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APPENDIX A: MODEL EXTENSIONS AND ADDITIONAL INTERPRETATIONS

IN THIS SECTION, we develop a number of extensions. We first let the production function,
the learning function, or the value placed on knowledge depend on observable worker
characteristics aside from knowledge. We then relax the baseline assumptions of com-
plete markets, perfect information about one’s knowledge and the knowledge of cowork-
ers, perfect competition in the labor market, and incorporate search frictions and other
adjustment costs. Finally, we show that the methodology can be used in a setting in which
knowledge is multidimensional. We conclude the section by estimating the learning func-
tion in an environment in which a worker’s learning depends on her age.

A.1. Incorporating Other Observables

We now study a setting in which either the production function or the learning function
depends on worker characteristics aside from knowledge. These characteristics may or
may not evolve endogenously. We require the characteristics to be observable.

An individual is described by knowledge z and a vector of observable characteristics x.
These evolve according to a joint Markov process. For example, x could consist of an
individual’s age, schooling, occupation, location, etc. Denote the joint Markov process
by G(z/, x'|z, x, {Z,X}). The value function for an individual with state z, x is V(z, x)
satisfying

Vi(z,x)=w(z,x; {Z,X}) + B / / V(Z,x)G(dzZ,dx'|z, x, {z,X}).

Thus, both the production function and the learning function can depend on the individ-
ual characteristics and those of her coworkers. The realized value function of worker i at
time ¢ iS

v,«t:wi,+,B’//V(z/,x/)G(dz/,dx/|zit,xit,{ii,,f(,«t}). (A1)

The key step is to transform the learning function from the knowledge space to the
value space. We require that V' is strictly increasing in z for each x, and therefore has
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a partial inverse Z(v, x) that satisfies v =V (Z(v, x), x) and z = Z(V'(z, x), x). Further,
define the learning function in the value space as

G(v/, X'|v, x,¥,%) = G(Z(v,x'), x| Z(v, x), x, Z(¥, %), X),

where Z(¥; X) is the vector of coworkers’ knowledge given their values and characteristics.
With this, we can write (A.1) as

v,»,:w,—,—i—B//v’G(dv’,dx’lv,x,ff, X). (A2)

A.1.1. Algorithm

We now show that it is straightforward to extend the methodology described in the
previous section to estimate the function G. Let £ be the conditional expectation,

S(v,x,v,i)EE[vﬂv,x,V,i]=f[v/é(dv/,dx/|v,x,v,i),

so that the realized Bellman equation (A.2) can be written as
Vi = Wir + BE Wi, Xi, Vit X_ir). (A.3)

If we observed {v., x;, v;, x;, V_;, X_;} for each worker, we could directly estimate £. Con-
versely, if we knew £ and we observed {w;, x;, W_;, X_;} for each worker, we could solve for
{v;} for each team using the system of equations given by (A.3) for each team member.

We can again cast this in terms of a GMM estimation procedure. For example, suppose
we assume & takes the form of a linear combination of moments {m, (v, x, V, X)}5_,, so

- o~ K - o~ .
EW, x,v,X) =) ,_, 0umy (v, x,V,X). Next, define the expectational error term ;. to be
Eirr1 = Vier1 — ElVis1 [Vie, Xies Voir, Xoie] = Vigr — EWiry Xigy Vi, X_i).

We can then build moment conditions to estimate 6 from E[e&;. |V, Xir, Vi, Xi,] = 0. Our
natural moment conditions would then be E[eg;,1my (vi, Xir, Vir, X;;)] = 0. Formally, given
0, we can solve for {v;} using (A.3). Given the entire vector of wages w, observable charac-
teristics x, and team assignments r, let Y'(w, x, r, 8) be the corresponding values that have
been solved for using (A.3) so that {v;} = Y (w,, x,, r;, #). Given this, we can construct
M(w,, x,, 1, 0) to be the I x K matrix of moments so that the i, k entry of M (w,, x,, r,, 0)
is my (v;, x;,V_;,X_;), where v;, v_; are the values of i and her coworkers implied by the
wages, w,, the observable characteristics x,, the assignment r,, and parameters 6. Then
the kK moment conditions (14) can be stacked as

E[M(wy, x1, 11, 0)" (Y (W1, Xi11, a1, 0) — M (wy, X4, 1, 0)0) ] =0.

A.1.2. Incomplete Markets

In this section, we show that with additional information about workers’ assets,
one could relax the assumption of complete markets. Suppose an individual faces a
consumption-savings problem in which she can only save in risk-free bonds, possibly in-
cluding a constraint on her asset position. In such a model, an individual with assets b



LEARNING FROM COWORKERS 3

and knowledge z chooses consumption and a team of coworkers to maximize the present
value of utility given by

V(b,z)= max u(c)+ BE[V (Y, 2')|z, %, b],
subject to the budget constraint ¢ = b + w(z, b,z) — 1b—+/r, borrowing constraints, and the

constraint that there is a firm willing to hire that worker along with those coworkers.! If,
as is natural, the value is increasing in knowledge for any level of assets, the value function
has a partial inverse, Z(v, b). We can then express the learning function G(z'|z, Z) in value
space as G(v/|v, b,v,b).2 Subsuming the optimal choices, the Bellman equations can be
expressed as

/

b, -
Vi = u(b, + w; — 1 —Ii r) + BE[U”U,‘, ba {’, b]'

Thus, with data on worker assets (so that we observe b; and b)) and a choice of utility
function, we could implement the methodology of Section A.1.1 to estimate G.

A.1.3. Imperfect Information

In this section we discuss a setting in which individuals have imperfect information
about their coworkers’ knowledge. We discuss two extreme benchmark cases. First, we
assume that information about each worker’s knowledge is imperfect but all workers and
firms share the same beliefs. Second, we assume each individual has perfect information
about her own knowledge but no information about the knowledge of her coworkers.

We begin with a model in which beliefs about each worker’s knowledge are imprecise
but symmetric at all times. Each individual has a knowledge z* that evolves stochastically
over time according to the distribution G*(z*|z*,z*). Suppose further that, conditional
on observables, beliefs about one’s knowledge can be summarized by a single number, z;.
For example, suppose that beliefs were normal, with mean z; and variance that depended
only on age, experience, and tenure. The wage a firm had to pay a worker would depend
on the beliefs about her knowledge as well as the compensating differential reflecting
how much that worker expected to learn (which depends on beliefs about her coworkers’
knowledge). Thus, the wage can be expressed as w(z, x, Z, X), where x; are the observables
that are sufficient to characterize the precision of beliefs. A worker’s Bellman equation
can be expressed as

Vi(z,x)=w(z,x,,X) + BE[V (Z,X)|z, x,Z,X].

The true learning function G*, along with the information generated in the produc-
tion/learning process, give rise to a Markov process characterizing the evolution of be-
liefs, G(z', x'|z, x, Z,X). This, along with the Bellman equation, are the same as those in
Section A.1, and so we can implement the same approach.

We next turn to a model with asymmetric information. We consider an extreme case in
which workers have perfect information about their own type and no information about
their coworkers’ types.> In such an environment, wages would not reflect compensating

'The wage schedule would depend on the worker’s assets because workers with different levels of assets
would place different values on new knowledge.

2Formally, G(v’lv, b,¥,b)=G(Z(W, b (Z(v, b), b))| Z(v, b), {Z(vj, bj)};zi), where b'(z, b) is the continua-
tion assets chosen by the worker.

3Here, we do not need to take a stand on firms’ beliefs.



4 G. JAROSCH, E. OBERFIELD, AND E. ROSSI-HANSBERG

differentials for learning. Therefore, an individual’s wage would perfectly reveal her type,
that is, there would be a one-to-one mapping from wages to knowledge. In this type of
environment, the reduced-form approach taken in Section 2 could be used to structurally
identify the learning function.

A.1.4. Search and Rent-Sharing

In this section, we extend the model to relax the assumption of perfect competition for
workers and incorporate search frictions and other forms of adjustment costs. Suppose
that a firm’s output depends on its productivity and its team of workers according to the
production function F(z, a). Compensation of each worker is determined by multilateral
bargaining. We impose two restrictions on the bargaining solution. First, surplus is split
among the workers and the firm period by period. Second, the bargaining solution is such
that each worker’s compensation is a function of her type, the vector of coworkers, and the
firm’s productivity, w(z, Z, a).* The firm solves a dynamic stochastic optimization problem
that incorporates vacancy posting costs, worker attrition, and any other adjustment costs
such as firing and training costs. The solution induces a Markov transition function that
characterizes the (endogenous) law of motion for each worker’s knowledge and the set of
future coworkers, G(a', Z'|a, z), which incorporates learning, hires, and separations.’

The present value of income for each worker and the present value of earnings for the
firm would satisfy, respectively,

V(z,z,a) =w(z,Z,a) + BE[V(Z’, z, a/)|z, z, a],
Y(a,z)=m(a,z2) + BE[Y(a',2)|a,z],

where 7(a, z) is the current flow profit, incorporating revenue, less the wage bill, less the
cost of choosing the probability distribution over next period’s team.

The key step in our methodology is to express the learning functions in terms of values.
In particular, if we can write the learning functions for a worker and firm as Gw(v/|v, v,y)

and G/ (¥'|y, v), respectively, then we can express the realized Bellman equations as
Vv, =w; + ,BE['U;'U,', i;—ia yj]a (A4)
v =7+ BE[y]ly;, v]. (AS)

With these in hand, we can recover the learning functions as follows: If we know Gv and
G/ , we can recover the n + 1 unknowns {v;} for each of the n workers and y; for the
firm with the n + 1 equations, (A.4) for each of the n workers and (A.5) for the firm.
Conversely, if we know v;, v, v_;, and y; for each worker as well as y;, y;, and v for each

firm, we can directly estimate G" and G'. We can thus follow the same iterative procedure
outlined above to estimate the learning functions.

For this procedure to work, we must be able to invert the vector of value functions.
Specifically, given a vector of values {v, y} for a team, we must be able to recover their
knowledge {z, a}. If static/dynamic peer effects are not too large, then the value functions

“Two standard examples are Stole and Zwiebel (1996) and multilateral Nash bargaining in which bargaining
weights are either symmetric or depend only on workers knowledge and the firm’s productivity.

This specification nests models such as Hopenhayn (1992) in which productivity evolves exogenously as
well as those that incorporate R&D.
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{V(z,z,a)} and Y (a,z) are jointly invertible because the Jacobian is diagonally domi-
nant.’®

What exactly would this recover? E[v'|v, V, a] incorporates information both about
learning from others and how others affect the evolution of one’s value in other ways
(i.e., giving firms incentive to hire new workers that are complementary to you, or sep-
arate from them, etc.). Hence, we would obtain more of an estimate of dynamic peer
effects that incorporates learning than of purely learning.

To reiterate, the key feature of this economy that makes our methodology feasible is the
fact that we can invert value functions and recover knowledge of the team of coworkers.
Future research could try to extend this methodology to situations in which a worker’s
compensation depends on more than the vector of knowledge in her team, for example,
on a worker’s past outside offers.

A.1.5. Multidimensional Knowledge

The equations characterizing an individual’s value function use the idea that the change
in one’s knowledge depends on the distribution of knowledge among one’s cowork-
ers. We have proceeded under the presumption that knowledge can be described by a
scalar, z. Suppose instead that z represents a vector of individual characteristics (e.g.,
different dimensions of knowledge). There are some restrictions on the environment
and learning process under which our baseline procedure would still be appropriate
to identify the learning.” Outside of these special cases, it may be possible, with addi-
tional data, to allow for more general patterns of learning. To be concrete, suppose that
knowledge was two-dimensional, z; = {z;1, z;»}, and the learning function took the form
G(z), Z5|zi1, Zin, 211, Z_1p). Suppose also that we observed an additional choice of each
worker in addition to compensation. Label this choice x(z;, z;;). Finally, suppose that
the value function and choice function were jointly invertible, that is, we could express
zin = Z1(vi, x;) and z, = Z,(v;, x;); then we could use a version of our methodology to

recover the law of motion G(v’, x'|v, x,v,X). Clearly, this approach would not separately
identify how each component of knowledge evolves, but it would recover the value of
learning.®

®To be concrete, suppose the value functions are, in fact, invertible. Let Z(v, v, y) be the knowledge of a
worker with value v and coworkers summarized by ¥ working for a firm with value y, and let A(y, v) be the
productivity of a firm that has value y and a team summarized by the vector of values v. Then Gw(v’lv, v,y)
and G/ (y'ly,v) are defined as follows. The law of motion G implies a conditional distribution for each
worker’s knowledge in the next period, G*(z'|z,Z, y), and a conditional distribution for the firm’s produc-
tivity G/ (a'|a, z). To derive the expressions for G™ and Gf we can simply plug Z(v,V,y) and A(y,v) into
these conditional distributions and take expectations, namely,

Aw (o = _ w ; o~ ’ Z(viri’,fi,y')v
G (Uilvi,V,,', y/) = E‘-]Ll’yly |:G (Z(vi’v_i’yj) ‘ {Z(Uk; i}—ka Yj)}k#i,A]()’jy {Uiav—l}) )

G (y'1y.v) = Ev[G/ (A(Y,V)IAD, V), {Z(wi, i 1)} ) 1y v, Y]

"For example, learning could be such that the change in one’s value function depends on the composition
of one’s coworkers’ value functions. In this case, it is natural to assume that the learning function depends on
values, not on knowledge directly, since values provide a relevant summary of the vector of characteristics z.
Then, the procedure outlined above to obtain an individual’s knowledge from a panel of wages simply recovers
the values of all agents, as in equation (11). Under this assumption, our methodology can be used exactly as
described, and our quantitative results would be unchanged. We would simply interpret the estimated learning
function as determining how the value of other agents determines the change in value of a given individual.

8In an environment with rent-sharing, a similar approach can be taken for firms. If firm technology were
multidimensional, we could identify those dimensions separately if we observed several firm-level outcomes

= ’
Vi, Vi, yj:vi] 5
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A.2. Age-Dependent Learning: Estimation Results

We finish this section with an illustration of the methodology in Section A.1 that studies
the differences in learning between young and old workers. Let {y, o} indicate whether a
worker is young or old. We implement the following parametric form for the conditional
expectation:

1
Ey[vg—vilvi,vii]=0(y)vi+m:0;} Z (v; —v) + 6}, Z (vj—vi)},

vj>v;,j young v;>v;,j old
1 (A.6)
/ ~ 0 + +
ED[UI-—U,*|U,‘,V,I~] :00Ui+m{00y E (vj—vi)—i-HW E (Uj—Ui)}.
v;j>v;,j young vj>v;,j old

This specification allows knowledge flows to depend on both the age group of the worker
and the age group of her coworkers. For instance, 6}, captures the strength of the knowl-
edge flows from old to young coworkers. Furthermore, the specification allows for age
group specific trend growth. For simplicity, we do not allow for any effects of coworkers j
with v; < v;. The rest of the implementation follows exactly the same routine outlined in
the previous section.

We present our results in Table A.L. In line with our previous findings, we find little
trend growth for either age group. Second, the young learn more overall. Furthermore,
we find that both the young and the old learn more from the young. Regardless of the
team definition, this discrepancy is starker for the young. That is, the young learn dispro-
portionately from the young, closely in line with our reduced-form findings.

TABLE A.l
ESTIMATES FOR THE LEARNING FUNCTION (A.6)?

Team Definition

1 2

0.0023 0.0041
Trend growth young: 02 (0.0001) (0.0001)

Learning of young from young: 67 0.1190 0.1473
Y (0.0034) (0.0045)
Learning of young from old: 67, (883§2) (388;2)
Trend growth old: 69 (888333) (388(2)(1))
Learning of old from young: 67, (88?)?2) (8883)
Learning of old from old: 67, (888??) (883?2)
Observations 4,763,089 4,590,120

4Notes: Old defined as 40 and older. GMM standard errors in parentheses.

such as revenue, investment, and R&D spending, and if we could invert the value function to express each
dimension of productivity in terms of those outcomes.
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APPENDIX B: DATA APPENDIX

We present below summary statistics of the variables of interest in our data set. Supple-
mental Appendix D describes the exact construction of our data set.

B.1. Summary Statistics

We begin by briefly describing the data set along key dimensions. The longitudinal ver-
sion of the Linked-Employer-Employee-Data of the IAB (LIAB LM 9310) contains infor-
mation on the complete workforce of a subset of German establishments. The sample
establishments are the ones selected—at least once—in an annually conducted survey be-
tween 2000 and 2008. The employee part of the data set then contains the employment
biographies from 1993 to 2010 of all individuals which were, for at least one day, em-
ployed at one of the sample establishments between 1999 and 2009.° As a consequence,
we observe the complete peer groups at the sample establishments from 1999 to 2009.

The employment biographies come in spell format and contain information, among
other things, on a worker’s establishment, occupation, and average daily earnings along
with a rich set of observables (age, gender, job and employment tenure, education, loca-
tion, among others). We organize the resulting data set as an annual panel. Specifically,
the annual observation recorded (employer, average daily wage, etc.) for each individual
pertains to the spell which overlaps a particular reference date (January 31st).

To construct a baseline sample, we then proceed as follows. We select the panel case
establishments for which we obtain information on the full workforce. We then include
those individuals who were employed at one of those establishments at the reference date
during at least one year between 1999 and 2009. This leaves us with the employment
biographies (between 1993 and 2010) of the full workforce (at a reference date) of a large
number of establishments. The following subsections contain more detailed information
on the construction of the baseline sample.

We next document the team size distribution and the wage distribution, both economy-
wide and within teams. We report all those statistics for the year 2000.

Team Size Distribution.  Figure B.1 plots the unweighted size distribution for both team
definitions for the year 2000. We restrict attention to teams that have size > 2. The team
size distribution is naturally more compressed under the second, narrower, team defi-
nition, but for both definitions a sizable fraction of teams are fairly large. The sample
contains 4478 establishments with average size 116. When working with the second team
definition, we have a total of 28,524 teams with an average size of 18.1°

Wage Distribution. Figure B.2 plots the histogram of the average daily earnings dur-
ing the year-2000 reference spell in euros. The “mass-points” reflect top-coding of the
earnings data at the social security contribution ceiling (which is lower in Eastern Ger-
many). As a consequence, 7.7% of the wage observations in the regression sample are are
top-coded.!" A simple variance decomposition implies that the within-team component

For more detail, see Klosterhuber, Heining, and Seth (2014).

107t follows that, on average, an establishment has 6-7 different occupations with at least two individuals.
The occupational classification follows the 1988 classification of occupations (KIdB_88) published by the Ger-
man Federal Employment Agency which has three digits and comprises about 340 values.

While there exist imputation methods to address the truncation, we instead treat the top-coded observa-
tions as actual wage observations and do not correct for the top-coding. We have experimented with various
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0.15

0 i )
20 40 60 80 100
Team Definition 1

0.05 J

0 20 40 60 80 100
Team Definition 2

FIGURE B.1.—Team size distribution. Notes: Top panel plots the unweighted team size distribution in the
year 2000 for teams of size 2-99 for Team Definition 1 (so it corresponds to the establishment size distribution).
The bottom panel plots the unweighted team size distribution in the year 2000 for teams of size 299 for Team
Definition 2.

accounts for 47.9% of the overall variance in wages under Team Definition 1 and 22.7%
under Team Definition 2. Finally, there is fairly little wage growth in the decade covered
by our data set. The cohort whose wages are depicted in Figure B.2 experienced aver-
age annual wage growth of 0.97% over the next 5 years. The annual growth rate drops to
0.43% in the second half of the decade.

0.02
.018 b
0.018 10th Pct: 54.6
L | Median: 87.0 |
0.016 90th Pct: 140.6
Mean: 90.4 Euros

0 50 100 150

FIGURE B.2.—Wage distribution. Notes: Distribution of mean daily wages during spell overlapping
01/31/2000 for full-time employees working subject to social security.

ways of treating the top-coded observations and found our main empirical results to be robust. We show in Ap-
pendix C.3 how our reduced-form results change when omitting all teams with top-coded wage observations.
For more detail regarding the construction of wages, see Supplemental Appendix D. There, we also describe
how we eliminate some extreme wage observations.
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. :?W“mﬂmﬁ; |

Team Definition 1

-1 -0.5 0 0.5 1
Team Definition 2

FIGURE B.3.—Wage gap distribution. Notes: Top panel plots the distribution of wage gaps as defined in the
main text in the year 2000 for Team Definition 1. Bottom panel: Team Definition 2.

Wage Gap to Coworkers. We are interested in how a worker’s future wage growth re-
lates to her coworker’s (relative) wages. To gauge the extent of wage differences across
peers, Figure B.3 plots the histogram of wage gaps, defined as the log difference between
an individual’s wage and the mean wage of her peers, for each team definition. Under the
first team definition, the gap has mean 0.026 and amounts to —0.27, 0.04, and 0.29 at the
10th, 50th, and 90th percentiles in the year 2000. Under the second team definition, the
gap has mean 0.012 and is —0.17, 0.00, and 0.21 at the 10th, 50th, and 90th percentiles.
Naturally, within-team wage dispersion is smaller under the narrower team definition.

Correlations

We compute a set of correlations of various wage moments at the team level. Specifi-
cally, Table B.I reports the correlation matrix of team average pay, team pay dispersion,
team mean-median ratio (skewness), team size, and max wage at the team. All entries of
the matrix are positive except the correlation between team average pay and the mean-
median ratio."

TABLE B.I
PAIRWISE CORRELATIONS AT THE TEAM LEVEL—TEAM DEFINITION 22

Mean Wage SD Wage Mean/Median Team Size Max Wage
Mean Wage 1
Wage SD 0.25 1
Mean/Median —0.15 0.09 1
Team Size 0.09 0.23 0.05 1
Max Wage 0.92 0.48 0.02 0.28 1

aAll variables in logs.

12 A natural interpretation is that highly productive teams have a skewed wage distribution with very highly
paid managers.
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APPENDIX C: ADDITIONAL REDUCED-FORM EMPIRICAL RESULTS
C.1. An Identification Strategy

This section develops an instrumental variable (IV) strategy in the spirit of Jager and
Heining (2019), who used arguably random, unexpected worker deaths to study the sub-
stitutability of workers. In particular, we identify (pseudo-)random exit events where a
full-time employed, prime-age (26-54) worker permanently leaves employment subject to
social security. Recall that we observe peer groups from 1999 to 2009 and have individual-
level information until 2010. We therefore only study exits that occurred before January
2009 so that we know that the respective worker did not return into employment (in-
cluding part-time) for a minimum of 24 months (and longer for most). A second, stricter
version of the exit instrument applies the additional criterion that the worker was contin-
uously full-time employed during the 24 months before the exit occurred.

We construct the instrument as follows: We identify all of i’s peers that exit between
year ¢t — 1 and ¢, then compute the average wage bill of i’s peers in ¢ — 1 with and without
the workers that exit. The log difference is our instrument.

Because we have only one instrument, we modify the specification (1) so that we regress
the cumulative growth in one’s wages between ¢ and ¢ + n, Aw/,, on the log wage gap to

it

one’s peers, w;, = log(“_);f';’), which has only one potentially endogenous regressor:

wj

n ~
AI'Ui,t =a+ Bwi,l + Wage + Wienure + W gender + Wedue + Woce + @, + Eit- (Cl)

Further, since our instrument is a shifter of the change in one’s peers rather than the level,
we take first differences of (C.1):

D.sztza—l—ﬁD.li)i,,—}—Ei,,, (C.Z)

where D. denotes variables in first differences and €;, = ¢;, — &;,_1. D.W;, is the variable
we instrument. '

The number of exit events is not very large. Thus, while the instrument is strong, the
two-stage least squares estimates are less precise than our baseline. Table C.I contains the
results for Team Definition 2 for both versions of the instrument along with the estimates
of (C.1) and (C.2) using OLS." All point estimates are positive, and rather large, consis-
tent with the view that increases in the wage gap lead to faster wage growth. However, the
results are significant at the 5% significance level only for 2- and 3-year horizons. Longer
horizons have too few observations.

C.2. Figure 1

Table C.II offers the regression output underlying Figure 1. Table C.III then offers the
same table for the alternative team definition followed by the results for various restricted
samples at horizon 4 = 3.

BWe drop all fixed effects when differencing. We have experimented with different strategies and found it
makes little difference.

4The estimates from (C.2) in the second panel are biased because the &;,_; determines w;,, which means
that €;, is correlated with w;, and hence D.w;,. Note that this is not an issue for the IV specifications because
the instrument does not contain w;,.
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TABLE C.I
IV RESULTS—TEAM DEFINITION 2°

Specification (C.1)

Horizon in Years 1 2 3 5
@ 0.10 0.15 0.19 0.25
(0.0037) (0.0056) (0.0076) (0.011)

Specification (C.2)—OLS

Horizon in Years 1 2 3 5
D 0.97 0.81 0.83 0.86
: (0.017) (0.015) (0.015) (0.016)

Specification (C.2)—First IV

Horizon in Years 1 2 3 5
D 0.14 0.46 0.50 0.29

: (0.26) (0.22) (0.26) (0.26)
C-D F-Stat 1058.8 1052.8 976.6 819.3
K-P F-Stat 429 50.2 62.3 64.9
Observations 1,243,851 1,052,910 894,950 621,950

Specification (C.2)—Second IV

Horizon in Years 1 2 3 5
D 0.41 0.81 0.96 0.46

: (0.32) (0.31) (0.41) (0.46)
C-D F-Stat 828.1 713.4 549.7 3453
K-P F-Stat 46.5 46.8 43.1 32.7
Observations 1,059,259 899,139 766,043 529,574

4Notes: Standard errors clustered at the establishment level. Cragg-Donald and Kleibergen—Paap F-statistics. Standard errors in
parentheses.

C.3. Robustness

This section evaluates the robustness of the main reduced-form empirical results re-
ported in Section 2.1. We do so for Team Definition 2 at the horizon & = 3 years and
report the corresponding tables for Team Definition 1 below.

To do so, we begin by contrasting our baseline results for specification (2) when omit-
ting teams that have any apprentices.’> We then restrict the sample exclusively to teams
without any top-coded wage observations.'® We report the corresponding results, con-
trasted with our benchmark results, for 4 = 3 in Table C.IV and, for the alternative team

I5We highlight that even our baseline results do not use any wage information on workers in apprenticeship.
16The ceiling varies from year to year and differs between former Eastern and Western Germany. Further-
more, the data display a certain amount of bunching in a small interval around the officially reported ceiling
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TABLE C.II
RESULTS FOR FIGURE 1 USING SPECIFICATION (3)*

Horizon in Years

1 2 3 5 10
Bin2 0.000088 0.00024 0.00036 0.00047 0.00100
(0.000039) (0.000063) (0.000085) (0.00011) (0.00026)
Bin3 0.000023 0.000091 0.00018 0.00025 0.00082
(0.000033) (0.000049) (0.000067) (0.00011) (0.00021)
Bin4 ~0.000062 —0.00000048 0.000075 0.00013 0.00048
(0.000030) (0.000049) (0.000064) (0.000098) (0.00020)
Bin s —0.000079 —0.000013 0.000088 0.00019 0.00075
(0.000029) (0.000049) (0.000066) (0.00010) (0.00022)
Bin6 0.000049 0.00015 0.00026 0.00039 0.00079
(0.000023) (0.000039) (0.000054) (0.000090) (0.00019)
Bin7 0.00025 0.00036 0.00049 0.00065 0.0011
(0.000026) (0.000045) (0.000066) (0.00010) (0.00022)
Bing 0.00037 0.00051 0.00068 0.00085 0.0014
(0.000030) (0.000047) (0.000068) (0.00011) (0.00023)
Bino 0.00042 0.00057 0.00073 0.00092 0.0014
(0.000040) (0.000061) (0.000084) (0.00012) (0.00025)
Bin 10 0.00040 0.00051 0.00066 0.00080 0.0011
(0.000042) (0.000069) (0.000098) (0.00015) (0.00025)
Bin 11 0.00081 0.0012 0.0016 0.0023 0.0033
(0.000047) (0.000076) (0.00010) (0.00016) (0.00029)
Within R? 0.88 0.81 0.76 0.66 0.46
Observations 3,354,925 2,942,967 2,537,838 1,846,999 436,728

aNotes: Each row reports the coefficient on the weight of bins 2 through 11 where the weight on the bottom bin is the omitted
category. Each column corresponds to one line in Figure 1. Team Definition 2. Column titles indicate horizon 4. Standard errors
clustered at the establishment level. The regressions include current wage and fixed effects for age decile, tenure decile, gender,
education, occupation, and year. Standard errors in parentheses.

definition, in Supplementary Appendix E. While the results vary across the samples, the
main takeaway from our reduced-form exercises is robust.

We next restrict the sample to workers in teams that are not restricted by collective
bargaining agreements. To that end, we use IAB establishment panel for the year 2000
which asks establishments whether a binding collective bargaining agreement exists and,
if so, if they pay above the applicable collective bargaining agreement. The survey also
asks whether firms benchmark their wages with a collective bargaining agreement in case
they are not subject to a binding agreement. The second column of Table C.V reports
the results if we restrict the sample to workers in establishments paying, on average, at
least 10% above their collective bargaining agreement in the year 2000. The third column
restricts the sample to establishments that are neither subject to a collective bargaining
agreement nor report to benchmark their pay structure with one.

levels. To identify workers with top-coded wages, we thus simply group workers into 50 euro-cent wide bins in
each year and flag the two bins with the most mass.
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RESULTS FROM SPECIFICATION (3) UNDER TEAM DEFINITION 2 FOR VARIOUS RESTRICTED SAMPLES?

All Above Team-Median Below Team-Median ~ 2nd Pct. 4th Pct. 7th Pct. 9th Pct.
Bin 2 0.00036 0.0010 0.00028 0.00062 —0.00016 0.0016 0.00016
(0.000085)  (0.00036) (0.000071)  (0.00030) (0.00044) (0.00036) (0.00013)
Bin 3 0.00018 0.0013 0.00015 0.00012  0.00054  0.00038  0.000060
(0.000067)  (0.00049) (0.000058)  (0.00030) (0.00035) (0.00018) (0.00016)
Bin 4 0.000075 0.0011 0.00011 0.00029  0.00050  0.00067 —0.000041
(0.000064)  (0.00040) (0.000062)  (0.00025) (0.00034) (0.00023) (0.00011)
Bin 5 0.000088 0.00057 0.00021 0.00055  0.00028  0.00051 0.00017
(0.000066)  (0.00039) (0.000060)  (0.00025) (0.00032) (0.00023) (0.00010)
Bin 6 0.00026 0.00087 0.00044 0.00063  0.00041  0.00088 0.00028
(0.000054)  (0.00037) (0.000058)  (0.00023) (0.00034) (0.00022) (0.00011)
Bin 7 0.00049 0.0011 0.00058 0.00093  0.00078 0.0010 0.00068
(0.000066)  (0.00038) (0.000074)  (0.00024) (0.00033) (0.00020) (0.000098)
Bin 8 0.00068 0.0013 0.00075 0.00090  0.00060 0.0012 0.00098
(0.000068)  (0.00037) (0.00012)  (0.00024) (0.00034) (0.00021) (0.00010)
Bin 9 0.00073 0.0014 0.00044 0.0011 0.0010 0.0012 0.0013
(0.000084)  (0.00038) (0.00011)  (0.00025) (0.00045) (0.00021) (0.00011)
Bin 10 0.00066 0.0014 0.00033 0.00060  0.0013 0.0016 0.0079
(0.000098)  (0.00038) (0.00014)  (0.00029) (0.00038) (0.00020) (0.0037)
Bin 11 0.0016 0.0024 0.00020 0.0017 0.0015 0.0017 0
(0.00010) (0.00040) (0.00016)  (0.00029) (0.00035) (0.00025)  (0)
Within R? 0.76 0.71 0.78 0.091 0.048 0.061 0.17
Observations 2,537,838 1,307,463 1,230,371 235,351 245,260 244,998 244236

aNotes: Each row reports the coefficient on the weight of bins 2 through 11 where the weight on the bottom bin is the omitted
category. Columns 2 and 3 report the results when the sample is restricted to workers above (below) the team median wage. The
remaining columns restrict the sample to workers from particular parts of the wage distribution. Team Definition 2. Column titles
indicate horizon 4. Standard errors clustered at the establishment level. The regressions include current wage and fixed effects for age
decile, tenure decile, gender, education, occupation, and year. Standard errors in parentheses.

TABLE C.IV
SUBSAMPLES—TEAM DEFINITION 22

Baseline Teams w/o Apprentices Teams w/o Top-Coded Wages Before 2005 After 2004
ot 0.16 0.16 0.12 0.17 0.16

(0.015) (0.015) (0.0084) (0.017) (0.015)
- 0.041 0.054 0.056 0.051 0.028

(0.0081) (0.0069) (0.0069) (0.0096) (0.0093)
Within R? 0.76 0.76 0.73 0.76 0.77
Observations 2,617,097 1,667,028 1,319,836 1,825,318 791,774

aNotes: B and B~ as estimated from specification (2). Team Definition 2. Column (1): Baseline. Column (2): Sample restricted
to teams without workers in apprenticeship. Column (3): Sample restricted to teams without top-coded wages. Columns (4) and (5)
restrict split sample by years. The regressions include current wage and fixed effects for age decile, tenure decile, gender, education,

occupation, and year (whenever possible). Standard errors in parentheses.
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TABLE C.V
COLLECTIVE BARGAINING—TEAM DEFINITION 2¢

All 2000 >10% CB No CB, No Benchmarking
ot 0.14 0.14 0.11

(0.021) (0.024) (0.051)
_ 0.044 0.047 0.027
w (0.013) (0.014) (0.027)
Within R? 0.75 0.75 0.67
Observations 336,073 275,890 10,591

aNotes: Bt and B~ as estimated from specification (2). Team Definition 2. Column (1):
Benchmark results for year 2000 at horizon & = 3 years. Column (2): Restrict sample to es-
tablishments which report to pay at least 10% above their collective bargaining agreement.
Column (3): Restrict sample to establishments which neither have a collective bargaining
agreement nor benchmark their wage structure with one. The regressions include current
wage and fixed effects for age decile, tenure decile, gender, education, occupation, and year.
Standard errors in parentheses.

Finally, we offer results for various specifications where we include higher-dimensional
fixed effects. In particular, we extend the baseline specification (2) in three different ways.
First, we include additional fixed effects for establishment (establishment x occupation
in the second team definition). In a second specification, we include additional team fixed
effects. In a third specification, we include occupation x year fixed effects.

In doing so, we replace the separate right-hand-side variables w* and w™ in specifica-
tion (2) with the gap w* — w~. The reason is the following: One’s own wage, those of
higher paid teammates, and those of lower paid teammates are approximately (but not
exactly) collinear with a team fixed effect. If we include a team fixed effect, we cannot
recover both of B and B~, but we can recover their difference. The results are reported
in Table C.VL

We complement this with an additional set of results that add, to the baseline specifi-
cation (2), five lags of an individual’s log wage, w;. We view this as a way of informing
a worker fixed effect in a backward-looking way that is not affected by her contempo-
raneous peers. The results, albeit smaller, line up closely with our baseline findings. We
present the results in Table C.VII.

TABLE C.VI
FIXED EFFECTS?

Baseline Est x Occ FE Team Occ x Yr
at — - 0.057 0.087 0.12 0.060

(0.0079) (0.010) (0.012) (0.0079)
Within R? 0.76 0.47 0.51 0.76
Observations 2,617,097 2,614,229 2,585,060 2,617,037

aNotes: We replace the separate right-hand-side variables w™ and w™ in specification (2) with the gap w™ — ™. Team Definition 2,
horizon / = 3. Column (1): Baseline. Column (2): Baseline plus establishment x occupation fixed effects. Column (3): Baseline plus
establishment x occupation x year fixed effects. Column (4): Baseline plus occupation x year fixed effects. The regressions include
current wage and fixed effects for age decile, tenure decile, gender, education, occupation, and year. Standard errors in parentheses.
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TABLE C.VII
ADDITIONAL LAGS?

Horizon in years

1 2 3 5
- 0.045 0.064 0.093 0.10
(0.0062) (0.0096) (0.013) (0.018)
. 0.016 0.025 0.038 0.057
(0.0043) (0.0069) (0.0091) (0.013)
Within R? 0.90 0.85 0.81 0.73
Observations 1,075,048 872,001 663,704 291,095

aNotes: Baseline specification (2) with five additional lags of log wage. Standard errors in parentheses.

Table C.VIII contains results for specification (2) when we control for establishment-
level growth in two different ways. Our first measure of establishment growth is the annual
growth rate of the number of full-time employees in our data set. The second is the annual
growth rate of the wage bill of the full-time employed. We then add to the otherwise
unchanged specification (2) three linear controls, namely, the respective growth measure
betweent —2and t —1,¢— 1 and ¢, and ¢ and ¢ 4 1. The main takeaway is that the results
hardly change when we add these controls.

TABLE C.VIII

COUNTERPART TO TABLE II WITH CONTROLS FOR ESTABLISHMENT-LEVEL WAGE BILL (OR EMPLOYMENT)
GROWTH—TEAM DEFINITION 2°

Wage Bill Growth Controls

Horizon in Years 1 2 3 3
ot 0.090 0.12 0.17 0.24
(0.0076) (0.011) (0.015) (0.021)
- 0.028 0.033 0.042 0.060
(0.0056) (0.0069) (0.0082) (0.011)
Within R? 0.88 0.82 0.77 0.67

Employment Growth Controls

Horizon in Years 1 2 3 5

ot 0.090 0.12 0.17 0.24
(0.0077) (0.011) (0.015) (0.021)

- 0.028 0.033 0.042 0.060
(0.0057) (0.0070) (0.0083) (0.011)

Within R? 0.88 0.82 0.77 0.67

Observations 2313,583 2,186,058 1,865,434 1,244,737

aNotes: Additional controls: Growth in total wage bill (or number) of the full-time employed at the establishment between ¢ — 2
andr—1,¢—1and ¢ and f and ¢ + 1. Standard errors in parentheses.
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