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APPENDIX A: PROOFS OF MAIN RESULTS

RECALL THAT the planner’s objective function is given by

W (G)=EP
[(

YD

e(X)
− Y(1 −D)

1 − e(X)
)

· 1{X ∈G}
]
� (A.1)

To each treatment allocation G ∈ G we associate a function fG : R × X × {0�1} → R de-
fined by

fG(Z)= fG(Y�X�D)=
(
YD

e(X)
− Y(1 −D)

1 − e(X)
)

· 1{X ∈G}�

where Z = (Y�X�D). Let F := {fG :G ∈ G} denote the corresponding set of functions
associated to decision rules in G. By (A.1), any optimal allocation in G solves

G∗ ∈ arg max
G∈G

EP

[(
YD

e(X)
− Y(1 −D)

1 − e(X)
)

· 1{X ∈G}
]
�

Equivalently, functions associated to optimal allocations solve

f ∗ ∈ arg max
f∈F

EPf (Z)�

By an abuse of notation, for G ∈ G, we set

W (fG)=EPfG(Z)�
Given an approximating sequence {Gk}k of classes of treatment allocations, let {Fk}k de-
note the sequence of associated classes of functions.

The following lemma, whose proof is given in Kitagawa and Tetenov (2018) (Lem-
ma A.1), establishes the relevant link between the classes of sets {Gk}k and the classes
of functions {Fk}k. It shows that if a class G has finite VC dimension, then the associated
class F is a VC-subgraph class with dimension bounded above by that of G.

LEMMA A.1: Let G be a VC class of subsets of X with finite VC dimension V . Let g be a
function from Z :=R×X × {0�1} to R. Then the set of functions F defined by

F = {g(z) · 1{x ∈G} :G ∈ G
}

is a VC-subgraph class with dimension at most V .
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For each k≥ 1, let f̂n�k be a maximizer of the empirical welfare over the class Fk; that
is,

f̂n�k = arg max
f∈Fk

Wn(f )�

and for f ∈Fk, define the complexity-penalized estimate of welfare by

Rn�k(f )=Wn(f )−Cn(k)−
√
k

n
�

The PWM rule f̂n�k̂ is then chosen such that

k̂= arg max
k≥1

Rn�k(f̂n�k)�

In what follows, we set f̂n := f̂n�k̂ and Rn(f̂n) :=Rn�k̂(f̂n�k̂).
To bound the regret, we decompose it as follows:

W ∗
F −W (f̂n)= (W ∗

F −Rn(f̂n)
)+ (Rn(f̂n)−W (f̂n)

)
� (A.2)

The following lemma yields (under Assumption 3.4) a sub-Gaussian tail bound for the
second term on the right-hand side of the preceding equality.

LEMMA A.2: Given Assumption 3.4, there exists a positive constant � (that does not de-
pend on n) such that

P
(
Rn(f̂n)−W (f̂n) > ε

)≤ �e−2conε2

for every n.

PROOF: First, note that

P
(
Rn(f̂n)−W (f̂n) > ε

)≤ P(sup
k

(
Rn�k(f̂n�k)−W (f̂n�k)

)
> ε
)
;

then by the union bound,

P
(

sup
k

(
Rn�k(f̂n�k)−W (f̂n�k)

)
> ε
)

≤
∑
k

P
(
Rn�k(f̂n�k)−W (f̂n�k) > ε

)
�

Now by definition of Rn�k, we have

∑
k

P
(
Rn�k(f̂n�k)−W (f̂n�k) > ε

)=∑
k

P

(
Wn(f̂n�k)−Cn(k)−W (f̂n�k) > ε+

√
k

n

)
�

By Assumption 3.4,

∑
k

P

(
Wn(f̂n�k)−W (f̂n�k)−Cn(k) > ε+

√
k

n

)
≤
∑
k

c1e
−2con(ε+

√
k
n )

2 ≤ e−2conε2 ∑
k

c1e
−2kco �
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By setting

� :=
∑
k

c1e
−2kco <∞� (A.3)

the result follows. Q.E.D.

PROOF OF THEOREM 3.1: We follow the general strategy from Bartlett, Boucheron,
and Lugosi (2002). For every k, we have

W ∗
F −W (f̂n)= (W ∗

F −W ∗
Fk

)+ (W ∗
Fk

−W (f̂n)
)
� (A.4)

We first consider the second term in (A.4), and expand it as follows:

W ∗
Fk

−W (f̂n)= (W ∗
Fk

−Rn(f̂n)
)+ (Rn(f̂n)−W (f̂n)

)
� (A.5)

By the definition of Rn, the first term of expression (A.5) is bounded by

W ∗
Fk

−Rn(f̂n)≤W ∗
Fk

−Wn(f̂n�k)+Cn(k)+
√
k

n
�

Fix δ > 0, and choose some f ∗
k ∈Fk such that W (f ∗

k )+ δ≥W ∗
Fk

.1 We have

W ∗
Fk

−Wn(f̂n�k)+Cn(k)+
√
k

n
≤W (f ∗

k

)+ δ−Wn

(
f ∗
k

)+Cn(k)+
√
k

n
�

Taking expectations of both sides and letting δ converge to 0 yields

E
[
W ∗

Fk
−Rn(f̂n)

]≤E[Cn(k)]+√k
n
�

By Lemma A.2 and a standard integration argument (see, for instance, problem 12.1 in
Györfi, Devroye, and Lugosi (1996)), the second term on the right-hand side of (A.5) is
bounded by

E
[
Rn(f̂n)−W (f̂n)

]≤√ log(�e)
2con

�

Combining these bounds yields

E
[
W ∗

F −W (f̂n)
]≤E[Cn(k)]+W ∗

F −W ∗
Fk

+
√

log(�e)
2con

+
√
k

n
�

for every k, and our result follows. Q.E.D.

1If the welfare criterion achieves its maximum on Fk, then f ∗
k can be set equal to any maximizer. In general,

however, such an optimum may not exist, and thus we must choose f ∗
k to be an “almost maximizer” of the

welfare criterion on Fk.
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PROOF OF LEMMA 3.2: We first establish the inequality

P
(
Wn(f̂n�k)−W (f̂n�k)−Cn(k) > ε

)≤ exp
(

−2nε2

(
κ

3M

)2)
� (A.6)

By two standard symmetrization arguments, we get

E
[

sup
f∈Fk

Wn(f )−W (f)
]

≤ 2E

[
sup
f∈Fk

1
n

n∑
i=1

σif (Zi)

]
=E[Cn(k)]� (A.7)

where we recall that Cn(k)= E[2 supf∈Fk
1
n

∑n

i=1σif (Zi)|Z1�Z2� � � � �Zn] and {σi}ni=1 is an
i.i.d. sequence of Rademacher random variables independent from the data {Zi}ni=1. Note
that

P
(
Wn(f̂n�k)−W (f̂n�k)−Cn(k) > ε

)≤ P(sup
f∈Fk

((
Wn(f )−W (f))−Cn(k) > ε)�

and setMn�k := supf∈Fk(Wn(f )−W (f))−Cn(k). Combining the preceding inequality with
(A.7) yields

P
(
Wn(f̂n�k)−W (f̂n�k)−Cn(k) > ε

)≤ P(Mn�k −EMn�k > ε)�

To control the deviations of Mn�k from its mean, we use McDiarmid’s inequality (see
Györfi, Devroye, and Lugosi (1996, Theorem 9.2); note that Mn�k satisfies the bounded
difference property with increments bounded by 3M

nκ
) which yields the inequality

P(Mn�k −EMn�k > ε)≤ exp
(

−2nε2

(
κ

3M

)2)
�

from which our result follows.
The second inequality (where C is a universal constant)

E
[
Cn(k)

]≤ CM
κ

√
Vk

n

follows from a chaining argument and a control on the universal entropy of VC-subgraph
classes (see, for instance, the proof of Lemma A.4 in Kitagawa and Tetenov (2018)), along
with Lemma A.1. Q.E.D.

PROOF OF LEMMA 3.1: Let us assume for notational simplicity that the quantity m =
n(1 − 	) is an integer. We first establish the inequality

P
(
Wm(f̂m�k)−W (f̂m�k)−Cm(k) > ε

)≤ exp
(

−2n	ε2

(
κ

M

)2)
� (A.8)

By the definition of Cm(k), we have

P
(
W (f̂m�k)−W (f̂m�k)−Cm(k) > ε

)= P(Wr(f̂m�k)−W (f̂m�k) > ε
)
�
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Now, working conditionally on {Zi}mi=1, we get by Hoeffding’s inequality that

P
(
Wr(f̂m�k)−W (f̂m�k) > ε|{Zi}mi=1

)≤ exp
(

−2n	ε2

(
κ

M

)2)
�

Since the right-hand side of the preceding inequality is non-random, the inequality holds
unconditionally as well.

We now establish the inequality

E
[
Cm(k)

]≤ C M

κ
√
(1 − 	)

√
Vk

n
�

By the definition of Cm(k), we have

E
[
Cm(k)

]=E[Wm(f̂m�k)−Wr(f̂m�k)
]=E[Wm(f̂m�k)−W (f̂m�k)+W (f̂m�k)−Wr(f̂m�k)

]
�

Note that by the law of iterated expectations, we have

E
[
W (f̂m�k)−Wr(f̂m�k)

]= 0�

and by Lemma A.4 in Kitagawa and Tetenov (2018) combined with Lemma A.1 there
exists some universal constant C such that

E
[
Wm(f̂m�k)−W (f̂m�k)

]≤ CM
κ

√
Vk

m
�

Since m= (1 − 	)n, the result follows. Q.E.D.

PROOF OF PROPOSITIONS 3.2 AND 3.1: From the inequality

e−x(
1 − e−x) ≤ 1

x
�

and from (A.3) and (A.6), we derive that

�≤ 1/2
(

3M
κ

)2

�

Similarly, we derive from (A.3) and (A.8) that

�≤ 1/(2l)
(
M

κ

)2

�

The results then follow by substituting these into the inequalities of Theorem 3.1. Q.E.D.

PROOF OF THEOREM 3.2: Our strategy here is to proceed analogously to the proof of
Theorem 3.1 with some additional machinery. Let f̂ en and Ren(·) be defined analogously to
the case when the propensity score is known. For every k, we have that

W ∗
F −W (f̂ en )= (W ∗

F −W ∗
Fk

)+ (W ∗
Fk

−W (f̂ en ))� (A.9)
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Adding and subtracting Ren(f̂
e
n ) to the last term yields

W ∗
Fk

−W (f̂ en )= (W ∗
Fk

−Ren
(
f̂ en
))+ (Ren(f̂ en )−W (f̂ en ))� (A.10)

Let f ∗
k := arg maxf∈Fk W (f ) (if the supremum is not achieved, apply the argument to a

δ-maximizer of the welfare, and let δ tend to zero). Now consider the first term on the
right-hand side of (A.10). Expanding yet again gives

W ∗
Fk

−Ren
(
f̂ en
)=W ∗

Fk
−Wn

(
f ∗
k

)+Wn

(
f ∗
k

)−Ren(f̂ en )� (A.11)

From the definition of Ren, we have

Wn

(
f ∗
k

)−Ren(f̂ en )≤Wn

(
f ∗
k

)−W e
n

(
f ∗
k

)+Ce
n(k)+

√
k

n
≤ 1
n

n∑
i=1

|τ̂i − τi| +Ce
n(k)+

√
k

n
�

Hence, considering the above inequality and taking expectations in (A.11) yields

E
[
W ∗

Fk
−Ren

(
f̂ en
)
)
]≤E[1

n

n∑
i=1

|τ̂i − τi|
]

+E[Ce
n(k)

]+√k
n
�

and thus by Assumption 3.7,

E
[
W ∗

Fk
−Ren

(
f̂ en
)
)
]≤O(φ−1

n

)+E[Ce
n(k)

]+√k
n
� (A.12)

We now consider the second term on the right-hand side of (A.10). Let k̂ be the class k
such that

f̂ en = f̂ e
n�k̂
�

Note that k̂ is random. We have

Ren
(
f̂ en
)−W (f̂ en )=W e

n

(
f̂ e
n�k̂

)−Ce
n(k̂)−

√
k̂

n
−W (f̂ e

n�k̂

)
�

By adding and subtracting Wn(f̂
e

n�k̂
) and the function C̃n(k̂), we get

W e
n

(
f̂ e
n�k̂

)−Ce
n(k̂)−

√
k̂

n
−W (f̂ e

n�k̂

)
= (W e

n

(
f̂ e
n�k̂

)−Wn

(
f̂ e
n�k̂

))+ (C̃n(k̂)−Ce
n(k̂)

)
+
(
Wn

(
f̂ e
n�k̂

)−W (f̂ e
n�k̂

)− C̃n(k̂)−
√
k̂

n

)
� (A.13)

Note again that

sup
k

(
W e
n

(
f̂ en�k
)−Wn

(
f̂ en�k
))≤ 1

n

n∑
i=1

|τ̂i − τi|�
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and so by Assumptions 3.7 and 3.8, the first two terms of (A.13) are of order O(φ−1
n ) in

expectation. By the first part of Assumption 3.8, and an argument similar to the one used
in the proof of Lemma A.2, it can be shown that

E

[
sup
k

(
Wn

(
f̂ en�k
)−W (f̂ en�k)− C̃n(k)−

√
k

n

)]
≤
√

log(�e)
2c0n

�

where � and co are the same constants that appear in Lemma A.2. We thus get

E
[
Ren
(
f̂ en
)−W (f̂ en )]≤O(φ−1

n

)+√ log(�e)
2m

� (A.14)

Now combining (A.12) and (A.14), we conclude that

E
[
W ∗

Fk
−W (f̂ en )]≤O(φ−1

n

)+E[Ce
n(k)

]+√k
n

+
√

log(�e)
2m

�

Finally, by Assumption 3.8, we get

E
[
W ∗

F −W (f̂ en )]≤O(φ−1
n

)+E[C̃n(k)]+W ∗
F −W ∗

Fk
+
√
k

n
+
√

log(�e)
2m

�

for all k, and hence the result follows. Q.E.D.

PROOF OF LEMMA 3.3: In what follows, we verify that the third condition of Assump-
tion 3.8 is satisfied for the holdout penalty with estimated propensity score, as the first
two conditions follow from previous arguments. Set

C̃m(k)=Wm

(
f̂ em�k

)−Wr

(
f̂ em�k

)
�

Note that since the propensity score is unknown, the empirical welfare criteriaWm andWr

are infeasible. It can easily be shown that for this choice of C̃m(k), we have

∣∣C̃m(k)−Ce
m(k)

∣∣≤ 1
m

m∑
i=1

∣∣τ̂iE − τi
∣∣+ 1

r

n∑
i=m+1

∣∣τ̂iT − τi
∣∣�

which yields

E sup
k≥1

∣∣C̃m(k)−Ce
m(k)

∣∣=O(φ−1
n

)
� Q.E.D.

PROOF OF PROPOSITION 4.1: Let G be the set of monotone allocations. Let πk de-
note the partition of [0�1] formed by the points xi = i/2k, i = 0� � � � �2k. Let {Gk}k be
the approximating sequence defined in Example 3.2, and define G∗ ∈ G to be a set
such that W (G∗) = W ∗

G (if no such G∗ exists, the argument proceeds by considering
an “almost maximizer”). By definition, for each G ∈ G, there is an associated function
bG : [0�1] → [0�1] which determines the boundary of the allocation region, that is, such
that G= {(x1�x2) ∈X : x2 ≤ bG(x1)}.

Fix some P ∈Pr , where Pr is as defined in Assumption 4.1. By definition,

W ∗
G −W ∗

Gk
≤W (G∗)−W (G̃k)�
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where G̃k ∈ Gk is the allocation such that bG̃k(·) is the linear interpolation of bG∗ on the
partition πk. We can rewrite this as

W
(
G∗)−W (G̃k)=E

[(
YD

e(X)
− Y(1 −D)

1 − e(X)
)

· (1{X ∈G∗}− 1{X ∈ G̃k}
)]

≤ M

κ
PX
(
G∗�G̃k

)
� (A.15)

where � denotes the symmetric difference operator, A�B :=A\B ∪B\A. Let

Mi = [xi−1�xi] × [bG∗(xi−1)�bG∗(xi)
]
�

for i= 1� � � � �2k. It follows from the monotonicity of bG∗ that the graphs of the restrictions
of bG∗(·) and bG̃k(·) to [xi−1�xi] are contained in Mi. Hence we have that

PX
(
G∗�G̃k

)≤ 2k∑
i=1

PX(Mi)=
2k∑
i=1

PX(M1i ×M2i)�

where M1i = [xi−1�xi], M2i = [bG∗(xi−1)�bG∗(xi)]. By Assumption 4.1,

PX(M1i ×M2i)=
∫
M2i

PX1|x2(M1i) dPX2 ≤ 1
2k
APX2(M2i )�

Summing over i:

2k∑
i=1

PX(Mi)≤
2k∑
i=1

1
2k
APX2(M2i)≤ A

2k
�

since the {M2i}i form a partition of [0�1]. We thus obtain that

W ∗
G −W ∗

Gk
≤AM

κ
2−k�

as desired. Q.E.D.

APPENDIX B: ADDITIONAL RESULTS

B.1. Supplement to Remark 3.5

In this subsection, we provide some simple calculations that justify the comments made
in Remark 3.5. Consider first the Rademacher penalty; then Proposition 3.1 shows that

EPn
[
W ∗

G −W (Ĝn)
]≤ inf

k

[
C
M

κ

√
Vk

n
+ (W ∗

G −W ∗
Gk

)+√k
n

]
+ g(M�κ)M

κ

√
1
n
�

where C is the universal constant derived in the bound of EWM in Kitagawa and Tetenov
(2018) and g is defined as

g(M�κ) := 6

√
log
(

3
√
e√

2

M

κ

)
�
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Our first task is to quantify the size of C. By the proof of Lemma A.4 in Kitagawa and
Tetenov (2018), we can see that the constant C depends on a universal constantK derived
in Theorem 2.6.7 of Van Der Vaart and Wellner (1996), which establishes a bound on the
covering numbers of a VC-subgraph class. Inspection of the proof in Van Der Vaart and
Wellner (1996) allows us to conclude that a suitable K is given by K = 3

√
e/8. Plugging

this into the expression for C derived in Kitagawa and Tetenov (2018) allows us to con-
clude that a suitable C is given by C = 36�17. Turning to g(M�κ), we can calculate that
in order for it to surpass C by an order of magnitude, we would need M/κ to be about as
large as 10120. This gives us a sense of the relative sizes of the terms in our bound.

B.2. Supplement to Remark 4.1

In this subsection, we perform a sample splitting exercise to estimate the welfare per-
formance of various decision rules on the JTPA data. To estimate welfare, we split the
data into two halves. The first half of the data (the “estimating sample”) is used to com-
pute various decision rules. The second half of the data (the “auxiliary sample”) is used
to estimate the welfare generated by each resulting treatment allocation.

Given a sample of size n and a treatment allocation G, we estimate welfare using

Ŵ (G)=En
[
YiDi

e(Xi)
1{Xi ∈G} + Yi(1 −Di)

1 − e(Xi)
1{Xi /∈G}

]
�

where En(·) is the sample average. We study the welfare performance of three decision
rules: EWM on the class G5 as described in Section 4, PWM with the holdout penalty
on the sieve {Gk}5

k=1 as described in Section 4, and a “random baseline” which randomly
assigns the same fraction of the population as PWM to job training. In Table I, we report
the estimated welfare computed on both the estimating and auxiliary samples.

In Table I, we see that EWM has the highest estimated welfare when evaluated on the
estimating sample. This is not surprising given that EWM maximizes empirical welfare
on the estimating sample by construction. In contrast, when we estimate welfare using
the auxiliary sample, we see that PWM has the highest estimated welfare, which shows
that PWM can effectively protect against overfitting in this example. However, we stress
that this difference was not found to be statistically significant (one-tailed p-value 0.34;
see Remark B.1 below for details on how our test was constructed). We also note that the
performance of PWM on the auxiliary sample is essentially the same as the performance
of the random baseline rule; this is also the case when comparing EWM to a similar
random baseline (not formally reported). It is possible that this is a feature specific to
the monotone policy class (which we view as an exogenous constraint) in this application,

TABLE I

ESTIMATED WELFARE COMPARISONS FOR JTPA DATAa

Random Baseline
PWM EWM (Average of 1000 Draws)

Estimating sample $16,221 $16,522 $15,878
Auxiliary sample $16,402 $16,272 $16,394

(384) (395) (265)

aStandard errors in parentheses (see Remark B.1).
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and that a more flexible policy class would be able to outperform the random baseline via
more selective targeting.

REMARK B.1: In Table I, we provide standard errors for the estimated welfare com-
puted on the auxiliary sample. These should be interpreted as standard errors for the wel-
fare estimate conditional on the estimated treatment allocation. To compute the standard
errors, we proceed as follows: given an auxiliary sample of size m and a fixed treatment
allocation G, it follows immediately by the central limit theorem that

√
m
(
Ŵ (G)−E[Ŵ (G)]) d−→N

(
0� V (G)

)
�

asm→ ∞, where V (G)= Var( YD
e(X)

1{X ∈G}+ Y(1−D)
1−e(X) 1{X /∈G}). Let V̂ (G) be the empir-

ical analog of V (G) computed on the auxiliary sample; then the standard error is given

by
√
V̂ (G)/m. By a similar argument, we can derive the limiting joint distribution for two

distinct policiesG1 andG2, which allows us to construct a difference-in-means test for the
welfare difference between the two policies.

B.3. A Simulation Study

In this subsection, we perform a small simulation study to highlight the ability of the
PWM rule to reduce G-regret in an empirically relevant setting. We consider a situation
where the planner has access to threshold-type allocations over five covariates, as de-
scribed in Examples 2.2 and 3.1, and wishes to perform best-subset selection. The sieve
sequence we consider is the same as in Example 3.1, where Gk is the set of threshold allo-
cations on k− 1 out of the five covariates. For example, G1 contains only the allocations
G = ∅ and G = X , which correspond to threshold allocations that use zero covariates,
G2 contains all threshold allocations on one out of the five covariates, etc. We focus here
on the setting with five covariates for computational simplicity, but recent work by Chen
and Lee (2018) suggests that solving this problem with ten or more covariates could be
feasible in practice.

The problem that the planner faces is choosing how many covariates to use in the al-
location: for example, suppose that the distribution P is such that some of the available
covariates are irrelevant for assigning treatment. Of course, the planner could perform
EWM on all the covariates at once, and by the bound in equation (3) this is guaranteed
to produce small regret in large enough samples. However, if the sample is not large, the
planner may be able to achieve a reduction in regret by performing PWM. Through the
lens of Corollary 3.3, our results say that PWM should behave as if we had performed
EWM in the smallest class Gk that contains all of the relevant covariates.

We consider the following data generating process: Let X = [0�1]5, and

Xi = (X1i�X2i� � � � �X5i)∼ (U[0�1])5
�

The potential outcomes for unit i are specified as:

Yi(1)= 50
(
2X2i − (1 −X1i)

4 − 0�5 + 0�5(X3i −X4i)
)+U1i�

Yi(0)= 50
(
0�5(X3i −X4i)

)+U2i�

where U1 and U2 are distributed as U[−80�80] random variables which are independent
of each other and of X . The covariates enter the potential outcomes in three different
ways:
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FIGURE 1.—Shaded in green: the best threshold-allocation for our design. Second-best welfare: 21.3. Traced
in black: the boundary of the first-best allocation.

• X5i is an irrelevant covariate; it does not play a role in determining potential out-
comes at all.

• X3i and X4i affect both treatment and control equally; there will be a nonzero cor-
relation between the observed outcome Yi and these covariates, but they serve no
purpose for treatment assignment.

• X1i and X2i do serve a purpose for assigning treatment, and both are used in the
optimal threshold allocation. See Figure 1.

Finally, the propensity score P(D= 1|X) is specified to be constant at 0�2.
To implement PWM, we used the holdout penalty, with 3/4 of our sample designated

as the estimating sample. In Appendix C, we explain in detail how to implement PWM as
a mixed integer linear program.

Our results compare the G-regret of the PWM rule against the regret of performing
EWM in G6 (which corresponds to the class that uses all five covariates) or performing
EWM in G3 computed using 1000 Monte Carlo iterations. Recall that G3 is the smallest
class that contains the optimal threshold allocation. In light of Corollary 3.3, we would
hope that PWM behaves similarly to doing EWM in G3 directly. In Figure 2, we plot the
regret of these rules for various sample sizes.

First, we comment on the regret of performing EWM in G6 (recall that this corresponds
to the set of allocations using all five covariates) versus performing EWM in G3 (which cor-
responds to the set of allocations that use two of the five covariates). As we would expect,
regret decreases as sample size increases. Moreover, performing EWM in G6 results in
larger regret at every sample size: performing EWM in G3 results in a 34% improvement
in regret relative to EWM in G6 on average, across the sample sizes we consider.

Next, we comment on the performance of PWM. As we had hoped, the regret of PWM
is smaller than the regret of performing EWM in G6 at every sample size: performing
PWM results in a 19.8% improvement in regret relative to EWM in G6 on average, across
the sample sizes we consider.
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FIGURE 2.—Estimated regret by sample size. Optimal (second-best) welfare: 21.3. EWM5 corresponds to
G6 (five covariates), EWM2 corresponds to G3 (two covariates).

B.4. Welfare Maximization With Entropy Restrictions on G
In this section, we study the treatment choice problem when certain entropy restrictions

are imposed on G. First, we derive an upper bound on the maximum regret of EWM under
assumptions on the bracketing entropy of G:

Throughout this section, let X = [0�1]dx . Given a class of sets G of X , let H := {1G :
G ∈ G}. Let ‖ · ‖p be the Lp(μ) metric on H, where μ is Lebesgue measure on X . Given
h1�h2 ∈ H, with h1 ≤ h2, let [h1�h2] := {h ∈ H : h1 ≤ h ≤ h2}. We call the set [h1�h2] a
bracket. Given ε > 0, define NB

p(ε�H�μ) to be the smallest k such that, for some pairs
(hLj �h

U
j ), j = 1� � � � �k ∈H, with hLj ≤ hUj and ‖hUj − hLj ‖p < ε,

H ⊂
k⋃
j=1

[
hLj �h

U
j

]
�

We call HB
p(ε�H�μ) := logNB

p(ε�H�μ) the Lp(μ) bracketing entropy (in the sense of
Alexander (1984)).

Given this definition, we impose the following assumption on the bracketing entropy
of G:
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ASSUMPTION B.1: There exist positive constants K, r for which

HB
1 (ε�H�μ)≤Kε−r�

for all ε > 0.

Dudley (1999) provided many examples for which this assumption holds. In particular,
by Theorem 8.3.2 in Dudley (1999), if G is the set of monotone allocations in [0�1]dx , then
Assumption B.1 holds with r = dx − 1 (and the brackets can be constructed in the sense
of Alexander (1984)).

As we have emphasized throughout the paper, to obtain bounds on maximum regret
for classes of infinite VC dimension, we must impose additional regularity conditions on
the DGP. To that end, we consider the following assumption:

ASSUMPTION B.2: Let Pr be a set of DGPs such that there exists some constant A > 0,
where, for every distribution in Pr , the distribution of X is continuous with density bounded
above by A.

With this additional regularity condition, we obtain the following upper bound on max-
imum regret for EWM:

PROPOSITION B.1: Under Assumptions 2.1, 3.1, B.1, and B.2, we have that

sup
P∈Pr∩P(M�κ)

EPn
[
W
(
G∗)−W (ĜEWM)

]=O(τ(n))�
where τ(n)= n−1/2 if r < 1, τ(n)= log(n)/

√
n if r = 1, and τ(n)= n−1/(1+r) if r > 1.

Note that this result does not assume that the first-best allocation is contained in G.
From Proposition B.1, we see that for r sufficiently small, EWM converges at a paramet-
ric rate (under suitable regularity conditions). Similar results have been obtained in the
classification context by Mammen and Tsybakov (1999) and Tsybakov (2004).

Next, we present a lower bound on maximum regret under the following assumption on
the L1(μ) ε-capacity:

Given ε > 0, define Dp(ε�H�μ) to be the largest k such that there exist functions
h1� � � � �hk ∈ H with ‖hi − hj‖p > ε for i �= j. We call Hp(ε�H�μ) := logDp(ε�H�μ) the
Lp(μ) epsilon-capacity.

Given this definition, we impose the following assumption on the ε-capacity of G:

ASSUMPTION B.3: There exist positive constants K1, K2, ε1 > 0, r ≥ 1 such that

K2ε
−r ≤H1(ε�H�μ)≤K1ε

−r�

for all 0< ε≤ ε1.

It can be shown that if G satisfies Assumption B.1, then the upper bound in Assump-
tion B.3 will also hold. However, the reverse may not be true. Dudley (1999) provided
many examples for which Assumption B.3 holds, and in particular it holds for the set of
monotone allocations in [0�1]dx with r = dx − 1 (see Theorem 8.3.2).

With this assumption, we obtain the following lower bound on maximum regret:



14 E. MBAKOP AND M. TABORD-MEEHAN

PROPOSITION B.2: Let P∗(μ)⊂ P(M�κ) be the set of DGPs such that the marginal dis-
tribution of X is μ, and G∗ =G∗

FB. Under Assumption B.3, there exists a positive constant B
(which depends on M , K1, K2, r), such that

inf
Ĝ

sup
P∈P∗(μ)

EPn
[
W
(
G∗)−W (Ĝ)]≥ Bn−1/(1+r)�

for all n≥ 1.

For classes G such that Assumptions B.1 and B.3 both hold, Propositions B.1 and B.2
immediately imply the following rate-optimality result for EWM:

COROLLARY B.1: Given Assumptions B.1, B.2, and B.3, EWM is rate-optimal over Pr ∩
P(M�κ) for r > 1 and rate-optimal up to a log factor for r = 1.

PROOF: This follows immediately from the fact that P∗(μ)⊂Pr ∩P(M�κ), and hence

inf
Ĝ

sup
P∈Pr∩P(M�κ)

EPn
[
W
(
G∗)−W (Ĝ)]≥ inf

Ĝ

sup
P∈P∗(μ)

EPn
[
W
(
G∗)−W (Ĝ)]�

Q.E.D.

As we remarked above, for the set of monotone allocations on [0�1]2, Assumptions
B.1 and B.3 hold with r = 1. Hence we can conclude that EWM is rate-optimal up to
a log-factor for monotone allocations when the distribution of X is continuous with a
bounded density. Note that Corollary B.1 only establishes rate-optimality when r is suf-
ficiently large. For r < 1, the lower bound presented in Proposition B.2 is certainly too
loose: the set of DGPs used in the proof of Proposition B.2 impose a “hard margin,” and
hence converge much faster than the parametric rate when r < 1.

REMARK B.2: It can be shown that the PWM procedure implemented as in Section 4
can also achieve the rate established in Corollary B.1 (up to a log factor). To see why, note
that by using arguments similar to those used in the proof of Propositions B.1, it can be
shown that for the holdout penalty,

sup
P∈Pr∩P(M�κ)

E
[
Cm(k)

]=O( log(n)√
n

)
�

Combining this result with Proposition 4.1 and Corollary 3.1, we get that the maximum
regret of PWM is bounded above by (up to constants)

log(n)√
n

+ inf
k

(
2−k +

√
k

n

)
�

whose rate of convergence is dominated by the leading term.

APPENDIX C: COMPUTATIONAL DETAILS

In this section, we provide details on how we perform the computations of Section 4
and Appendix B.3. All of our work is implemented in Python paired with Gurobi. We
begin with Section 4, then proceed to Appendix B.3.
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C.1. Application Details

First, we describe how to compute each Ĝn�k to solve PWM over monotone allocations.
Recall the definition of ψT�j(x) as defined in Example 3.2. We modify this definition to
accommodate the fact that our covariates do not lie in the unit interval. In particular, we
restrict ourselves to levels of education that lie in the interval [5�20], which leads to the
following modification:

ψT�j(x)=
⎧⎨⎩1 −

∣∣∣∣ T15
(x− 5)− j

∣∣∣∣� x ∈
[
j − 1
T/15

+ 5�
j + 1
T/15

+ 5
]

∩ [5�20]�
0� otherwise�

Let ΘT = [θ0 θ1 · · · θT ]′ and let Θ̄T = [−1 θ0 θ1 · · · θT ]′. Let our two-dimensional
covariate be denoted as x= (x(1)� x(2)), where x(1) is level of education and x(2) is previous
earnings. Let

ΨT(x)= [x(2) ψT�0
(
x(1)
) · · · ψT�T

(
x(1)
)]′
�

To compute Ĝn�k, we solve the following mixed integer linear program (MILP), which
modifies the MILP described in Kitagawa and Tetenov (2018) for “Single Linear Index
Rules”:

max
θ0�θ1�����θT �
z1�����zn

n∑
i=1

τi · zi

subject to
Θ̄′
TΨT(xi)

ciT
< zi ≤ Θ̄′

TΨT (xi)

ciT
+ 1� i= 1� � � � � n�

zi ∈ {0�1}� i= 1� � � � � n�

DTΘT ≤ 0�

where T = 2k−1, τi is as defined in equation (2), cT is an appropriate constant (to be
discussed in the following sentence), and DT is the differentiation matrix as defined in
Example 3.2. ciT is a constant chosen such that ciT > supΘT |Θ̄′

TΨT (xi)|, which allows us to
formulate a set of what are known as “big-M” constraints. To implement such a constraint,
it must necessarily be the case that ΘT is bounded, so in order to implement PWM, we
also include an implicit (very large) bound on the possible treatment allocations.2

The first two sets of constraints impose that the treatment allocation results in a piece-
wise linear boundary; the third set of constraints impose that this boundary is monotone.
The strength of this formulation is that it imposes monotonicity via a linear constraint,
which allows us to solve the problem as a MILP.

C.2. Simulation Details

We describe a MILP to compute each Ĝn�k over threshold allocations on d covariates.
Define x to be a (d + 1)-dimensional vector where x = (1�x(1)� x(2)� � � � � x(d)), with the

2Big-M constraints have the potential to cause numerical instabilities when solving MILPs that are poorly
formulated. We found that it was important to ensure that the covariates are scaled to within the same order of
magnitude and that the IntFeasTol and FeasibilityTol parameters in Gurobi were set to their smallest
possible values.
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last d components denoting the d covariates, and suppose x ∈ [0�1]d+1, which is the case
in the simulation design. We define the threshold βk on covariate x(k) to be a (d + 1)-
dimensional vector such that the first component is in [−1�1], all other components other
than the (k + 1)st are zero, and the (k + 1)st component is one of {−1�0�1}. Let A =
{1�2� � � � � d} index the dimension of the threshold. We modify the MILP described in
Kitagawa and Tetenov (2018) for “Multiple Linear Index Rules”:

max
{βa}a∈A�

{za1 �����zan}a∈A�z∗1 �����z∗n

n∑
i=1

τi · z∗
i

subject to
x′
iβa

c
< zai ≤ x′

iβa

c
+ 1� i= 1� � � � � n�a ∈A�

1 − |A| +
∑
a∈A

zai ≤ z∗
i ≤ 1

|A|
∑
a∈A

zai � i= 1� � � � � n�

β(1)a ∈ [−1�1]� a ∈A�
β(j)a = 0� j > 1� j �= a+ 1� a ∈A�∑
a∈A

ea = k�

−ea ≤ β(1)a ≤ ea� a ∈A�
β(a+1)
a = ya�1 − ya�2� a ∈A�
ya�1 + ya�2 = ea� a ∈A�{
zai
}
a∈A� z

∗
i ∈ {0�1}� i= 1� � � � � n�

{ea}a∈A ∈ {0�1}� a ∈A�
{ya�1}a∈A� {ya�2}a∈A ∈ {0�1}� a ∈A�

The constraints serve the following roles: the first two constraints enforce the assign-
ment of observations to treatment, the next two constraints enforce part of the structure
of the threshold allocation, the fifth constraint specifies that only k thresholds can be
used, and the three subsequent constraints enforce this. Again, we require an appropri-
ately chosen constant c to implement a set of big-M constraints, but in this case the choice
is straightforward: c = d+2 will suffice since this guarantees that c > x′

iβa for any possible
xi and βa, by construction.

REMARK C.1: Solving the above program for the simulation design of Appendix B.3
with a sample size of 2000 took approximately one hour and fifteen minutes on a 2018
iMac. In practice, the solution of this MILP could potentially be further optimized using
the improvements developed in Bertsimas, King, and Mazumder (2016) and Chen and
Lee (2018). Alternatively, careful implementation of a direct parameter search could also
considered; see, for example, the work in Zhou, Athey, and Wager (2018) using a tree-
based policy class.
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APPENDIX D: PROOFS FOR APPENDIX B

PROOF OF PROPOSITION B.1: We follow the general strategy of Theorem 1 in Mam-
men and Tsybakov (1999). Let W̄ (·)= (κ/M)W (·) be a normalized version of W (·). Let
G∗ be a maximizer of W̄ (·) in G. Let P =Pr ∩P(M�κ) and define

Tn = √
n
W̄
(
G∗)− W̄ (Ĝ)− (W̄n

(
G∗)− W̄n(Ĝ)

)
qn

�

where qn = 1 if r < 1, qn = log(n) if r = 1, and qn = n(r−1)/2(r+1) if r > 1. By the definition
of Ĝ and G∗, we have that W̄n(Ĝ)≥ W̄n(G

∗), W̄ (Ĝ)≤ W̄ (G∗), and hence we have that

0 ≤ √
nq−1

n

(
W̄
(
G∗)− W̄ (Ĝ))≤ Tn�

Now we argue that E[Tn] is uniformly bounded over P for n sufficiently large, which,
given the definition of qn, implies the statement of the theorem. To that end, note that

E[Tn] ≤E[Sn]�
where

Sn = sup
G∈G

√
nq−1

n

∣∣W̄ (G∗)− W̄ (G)− (W̄n

(
G∗)− W̄n(G)

)∣∣
= sup

G∈G

√
nq−1

n

∣∣∣∣∣1n
n∑
i=1

(
ḡ(Zi)

(
1
{
Xi ∈G∗}− 1{Xi ∈G})

−E[ḡ(Zi)(1{Xi ∈G∗}− 1{Xi ∈G})])∣∣∣∣∣�
with

ḡ(Zi)= κ

M
g(Yi�Di�Xi)= κ

M

(
YiDi

e(Xi)
− Yi(1 −Di)

1 − e(Xi)

)
�

For the case r < 1, we can invoke Lemma D.1 to conclude immediately that

sup
P∈P

E[Sn] =O(1)�

so we are done. For the case r ≥ 1, note that Sn ≤ 2
√
n/qn, which gives that, for anyD> 0,

E[Sn] ≤D+ 2
√
n

qn
P(Sn >D)�

hence we can apply Corollary D.1 to the last probability to conclude that supP∈P E[Sn] =
O(1). Let F̃ = {ḡ ·(1G∗ −1G) :G ∈ G}; then for an appropriate choice ofD (which depends
on P only through K and r, and A), Corollary D.1 gives

P(Sn >D)≤ C exp
(−D2q2

n

)
�
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for some constant C which depends on P only through K, r, and A. Hence we can con-
clude that

sup
P∈P

E[Tn] ≤ sup
P∈P

E[Sn] =O(1)�

as desired. Q.E.D.

PROOF OF PROPOSITION B.2: Define

Ln := inf
Ĝ

sup
P∈P∗(μ)

EPn
[
W
(
G∗)−W (Ĝ)]�

We follow the general strategy of Theorem 6 in Massart and Nédélec (2006). For every h ∈
H = {1G :G ∈ G}, set τh(x)= (M/4)(2h(x)− 1), γh(x)= (2/M)τh(x), and define Ph as
the joint distribution on X ×{0�1}×Y2 (i.e., the set of realizations of (X�D�Y(1)�Y(0)))
such that, under Ph, X has distribution μ,

Y(1)|{X = x} =

⎧⎪⎪⎨⎪⎪⎩
M

2
with prob.

1 + γf (x)
2

�

−M
2

with prob.
1 − γf (x)

2
�

Y(0)|{X = x} = 0, and D is Bernoulli(0�5) independent of everything else. Note that,
by construction, we have that τh(x) = EPh[Y(1) − Y(0)|X = x] = τ(x), h describes the
first-best decision rule under Ph, and Ph ∈P∗(μ).

Next, let C be a finite subset of H; then it follows that

inf
Ĝ

sup
P∈P∗(μ)

EPn
[
W
(
G∗)−W (Ĝ)]≥ inf

Ĝ

sup
h∈C

Eh
[
W
(
G∗)−W (Ĝ)]�

where Eh = EPn
h
. Since, under Ph, G∗ is the first-best allocation by construction, we get

that

W
(
G∗)−W (G)=

∫
G∗�G

∣∣τ(X)∣∣dPX�
for any G ∈ G. Hence it follows that, given the construction of τh,

W
(
G∗)−W (G)= M

4
μ
(
G∗�G

)
�

Putting all this together and using the fact that h= 1G∗ under Ph:

Ln ≥ inf
ĥ∈H

sup
h∈C

M

4
Eh
[‖h− ĥ‖1

]
�

where ĥ= 1Ĝ, and ‖ · ‖1 is the L1(μ) norm. Define the statistic

h̃= arg min
h∈C

‖h− ĥ‖1;

then by the triangle inequality it follows that

inf
ĥ∈H

sup
h∈C

Eh
[‖ĥ− h‖1

]≥ 1
2

inf
h̃∈C

sup
h∈C

Eh
[‖h̃− h‖1

]
�
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We now construct the appropriate set C. Let C ′ be an ε-packing set of H, and let C ′′ be a
Cε cover of H for some C > 1, ε > 0 to be specified later. By definition, each h ∈ C ′ lies
in some ball of radius Cε centered at a point in C ′′. So by taking C to be the intersection
of C ′ with such a ball in C ′′ which results in a set of maximal cardinality, we get that for
h1�h2 ∈ C, where h1 �= h2,

ε≤ ‖h1 − h2‖1 ≤ Cε�
and moreover,

log
(|C|)≥H1(ε�H�μ)−H1(Cε�H�μ)�

To see this, note that since we have constructed C to have maximal cardinality, it must be
the case that

|C| ≥
∣∣C ′∣∣∣∣C ′′∣∣ �

and by definition, |C ′| =H1(ε�H�μ), |C ′′| ≤H1(Cε�H�μ).
Now, by Markov’s inequality,

inf
h̃∈C

sup
h∈C

Eh
[‖h̃− h‖1

]≥ ε inf
h̃∈C

(
1 − inf

h∈C
Pnh(h̃= h)

)
�

and hence by Lemma 8 in Massart and Nédélec (2006),

Ln ≥ Mε

8
(1 − α)�

where α := 0�71, as long as K̄ ≤ α log(|C|), where, for some fixed h0 ∈ C,

K̄ := 1
|C| − 1

∑
h∈C�h�=h0

K
(
Pnh�P

n
h0

)
= n

|C| − 1

∑
h∈C�h�=h0

K(Ph�Ph0)�

and K(·� ·) is the Kullback–Leibler divergence. By Lemma D.2, we have that

K̄ ≤ n sup
h∈C

‖h− h0‖1 ≤ nε�

where the last inequality follows by the construction of C.
Again by the construction of C, we can choose C such that there exists some positive

constant C1 for which log(|C|)≥ C1ε
−r for ε≤ ε1, and therefore

K̄
log |C| ≤ n

C1
ε1+r �

Hence we can conclude that Ln ≥ (Mε/8)(1 − α) whenever

n

C1
ε1+r ≤ α�
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that is,

ε≤ (αC1)
1/(1+r)n−1/(1+r)�

Now, we may also choose C such that αC1 ≤ ε1+r
1 , so that the constraint ε≤ ε1 is satisfied

if we set

ε= (αC1)
1/(1+r)n−1/(1+r)�

Hence we have that

Ln = inf
Ĝ

sup
P∈P∗(μ)

EPn
[
W
(
G∗)−W (Ĝ)]≥An−1/(1+r)�

where A is a constant which depends on K1, K2, M , and r as desired. Q.E.D.

PROPOSITION D.1: Let {Zi}ni=1 be a sequence of i.i.d. random vectors with distribution P .
LetZ = (Z1�Z2), and let F be a class of real-valued functions of the form f (z)= f (z1� z2)=
g(z) · h(z2), where h ∈H, H is a class of functions with values in {0�1}, and g is some fixed
real-valued function (which may depend on P) such that |g| ≤ 1. Let P2 be the marginal
distribution of Z2 and suppose H satisfies

HB
2 (ε�H�P2)≤Kε−	� (D.1)

for some constants K > 0, 	≥ 2, for all ε > 0. Then there exist positive constants C1, C2, C3,
C4 (which depend only on K and 	) such that if

ξ≤
√
n

128
� (D.2)

and

ξ≥
{
C1n

(	−2)/2(	+2)� 	≥ 2�
C2 log max(n� e)� 	= 2�

(D.3)

then

Pn

(
sup
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

[
f (Zi)−Ef(Zi)

]∣∣∣∣∣> ξ
)

≤ C4 exp
(−ξ2

)
�

PROOF: We follow the general strategy of Theorem 2.3 and Corollary 2.4 in Alexander
(1984). Let

νn(f )= 1√
n

n∑
i=1

[
f (Zi)−Ef(Zi)

]
�

We begin with a series of definitions. Let δ0 > δ1 > · · · > δN > 0 be a sequence of real
numbers where {δj}j and N are to be specified precisely later in the proof. For every
0 ≤ j ≤N , there exists a set of δj-brackets HB

j of H such that |HB
j | =NB

2 (δj�H�P2). For
each h ∈H, let (hLj �h

U
j ) ∈HB

j be the brackets such that hLj ≤ h≤ hUj and ‖hHj −hLj ‖2 < δj .
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Define the function Hθ(·) : (0�∞)→ [0�∞) as follows:

Hθ(u)=

⎧⎪⎪⎨⎪⎪⎩
Ku−	� u≤ 1�

−K
θ
u+ K(1 + θ)

θ
� u ∈ (1�1 + θ]�

0� u > 1 + θ�
Note that by construction, Hθ is continuous on [0�∞), and by Assumption (D.1) and the
fact that H has diameter 1 by definition, NB

2 (δj�H�P2) ≤ exp(Hθ(δj)) for θ > 0. From
now on, we fix such a θ > 0, and suppress θ from our notation. For any f ∈ F , we have
by definition that f = g · h for some h ∈ H, and so given the bracket (hLj �h

U
j ), define

f Lj := g · hLj 1{g ≥ 0} + g · hUj 1{g < 0}, and fUj := g · hUj 1{g ≥ 0} + g · hLj 1{g < 0}, and note
that by construction, (f Lj � f

U
j ) is a bracket for f . Let fj = f Lj , and let Fj = {fj : f ∈ F};

then |Fj| ≤ exp(H(δj)) and for every f ∈F , ‖f − fj‖2 < δj .
By a standard chaining argument,

P
(

sup
f∈F

∣∣νn(f )∣∣> ξ)≤R1 +R2 +R3�

where

R1 = |F0| sup
f∈F

P

(∣∣νn(f )∣∣> 7
8
ξ

)
�

R2 =
N−1∑
j=0

|Fj||Fj+1| sup
f∈F

P
(∣∣νn(fj − fj+1)

∣∣>ηj)�
R3 = P

(
sup
f∈F

∣∣νn(fN − f )∣∣> ξ

16
+ηN

)
�

where {ηj}j are chosen such that
∑N

j=0ηj ≤ ξ/16 and will be specified precisely later in
the proof. We now choose {δj}j , {ηj}j , and N to make these three terms sufficiently small.

First, consider R1. Take δ0 such that H(δ0)= ξ2/4. Then by Hoeffding’s inequality,

R1 ≤ 2|F0|exp
(

−2
(

7
8
ξ

)2)
≤ 2 exp

(−ξ2
)
�

Next, we develop a bound on R2. Since by construction ‖fj − fj+1‖2 ≤ 2δj , it follows by
repeated applications of Bennet’s inequality (see Lemma D.3) that

R2 ≤
N−1∑
j=0

2 exp
(
2H(δj+1)

)
exp
(−ψ1

(
ηj�n�4δ2

j

))
�

where ψ1 has the properties described in Lemma D.3. Next, consider R3. Given the con-
struction of FN and writing f = g · h,∣∣νn(fN − f )∣∣ ≤ ∣∣νn(fUN − f LN

)∣∣+ 2
√
n
∥∥fUN − f LN

∥∥
1

≤ ∣∣νn(fUN − f LN
)∣∣+ 2

√
nδ2

N�
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since ‖f UN − f LN‖1 ≤ ‖hUN − hLN‖1 ≤ δ2
N (where here we use the fact that hUN , hLN take val-

ues in {0�1}). Take δN ≤ s := (ξ/(32
√
n))1/2; then by the above derivation and Bennet’s

inequality,

R3 ≤ P
(

sup
f∈F

∣∣νn(fUN − f LN
)∣∣>ηN)

≤ 2|FN |exp
(−ψ1

(
ηN�n�δ

2
N

))
�

To complete our bounds on R2 and R3, we consider two separate cases. First, suppose
δ0 ≤ s as defined above. Then by taking N = 0 and η0 = ξ/16, we have that R2 = 0 and

R3 ≤ 2|F0|exp
(−ψ1

(
η0� n�δ

2
0

))
�

Since δ0 ≤ s, we have that

2η0 = ξ

8
= 4

√
n

(
ξ

32
√
n

)
≥ 4

√
nδ2

0�

and hence by the properties of ψ1,

ψ1

(
η0� n�δ

2
0

)≥ 1
4
ψ1

(
2η0� n�δ

2
0

)≥ 1
4
η0

√
n�

Using Assumption (D.2), we can then conclude that

ψ1

(
η0� n�δ

2
0

)≥ 1
4
η0

√
n= ξ

64
√
n≥ 2ξ2�

By the definition of δ0,

|F0| ≤ exp
(
ξ2

4

)
�

so that putting everything together yields

R2 +R3 ≤ 4 exp
(−ξ2

)
�

Next, consider the case where δ0 > s. LetN and {δj}Nj=1 be as in Lemma D.4, where t = δ0,
and s is as defined above. Let ηj = 8

√
2δjH(δj+1)

1/2 for 0 ≤ j < N , ηN = 8
√

2δNH(δN)1/2.
Then by Lemma D.4,

N∑
j=0

ηj = 8
√

2
N∑
j=0

δjH(δj+1)
1/2 ≤ 64

√
2
∫ δ0

s/4
H(u)1/2 du�

Now, by the definition of H(·), we have that for 0< s < t,∫ t

s

H(u)1/2 du≤
{
K1/2 log(1/s)� 	= 2 and t ≤ 1�
2K1/2(	− 2)−1s(2−	)/2� 	 > 2�
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and so by combining this with Assumptions (D.2) and (D.3) (with C1 sufficiently large), it
can be shown that

N∑
j=0

ηj ≤ ξ

16
�

and hence our choice of {ηj}j is consistent with our construction (note that when 	 = 2,
the above inequality only applies when t ≤ 1; however, we can argue using δ0 ≤ 1 + θ that∑
ηj ≤ ξ/16 + C ′θ for some constant C ′ > 0, for all θ > 0, and hence our result holds

for P(supf |νn(f )| ≥ ξ+C ′θ) where θ > 0 can be made arbitrarily small). By Assumption
(D.3) (with C1 sufficiently large), it can also be shown that

H(s)≤ ξ
√
n

16
�

and hence it follows that (
ηj

4δ2
j

√
n

)2

<
8H(s)
ns2 ≤ 16�

so that by the properties of ψ1,

ψ1

(
ηj�n�4δ2

j

)≥ η2
j

16δ2
j

�

Using our bound on R2, we can then conclude that

R2 ≤
N−1∑
j=0

2 exp
(

2H(δj+1)− η2
j

16δ2
j

)
≤

N−1∑
j=0

2 exp
(−4j+1H(δ0)

)
�

Similarly, we can argue that

R3 ≤ 2 exp
(−4N+1H(δ0)

)
�

Putting these together, and using Assumption (D.3),

R2 +R3 ≤
∞∑
j=0

2 exp
(−4j+1H(δ0)

)≤ C exp
(−ξ2

)
�

where C is a constant that depends only on K and 	. Q.E.D.

COROLLARY D.1: Let {Zi}ni=1 be a sequence of i.i.d. random vectors with distribution P .
LetZ = (Z1�Z2), and let F be a class of real-valued functions of the form f (z)= f (z1� z2)=
g(z) · h(z2), where h ∈ H, H is a class of functions with values in {0�1}, and g is some
fixed real-valued function (which may depend on P) such that |g| ≤ 1. Suppose H satisfies
Assumption B.1, and suppose that P2, the marginal distribution of Z2, has a density with
respect to Lebesgue measure bounded above byA. Then there exist positive constantsD1,D2,
D3 (which depend only on K, r, and A) such that, for n≥ 3,

Pn

(
sup
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

[
f (Zi)−Ef(Zi)

]∣∣∣∣∣> xqn
)

≤D3 exp
(−x2q2

n

)
�
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for D1 ≤ x≤D2
√
n/qn, where

qn =
{

logn� r = 1�
n(r−1)/2(r+1)� r > 1!�

PROOF: First, note that since P2 has density with respect to Lebesgue measure bounded
above by A, we get that by Assumption B.1,

HB
1 (ε�H�P2)≤ Cε−r�

where C is some constant which depends only on K and A. Next, since H consists of
{0�1}-valued functions, any ε-bracket for H in L1 is an ε1/2-bracket in L2 and vice versa.
Hence we get that

HB
2 (ε�H�P2)≤K′ε−2r�

for some constant K′ which depends only on K, r, and A. The result then follows imme-
diately by Proposition D.1. Q.E.D.

LEMMA D.1: Maintain the assumptions of Proposition B.1 with r < 1. Let Sn be as in the
proof of Proposition B.1. Then

sup
P∈P

E[Sn] =O(1)�

PROOF: By definition, Sn ≤ √
nS(1)n + S(2)n , where

S(1)n = sup
G∈G:‖fG‖≤n−1/(2+2r)

∣∣∣∣∣1n
n∑
i=1

(
f̃G(Zi)−E[f̃G(Zi)])

∣∣∣∣∣�

S(2)n = sup
G∈G:‖fG‖≥n−1/(2+2r)

√
n

∣∣∣∣∣1n
n∑
i=1

(
f̃G(Zi)−E[f̃G(Zi)])

∣∣∣∣∣
‖f̃G‖1−r �

with f̃G = ḡ · (1{X ∈G∗} − 1{X ∈G}) and ‖ · ‖ the L2(P) norm, and we have used the
fact that ‖f̃G‖ ≤ 1. We will use Lemma 5.13 in van de Geer (2000) to bound each of these
quantities. To apply the lemma, let g in her notation be f̃G in ours, and g0 in her notation
be zero. Set α = 2r, β = 0 in the statement of her lemma. It remains to verify condition
(5.40) in her lemma for the class F̃ = {f̃G : G ∈ G}, but this follows by Assumption B.1
by combining the arguments from the proof of Corollary D.1 and the proof of Proposi-
tion D.1. By inequality (5.42) in her lemma,

sup
P∈P

n1/(1+r)E
[
S(1)n
]=O(1)�

and hence since r < 1,

sup
P∈P

√
nE
[
S(1)n
]=O(1)�
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By inequality (5.43),

sup
P∈P

E
[
S(2)n
]=O(1)�

Combining both of these together gives our desired result. Q.E.D.

LEMMA D.2: Let Pf be specified as in the proof of Proposition B.2. Then for f�g ∈H such
that f �= g,

K(Pf �Pg)≤ ‖f − g‖1�

where K(·� ·) is the Kullback–Leibler divergence.

PROOF: Let Qf�x(·) denote the probability mass function of (Y(1)�D)|X = x under Pf
(recall that Y(0)|X = x is degenerate, so we omit it from the calculation). If f �= g, a
direct calculation shows that

K(Qf�x�Qg�x)= 1
2

log(3)�

Hence

K(Pf �Pg)=
∫
X
K(Qf�x�Qg�x)1

{
f (x) �= g(x)}dμ

= 1
2

log 3‖f − g‖1 ≤ ‖f − g‖1� Q.E.D.

LEMMA D.3—Bennet’s Inequality: see Theorem 2.9 in Boucheron, Lugosi, and Massart
(2013): Let {Zi}ni=1 be a sequence of independent random vectors with distribution P . Let f
be some function taking values in [0�1] and define

νn(f ) := 1√
n

n∑
i=1

[
f (Zi)−Ef(Zi)

]
�

Then for any ξ≥ 0,

Pn
(∣∣νn(f )∣∣> ξ)≤ 2 exp

(−ψ1(ξ�n�α)
)
�

where α= var(νn(f )) and

ψ1(ξ�n�α)= ξ√nh
(

ξ√
nα

)
�

with

h(x)= (1 + x−1
)

log(1 + x)− 1�

Importantly, ψ has the following two relevant properties:

ψ1(ξ�n�α)≥ψ1(Cξ�n�ρα)≥ C2ρ−1ψ1(ξ�n�α)�
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for C ≤ 1, ρ≥ 1, and

ψ1(ξ�n�α)≥

⎧⎪⎪⎨⎪⎪⎩
ξ2

4α
� if ξ < 4

√
nα�

ξ

2
√
n� if ξ≥ 4

√
nα�

LEMMA D.4—Lemma 3.1 in Alexander (1984): Let H : (0� t] → R
+ be a decreasing

function, and let 0< s < t. Let δ0 := t, δj+1 := s ∨ sup{x≤ δj/2 :H(x)≥ 4H(δj)} for j ≥ 0,
and N := min{j : δj = s}. Then

N∑
j=0

δjH(δj)
1/2 ≤ 8

∫ t

s/4
H(u)1/2 du�
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