Fixing Incorrect UPC Version Changes

0. Note

All examples are based on modified datasets built for documentational purpose. There will be some discrepancies
with the true datasets.

1. The Problem

In Nielsen data, a UPC can be reassigned to an entirely different product, or to a similar product with different size or
packaging. UPC versions (upc_ver_uc) are generated based on four “core attributes” product_module_code,
brand_code (equivalent to brand_descr), multi, and sizel_code_uc. A new UPC version is created when
any one of these attributes changes’.

In a number of cases, a UPC version change is triggered when brand_descr is slightly modified, while all the other
core attributes remain unchanged. This situation might occur when the brand spelling changes, or when details are
added to or removed from brand names. For example:

1) Brand Spelling Changes:

#i# upc upc_ver_uc upc_descr product_module_code
1: 1111111111 1 409 G&S C CS L T NDS 77T
2: 1111111111 2 F409 G&S C LST NDS Tt

2) Details Added:

#it upc upc_ver_uc upc_descr brand_descr
1: 2222222222 1 C-T-W TBWR CL NY D CLOROX TOILET WAND
#H# 2: 2222222222 2 C-T-W TBWR CL NY D CLOROX TOLT WND CLN/PLSH CLOTH

We treat such cases as “false positive” version changes, since the different versions actually represent the same
product. When a false positive version change occurs, the product’s price time series is broken down to two or more
pieces. Since our base price detection algorithm does not predict base prices for the first and the last 10 observations,
it is better to feed it with a complete time series rather than several small chunks of prices. Therefore, it is necessary
to correct these false positives in order to improve the performance of our price processing algorithm.

'Kilts Nielsen Retail Scanner Dataset Manual (2014), 11

2. The Fix

2.1. Various Small Problems
2.1.1. “Missing” Versions

Since we are only interested in RMS price movements, and the meta data(from previous RMS build steps) is built from
the movement files, it is safe to consider only the upc-upc_ver_uc pairs that appear in the meta data. Note that the
number of unique pairs in the meta data = 1767405.

However, remember that a new UPC version is created whenever a change occurs in RMS or HMS data. Hence, for
some UPCs the version numbers may not be continuous. For instance:

1) Meta Data (Part) Example:

2) Product Information Table Example:

#i# upc upc_ver_uc upc_descr product_module_code
1: 4444444444 1 SPIDERMAN M/MIN N CC GMI 8888
##t 2: 4444444444 2 RSI-NBL M/MIN SPD N CC GMI 8888
3: 4444444444 3 MVL HRS M/MIN GOC CC GMI 8888

Given this situation, we should not simply change version N to N—1 when a false positive occurs.

2.1.2. Inconsistent Version Numbering

Intuitively, the version number (upc_ver_uc) increases or stays the same throughout the years. However, for some
UPCs the version number actually decreases (or even worse, changes irregularly) as new versions are created. For
example:

1) Decreasing Version Numbers:

upc upc_ver_uc year
1: 5555555555 2 2013
2: 5555555555 1 2014

2) Irregular Changes:

upc upc_ver_uc year
##H 1 TTTTTTTTTT 3 2006
2. TTTTTTTTTT 3 2007
3. TTTTTTTTTT 3 2008
4. TTTTTTTTTT 3 2009
5 TTTTTTTT7T 3 2010
6. TTTTTTT777 3 2011
##H 7 TTTTTTCTTT 4 2012
8: TTTTTTTTTT 1 2013
9. TTTTTTTTTT 1 2014

Fortunately, such inconsistencies are not hard to deal with?. We just need to keep in mind that an “old” UPC version
does not necessarily have a small version number.

2.2. Detecting Potential False Positives

We define a “potential false positive” as a UPC version change triggered only by a brand name change. In
other words, the fields multi, sizel_code_uc, and product_module_code must not change between
versions. After excluding general merchandises, 12733 potential false positives are found, as shown in the table
only_brand_change_casesin ./Processed-Data/Version-Change-Tables.RData:

#i# upc max_rank old_version new_version old_brand_descr
1: 8888888888 111111 1 2 HEALTH PRO FRESH BITES
#i# new_brand_descr false_positive revenue_change_pct old_revenue_store
1: FRESH BITES -44 .4444 0.88
#i# new_revenue_store old_upc_descr new_upc_descr
1: 0.44 HLPFB THCL WHITENER BSC DG FRBT THCL WHITENER BSC DG

To explain some of the variables in this table: max_rank is the highest annual rank of the UPC by RMS rev-
enue; old_revenue_store is the average per-store revenue of the UPC in the last year of the old version, while
new_revenue_store is the average per-store revenue in the first year of the new version. The percentage change
(normalized to 100) of per-store revenue, revenue_change_pct, provides a very rough estimate of the “stability”
of a UPC through time. We may infer that a version change is incorrect if the revenue change is only 0.01%, or that a
version change is correct if the average revenue increases by 1000%. However, such inference should only be used
as a back-up tool. The difference between old and new brand names is the most important criterion for detecting false
positives.

Since most of our analyses only focuses on top 50000 RMS products, and it is difficult to manually scan through 12733
potential false positive cases, we limit our attention to top 50000 UPCs each year. As a result, only 3342 cases need
to be manually checked.

potential_in_top_50000 = only_brand_change_cases[max_rank <= 50000]
nrow(potential_in_top_50000)

[1] 3342

2.3. Manual Check
Having manually checked all 3342 cases, We found 3235 of them to be false positives (96.8%). The detailed procedure
of the manual fix is as follows:

1. Find all cases of clear brand spelling changes. Label them as false_positive=1.

2. Find all cases where the old brand name and the new brand name shares a common key word.

(a) If the common word is clearly a brand name (e.g. “DOLE FRESH MAKES” = “DOLE”), then mark the
case as false_positive=1.

2They are also rare in the data. Among 23309 UPCs that have multiple versions, only 184 of them have this problem.

(b) If the common word is not a brand name (e.g. “CROISSANT POCKETS” = “HOT POCKETS”), then
mark the case as false_positive=0.

3. Among cases that are not labelled false positive, find pairs of old and new brand names that appear multiple
times (see Example 1 below). Use Google to determine whether the two names represent the same brand; if
so, change false_positiveto 1.

4. Find all cases where the old and new UPC names are the same; label all of them as false positives. When
applicable, this step overwrites existing false_positive values. The reason is that a same UPC name
cannot correspond to different brands.

Example 1: Brand Name Changes with Multiple Occurences

As introduced in step (3) above, we search for pairs of old and new brand names that do not share a common word
but appear multiple times in the data. The rationale is that a brand name may have two or more parts, and Nielsen
may only recorded the first part in the old version, and the second part in the new version. For instance:

upc old_version new_version old_brand_descr new_brand_descr
1: 9999999999 1 2 DIGESTIVE ADVANTAGE SCHIFF
2: 9999999999 1 2 DIGESTIVE ADVANTAGE SCHIFF
3: 9999999999 1 2 DIGESTIVE ADVANTAGE SCHIFF
4: 9999999999 1 2 DIGESTIVE ADVANTAGE SCHIFF

“Digestive Advantage” and “Schiff’ look like drastically different brand names; but according to this link, the brand is
actually called “Schiff® Digestive Advantage®”.

If we want to be extremely careful, we should search through all cases with false_positive=0. However, if we
want to save time, we only need to search the cases where a same pair of old and new brand names appears multiple
times—if a number of UPCs see a same brand name change, then itis more likely that the name change is false positive.

2.4. Correcting UPC Versions
Having identified false positives, the only task left is to generate a new field upc_ver_uc_corrected in both the
meta-data and the movement files. The procedure is as follows:

1. Take all false positives, find the list of relevant UPCs and modules.

2. Load movements, generate upc_ver_uc_corrected=upc_ver_uc

3. Update upc_ver_uc_corrected as needed. Note in this step that UPC version numbers may not be con-
tinuous; so we need to be more careful on that.

For detailed procedure, check:

+ 2-Correct-Versions—-And-Process-Top-75000.R

« 2-Correct-Versions-And-Process-All1-0Other.R

Note that the base price imputation algorithm is implemented in both scripts.

http://www.digestiveadvantage.com/about-digestive-advantage/

	0. Note
	1. The Problem
	2. The Fix
	2.1. Various Small Problems
	2.1.1. ``Missing" Versions
	2.1.2. Inconsistent Version Numbering

	2.2. Detecting Potential False Positives
	2.3. Manual Check
	2.4. Correcting UPC Versions

