the estimated elasticity
of substitution parameters in Table E.II are to one.

Table E.III: City-Income Specific Price Index Regressions using CES Upper-Tier

Dependent Variable: Ln(Price Index for Household in Income Group k in CBSA c)

Across-Module Aggregation: Cobb-Douglas (Baseline) CES

[1] [2] [3] [4]

Ln(Per Capita Incomec) (β1) -0.068 -0.042 -0.10 -0.031
(0.088) (0.10) (0.13) (0.15)

Ln(Per Capita Incomec)∗ -0.18∗∗∗ -0.15∗∗∗ -0.26∗∗∗ -0.19∗∗

Demeaned Ln(HH Incomek) (β2) (0.038) (0.039) (0.061) (0.061)

Ln(Populationc) (β3) -0.0095 -0.026
(0.018) (0.026)

Ln(Populationc)∗ -0.011 -0.026∗∗

Demeaned Ln(HH Incomek) (β4) (0.0072) (0.0094)

Income Group k*Bootstrap Sample FEs Yes Yes Yes Yes
Number of CBSAs (c) 125 125 125 125
Observations 100,000 100,000 100,000 100,000
adj. within R2 0.02 0.02 0.02 0.03

Notes: *** p< 0.01, ** p<0.05, * p<0.10; standard errors, clustered by bootstrap sample and CBSA, are in parentheses.This table presents
results from regressions of household income- and CBSA-specific grocery price indexes against CBSA characteristics alone and interacted
with demeaned log household income. The price indexes correspond to the model that allows for non-homotheticity in the demand for quality
but not in price sensitivity (i.e., restricting that α1

m=0) and measure how households at eight different income levels between $25,000 and
$200,000 value the products and prices represented in each of 100 bootstrap samples of 50 stores in each of 125 CBSAs with 50 or more
participating retailers. The price indexes studied in columns [1] and [2] assume Cobb-Douglas upper-tier demand system, as presented in the
main text. The price indexes studied in columns [3] and [4] assume CES upper-tier demand, as described in the appendix above.

5.4 Appendices to CES Upper-Tier Analysis

5.4.1 Derivation of Module-Level Expenditure Shares

Consumer i, spending Z on non-grocery items, chooses how to allocate expenditures between modules
by selecting w1, ..., wM to maximize

Ui(w1, . . . , wM ) =

{∑
m∈M

[
wm max

g∈Gm

exp(γm(Z)βmg + µm(Z)εimg)

pmg

]σ−1

σ

} σ

σ−1
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subject to ∑
m∈M

wm ≤ Yi − Z

We simplify the expression for the target utility function by denoting consumer i’s marginal utility
from expenditure in module m as the inverse of Aim:

(E.28) max
g∈Gm

exp(γm(Z)βmg + µm(Z)εimg)

pmg
=

1

Aim

The within-module allocation decision now simplifies to:

(E.29) w∗
i (Z) = (w∗

i1(Z), ..., w∗
iM (Z)) = arg max∑

m∈M
wm ≤ Yi − Z

{∑
m∈M

[
wm

Aim

]σ−1

σ

} σ

σ−1

The utility function over module expenditures is concave in module expenditure for each module m.
Therefore, there will be an interior solution to the maximization problem and it can be solved using the
first order conditions with respect to expenditure in each module m. The first order condition for each
module m is:

∂Ui(w1, . . . , wM )

∂wm
=

{∑
m∈M

[
wm

Aim

]σ−1

σ

} 1

1−σ
1

Aim

[
wm

Aim

]− 1

σ

= λ

where λ is the marginal utility of expenditure. This implies that the marginal utility of expenditure must
be equal across modules. We use this equality across two modules, m and m′, to solve for the optimal
expenditure in module m′:

{∑
m∈M

[
wm

Aim

]σ−1

σ

} 1

1−σ
1

Aim′

[
wm′

Aim′

]− 1

σ

=

{∑
m∈M

[
wm

Aim

]σ−1

σ

} 1

1−σ
1

Aim

[
wm

Aim

]− 1

σ

1

Aim′

[
wm′

Aim′

]− 1

σ

=
1

Aim

[
wm

Aim

]− 1

σ

wm′ = wm

[
Aim′

Aim

]1−σ

Imposing the budget constraint,
∑
m∈M

wm′ =
∑
m∈M

wm ≤ Yi − Z, yields an expression for wm in terms
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of total expenditure, Yi − Z, and an index of the Aim terms:

Yi − Z =
∑

m′∈M
wm′

Yi − Z =
wm

A1−σ
im

∑
m′∈M

[Aim′ ]1−σ

wm =
A1−σ

im∑
m′∈M

[Aim′ ]1−σ
(Yi − Z)

The solution to problem (E.29) is, therefore,

w∗
i (Z) = (w∗

i1(Z), ..., w∗
iM (Z)) where w∗

im =
A1−σ

im

Pi
1−σ

(Yi − Z) ∀m ∈ M

where Pi(Z) is a CES price index over Aim for all modules m ∈ M defined as:

Pi(Z) =

[∑
m∈M

A1−σ
im

] 1

1−σ

Substituting from equation (E.28) for Aimg yields consumer i’s optimal module expenditure vector,
w∗

i (Z), as a function of total grocery expenditures, prices, and model parameters:

w∗
i (Z) = (w∗

i1(Z), ..., w∗
iM (Z)) where w∗

im = (Yi − Z)

[
max
g∈Gm

exp(γm(Z)βmg + µm(Z)εimg)

pmg

]σ−1

Pi(Z)1−σ

Pi(Z) =

[∑
m∈M

(
max
g∈Gm

exp(γm(Z)βmg + µm(Z)εimg)

pmg

)σ−1
] 1

1−σ

5.4.2 Between-Module Relative Market Expenditure Shares

I now want to generate a estimatiing equation that can be used to identify σ and {βḡm}g∈Gm
using data

on module-level income-specific market shares. The optimal cross-module expenditure allocation for
consumer i conditional on this consumer’s idiosyncratic utility draws for each product in each module
is characterized by the following equations:

w∗
i (Z,P) = (w∗

i1(Z,P), ..., w∗
iM (Z,P)) where w∗

im = (Yi − Z)

[
max
g∈Gm

p̃img

]σ−1

Pi(Z)1−σ

Pi(Z,P) =

[∑
m∈M

(
max
g∈Gm

p̃img

)σ−1
] 1

1−σ
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where p̃img = exp(γm(Z)βmg+µm(Z)εimg)
pmg

. Dividing through by total grocery expenditure, (Yi−Z), I gen-
erate consumer i’s optimal module m expenditure share, conditional on their non-grocery expenditure
Z and the vector of prices they face, P:

sim(Z,P) =
w∗
im(Z)

Yi − Z
=

[
max
g∈Gm

p̃img

]σ−1

Pi
1−σ

When deriving the within-module relative market share, I take the expectation of the consumer’s ex-
pected product expenditure share over the idiosyncratic errors, Eε[simg|m(Z,Pm)], to derive an expres-
sion for the market share of each product. I then divide these market shares by the market share of a
module specific base product and take logs to linearize the equation. I change the order of this procedure
when deriving the between-module relative market share equation, i.e. difference and take the log of
the individual’s expenditure shares before taking the expectation of these terms over the idiosyncratic
errors. The reason for this reordering is that the consumer’s module expenditure shares include a term,
Pi, that depends non-linearly on all of the consumer’s idiosyncratic utility draws. This term is common
to all of the consumer’s module shares, and thus drops out of the consumer’s relative module expendi-
ture shares, so that these relative shares are functions of the consumer’s idiosyncratic utility draws in
the two relevant modules. The log of this relative module expenditure share term is additive in terms
that depend on the consumer’s idiosyncratic utility draws in only one module at a time; that is, a term
that depends on the consumer’s idiosyncratic utility draws in module m and a term that depends on the
consumer’s idiosyncratic utility draws in the base module m̄. This makes the expectation of the con-
sumer’s log expenditure share in module m relative to module m̄ easier to derive than the expectation of
the consumer’s expenditure share for a single module m.6

I now generate the relative module market shares. As discussed above, I first divide consumer i’s
module expenditure share, sim(Z,P), by his/her expenditure share in some fixed base module m̄:

sim(Z,P)
sim̄(Z,P)

=

[
max
g∈Gm

p̃img

]σ−1

[
max
g∈Gm̄

p̃im̄g

]σ−1

Since Pi does not vary across modules for a given consumer i, it drops out of the relative module

6The order of the expectation, differencing, and log operations does not make a difference to the relative
market share equation in the within-module case, that is:

ln(smg|m(Z,Pm))− ln(smḡ|m(Z,Pm)) = ln
[
Eε[simg|m(Z,Pm)]/Eε[simḡ|m̄(Z,Pm)])

]
= Eε

[
ln(simg|m(Z,Pm))− ln(simḡ|m(Z,Pm))

]
= (α0

m + α1
m lnZ) [(βmg − βmḡ)(1 + γm lnZ)− (ln pmg − ln pmḡ)]

I derive the expression for the Z-specific market share of product g, smg|m(Z,Pm) = Eε[simg|m(Z,Pm)], before
taking logs and differencing to generate the estimation equation, as it demonstrates the relationship between the
term on the left-hand side of this equation, ln(smg|m(Z,Pm)) − ln(smḡ|m(Z,Pm)), and its value in the data: the
difference between the log of the expenditure consumers spending Z on non-grocery items in a given market on
product g relative to the log of their expenditure on the base product ḡ or, more succinctly, the log difference
between the Z-specific market shares on products g and ḡ.
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expenditure share expression. I take the log of this relative share expression to linearize the equation:

ln sim(Z,P)− ln sim̄(Z,P) = (σ − 1) ln

(
max
g∈Gm

p̃img

)
− (σ − 1) ln

(
max
g∈Gm̄

p̃im̄g

)
,

This equation is a linear function of two terms, the first of which depends on the consumer’s idiosyn-
cratic utility draws in only module m and the second of which depends on the consumer’s idiosyncratic
utility draws in only module m̄. The expectation of the log difference between the consumer’s module
expenditure shares can be split into the difference between two expected values:

Eε [ln sim(Z,P)− ln sim̄(Z,P)] = (σ − 1)

{
Eε

[
ln

(
max
g∈Gm

p̃img

)]
− Eε

[
ln

(
max
g∈Gm̄

p̃im̄g

)]}(E.30)

Consider the two expectation terms in equation (E.30). Both take the same form, and thus I only solve
for the first expectation:

(E.31) Eε

[
ln

(
max
g∈Gm

p̃img

)]
The expectation term defined in equation (E.31) is the expected value of the log of a maximum.

Since the log is a monotonically increasing function, we can switch the order of the log and maximum
functions inside the expectation and linearize to yield:

Eε

[
ln

(
max
g∈Gm

p̃img

)]
= Eε

[
ln

(
max
g∈Gm

exp(γm(Z)βmg + µm(Z)εimg)

pmg

)]
= Eε

[
max
g∈Gm

ln

(
exp(γm(Z)βmg + µm(Z)εimg)

pmg

)]
= Eε

[
max
g∈Gm

γm(Z)βmg − ln pmg + µm(Z)εimg

]
= µm(Z)Eε

[
max
g∈Gm

(γm(Z)βmg − ln pmg)/µm(Z) + εimg

]
(E.32)

De Palma and Kilani (2007) show that, for an additive random utility model with ui = νi + εi, i =

1, . . . , n and εi
iid∼ F (x) a continuous CDF with finite expectation, the expected maximum utility is:

Eε[max
i

νi + εi] =

∫ ∞

−∞
zdϕ(z) where ϕ(z) = Pr[max

k
νk ≤ z] =

n∏
k=1

F (z − νk)

Since the expectation in equation (E.32) takes the form Eε[max
g

νimg+εimg], with νimg = (γm(Z)βmg−

ln pmg)/µm(Z), and since I have assumed that εimg
iid∼ F (x) for F (x) = exp(− exp(−x)), I can use

the de Palma and Kilani (2007) result to solve for the expectation as follows, dropping the i and m
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subscripts for the notational convenience:

Eε

[
max
g∈Gm

vg + εg

]
=

∫ ∞

−∞
zdϕ(z)

=

∫ ∞

−∞
zd

Gm∏
g=1

exp(− exp(vg − z))


=

∫ ∞

−∞
zd

exp
Gm∑

g=1

− exp(vg − z)


=

∫ ∞

−∞
z

Gm∑
g=1

exp(vg − z)

 exp

Gm∑
g=1

− exp(vg − z)

 dz

Let V = ln

Gm∑
g=1

exp(vg)

 and x =

Gm∑
g=1

exp(vg − z) =

Gm∑
g=1

exp(vg)

 exp(−z) = V exp(−z). I solve

the above integral by substituting for z = V − lnx, where dz = −(1/x)dx :

Eε

[
max
g∈Gm

vg + εg

]
=

∫ ∞

−∞
z

Gm∑
g=1

exp(vg − z)

 exp

Gm∑
g=1

− exp(vg − z)

 dz

=

∫ ∞

−∞
z exp

Gm∑
g=1

− exp(vg − z)

Gm∑
g=1

exp(vg − z)

 dz

=

∫ 0

∞
(V − lnx) exp (−x)x(−1/x)dx

=

∫ ∞

0
(V − lnx) exp (−x) dx

= V

Since we have defined νimg = (γm(Z)βmg − ln pmg)/µm(Z) and V = ln

Gm∑
g=1

exp(vg)

, we can use

the above result to solve for the expectation in equation (E.31):

Eε

[
ln

(
max
g∈Gm

p̃img

)]
= µm(Z) ln

 ∑
g∈Gm

exp((γm(Z)βmg − ln pmg)/µm(Z))


= µm(Z) ln

 ∑
g∈Gm

(
exp(γm(Z)βmg)

pmg

) 1

µm(Z)


= ln

 ∑
g∈Gm

(
exp(γm(Z)βmg)

pmg

) 1

µm(Z)

µm(Z)

(E.33)
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Plugging this result back into equation (E.30) yields the expected relative module expenditure share for
consumer i in terms of product prices and model parameters:

Eε [ln sim(Z,P)− ln sim̄(Z,P)]

= (σ − 1)Eε

[
ln

(
max
g∈Gm

exp(γm(Z)βmg + µm(Z)εimg)

pmg

)]
− (σ − 1)Eε

[
ln

(
max
g∈Gm̄

exp(γm̄(Z)βm̄g + µm̄(Z)εim̄g)

pm̄g

)]

= (σ − 1) ln

 ∑
g∈Gm

(
exp(γm(Z)βmg)

pmg

) 1

µm(Z)

µm(Z)

− (σ − 1) ln

 ∑
g∈Gm̄

(
exp(γm̄(Z)βm̄g)

pm̄g

) 1

µm̄(Z)

µm̄(Z)

This function only varies by consumer through their non-grocery expenditure. All consumers with
the same non-grocery expenditure and facing the same prices, P, will have the same expected relative
module expenditure share:

Eε [ln sim(Z,P)− ln sim̄(Z,P)] = − (σ − 1) [lnVm(Z,Pm)− lnVm̄(Z,Pm̄)](E.34)

where Vm(Z,Pm) is a CES-style index over price-adjusted product qualities:

(E.35) Vm(Z,Pm) =

 ∑
g∈Gm

(
exp(βmg(1 + γm lnZ))

pmg

)(1−σ)
 1

1−σ

where I have substituted in the parametrizations for γm(Z) = (1 + γm lnZ) and µm(Z) = 1/
(
α0
m + α1

m lnZ
)
.

Equations (E.34) and (E.35) together define the expected relative module expenditure share of a set of
households with income Yi that face prices Pm and Pm̄ in terms of parameters α0, α1, as well as αm,
γm, βmg for all g ∈ Gm, and αm̄, γm̄, βm̄g for all g ∈ Gm̄.

Extracting Second Stage Estimates θ2 From the Inclusive Value Function The expected
log expenditure share in module m relative to m̄ for a group of households with the same non-grocery
expenditure, Zi, facing a common vector of grocery prices, P, is defined above in Equations (E.34)
and (E.35). Adjusting these expressions to reflect time-varying CBSA-specific pricing and promotion
activity yields:

(E.36) Eε [ln simt − ln sim̄t] = (σ − 1) ln Ṽm(Zi,Pmt,Pm̄t)
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where Ṽm(Zi,Pmt,Pm̄t) = Vm(Zi,Pmt)/Vm̄(Zi,Pm̄t). Vm(Zi,Pmt) is a CES-style index over price-
adjusted product qualities:

(E.37) Vm(Zi,Pmt) =

 ∑
g∈Gm

(
exp(γimβmgt)

pmgt

)−αim

 1

−αim

for αim =
(
α0
m + α1

m lnZi

)
and γim = (1 + γm lnZi). Note that the inclusive value is a function of

the parameters estimated in both the first and second stage, i.e., θ1 and θ2. Specifically, each market-
specific product quality shock, βmgt, is the the sum of (βmgt − βmḡmt), estimated in stage 1, and an
unknown base product quality shock, βmḡmt. We can express the inclusive value function as the product
of the base product quality parameter, βmḡmt, to be estimated in the second stage and an inclusive value
function calculated using only elements of θ1m estimated in the first stage:

Vm(Zi,Pmt) = exp(γimβmḡmt)V1m(Zi,Pmt)

where

(E.38) V1m(Zi,Pmt) =

 ∑
g∈Gm

(
exp(γimβ̃mgt)

pmgt

)−αim

 1

−αim

and β̃mgt = βmgt − βmḡmt. Under the normalization that βm̄ḡm̄t = 0 for all t, and using the decomposi-
tion of the inclusive value function above, we can now rewrite equation (E.36) as:

(E.39) Eε [ln simt − ln sim̄t] = (σ − 1)
(
γimβmḡmt + ln Ṽ1mt(Zi,Pmt,Pm̄t)

)
where ln Ṽ1mt(Zi,Pmt,Pm̄t) = lnV1m(Zi,Pmt)− lnV1m̄(Zi,Pm̄t).

The predicted log expenditure share of module m relative to module m̄ in market t is obtained by
aggregating i-specific expected relative shares over the units purchased by customers at each non-grocery
expenditure level:

(E.40) Ez [Eε [ln simt − ln sim̄t]] =

∫
(σ − 1)

(
γimβmḡmt + ln Ṽ1mt(Zi,Pmt,Pm̄t)

)
dF (Z|t)

where F (Z|t) is the distribution of non-grocery expenditures over the households shopping in market t.
Notice that this function is linear in the unobserved base product quality for module m, βmḡmt, and

the relative inclusive value function, so we can derive the following linear estimating equation:

(E.41) Ez [Eε [ln simt − ln sim̄t]] = βmḡmt (σ − 1) γmt + (σ − 1) ṽmt

where γmt =
∫
γimdF (Z|t) and ṽmt =

∫
ln Ṽ1mt(Zi,Pmt,Pm̄t)dF (Z|t) can be calculated using price

data, estimates of the market-level income distributions, and stage 1 parameter estimates.
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Estimation of θ2 = {σ, {βmḡm}m=1,...,M,m̸=m̄} In the second step of the sequential estimation
procedure, I estimate θ2 = {σ, {βmḡm}m=1,...,M,m̸=m̄}. These K2 = 1 + M parameters are identified
by the following exogeneity restriction:

(E.42) G = E[h(X; θ1, θ2)] = 0

where h(X; θ1, θ2) = Z2(X)·u(X; θ1, θ2). Z2(X) is a set of L2 instruments (L2 ≥ K2) and u(X; θ1, θ2)

is the error in the relative across-module expenditure share equation derived above.
Specifically, for module m and store s in time t this error is derived above in equation (E.41) as:

umt(X; θ1, θ2) = ln (smt/sm̄t)− βmḡm (σ − 1) γmt(θ̂1)− (σ − 1) ṽmt(θ̂1)

where smt and sm̄t are data on the respective sales shares of module m and m̄ in market t; each x̄mt =∫
ximtdF (Z|t) is calculated by integrating ximt over the same local income distribution employed in the

first-stage of estimation described above, for γim = (1 + γm lnZi) and ṽmt = lnV1m(Zi,Pmt, θ1m) −
lnV1m̄(Zi,Pm̄t, θ1m) where

V1m(Zi,Pmt, θ1m) =

 ∑
g∈Gm

(
exp(γimβ̃mgt)

pmgt

)−(α0
m+α1

m lnZi)
 1

−(α0
m+α1

m lnZi)

is the inclusive value for a household with non-grocery expenditure Zi in module m in market t calcu-
lated using first-stage parameter estimates, θ̂1 .

Z2(X) is a vector of pre-determined variables including module fixed effects interacted with the
market average quality weight, γmt, and an instrument for the average relative inclusive value, ṽmt(θ̂1),
faced by the store’s customers. This instrument is identical to the data analog of ṽmt(θ̂1) but calculated
using the same contemporaneous chain-specific national cost shock instruments that are used in the
module-level estimation in place of market-specific price data.

The upper-level parameters are estimated using two-step GMM:

θ̂2 = arg min
θ2

ĥ(X; θ̂1, θ2)
′Ŵ2ĥ(X; θ̂1, θ2)

where Ŵ2 =

 1∑
t

Nt

∑
t

∑
m∈Mt

hmt(X; θ̂1, θ̃2)hmt(X; θ̂1, θ̃2)
′


−1

is the optimal weighting matrix,

for θ̃2 the consistent first-stage estimates of θ2 that minimize a GMM objective function as follows:

θ̃2 = arg min
θ2

ĥ(X; θ̂1, θ2)
′W̃2ĥ(X; θ̂1, θ2)
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where W̃2 =

 1∑
t

Nt

∑
t

∑
m∈Mt

Z2mtZ′
2mt


−1

.
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