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THE EMPIRICAL CONTENT OF BINARY CHOICE MODELS

DEBOPAM BHATTACHARYA
Department of Economics, University of Cambridge

An important goal of empirical demand analysis is choice and welfare prediction
on counterfactual budget sets arising from potential policy interventions. Such pre-
dictions are more credible when made without arbitrary functional-form/distributional
assumptions, and instead based solely on economic rationality, that is, that choice is
consistent with utility maximization by a heterogeneous population. This paper inves-
tigates nonparametric economic rationality in the empirically important context of bi-
nary choice. We show that under general unobserved heterogeneity, economic ratio-
nality is equivalent to a pair of Slutsky-like shape restrictions on choice-probability
functions. The forms of these restrictions differ from Slutsky inequalities for continu-
ous goods. Unlike McFadden—Richter’s stochastic revealed preference, our shape re-
strictions (a) are global, that is, their forms do not depend on which and how many
budget sets are observed, (b) are closed form, hence easy to impose on paramet-
ric/semi/nonparametric models in practical applications, and (c) provide computation-
ally simple, theory-consistent bounds on demand and welfare predictions on counter-
factual budge sets.

KEYWORDS: Binary choice, general heterogeneity, income effect, utility maximiza-
tion, integrability/rationalizability, Slutsky inequality, shape restrictions.

1. INTRODUCTION

MANY IMPORTANT ECONOMIC DECISIONS faced by individuals are binary in nature, in-
cluding labor force participation, retirement, college enrollment, adoption of a new tech-
nology or health product, participation in a job-training program, etc. This paper con-
cerns nonparametric analysis of binary choice under general unobserved heterogeneity
and income effects. The paper has two goals. The first is to understand, theoretically,
what nonparametric restrictions does utility maximization by heterogeneous consumers
impose upon choice probabilities, that is, whether there are analogs of Slutsky restric-
tions for binary choice under general unobserved heterogeneity and income effects, and
conversely, whether these restrictions are also sufficient for observed choice-probabilities
to be rationalizable. This issue is important for logical coherency between theory and em-
pirics and for prediction of demand and welfare in situations involving counterfactual,
that is, previously unobserved, budget sets. It is important in these exercises to allow for
general unobserved heterogeneity because economic theory typically does not restrict its
dimension or distribution, and does not specify how it enters utility functions. To date,
closed-form Slutsky conditions for rationalizability of demand under general heterogene-
ity were available only for continuous choice. The present paper, to our knowledge, is the
first to establish them for the leading case of discrete demand, namely binary choice.
The second goal of the present paper is a practical one. It is motivated by the fact that
in empirical applications of binary choice, requiring the estimation of elasticities, welfare
calculations and demand predictions, researchers typically use parsimonious functional
forms for conditional choice probabilities. This is because fully nonparametric estimation
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is often hindered by curse of dimensionality, the sensitivity of estimates to the choice
of tuning parameters and insufficient price variation, especially in consumer data from
developed countries. The question therefore arises as to whether the economic theory
of consumer behavior can inform the choice of such functional forms. Answering this
question is our second objective.

Since McFadden (1973), discrete choice models of economic behavior have been stud-
ied extensively in the econometric literature, mostly under restrictive assumptions on util-
ity functions and unobserved heterogeneity including, inter alia, quasilinear preferences
implying absence of income effects and/or parametrically specified heterogeneity distri-
butions (cf. Train (2009) for a textbook treatment). Matzkin (1992) investigated the non-
parametric identification of binary choice models with additive heterogeneity, where both
the distribution of unobserved heterogeneity and the functional form of utilities were left
unspecified. More recently, Bhattacharya (2015, 2018) has shown that in discrete choice
settings, welfare distributions resulting from price changes are nonparametrically point
identified from choice probabilities without any substantive restriction on preference het-
erogeneity, and even when preference distribution and heterogeneity dimension are not
identified.

In the present paper, we consider a setting of binary choice by a population of budget
constrained consumers with general, unobserved heterogeneity, producing an individual-
level cross-sectional dataset that records prices, individual income and the choice made
by the individual.! In this setting, we develop a characterization of utility maximization
which takes the form of simple, closed-form shape restrictions on choice probability func-
tions in the population. These nonparametric shape restrictions can be consistently tested
in the usual asymptotic econometric sense and are extremely easy to impose on specifica-
tions of choice probabilities—akin to testing or imposing monotonicity of regression func-
tions. Most importantly, they lead to computationally simple bounds for theory-consistent
demand and welfare predictions on counterfactual budgets sets—an important goal of
empirical demand analysis. Interestingly, our shape restrictions differ in form from the
well-known Slutsky inequalities for continuous goods.

The above results are developed in a fully nonparametric context; nonetheless, they
can help guide applied researchers intending to use simple parametric or semiparametric
models. As a specific example, consider the popular probit/logit type model for binary
choice of whether to buy a product or not. A standard specification is that the probability
of buying depends (implicitly conditioning on other observed covariates) on its price p
and the decision maker’s income y, for example, g(p, y) = F(yo+ y1 p + y2y), where F(-)
is a distribution function. We will show below that these choice-probabilities are consis-
tent with utility maximization by a heterogenous population of consumers, if and only if
v1 <0, and y; + y, < 0. While the first inequality simply means that demand falls with
own price (holding income fixed), the second inequality is less obvious, and constitutes an
important empirical characterization of utility maximization.

For the case of continuous goods, Lewbel (2001) explored the question of when av-
erage demand, generated from maximization of heterogeneous individual preferences,
satisfies standard properties of nonstochastic demand functions. More recently, for the
case of two continuous goods (i.e., a good of interest plus the numeraire) under gen-
eral heterogeneity, Dette, Hoderlein, and Neumayer (2016) have shown that constrained
utility maximization implies quantiles of demand satisfy standard Slutsky negativity, and

!As a referee has correctly commented, income plays a prominent role in this paper, unlike many existing
empirical applications which ignore the role of income.
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Hausman and Newey (2016) have shown that the two are in fact equivalent. The analog
of the two goods setting in discrete choice is the case of binary alternatives. Accordingly,
our main result (Theorem 1 below) may be viewed as the discrete choice counterpart of
Hausman and Newey (2016), Theorem 1. Note, however, that quantiles are degenerate
for binary outcomes, and indeed, the forms of our Slutsky-like shape restrictions are com-
pletely different from Dette et al. and Hausman-Newey’s quantile-based conditions for
continuous choice.

An alternative, algorithmic—as opposed to closed form and analytic—approach to
rationalizability of demand is the “revealed stochastic preference” (SRP, henceforth)
method, which applies to very general choice settings where a heterogeneous population
of consumers faces a finite number of budget sets; cf. McFadden and Richter (1990), Mc-
Fadden (2005). When budget sets are numerous or continuously distributed, as in house-
hold surveys with many income and/price values, SRP is well-known to be operationally
prohibitive; cf. Anderson, De Palma, and Thisse (1992), page 54-55 and Kitamura and
Stoye (2016), Section 3.3. Furthermore, the SRP conditions are difficult to impose on
parametric specifications commonly used in practical applications, they change entirely
in form upon addition of new budget sets, and are cumbersome to use for demand pre-
diction on counterfactual budgets, especially in welfare calculations that typically require
simultaneous prediction of demand on a continuous range of budget-sets. In contrast,
our approach yields rationality conditions which (a) are global, in that they characterize
choice probability functions, and their forms remain invariant to which and how many
budget sets are observed in a dataset, and (b) are closed- form, analytic shape restric-
tions, hence easy to impose, standard to test, and simple to use for the important practi-
cal problem of counterfactual predictions of demand and welfare. As such, these shape
restrictions establish the analogs of Slutsky conditions—the cornerstone of classical de-
mand analysis—for binary choice under general unobserved heterogeneity and income
effects.

2. THE RESULT

Consider a population of heterogeneous individuals, each choosing whether or not to
buy an indivisible good. Let N represent the quantity of numeraire which an individual
consumes in addition to the binary good. If the individual has income Y = y, and faces
a price P = p for the indivisible good, then the budget constraint is N + pQ = y where
0O € {0, 1} represents the binary choice. Individuals derive satisfaction from both the indi-
visible good as well as the numeraire. Upon buying, an individual derives utility from the
good but has a lower amount of numeraire y — p left; upon not buying, she enjoys utility
from her outside option and a higher quantity of numeraire y. There is unobserved het-
erogeneity across consumers which affect their choice, and so on each budget set defined
by a price p and consumer income y, there is a (structural) probability of buying, denoted
by g(p, y); that is, if each member of the entire population were offered income y and
price p, then a fraction g(p, y) would buy the good. For now, we implicitly condition our
analysis on observed covariates, and later show how to incorporate them into the results.
We will show that these choice probabilities will be consistent with utility maximization
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by a heterogeneous population if and only if the following Slutsky-like conditions® hold:
" G(p.y) <0 and ZG(p.y)+ —=G(p,y) <0 (1)
apq p,y)= ﬁpq p,y ayq p,y) =V

For establishing this result, it will be convenient to rewrite the choice probabilities in an
equivalent way as g(y, y — p) = g(p, y). Indeed, one can go back and forth between the
two specifications because g(c, d) = q(d, d —c) and g(a, b) = g(a—b, a). The q(y, y— p)
formulation is motivated by the fact that given the budget set (P, Y) = (p, y), an individ-
ual faces choice between the bundles (0, y) and (1, y — p); thus g(-, ) is an equivalent
representation of choice probabilities as functions of the income left over upon choosing
options 0 and 1, respectively. For ease of exposition, we will state our results in terms of
q(-,-), and show that under smoothness they reduce to restriction (1) on g(-, -).

The following theorem establishes conditions that are necessary and sufficient for the
conditional choice probability function to be generated from utility maximization by a
heterogeneous population, where no a priori restriction is imposed on the dimension and
functional form of the distribution of unobserved heterogeneity or on the functional form
of utilities. B

To formally state the theorem, we introduce some notation. Let {2 denote the support of
(P,Y);let 2 ={y— p:(p,y) €2} denote the support of Y — P, and for any a; € (2, let
Qy(a)={y:(p,y) € !—2, y — p = a;}. Corresponding to the support 0 of (P,Y), denote
the support of (Y, Y — P) by (2, as shorthand for U, .o, U, coy,)1@0; a1}

THEOREM 1: For binary choice under general heterogeneity, the following two statements
are equivalent:

(I) The structural choice probability function q(-,-) : 2 — [0, 1] satisfies that (A)(i)
q(-, y — p) is nonincreasing, and (ii) q(y, -) is nondecreasing; (B) q(-,y — p) is
continuous; (C) corresponding to any fixed value a, € (,, there exist a small enough
real number y; (a;) € Oy(ay), satisfying limy , a,),y-p=a; 4y, ¥ — p) = 1 and a large
enough real number y (ay) € {dy(ay), satisfying lim,, sy, a,).y—p=a; 4(y, ¥y — p) =0.

(IT) There exists a pair of utility functions Wy(-, n) and W,(-, ), where the first argument
denotes the amount of numeraire, and m denotes unobserved heterogeneity, and a
distribution G (-) of m such that

q(y,y—p)= / Wy, m) < Wiy — p, )} dG(m),

where (A) for each fixed m, (i) Wy(-, ) is continuous and strictly increasing, and
(i) Mi(-, m) is nondecreasing; (B’) for any p,y € Q, it holds that [ Wiy —
p,m) = W, M}YdG(n) = 0; (C’) corresponding to any fixed a, € 2y, there ex-
ist a small enough real number y;(a,) € y(a,) and a large enough real number
yu(ay) € y(ay), satisfying imy y, @),y p=a, PXIW6(y, ) < Wi(y — p, )] =1 and
limY/YH(aU,)’—P:al Pf[Wo()’, TI) =< I/Vl(y - D 77)] =0.

PROOF: In the Appendix. QE.D.

20ur main result does not need smoothness; we write the conditions with derivatives here to show the
Slutsky-like form of the result.
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The key step in the proof is showing that (I) implies (II). This is done by constructing the
utility functions Wy(y, n) = yand Wi(y—p, n) = q~'(V, y— p) with ¢~ (-, y— p) denoting
a suitably defined inverse of the function g(-, y — p) with respect to its first argument, and
the random variable n = IV ~ Uniform(0, 1). Under conditions A, B, C of Theorem 1,
this construction is then shown to imply that Pr[W,(y — p, n) > Wo(y, m)]1=q(y,y — p).
The formal proof appears in the Appendix.

Interpretation of conditions: Intuitively, conditions (A/A’) mean that having more nu-
meraire ceteris paribus is (weakly) better for every consumer, that is, preferences are
increasing in the amount of income left over after any choice. Condition (B/B”)—the “no-
tie” assumption—is standard in discrete choice models, and intuitively means that there
is a continuum of tastes. Condition (C) adds to condition (A); it says that holding fixed
the income left over upon choosing option 1, if the income left over upon choosing option
0 is, hypothetically, made small enough, then everyone, that is, all 7, will choose option 1.
In particular, y \, y.(a1), y — p = a; means that starting from a situation with y — p = ay,
we are lowering p and y by equal amounts, keeping y — p, that is, the income left over
upon choosing option 1, fixed at a; while y, the income left over upon choosing option 0, is
lowered toward y; (a,), thatis,q( y , y— p) 7 1. A symmetric interpretation applies

Y

\wL(ap) fixed at ag
to yy(a,). The following examples illustrate Condition C.

EXAMPLE 1—High and Low Price: Suppose 0, 1 denote respectively not buying and
buying a binary good. Suppose preferences are such that at any income y, if price takes a
high enough value p’, for example, close to the highest income in the population, no one
would buy the good; conversely, when price takes a low enough value p*, for example, the
good is free (p* = 0) or there is a high enough reward r > 0 for choosing option 1 (i.e.,
p* = —r < 0) as in conditional cash transfer programs for school-attendance, everyone
(i.e., all ) will choose option 1. Then starting from y — p = a; > 0, raising p toward
p while simultaneously increasing y by equal amount keeping y — p, the income left
upon buying, fixed at a;, we have that g(y, y — p) = q(a, + p, a;) \ q(a; + p",a,) =0;
similarly, letting p \ p* and y N\ a; + p* while keeping fixed y — p = a; > 0, we have that
q( 'y ,y—p) /qa+ p*, a)=1.Thus yy(a;)=a, + p",and y, (a;) = a; + p".

< =

\a+pl fixedatay

EXAMPLE 2—Labor supply: Suppose 0,1 denote not working and working, respec-
tively, y is nonlabor income (e.g., spousal earning or interest income from investment),
and p = —w is the negative of net wage received upon working, so that g(y,y — p) =
q(y, y + w). Here, it is natural to assume that if nonlabor income y is zero, then an in-
dividual must work at any positive net wage w for subsistence, so that (0, w) =1, and
thus y; (a;) = 0 for any positive a;. Similarly, if net wage is zero, then no one with positive
nonlabor income will work, that is, g(y, y) =0, and thus yg(a;) = a;.

REMARK 1: Condition C/C’, which simplify the proof of the theorem, can be dropped.
In the Appendix, we provide an alternative version of the theorem without conditions
(C/C’), but with a slightly stronger continuity requirement (B/B’) and a significantly longer
proof.

REMARK 2: Note that assumptions (A)—(C) place no restriction on income effects, in-
cluding its sign.
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In statement (II) in Theorem 1, the functions W;(x, n) will correspond to the utility
from choosing alternative j € {0, 1} and being left with a quantity x of the numeraire,
and with 1 denoting unobserved heterogeneity. This notation allows for the case where
different vectors of unobservables enter the two utilities, that is, where the utilities
are given by uy(-, mo) and u, (-, n;), respectively, with 1, # n;; simply set n = (1, 11),
Wa(,m) = uo(-, mo), Wi(-, m) = uy(+, m1). In the proof of the above theorem, when show-
ing (II) implies (I), n will be allowed to have any arbitrary and unknown dimension and
distribution; in showing (I) implies (II) we will construct a scalar heterogeneity distri-
bution that will rationalize the choice probabilities (see further discussion on this point
under the heading “Observational Equivalence” in the next section).

3. FURTHER DISCUSSION

A. Slutsky Form: To see the analogy between the shape restrictions in Theorem 1 and the
traditional Slutsky inequality constraints with smooth demand, rewrite the choice prob-
ability on a budget set (p, y) in the standard form as a function of price and income,
namely g(p, y) = q(y,y — p) thatis, g(ay, a;) = q(ay — a1, a). Then, under continuous
differentiability, the shape restrictions (A) from Theorem 1 are equivalent to

d - ‘%I(QO, al) ..
—q(p,y)=———""— <0, by Thm 1, (Aii) ()
op da ag=y,a;=y—p
Jd _ Jd _ dq(ag, ay)  dq(ag,a;)  dq(ay, a,)
&pq D,y &yq D,y Ja, da, da wmytiesp
J
_ 94(@, @) <0, by Thm 1, (Ai) 3)
3610 ap=y,a1=y—p

for all p, y.> The forms of these inequalities are distinct from textbook Slutsky conditions
for nonstochastic demand g*( p, y) for a continuous good, which are given by

p P
—q(p, ) +q(p,y)—q"(p,y) <0 forall p,y. 4
ap ay

For a continuous good and under general unobserved heterogeneity, Dette, Hoderlein,
and Neumeyer (2016) (building on earlier work of Hoderlein (2011)), and Hausman and
Newey (2016) show that (4) also holds with ¢*( p, y) denoting any quantile of the demand
distribution for fixed (p, y). Thus, for binary choice with general heterogeneity, the forms
of the Slutsky inequality (2) and (3) are different from the continuous choice counterpart
(4).* In particular, the inequalities (2) and (3) are linear in g(-,-) (and q(-,-)), unlike
(4), and hence easier to impose on nonparametric estimates of g(-, -) using, say, shape-
preserving sieves that guarantee that %(}(ao, a;) >0, and %c}(uo, a;) <0 for all ag, a;.

REMARK 3: It is tempting to think of (2) and (3) as (4) with the level g*(p, y) replaced
by 0 and 1 corresponding to either of the two possible individual choices. However, this
interpretation is incorrect, since g( p, y) is average demand, and takes values strictly inside

3T am grateful to a referee for suggesting this way of showing the equivalence.
“Bhattacharya (2015) (see also Lee and Bhattacharya (2019)) noted that (2) (resp., (3)) is necessary for the
CDF of equivalent variation (resp., compensating variation) resulting from price-changes to be nondecreasing.
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(0, 1). In other words, g(p, y) is neither a quantile, nor individual demand at price p and
¥, and generically (e.g., in a probit model) does not take the values of 0 and 1. Thus (2)
and (3) cannot be rewritten as

J J
_5 7, — 0 <0 f 11
&pq(p,y) +4q(p,y) £9yq(p,y) < orall p,y,

and, as such, are different from the continuous choice counterpart (4).

REMARK 4: Our rationality conditions (A) take the form of simple monotonicity re-
strictions on the regression function g(-, -). There are several papers in the Statistics lit-
erature on testing monotonicity of nonparametrically estimated regressions, for example,
Ghosal, Sen, and Van Der Vaart (2000), Hall and Heckman (2000), Chetverikov (2012),
etc. which can therefore be used here.

B. Observational Equivalence: The construction in our proof of (II) = (I) shows that a
rationalizable binary choice model with general heterogeneity of unspecified dimension
is observationally equivalent to one where a scalar heterogeneity enters the utility func-
tion of one of the alternatives in a monotonic way, and the utility of the other alterna-
tive is nonstochastic.”> An intuitive explanation of this equivalence is that in the binary
case, choice probabilities are determined solely by the marginal distribution of reser-
vation price (given income) for alternative 1, and not the relative ranking of individual
consumers in terms of their preferences within that distribution. So, as income varies,
choice probabilities change only insofar as the marginal distribution of the reservation
price changes, irrespective of how individual consumers’ relative positions change within
that distribution.

It is worth pointing out here that a binary choice model with additive scalar
heterogeneity—the so-called ARUM model—is restrictive, and not observationally equiv-
alent to a binary choice model with general heterogeneity. To see this, suppose choice
probabilities are generated via the ARUM model, namely

q(ao, ar) = Pr[Wi(a)) + 1 > Wolao) + mo]
=Pr[no — 1 < Wilar) — Wy(ao)]
= F"]O*"Il [VI/I(al) - %(do)] (5)

Assuming smoothness and strict monotonicity of F,,_,,[-]1, Wi(-) and W;(-), and thus of
q(-, ), it follows that

d
g ﬁq(ao, a)
ln|:— L

(9aoo7a1 d
—q(ap, a
(9([0 ( 0 1)

SFor quantile demand in the continuous case, a result of similar spirit is discussed in Hausman-Newey
(2016), pages 1228-1229, following Theorem 1. In general, a result holding for the continuous case with two
goods does not necessarily imply that it also holds for the binary case. For example, welfare related results
are different for the binary and the two-good continuous case (cf. Hausman—-Newey (2016), and Bhattacharya
(2015), and so are Slutsky negativity conditions, as discussed above.
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i 7 Wi(a))

= Jacda, ln(Wo’(ao)>’ from (5)
2

= o 1% @) = 7 )

=0,

for every a, and a;. This equality is obviously not true for a general smooth and strictly
monotone g(-, -) satisfying conditions (A)—(C) of Theorem 1.

REMARK 5: The construction of ¢~'(V,-) in our proof of (II) = (I) is unrelated
to the almost sure representation of a continuous random variable X as Fy'(U) with
U = Fx(X), where Fy and Fy' denote the CDF and quantile function of X, and U
is distributed U (0, 1). Indeed, if we were to apply this so-called “probability-integral

transform” to X = Wj(ay, ) for a fixed a;, we will have W;(a,, n) = F;/, ., (U(a)),
where the scalar-valued uniform process U(a,) = Fy,a,,n(Wi(a1, m)) will vary with a,,
unlike V' in the proof of our theorem above and, therefore, cannot represent unobserved
heterogeneity in consumer preferences. In other words, our constructed g~ (V, a,) will
not equal the data generating process W;(a;, n) almost surely, but the probability that
q '(V, a,) > ay will equal the probability that W (a;, n) > Wy(ay, n) for all (ay, a;).

C. Giffen Goods: Our rationalizability condition (2) says that own price effect on aver-
age demand is negative. This condition has no counterpart in the continuous case, appears
to rule out Giffen behavior, and may therefore appear restrictive. We now show that that
is not the case: indeed, Giffen goods cannot arise in binary choice models if utilities are
nonsatiated in the numeraire. To see this, let the utility of options 0 and 1 be given by
Wo(-, m) and Wi (-, m) as in Theorem 1 above. Now note that if option 1 is Giffen for an n
type consumer with income y, then for some prices p < p’ she buys at price p’ but does
not buy at p. Therefore,

Wiy —p,m) <Wo(y,m) <Wi(y—p'sm),

which is a contradiction, since W, (-, n) is strictly increasing. In contrast, consider a contin-
uous good with utilities W (x, y — px, ), where x denotes the quantity of the continuous
good, and W (-, -, m) is increasing in both arguments. Now it is possible that x is bought at
price p and x’ is bought at price p’ with p < p’ and x < x'. That is, we can have

W(X,y — PX, 77) < W(x/’y - p/x/’ 77)’

if x" is preferred sufficiently over x. The intuitive reason for this difference between
the discrete and the continuous case is that in the former, the only nonzero option
is 1. Indeed, in the continuous case, it is also not possible that W(x,y — px,n) <
W(x,y— p'x,n) for any common x if p < p'.

Also, note that although Giffen behavior cannot arise in binary choice, there is no re-
striction on the sign of the income effect. Indeed, (2) and (3) are compatible with both
%d(p,y)=0and £4(p, y) <0.

D. Parametric and Semiparametric Models: For a probit/logit specification of the buying
decision, namely

qp,N=Fy+vip+7vy)=F(vo+ n+v)y—7Qy-Dp), (6)
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where F(-) is a strictly increasing CDEF, the shape restrictions of Theorem 1 amount to
requiring y; < 0 and y; + y, < 0. While the first inequality is intuitive, and simply says
that own price effect is negative, the second condition y; + y, < 0 is not a priori obvious,
and shows the additional restriction implied by budget-constrained utility maximization.
Now, applying Theorem 1, we obtain

F(’)’o + i t+r)y—nly— P))
=Pr(V<F(vo+ m+7v)y—ny-p))

71 _ _
:Pr(F P)=vo+vi(y—p) Zy),
Y1+ Y2

where V' >~ U(0, 1),° implying the rationalizing utility functions

F_l(V) — Y +< Y1

W( - 7V):
e Y1+ 72

( - )7
’Y1+72) yor
o ——’

N —
>0

Wy, V) =y.

REMARK 6: Note that since the restrictions y; <0 and vy, + v, < 0 are linear in pa-
rameters, it is computationally straightforward to maximize a globally concave likelihood,
such as probit or logit, subject to these constraints.

The above discussion also applies to semiparametric binary choice models (cf. Man-
ski (1975), Han (1987), Klein and Spady (1993)) where one need not specify the exact
functional form of F(-). For example, the methods of Cavanagh and Sherman (1998) and
Bhattacharya (2008), which only utilize the strict monotonicity of the CDF F(-), can be
applied to estimate the binary choice model, subject to our sign restriction and standard
scale-normalization, viz. y; = —1 and vy; + y, < 0, that is, using the specification that
q(p,y) is a strictly increasing function of the linear index —p + v,y with y, < 1.

E. Random Coefficients: An alternative parametric specification in this context is a ran-
dom coefficient structure, popular in IO applications. It takes the form

Pr(1|price = p, income = y)

=/F(71P+YZJ’)dG(’Yl,3’279)

= /F((% + )y =71y — p))dG(y1, 72, 0)

EH()",Y—P’ 0),

where 7y, and vy, are now random variables with joint distribution G(-, -, ), indexed by an
unknown parameter vector 6, and F(-) is a specified CDF (e.g., a probit or logit). Theo-
rem 1 then implies that the distribution G(-, -, §) must be such that the choice probability

®We implicitly assume that for fixed y — p, the function g(y, y — p) varies with y somewhere on S(y — p),
and thus y; + y, #0.
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function H (., -, -) satisfies %H(y, .,0) <0and ﬁH(-, y — p, 0) > 0. One way to guar-
antee this would be to specify the support of y; and of y; + vy, to lie in (—o0, 0). Using

Theorem 1, a utility structure that would rationalize such a model is

U(y—p,m)=h(y—-p,V,0); Us(y,m) =y,

where V' >~ U(0, 1), and h(y — p, v, 0) issup{x: H(x,y — p, 6) > v}

It also follows from the above discussion that not every distribution of random coeffi-
cients G (-, -, ) will lead to rationalizable choice-probability functions. In particular, the
commonly used assumption that (vy;, y,) is bivariate normal (so that the support of y, and
of y; + v, do not lie in (—o0, 0)), can lead to choice probability functions H(-, -, #) that
would violate the shape restrictions of Theorem 1, and thus are not rationalizable.®

F. Observed Covariates: One can accommodate observed covariates in our theorem. For
example, let X denote a vector of observed covariates, and let g(p, y, x) =q(y,y — p, X)
denote the choice probability when Y =y, Y — P=y — p and X = x. If for each fixed
x, q(-, -, x) satisfies the same properties as (I) A—C in the statement of Theorem 1, then
letting

qil(”’y_P,x)dzefsup{Z3CI(Z,)’_P,X) = M},

we can rationalize the choice probabilities g(p,y,x) by setting Wi(y — p,V,x) =
q'V,y— p,x)and Wy(y,V,x)=y,where V >~ U(0, 1).

G. Endogeneity: Our results in Theorem 1 are stated in terms of structural choice proba-
bilities g(-, -). If budget sets are independent of unobserved heterogeneity (conditional on
observed covariates), then these structural choice probabilities are equal to the observed
conditional choice probabilities, that is,

q(y,y—p)=Pr(1lY =y, Y —P=y— p).

Early results on rationalizability of demand under heterogeneity, including McFadden
and Richter (1990) and Lewbel (2001) worked under such independence. If the indepen-
dence condition is violated (even conditional on observed covariates), then Theorem 1
continues to remain valid as stated, since it concerns the structural choice probability
q(-,-), but consistent estimation of g(-,-) will be more involved. In applications, if en-
dogeneity of budget sets is a potential concern, then it would be advisable to estimate
structural choice-probabilities using methods for estimating average structural functions.

"Note that an alternative preference distribution producing the same choice probabilities is given by U, (y —

P ==—n0—p)U(y,m)=v—+7)y %L, 7, v =FC), (v, v2) G, 0), y1 <0, vi+% <
0 w.p.1. This shows that the rationalizing preference distribution may not be unique.
8 As a numerical illustration, consider a random coefficient probit model

Pr(1|price = p, income = y) = / Oy p+ vy dF (v, 2, 0),

where y; ~ N(—1,0.1%), y, ~ N(3,0.2%) and vy, L y,, implying each of the probabilities of y; <0 and y, >0
exceeds 0.9999. Yet it can be verified numerically that, for example,

J _ J _
5[](17, »+ Eq(p,y)lpzl,yzl_z

:E[(yl +7v) X dp(y1 +1.2 % yz)] ~0.03 > 0.
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A specific example is the method of control functions (cf. Blundell and Powell (2003,
2004) and Imbens and Newey (2009), which require that n L (P, Y)|V/, where V' is an
estimable “control function”—typically a first stage residual from a regression of endoge-
nous covariates on instruments. The structural choice probability function can then be
recovered (under regularity conditions) as the integral of the conditional choice probabil-
ity given p, y and realizations v of the control variable V' over the marginal distribution
of V. Hoderlein (2011), Hoderlein and Stoye (2014), Hausman and Newey (2016), and
Kitamura and Stoye (2016) have previously discussed using control functions to estimate
demand nonparametrically.

4. EMPIRICAL IMPLICATIONS

A practical implication of Theorem 1 is that it can be used to bound predicted choice
probabilities on counterfactual, that is, previously unobserved, budget sets, for example,
those arising from a potential policy intervention. Such predictions are more reliable
when made nonparametrically, that is, without arbitrary functional-form/distributional
assumptions on unobservables, and instead based solely on economic rationality. We now
show how to obtain these nonparametric bounds using Theorem 1.

Counterfactual Demand Bounds: Let () denote the domain of definition of g(-, -). Let
A={(p/,y),j=1,..., N} C 2 denote the set of (p, y) observed in the data, with cor-
responding choice probabilities {g/,j=1,..., N} = {q(y/, y/ — p’), (p’, y’) € A}, satis-
fying condition (A) of our theorem. Suppose we are required to predict the probability
q(p',y') of buying at a counterfactual (i.e., previously unobserved) price p’ and income
y with (p’,y") € 2 \ A. Then Theorem 1 implies the following bounds on this choice
probability:

sup q(p,y)

=N (p,y)E_A:yzy/,yfpsy’fﬂ’

L(P\Y)=\ it{(pyred:y=y,y—p=<y—pl|+o, 7
0 if{(p,yyed:y=y,y—p<y-pl=9,

inf q(p,y)

-, (p,y)eA:y<y',y—p=y'—p
Up.y)=1 it{(pyyed:y<y,y—p=y-pl+é, (8)
1 if{(p,y)yed:y<y,y—pzy -p}=6.

The above calculation is extremely simple; for example, the lower bound L( p,y) re-
quires collecting those observed budget sets (p, y) in the data that satisfy y >y, y— p <
y' — p’ (a one-line command in STATA), evaluating choice probabilities on them, and
sorting these values. _ _

Note also that for all (p, y) € A, we have that L(p,y)=qg(p,y)=U(p,y).

PROPOSITION 1: The bounds (7) and (8) are sharp.

PROOF: Define W ={(y,y — p): (p,y) € AU,y — p'). Set q(p',y) = q(¥', y' —
p’) = c for any c belonging to the interval defined by the bounds in (7) and (8). Then the
elements of the set {g(y,y— p) : (p,y) € AU (p’,y)} satisfy the shape restrictions (A) of
Theorem 1 on W. In particular, if (p, y) € A4 satisfies y >y, y — p=y' — p/, then

qp,y)=4q(,y—p)
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= sup q(¥,y = P

(P, ))eA:y=zy . 5—p=y'—p’

since g(-, -) satisfies condition (A) of Theorem 1 on A4

= sup qap,y)
(P.))eA:y=y . 5—p=y'—p'
<c=q(p.y);

on the other hand, if (p, y) € 4 satisfies y=y,y — p >y — p/, then

. ~ll',lf~ - q(.;},j}_ﬁ)a
(D, y)eA:y<y ,y—p=y'—p’

since ¢(-, -) satisfies cond (A) of Thm 1 on A4

q(p,y)

A%

= >c= 'y
B <ﬁ,y>sA:yslﬁf&—ﬁzy'—p'q(p’y) =c=a(p’y).

Next, note that conditions (B) and (C) of our theorem have no empirical content, namely
the countably finite set of values {g/, j =1, ..., N} U{c}, in that there are no set of values
{¢’,j=1,..., N} U{c} which can imply a violation of conditions (B) and (C). Therefore,
the choice probabilities {g/, j =1, ..., N}U{c} corresponding to AU (p’, y') are compat-
ible with a choice probability function g(-, -) on a domain G containing W U (y', y' — p’)
and satistying conditions (A)—(C) of Theorem 1 (for an explicit construction of such a
function, see discussion on discrete support of (P, Y) in the paragraph preceding Theo-
rem 1 above). Therefore, applying Theorem 1, we conclude that there exist utility func-
tions Wi(ay, V') and Wy(ay, V') = ao with V' >~ U (0, 1) that satisty the restrictions (A)-(C’)
of Theorem 1, and Pr[W(a;, V') > ay] = q(ay, a,) for all (ay, a;) € G; in particular,

Pr[Wi(y - p',V)=y]=¢, j=1,...,N, and
Pr(Wi(y —p.,V)=y]=c. Q.E.D.

Welfare bounds: Given bounds on choice probabilities, one can obtain lower and up-
per bounds on economically interesting functionals thereof, such as average welfare.
For example, the average compensating variation, that is, utility preserving income
compensation—corresponding to a price increase from p, to p; at income y is given
by p’; "q(p,y+ p— po)dp (cf. Bhattacharya (2015)). This requires prediction of demand
on a continuum of budget sets, viz. {g(p,y+ p — po) : p € [po, p1]}- Now, it follows from
our discussion immediately above, and by Theorem 1, that pointwise sharp bounds on
4(p,y+ p — po) are given by

L(p,y+p—po)
sup q(p,y)
(P Y)€A,y—Pp=y—po,y=y+p—po
if{(p,) €A, = p<y—po,y=y+p—p}#
0 if{(p.7)) €A, J—p<y—po,y=y+p—p}=

<q(p,y+p—po)

b,
b,
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inf q(p,y)

(P,Y)€A,y=Pp=y—p0,Yy<y+p—po

1 it{(p. ) ed,5—pzy—puF<y+p—p}=9¢,
=M(p,y+p—po. ©)

This implies that average CV at y is bounded below by [ If; "L(p, y+ p— po) dp, and above
by [7'M(p,y+ p— po)dp.

As for sharpness, let L(y,y — p) = L(p, y) be defined analogous to g(y,y — p) =
q(p,y) above. Then the lower bound on average CV becomes f;;l L(y+p— po,y— po).
Now, by definition,

L(ay, ay)

sup{g(p.7): (P, §) € A, 5 — p<ay,§=>ao}
= if{(p,J)e A, J—p<a,j>a)#¢,
0 if{(p.edj—p<a,j>a}=¢

is nonincreasing in a, and nondecreasing in a;, and L(y,y — p) = q(y,y — p) when
(p,y) € A. Furthermore, for fixed value of (y — py), as p varies over the interval [ po, p1l,
the function L(y + p — po, ¥y — po) can assume at most finitely many values (namely,
q(y™, y" — p™), m=1,...,N) and, therefore, must necessarily be piecewise flat in p,
with at most countably finite number of discontinuity points. Therefore, one can con-
struct a function Q(, -) (see footnote below for an illustration) that (1) is continuous in
the first argument, (2) equals L(-, -) (and, therefore, ¢(-,-)) on A4, (3) equals L(-,-) ev-
erywhere else on the domain except in arbitrarily small (semiclosed) intervals around the
points of discontinuity of L(-,-), and (4) satisfies the same shape restrictions as L(-, -);
also, (5) Q(-, -) can be trivially made to satisfy the limit conditions (C) of Theorem 1 by
defining the limit points y; (), yy(-) lower than the lowest and larger than the highest
values respectively attained by y in A corresponding to any fixed value of y — p. Us-
ing (1), (4), and (5) and applying Theorem 1, we can rationalize Q(-, -)—which equals
q(-,-) at all the observed data points, that is, corresponding to (p, y) € A—via a pair of
utility functions and a uniformly distributed unobserved heterogeneity, and at the same
time, flf: Q(y + p — po,y — po)dp, is arbitrarily close to flf;lL(y +p—po,y— po) =

p’; 'L(p,y+ p — po)dp, since they differ only on at most finitely many intervals of arbi-

trarily small length. Therefore, [ L(p, y+ p— py) dp is a sharp lower bound for average
CV [P q(y+p—po,y—po)= [ G(p,y+p— po)dp’

°As a simple illustration, consider a fixed a; = y — py € {2, and suppose the point (k,a;) € A,andl <k < u
for some real numbers /, u belonging to the interval [y, y + p1 — po] where the first argument of L(y + p —
Do, Y — Do) takes its values as p varies over [ py, p1]. Now suppose the lower bound function L(-.-) satisfies

qk,ay) ifl<ag<k,

L(ag, a) = .
(@, a1) L(k*,a1) ifk <ag=<u,

with L(k*, ay) < q(k, a;). That is, L(-,-) equals ¢(-, -) at the point (k, a;) in A, is nonincreasing in the first
argument and is (right) discontinuous at k with L(k*, a;) < L(k, a;). Choose 6 € (0, u — k) and define the
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A symmetric line of argument implies that |’ If; "M(p,y+ p— po)dp is the sharp upper
bound.

5. CONNECTION WITH REVEALED STOCHASTIC PREFERENCE

The welfare calculation above requires prediction of demand on a continuum of
budget sets indexed by p € [po, p1], which is operationally difficult—if not practically
impossible—to implement, using the finite-dimensional matrix equation based SRP ap-
proach. But in simple cases where there are a small, countably finite number of budget
sets, and it is easy to verify the SRP conditions, a natural question is whether our shape
restrictions (A) of Theorem 1 are compatible with the SRP based criterion for rationaliz-
ability; condition (B) and (C) of Theorem 1 are of course irrelevant in such cases. Below,
we show that our shape restrictions (A) are in fact necessary for the SRP criterion to be
satisfied.

PROPOSITION 2: The shape restrictions (A) in Theorem 1 are necessary for McFadden—
Richter’s SRP conditions to hold.

PROOF: Consider two price and income combinations (p', y) and (p?, y). Suppose
WLOG that p' < p?, thatis, y — p' > y — p?. Let g(y,y — p), q(y,y — p*) denote
choice probabilities of alternative 1 on the two budgets, respectively. Assume, if pos-
sible, that out shape restriction A(ii) is violated, so that g(y,y — p') < q(y,y — p*).
We will show that this implies violation of McFadden—Richter’s SRP condition. Toward
that end, consider three bundles (0, y), (1,y — p') and (1, y — p?). Under nonsatia-
tion in numeraire, there are three possible preference profiles in the population, given
by (1) (0,)’) > (1,}’ - p]) > (Ly - Pz)» (H) (1’y - Pl) > (0,)’) > (Ly - p2)7 and (111)
(1,y—pYH = 1,y — p* > (0, y); assume the population proportions of these three pro-
files are (7, m, m3), respectively. Then McFadden—Richter’s SRP condition is that the
matrix equation

m 1
[0 1 1} s :[q(y,y p)} that is,
3

001 q(y,y—p°)

m+m=q(y,y—-p'), m=q(,y-p’), (10)

has a solution (7, m,, ;) in the unit positive simplex. But if our hypothesis holds, that is,
q(y,y— p") < q(y,y — p?), then (10) implies m, + 3 < 3, that is, m, < 0, a violation.

function Q(-, a;) as

L(k,a) ifl <ag <k,
-k -k
Qag, a) = L(k,m)x[l—ao ]—f—L(k*,al)ao6 ifk<ay<k+38,
L(k*, ay) ifk+08<ay<u.

Then (1) Q(-, a;) is continuous in the first argument, since Q(ao, a1) / L(k,a,) as ap \( k,and \( L(k™", a,) as
ay /' (k+86),(2) atthe point (k, a;) € A, Q(k, a;) =q(k,a) = L(k, a;),(3) O(-, ay) equals L(-, a;) except on
the semi-open interval (k, k + 8] of length 8, (4) Q(-, a;) is nonincreasing, and Q(ay, -) is nondecreasing since
L(-, ay) is nonincreasing, and L(ay, -) is nondecreasing. Finally, flu Q(ay, ay) day — f,“ L(ay, a1) day equals the
area of the triangle with base & and height L(k, a;) — L(k™, a;) thus equaling Ws, which can be
made arbitrarily close to 0 by choosing 6 arbitrarily close to 0.
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Next, consider the two price and income combinations (p', y') and ( p?, y*) with y' < y?
and y' — p' =y? — p> =ay, say. Let q(y', a1), q(y*, a;) denote choice probabilities of al-
ternative 1 on the two budgets, respectively. Now suppose our shape restriction A(i) is
violated, so that g(y', a;) < g(y%, a;). Consider the three bundles (0, y'), (0, y*), and
(1, a;). Under nonsatiation, there are three possible preference profiles in the popu-
lation, given by (i) (0, y*) > (0, y") = (1, ay), (i) (0,y*) > (1,a;) > (0,y"), and (iii)
(1,ay) = (0, y*) = (0, y'); assume the population proportions of these three profiles are
(71, 72, 73), respectively. Then SRP requires a solution (7, m,, 7r3) in the unit positive
simplex to

o1 17|™ |:q(y1, al):| .
- . thatis,
[O 0 1] Z_j q(y*, a1) atis

7T2+7T3:q(y17a1)7 7T3ZQ(y2, al)' (11)

But ¢(y', a1) < q(y*, a,) implies that 7, + 73 < 73 implying 7, < 0, which is a violation of
(71, 72, 7r3) lying in the unit positive simplex. Q.E.D.

With more budget sets, the corresponding higher dimensional matrix equations anal-
ogous to (10) and (11) quickly become operationally impractical and cumbersome, as is
well known in the literature (see the Introduction). In contrast, our shape-restrictions, by
being global conditions on the g(-, -) functions, remain invariant to which and how many
budget sets are considered. Furthermore, we already know via Theorem 1 above, that
these shape restrictions are also sufficient for rationalizability for any collection—finite or
infinite—of budget sets.!

APPENDIX A: PROOF OF THEOREM 1

PROOF: That (I) implies (I) is straightforward. In particular, letting W, ' (-, n) denote
the inverse of W, (-, ), we have that

q(y,y = p) =/1{y§ Wy (Wi(y — p,m),m)} dG ()

whence (B’) implies (B), (C’) implies (C), and (A) implies (A).

We now show that (I) implies (II).

Note that (C) implies that for any v € [0, 1] and a, € {24, the set {aq € [y.(a;), yu(a;)]:
q(ay, a;) > v} is nonempty; for any fixed a; € {2, and for v € [0, 1], define

g (v, a) E sup{ay € [y.(a), yu(an)] : q(ap, ar) = v}, (12)

which takes values in [y, (a;), yu(a;)]."" Also, by condition (A), ¢~' (v, -) must be nonde-
creasing.

107t does not seem possible to show directly, that is, without using Theorem 1, that our shape restrictions
are also sufficient for existence of admissible solutions to the analog of (10) and (11) corresponding to every
arbitrary collection of budget sets. But given Theorem 1, this exercise is probably of limited interest.

"Here, we are implicitly assuming that £2y(a;) equals (or contains) [yy (a;), yu (a1)]. If however the support
of price and income are discrete, then (2y(a;) can be a strict subset of [y, (a1), yu(a1)]. Then q(-, ) is not
defined at the points “in between” the points of support and, therefore, ¢g~!(-, a;) in (12) is not well-defined.
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Now, consider a random variable IV ~ Uniform(0, 1). Define W;(ay, V') detn a, and
defn

Wi(a,V) = q'(V,a,). We will now show that W,(-, V') and W, (-, V) will rationalize
the choice-probabilities g(-, -), and satisfy properties (A)-(C’) of our theorem.

To do so, first note that for any fixed a; € (2, the function 1 — g(-, a,) is a continuous
CDF by conditions A(i), B, and C of the theorem, and ¢~!(v, a,) is, by definition, the
corresponding (1 — v)th quantile. Standard properties of quantiles (cf. Pfeiffer (1990),
Section 11a, pp. 266-267), then imply the following three results (for completeness, we
state and prove these results formally as a claim below this proof):

Result (i): for any a, € £, and v € [0, 1], we must have that g(¢g~' (v, a,), a;) = v (Pfeif-
fer (1990), p. 267, property 6);

Result (ii): for any a; € 2y, ag € [y.(a1), yu(a;)] and v € [0, 1], we have g(ay, a;) > v <
ap < q7' (v, ay) (Pfeiffer (1990), p. 266 property 1);

Result (iii): for any a, € £, the function ¢~'(-, a,) is one-to-one on [0, 1] (Consequence
of Result (i)).

Now, for V' >~ Uniform(0, 1), it follows from Result (ii) that

Pr(q'(V,a)) > ay) = Pr(V < q(ao, a1)) = q(ay, ay). (13)

Therefore, the utility functions W;(ay, V) = ay and Wi(a,, V) = g '(V, a;) with hetero-
geneity I >~ Uniform(0, 1) rationalize the choice probabilities q(-, -), and satisfy all the
properties specified in panel (II) of Theorem 1. In particular, W, (a,, n) is nondecreasing
in a; (see right after equation (12)), so (Aii) holds; W;(ag, n) = ay trivially satisfies (A1).
Next, for v, v’ € [0, 1] with v # v/, we cannot have that g~'(v, a;) = ¢~' (v, a;) by Result
(iii); therefore,

Pr[g™'(V,a;) =ay]| =0 forall ay, (14)
which implies property (B’). Finally,

lim  Pr[g”'(V,y—p)>y]

N\L(ay),y—p=ay

by (13 .
'L dim Prg(,y-p)=V]

rLay),y—p=ay

= lim q(y,y—p), since V~U(0,1)

YN\L(ay),y—p=ay

by Condition (C) 1

By an analogous argument, lim, sy, ,)y-p=a, PtIg"'(V,y — p) > y] = 0, thus satisfying
(). Q.E.D.

APPENDIX B: PROOF OF RESULTS (i), (ii), and (iii) in Theorem 1

CLAIM: Suppose q(-,-) : 2 — [0, 1] satisfies conditions (A), (B), (C) of Theorem 1, and
q (-, -) is as defined in (12). Then (i) for any a; € , and v € [0, 1], we must have that

To cover this case, one can extend ¢g(-, -) to a continuous function g°(-, -) defined on a rectangle (2¢ containing
{2 such that (i) ¢°(-,-) equals q(-,-) on {2, (ii) ¢°(-,-) satisfies the same shape restrictions on (2¢ that are
satisfied by g(-, -) on (2, and (iii) ¢°(-, -) satisfies the limit conditions C of Theorem 1. In the Appendix in the
Online Supplementary Material (Bhattacharya (2021)), we provide an explicit construction of such a function.
The proof of Theorem 1 then holds with (2, £2y(-) and g(-, -) equaling their corresponding extensions in the
case where (P, Y) have discrete support.
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q(q7 (v, ay), ay) = v; (ii) for any v € [0, 11, and any (ay, a,) € 2, we have that q(ay, a,) >
v <= ag < q ' (v, ay); (iii) for any a, € Q,, the function q~'(-, a,) is one-to-one on [0, 1].

PROOF: Claim (i): Pick a, € £,. For v = 0, we cannot have that q(¢~"'(v, a)), a;) <
v, since q(-,-) takes values in [0, 1]. So let v € (0, 1], and suppose if possible that
q(q~ (v, ay), a;) < v. Note that g~*(v, a;) > y.(a,) because if g~*(v, a;) = y.(a,), then
q(qg (v, a))) = q(y.(a1),a;) = 1 > v. Therefore, g(qg~*(v, a;),a;) < v implies by the
continuity condition (B) that there must exist ¢ > 0 such that g(x,a,;) < v for all x €
[¢g7'(v,a;) — &,q (v, a;)]. But by condition (A) and the definition of g~'(-, a;) as the
supremum in (12), we must have that g(x, a;) > v for all x < ¢~'(v, a,), and in particular
for x € [¢7' (v, a)) — &, g (v, a;)], which contradicts g(x, a;) < v.

Next, for v = 1, we cannot have that g(¢~'(v, a,), a;) > v, since q(-,-) takes values
in [0, 1]. So let v € [0, 1) and suppose g(¢~'(v, a,), a;) > v. Condition (B) and (C) im-
ply via the intermediate value theorem that > x € 2y(a,), such that g(x, a;) = v. But by
hypothesis, g(¢g~' (v, a;), a;) > v=q(x, a,), so (A) implies that x > g~ (v, a;), which, to-
gether with g(x, a;) = v, contradicts ¢g~'(v, a,) being the supremum in (12). Therefore,
q(g7 (v, ay), a;) = v for all v € [0, 1], and claim (i) is proved.

Claim (ii): To prove claim (ii), note that for any v € [0, 1], and any (ay, a;) € (2,

aw<qg'a) 28 qlana)>q(qg (v, a),a) = qlaga)>v.  (15)

—_——
=v, by Result (i)

Also, by definition of ¢! (-, a;) as the supremum in (12), we have by (A) that
qag,an) =zv = ay<q (v, a). (16)

Therefore, from (15) and (16), we have that g(ag, a;) > v < ay < q~'(v, a;), which
proves claim (ii).

Claim (iii): To prove claim (iii), note that for v, v’ € [0, 1] with v # v/, we cannot have
that g~'(v, a;) = ¢~ ' (v, a,); otherwise,

by g1 (v,a1)=g"! (U/,“l)

p Y Cam® q(q7" (v, a1), a1) = a(q™ (v, m), a1)

by Claim (i) ,
= v

b

contradicting v # v'. O.E.D.
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