
Documentation for Within-Module Estimation (runmicroblp.m)
Main Steps

1. Data work (step0_datawork.m)

• Output dimensions of data for diagnostic purposes

2. Linear estimation (step1_microblp with options set to only run linear estimation - step1_microblp(0,0,0))

• Output linear estimates

3. Test non-linear objective function (step1_microblp with options set to only test objective function - step1_microblp(0,0,1))

• Output calculation times

4. Check non-linear gradient functions (step1_microblp with options set to check gradient function - step1_microblp(0,1,1))

• Output calculation times and gradient check results

5. Run non-linear estimation (step1_microblp with options set to check gradient function - step1_microblp(1,0,1))

• Output calculation times and non-linear estimation results

1 Data work (step0_datawork.m)
1. Imports data or simulates and cleans simulated data (0ai_generatedata.m and 0aii_cleansimulateddata.m)

2. Imposes sample limits:

(a) Keeps a random subsample of maxT markets, with priority to markets that we observe households shopping
in.

(b) Aligns identifiers across datasets sample limits imposed (0b_alignidentifiers.m).

(c) Exits if we have too few markets (less than 5) with any non-outside goods.

3. Preps data for estimation:

(a) Generates “draws” - quadrature points - to represent each market income distribution (0c_generatedraws.m).

(b) Demeans income so that linear parameters can be compared across models with and without non-linear pa-
rameters.

(c) Differences data from outside good and drops outside good observations.

(d) Generates, rescales and selects (through pca transformation) instruments (including price instruments and
brand dummies).

(e) Dimension work required for non-linear estimation

i. Generate subscript matrices
ii. Group markets into roughly equally sized sets of observations for sequential or parallel processing of

independent components of constraint and Hessian matrices.

• Note: Product and brand counts are calculated including the outside good.

1

1.1 Simulation Code (0ai_generatemicrodata.m):
uijt = exp ((αiγi (βj + ξjt)− αi log pjt))

where prices are p = (βj + ξjt) − min (βj + ξjt) + u1jt and price instruments are defined as z = u2jt + |u1jt|, for
log u1jt ∼ N(0.1, 1), u2jt ∼ N(0, 0.1), and ξjt ∼ N(0, σjt).

Shares are calculated as:
vjt = sjt =

1

Nt

∑
i

uijt∑
j∈Jt uijt

1.2 Cleaning Simulated Data (0aii_cleansimulateddata.m):
• Sales shares are defined as

sjt =
1

Nt

∑
i

vjt
1 +

∑
j∈Jt vjt

– including the outside good observations

• Price censoring:

– Observations with prices greater than 5 standard deviations from the mean within a product are removed from
the sample. Markets where these prices were observed are removed from the sample.

– Observations with prices greater than 5 standard deviations from the mean within a module are removed from
the remaining sample. Markets where these prices were observed are removed from the sample.

• Outside good:

– Products whose average sales share across markets where they are sold is in the lowest 10th percentile for the
sample are allocated to the “outside good.”

– All products in the brand with the lowest average sales shares across markets where it is sold are allocated to
the “outside good.”

– Markets that don’t sell any “outside good” product or at least two “inside good” products are dropped from
the sample.

– Price, instrument, and share data for the outside good is calculated as the average value for the (non-logged)
price and price instruments and the sum of the observed market shares.

– The outside good is allocated brand 1.

1.3 Identifier creation (0b_alignidentifiers.m):
• Make sure that market, product and brand identifiers are 1:T, 1:J, and 1:B and aligned across market and household

data.

• Drop markets that don’t sell an outside good or whose product count is under 2.

• Accumulate and append outside good data as one observation per market.

– Note:
sijt =

uijt∑
j∈Jt uijt

=
uijt∑

j∈JOt
uijt +

∑
j∈JIt

uijt

* Suppose that βjt = β0t for all j ∈ JOt and P0t =
[∑

j∈JOt
(pjt)

−αi
]− 1

αi , then:

2

* Therefore, we have that the log share of any product j relative to the outside good is:

ln sijt − ln si0t = ln ũijt

where ũijt = uijt/
(∑

j∈JOt
uijt

)
= exp (αiγi (βjt − β0t)− αi (log pjt − logP0t)).

* We can also express the share of any product j in terms of relative product qualities and prices since:

sijt =
ũijt

1 +
∑
j∈JIt

ũijt

* In practice, we proxy for P0t with a sales-weighted average of the prices paid in market t.

* All data is differenced from market fixed effects in order to adjust for differing quality and measurement
error of prices of the outside good across markets.

2 Within-Module Estimation Sub-Program (step1_microblp.m)
This program loops around the 4 models to be estimated and, depending on the input arguments (objfuntest, checkgradi-
ents, and nlestimate), performs some cumulative subset of the following:

1. Generates linear estimates (step2_thetalin_twostep.m)

2. Sets starting values (step3_startandrescale.m)

(a) Makes sure that elasticities (alpha0, alpha1, gamma) are within bounds.

(b) Times objective function (step 4a_gmmobjective.m) and check that it is defined at starting values. Set Knitro
objective function scaling.

3. Identifies deltas implied by starting elasticity values (step3a_alldeltas, step3b_solvefordeltas).

4. Runs non-linear estimation, calculate efficient weighting matrix, and re-run estimation with this weighting matrix
(step4a_gmmobjective).

(a) If corner solution or negative exit flag, re-estimate using a grid of starting values (i.e., manual multistart).

5. Outputs estimates and standard errors.

2.1 Linear estimation (step2_thetalin_twostep.m)
• Variables:

– Bjt = data.bdums(:,2:end): one brand dummy for each brand except the outside good

– x̃jt = xjt − x̄t data.relx: demeaned log price

– z̃jt = zjt − z̄t data.relz: rescaled differenced (log) price instruments

– ỹt = yt − ln(37, 500) data.dmmktlninc: “demeaned” market log income

– σyt = data.vlninc: standard deviation of income within a market t

– Zjt = data.relZ: dummies for all, including, outside good (acts as a constant) + differenced (log) price instru-
ments in level then interacted with mkt mean income, mkt mean income^2, and mkt sd(income)

* If Kjt =
[
Bjt z̃jt

]
, Zjt =

[
Kjt Kjtyt Kjty

2
t Kjtσ

y
t

]
– A = data.relA = (data.relZ’ data.relZ)^-1

3

• Estimation procedure:

– For simplest case, α1, γ = 0: l̃n sjt = α0β̃j −α0 l̃n pjt+ εjt where εjt =
(
δ̃jt − β̃jt

)
νjt and x̃jt = xjt− x̄t

* ivest = ivregression(rellnsjt, relX, data.relZ, data.relA)
· relXjt =

[
Bjt x̃jt

]
= relX: dummies for all but outside good + differenced log pricerelx includes

dummies for all but the outside good (and no constant)
· relZ and relA are as defined above.

* α̂lin0 =-ivest(end,1)

* β̂linj =[ivest(1:(end-1))-ivest(1))/alpha0]

– For case where α1, γ 6= 0: l̃n sjt = αtγtδ̃jt − αt l̃n pjt + εjt where αt = α0 + α1ỹt and γt = 1 + γỹt

* Step 1: l̃n sjt = α0β̃j − α0 l̃n pjt + εjt where εjt =
(
δ̃jt − β̃jt

)
νjt and x̃jt = xjt − x̄t

· ivest = ivregression(rellnsjt, relX, data.relZ, data.relA)
· relXjt =

[
Bjt x̃jt

]
= relX: dummies for all but outside good + differenced log pricerelx includes

dummies for all but the outside good (and no constant)
· relZ and relA are as defined above.
· α̂lin0 =-ivest(end,1)

· β̂linj =[ivest(1:(end-1))-ivest(1))/alpha0]

l̃n sjt = (1 + γỹt)
(
α̂0 + α1ỹt

)
ˆ̃
βj −

(
α̂0 + α1ỹt

)
l̃n pjt + µjt

= α̂0

(
ˆ̃
βj − l̃n pjt

)
+ γỹtα̂0 ˆ̃

βj + α1ỹt

(
ˆ̃
βj − l̃n pjt

)
+ γα1 (ỹt)

2 ˆ̃
βj + µjt

* Step 2: l̃n sjt − Controljt = γỹtα̂0 ˆ̃
βj + α1ỹt

(
ˆ̃
βj − l̃n pjt

)
+ α1γ (ỹt)

2 ˆ̃
βj + µjt where Controljt =

α̂0

(
ˆ̃
βj − l̃n pjt

)
· ivest2=ivregression(rellnsjt2,relX2,relZ2,relA2)

· relX2 =
[
ỹtα̂0 ˆ̃

βj ỹt

(
ˆ̃
βj − l̃n pjt

)
(ỹt)

2 ˆ̃
βj

]
· relZ2 =

[
ỹtα̂0 ˆ̃

βj ỹt

(
ˆ̃
βj − z̃jt

)
(ỹt)

2 ˆ̃
βj

]
· relA2= (data.relZ2’ data.relZ2)^-1

2.2 Set starting values (step3_startandrescale.m)
1. Makes sure that elasticities (alpha0, alpha1, gamma) are within bounds.

2. Rescales starting values (rescale.m).

3. Times objective function (step 4a_gmmobjective.m) and checks that it is defined at starting values. Set Knitro
objective function scaling.

4

2.3 Minimize non-linear objective function (4a_gmmobjective.m)

G(δ; θ)
′
WG(δ; θ)

where:

G(δ; θ) =

[
G1(δ; θ)
G2(δ; θ)

]
=

 Z ′ξ(δ)
E[δj∗itYi|δ, θ]
E[p̃j∗itYi|δ, θ]


1. Identifies delta (mean utility) values using fixed point algorithm (step3a_alldeltas.m which calls step3b_solvefordeltas.m

sequentially or in parallel).

• For a set of markets (specified in ids.nTset, ids.Tsetmin, and ids.Tsetmax created in step0_dataprep.m), the
code calculates the product-level market shares predicted by the model for a given θ and ξ: s(ξ; θ) and
the difference between these predicted market shares and the empirical market shares. The fixed point is
identified using a constrained optimization routine with constant (zero) objective function. The constraint
(and Jacobian) are defined in step3c_cons_s_par (using shares from: step3ci_rc_shares_multmkt.m and
step3cii_Fdelta_par.m). The Hessian is defined in step3d_d2Fddelta2_par.m.

• For starting values, the code uses the fact that ln sjt − ln s0t = αimγimδjt − αimx̃jt where x̃jt = xjt − x̄t,
δ0jt =

(
(ln sjt − ln s0t) + α̂0,lin

m x̃jt
)
/α̂0,lin

m

2. Extracts xi and calculate macro moment.

G1(δ; θ) = Z ′ξ(δ) = Z ′
(
δ − (X ′X)

−1
X ′δ

)
(a) Pre-multiply delta by data.pre’ (XX) to extract implied: beta = data.pre’*delta.

(b) Pre-multiply quality shock by instruments to calculate macro moment: g = data.relZ’*(delta -
beta_hat(data.brandid))

(c) Calculate Jacobian matrix and gradient function (∇θ,δg1) using step3c_cons_s_par
(shares from step3ci_rc_shares_multmkt.m and step3cii_Fdelta_par.m for constraint).

3. Calculates micro moments.

G2(θ) =
1

N

∑
t∈T

∑
hj∈Hjt

Yht − 1

N

∑
t∈T

∑
hj∈Hjt

Yht

((xhjt −(∑j xjtshjt(δ; θ)∑
j shjt(δ; θ)

))

. . . − 1

N

∑
t∈T

∑
hj∈Hjt

(
xhjt −

(∑
j xjtshjt(δ; θ)∑
j shjt(δ; θ)

))
where for xhjt equal to either phjt, the relative unit value paid by a household h for a product j that they purchased
in market t, or δhjt, the perceived quality of the product j that they purchased in market t. Ht denotes the set
of sample households observed shopping in each market t ∈ T and Hjt denotes the set of sample households
who purchase product j in market t. N is the number of household-product purchases observed. Yht denotes the
income of sample household h in market t and shjt(δ; θ) denotes the expected probability that sample household h
purchases product j in market t.

• step4bi_cons_g2_par.m calculates constraint and gradient functions∇θ,δg2,∇θ,δg3) to prepare inputs (using
shares from step3ci_rc_shares_multmkt.m).

5

