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PROOF OF LEMMA 1: Fix an arbitrary stopping rule τ, and assume that the wage
scheme W (ωτ) solves (1) subject to (3) and (5). In what follows, we define a new wage
scheme, Ŵ , which only depends on the score. According to this scheme, after a realized
path ωτ, the Agent’s wage is the average wage according to W conditional on the score
being Bτ(ωτ). We will argue that Ŵ is feasible (i.e., it satisfies (3) and (5)) and has the
same expectation as W . Finally, we show that if W does not only depend on the score with
positive probability, then the relaxed incentive constraint, (5), is slack at Ŵ and hence, this
wage scheme can be further modified to strictly reduce the Principal’s expected cost.

Formally, we define the new wage scheme by

Ŵ (s) = Ea∗ [W |Bτ = s]�
By construction, this wage scheme bears the same expected cost to the Principal. In addi-
tion, since W ≥ w, this new scheme also satisfies (3). Next, we show that Ŵ also satisfies
(5). Notice that

Ea∗
[
u
(
Ŵ (sτ)

)
sτ
]= Ea∗�sτ

[
u
(
Ea∗ [W |Bτ = sτ]

)
sτ
]

≥ Ea∗�sτ
[
Ea∗
[
u(W )|Bτ = sτ

]
sτ
]

= Ea∗
[
u(W )Bτ

]≥ c′(a∗)�
where the first equality follows the definition of Ŵ , the first inequality is implied by
Jensen’s inequality, the second equality follows from sτ = Bτ, and the last inequality fol-
lows from the assumption that W satisfies (5). This inequality chain implies that Ŵ also
solves (5). Furthermore, if the probability of s for which W (s) �= Ea∗ [W |Bτ) = s] is posi-
tive, the first inequality is strict and hence, the incentive constraint at Ŵ is slack. There-
fore, Ŵ can be modified by reducing it at those values at which Ŵ (s) �= w so that this
modified wage scheme still satisfies (3) and (5). This wage scheme then would be strictly
less costly for the Principal than W . This would contradict the hypothesis that W solves
(1) subject to (3) and (5). Q.E.D.

PROOF OF LEMMA 2: Let τ be a stopping time with finite expectation. For each n ∈
N, define τn := min{τ�n}, and note that τn is bounded and converges to τ pointwise as
n → ∞. Recall that st = Bt if a = a∗. Since {st}t≥0 and {s2

t − t}t≥0 are martingales and τn is
bounded, it follows from Doob’s optional sampling theorem that for each n ∈ N,

Ea∗ [sτn] = Ea∗ [s0] = 0 and Ea∗
[
s2
τn

− τn
]= Ea∗

[
s2

0 − 0
]= 0� (S1)
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2 G. GEORGIADIS AND B. SZENTES

The second inequality chain and Ea∗ [τn] ≤ n imply that Ea∗ [s2
τn

] < ∞. It remains to show
that these properties are preserved in the limit.

Observe that for any m< n,

Ea∗
[
(sτn − sτm)

2
]= Ea∗

[
s2
τn

− s2
τm

]= Ea∗ [τn − τm]�
where the first equality follows from Ea∗ [sτnsτm] = Ea∗ [sτmEa∗ [sτn |sτm]] = Ea∗ [s2

τm
] and the

second equality follows from (S1). Since τn, τm converges to τ and Ea∗ [τ] < ∞, the right-
hand side vanishes as n�m go to infinity. Therefore, {sτn}n∈N is an L2-Cauchy sequence,
and sτn converges to sτ as n goes to infinity in L2. Hence, sτn also converges to sτ in L1, and
so limn→∞ Ea∗ [sτn] = Ea∗ [sτ]. Since Ea∗ [sτn] = 0 by the first equality chain in (S1), Ea∗ [sτ] =
0 also follows.

Next, note that

Ea∗
[
s2
τ

]= Ea∗
[

lim
n→∞

inf s2
τn

]
≤ lim

n→∞
infEa∗

[
s2
τn

]= lim
n→∞

Ea∗ [τn] = Ea∗ [τ]< ∞�

where the first equality follows from limn→∞ s2
τn

= s2
τ almost surely, the first inequality

follows from Fatou’s lemma, the second equality is implied by the second equality chain in
(S1), the third equality follows from Lebesgue’s dominated convergence theorem because
τn ≤ τ for every n, and the last inequality follows by assumption.

Thus, letting Fτ denote the distribution of sτ when the agent chooses a = a∗, we have
shown that for any stopping time such that Ea∗ [τ] < ∞, we have EFτ [s] = 0 and EFτ [s2] <
∞ as desired. Q.E.D.

PROOF OF LEMMA 4: To prove part (i), note that

L(λ�F) =
∫ [

w(λ� s)+ γs2
]+ λ
[
c′(a∗)− su

(
w(λ� s)

)]
dF(s)

because the wage scheme w(λ� ·) (defined by (8)) minimizes the integrand in (7) point-
wise. Hence, the dual problem is

sup
λ≥0

∫ [
w(λ� s)+ s2

]+ λ
[
c′(a∗)− su

(
w(λ� s)

)]
dF(s)� (S2)

It is easy to show that the objective function is concave in λ, so the first-order condition is
necessary and sufficient for an optimal solution. The Envelope Condition implies that

L1(λ�F) = c′(a∗)− ∫ su
(
w(λ� s)

)
dF(s)� (S3)

Note that L1(0�F) = c′(a∗) > 0, so there are two cases to be considered.
Case 1: There exists a λ̂ > 0 such that L1(̂λ�F) = 0. Then, by (S2) and (S3),

L(̂λ�F)=
∫ [

w(̂λ� s)+ s2
]
dF(s)� (S4)

Observe that w(̂λ� ·) is a feasible wage scheme because it satisfies the limited liability
constraint, (LL), by construction and it also satisfies the relaxed incentive constraint, (IC),
by (S3) and L1(̂λ�F) = 0. Therefore, (S4) implies that Π(F) ≤ ∫ [w(̂λ� s)+ s2]dF(s). On
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the other hand, weak duality implies that Π(F) ≥ L(̂λ�F), and thus we have L(̂λ�F) =
Π(F).

Case 2: L1(λ�F) > 0 for all λ≥ 0. Then, by (S2) and (S3),

sup
λ≥0

L(λ�F) ≥ sup
λ≥0

∫ [
w(λ� s)+ s2

]
dF(s)� (S5)

Since w(λ� s) converges to infinity if s > 0 and to w if s ≤ 0 as λ goes to infinity, the right-
hand side of (S5) is infinity unless F is the degenerate distribution, F = I{s≥0}. Hence,
supλ≥0 L(λ�F) = ∞. If F = I{s≥0}, then, by w(λ�0) = w and (S2), L(λ�F) ≥ w + λc′(a∗),
so supλ≥0 L(λ�F) = ∞. Again, weak duality implies that Π(F) = ∞. Finally, notice that
this equality implies that, in this case, the problem in (6) does not have a solution.

To prove part (ii), first observe from the proof of part (i) it follows that if there exists
a λ̂ > 0 such that L1(̂λ�F) = 0, then the problem in (6) has a solution (see Case 1). In
particular, (S4) implies that the wage scheme w(̂λ� ·) solves (6). Moreover, by (S3) and
L1(̂λ�F) = 0, the incentive constraint, (IC), indeed binds at w(̂λ� ·). Furthermore, since
w(̂λ� s) is strictly increasing in λ if s > s∗(λ) and s∗(λ) is strictly decreasing, the right-hand
side of (S4) is strictly increasing in λ. This implies the uniqueness of λ̂. Also notice that
if L1(λ�F) > 0 for all λ ≥ 0, then Π(F) = ∞ (see Case 2), and hence, the problem in (6)
does not have a solution.

It remains to show that the wage scheme w(̂λ� s) uniquely solves (6) subject to (IC)
and (LL). Towards a contradiction, suppose that there exists a wage scheme w̃(·) which
differs from w(̂λ� ·) on a set of positive measure, it satisfies the constraints (IC) and (LL),
and bears a weakly lower expected cost to the Principal than the scheme w(̂λ� ·), that is,
EF(w(̂λ� s))≥ EF(w̃(s)). For each ε ∈ [0�1], define the wage scheme, wε, by

u
(
wε(s)
)= (1 − ε)u

(
w(̂λ� s)

)+ εu
(
w̃(s)
)

for all s. This is the certainty equivalent of a (1−ε� ε) lottery between w(̂λ� s) and w̃(s). To
obtain a contradiction, we show that EF(w(̂λ� s))≥ EF(w̃(s)) implies that ∂EF(w

ε)/∂ε < 0
at ε = 0. On the other hand, we argue that ∂EF(w

ε)/∂ε ≥ 0 at ε = 0 follows from w(̂λ� ·)
satisfying the incentive constraint, (IC), with equality.

To this end, note that

∂wε(s)

∂ε
= 1

u′(wε(s)
)[u(w̃(s)

)− u
(
w(̂λ� s)

)]
and

∂2wε(s)

∂ε2 = − u′′(wε(s)
)[

u′(wε(s)
)]3 [u(w̃(s)

)− u
(
w(̂λ� s)

)]2 ≥ 0�
(S6)

where the inequality is strict if w(̂λ� s) �= w̃(s). Since w̃(·) and w(̂λ� ·) differ on a set
of positive measure, the Principal’s expected cost associated with the wage scheme wε,
EF(w

ε), is strictly convex in ε. Therefore, since w0(s) = w(̂λ� s), w1(s) = w̃(s), and
EF(w(̂λ� s))≥ EF(w̃(s)), it must be that

∂EF

(
wε
)

∂ε

∣∣∣∣
ε=0

< 0� (S7)
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Next, we show that

1
u′(w(̂λ� s)

)[u(w̃(s)
)− u
(
w(̂λ� s)

)]≥ λ̂s
[
u
(
w̃(s)
)− u
(
w(̂λ� s)

)]
(S8)

for all s. This inequality holds with equality for all s > s∗(̂λ) since 1/u′(w(̂λ� s)) = λ̂s for
such s (see (8)). If s ≤ s∗(̂λ), then w(̂λ� s) = w, and the desired inequality follows from
the facts that u(w̃(s))− u(w(̂λ� s))≥ 0 (as w̃(·) satisfies (LL)) and

1
u′(w(̂λ� s)

) = 1
u′(w)

≥ λ̂s�

Therefore,

∂EF

(
wε
)

∂ε

∣∣∣∣
ε=0

=
∫

1
u′(wε(s)

)[u(w̃(s)
)− u
(
w(̂λ� s)

)]
dF(s)

≥ λ̂

∫
s
[
u
(
w̃(s)
)− u
(
w(̂λ� s)

)]
dF(s)

≥ λ̂

[∫
su
(
w̃(s)
)
dF(s)− c′(a∗)]≥ 0�

where the equality follows from (S6), the first inequality follows from (S8), the second
inequality holds because w(̂λ� ·) satisfies (IC) with equality, and the last inequality follows
because w̃ satisfies (IC). Notice that this inequality chain contradicts (S7), so we conclude
that w(̂λ� ·) is uniquely optimal. Q.E.D.

PROOF OF LEMMA 5: If {λ∗�F∗} is an equilibrium in the zero-sum game defined above,
then

inf
F∈F

sup
λ≥0

L(λ�F) ≤ sup
λ≥0

L
(
λ�F∗)=L

(
λ∗�F∗)= inf

F∈F
L
(
λ∗�F
)≤ sup

λ≥0
inf
F∈F

L(λ�F)�

where the two equalities hold because λ∗ and F∗ are best responses to each others. Since
infF∈F supλ≥0 L(λ�F) ≥ supλ≥0 infF∈F L(λ�F) always holds, the two inequalities are equal-
ities in the previous chain. This proves the equation in the statement of the lemma.

Finally, by part (ii) of Lemma 4, supλ≥0 L(λ�F
∗) = L(λ∗�F∗) implies that the wage

scheme w(λ∗� ·) solves the problem in (6) with F = F∗. Therefore, since L(λ∗�F∗) =
infF∈F supλ≥0 L(λ�F), it follows that w(λ∗� ·) and F∗ solve the problem in (Obj). Q.E.D.

PROOF OF LEMMA 9: Note that s(λ) and s(λ) are defined by the following equations:

Z2(λ� s)−Z2(λ� s) = 0�

Z(λ� s)+ (s − s)Z2(λ� s)−Z(λ� s) = 0�

The first equation requires that the derivatives of Z(λ� s) with respect to s are the same
at s = s and at s = s. The second equation requires that the point (s�Z(λ� s)) lies on the
line crossing (s�Z(λ� s)) with slope Z2(λ� s). The Jacobian matrix corresponding to this
mapping is ∣∣∣∣ Z22(λ� s) −Z22(λ� s)

−sZ22(λ� s) 0

∣∣∣∣ �
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Since Z22(λ� s) > 0, the determinant of this matrix is nonzero. Then, by the implicit func-
tion theorem, part (i) of the lemma follows.

To prove part (ii), first, noting that s∗(λn) converges to s∗(λc) as n → ∞ and s(λn) <
s∗(λn) < s(λn), it is enough to show that s(λn)− s(λn) tends to zero as n → ∞. Suppose,
by contradiction, that there is a subsequence (λnk)nk ⊂ (λn)n and an ε > 0 such that

s(λnk)− s(λnk) > ε�

Therefore, since s∗(λnk) → s∗(λc) and s(λnk) < s∗(λn) < s(λnk), there must exist s1� s2 ∈
(s∗(λc)− ε� s∗(λc)+ ε) and a subsequence (λnl )nl ⊂ (λnk)nk such that s2 − s1 > ε/2 and

s(λnl )≤ s1 and s2 ≤ s(λnl )�

Then

lim
nl→∞

supZ2

(
λnl � s(λnl )

)
≤ lim

nl→∞
supZ2(λnl � s1)=Z2

(
λc� s1

)
<Z2

(
λc� s2

)= lim
nl→∞

infZ2(λnl � s2)≤ lim
nl→∞

infZ2

(
λnl � s(λnl )

)
�

where the first and last inequalities follow from Z(λnl � s) being convex in s on (−∞�
s(λnl )] ∪ [s(λnl )�∞), the two equalities follow from continuity, and the strict inequal-
ity follows from Z(λc� s) being strictly convex (see Lemma 7). Note, however, that
Z2(λnl � s(λnl )) =Z2(λnl � s(λnl )) and hence

lim
nl→∞

supZ2

(
λnl � s(λnl )

)≥ lim
nl→∞

infZ2

(
λnl � s(λnl )

)
�

which contradicts the previous displayed inequality chain. Q.E.D.

PROOF OF LEMMA 10: First, note that if the IC is not slack for a given λ, then the
Principal’s payoff is bounded from below by w. Indeed, even if the Principal does not
acquire any information, she has to pay at least w to the Agent. Therefore, in order to
prove the lemma, it is enough to show that if λ is large enough, then the Principal’s payoff
is smaller than w.

Let u denote limw→∞ u(w) and fix an s̃ > 0 such that

s̃ >
2c′(a∗)

u− u(w)
� (S9)

(If u = ∞, then this inequality imposes no restriction on s̃ in addition to requiring it to
be positive.) Consider the binary distribution, F̃ , which specifies probability half on s̃ and
−̃s.1 Recall that

∂EF̃

[
Z(λ� s)

]
∂λ

= −
∫

su
(
w(λ� s)

)
dF̃(s)+ c′(a∗)

1F̃(s) =
{

0 if s < −̃s�
1
2 if s ∈ [−̃s� s̃)�

1 if s ≥ s̃�
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= 1
2
s̃u(w)− s̃

1
2
u
(
w(λ� s̃)

)+ c′(a∗)�
Since limλ→∞ w(λ� s̃) = ∞, limλ→∞ u(w(λ� s̃))= u. Therefore,

lim
λ→∞

∂EF̃

[
Z(λ� s)

]
∂λ

= − s̃
[
u− u(w)

]
2

+ c′(a∗)< 0�

where the inequality follows from (S9). (If u = ∞, then this limit is minus infinity.) Since
w(λ� s̃) is strictly increasing in λ, it follows that there exists a λ such that for all λ > λ,

∂EF̃

[
Z(λ� s)

]
∂λ

< 0�

Since ∂EF̃ [Z(λ� s)]/∂λ is strictly decreasing in λ (because u(w(λ� s̃)) is strictly increasing
in λ), it follows that there exists a Λ such that the Principal’s payoff is smaller than w
whenever λ > Λ and the Principal chooses F̃ . Of course, the Principal’s payoff is even
smaller if she best-responds to λ. Q.E.D.

PROOF OF LEMMA 11: Suppose, by contradiction, that (IC’) is slack at λ∗. It follows
from Lemma 7 that λ∗ > λc , for otherwise the Principal would choose the degenerate
distribution and (IC’) would be violated. By part (i) of Lemma 9 and continuity, there
exists λ < λ∗ such that (IC’) is also slack at λ, that is,

p(λ)s(λ)u(w)+p(λ)s(λ)u
(
w
(
λ� s(λ)

))
> c′(a∗)�

This contradicts the definition of λ∗ given in (24).
Suppose now that (IC’) is violated. First, we argue that λ∗ > λc , and hence, the function

Z(λ∗� s) is non-convex. To see this, first observe that by continuity and the definition of
λ∗, there exists a sequence {λn}n∈N > λ∗ such that limn→∞ λn = λ∗, and for all n ∈N,

p(λn)s(λn)u(w)+p(λn)s(λn)u
(
w
(
λn� s(λn)

))
> c′(a∗)� (S10)

It must be the case that

s(λn) < 0 < s(λn)� (S11)

for otherwise, Zc(λn�0) = Z(λn�0), so the Principal would choose the degenerate distri-
bution and (IC’) would be violated. Suppose, by contradiction, that Z(λ∗� s) is convex in
s. By Lemma 7, this implies that λ∗ = λc , and the convexity of Z(λ∗� s) in s together with
the fact that s∗(λ) > 0 for all λ imply that

Z2

(
λ∗�0
)
<Z2

(
λ∗� s∗
(
λ∗))�

By continuity and part (ii) of Lemma 9,

lim
n→∞

Z2(λn�0)= Z2

(
λ∗�0
)

and lim
n→∞

Z2

(
λn� s(λn)

)= Z2

(
λ∗� s∗
(
λ∗))�

The convexity of Z(λ∗� s) in s and the previous two displayed equations imply that 0 <
s(λn) for sufficiently large n. This contradicts (S11), and we conclude that λ∗ > λc and
Z(λ∗� s) is non-convex in s.

If (IC’) is violated at λ∗(> λc), then by continuity and Lemma 9(i), there exists an ε > 0
such that (IC’) is violated for all λ ∈ [λ∗�λ∗ + ε]. This, again, contradicts the definition of
λ∗ in (24). Q.E.D.
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PROOF OF THEOREM 2: We first describe a pair of equations that define an equilib-
rium. Note that the proof of Lemma 6 does not rely on Assumption 1 and consequently
the pair (λ∗�F∗

1 ) satisfy equation (16). Observe that part (i) of Lemma 8 (characterizing
the Principal’s best response) is still valid but the support of the distribution is not neces-
sarily binary. However, the value of the function Z(λ∗� ·) must still coincide with the line
defining the convexification of Z(λ∗� ·) around zero, denoted by L, at each point in the
support of F∗

1 . Therefore, the equilibrium (λ∗�F∗
1 ) satisfies the following two conditions:∫

su
(
w
(
λ∗� s
))
dF∗

1 (s) = c′(a∗) and

Z
(
λ∗� s
)=L(s) for all s ∈ suppF∗

1 �

(S12)

where the first equation implies that λ∗ is a best response against F∗
1 and the second

equation says that F∗
1 is a best response against λ∗. It is enough to construct an F∗

2 ∈F such
that the first line of (S12) is satisfied, suppF∗

2 ⊂ suppF∗
1 , and | suppF∗

2 | ∈ {2�3}. Indeed,
such an F∗

2 would satisfy both lines of (S12), so the pair (λ∗�F∗
2 ) would be an equilibrium.

By the proof of Lemma 7, Z22(λ
∗� s) > 0 whenever s < s∗(λ∗). Therefore, the set of

negative elements of the support of F∗
1 is a singleton, that is, suppF∗

1 ∩ R− = {s}. Let S
denote suppF∗

1 ∩R+. Using these notations, we can rewrite equation (16) as follows:

F∗
1 (s)su

(
w
(
λ∗� s
))+ (1 − F∗

1 (s)
)∫

su
(
w
(
λ∗� s
))
dF∗

1 (s|s > 0)

=
∫ [

F∗
1 (s)(

1 − F∗
1 (s)
)su(w(λ∗� s

))+ (1 − F∗
1 (s)
)
su
(
w
(
λ∗� s
))]

dF∗
1 (s|s > 0)

= c′(a∗)�
Let us define ρ(s) = s/(s − s) and note that∫ ∞

0

ρ(s)

1 − ρ(s)
s dF(s)+

∫ ∞

0
s dF(s) =

∫ ∞

0

[
ρ(s)

1 − ρ(s)
s + s

]
dF(s)

= 0 = F(s)s +
∫ ∞

0
s dF(s)�

where the second equality follows from ρ(s)s + (1 − ρ(s))s = 0 and the third one from
F ∈F , that is, EF∗

1
[s] = 0. This equality chain implies that

F(s)=
∫ ∞

0

ρ(s)

1 − ρ(s)
dF(s)� (S13)

Therefore,

F∗
1 (s)su

(
w
(
λ∗� s
))+ ∫ ∞

0
su
(
w
(
λ∗� s
))
dF∗

1 (s)

=
∫ ∞

0

ρ(s)

1 − ρ(s)
su
(
w
(
λ∗� s
))+ su

(
w
(
λ∗� s
))
dF∗

1 (s)

=
∫ ∞

0

1
1 − ρ(s)

[
ρ(s)su

(
w
(
λ∗� s
))+ (1 − ρ(s)

)
su
(
w
(
λ∗� s
))]

dF∗
1 (s)
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= c′(a∗)� (S14)

where the first equality follows from (S13).
We now explain that dG = [1/(1 − ρ)]dF∗

1 is a probability measure on R+. To see this,
note that ∫ ∞

0

1
1 − ρ(s)

dF∗
1 (s) = 1 − F∗

1 (s)+
∫ ∞

0

(
1

1 − ρ(s)
− 1
)
dF∗

1 (s)

= F∗
1 (s)+

∫ ∞

0

ρ(s)

1 − ρ(s)
dF∗

1 (s) = 1�

where the first equality follows from F∗
1 (s) = 1 − ∫ ∞

0 1dF∗
1 (s) and the third one follows

from equation (S13). Consequently, the last line of (S14) can be rewritten as∫ ∞

0

[
ρ(s)su

(
w
(
λ∗� s
))+ (1 − ρ(s)

)
su
(
w
(
λ∗� s
))]

dG(s) = c′(a∗)�
Suppose first that there exists an s ∈ S such that ρ(s)su(w(λ∗� s))+ (1 −ρ(s))su(w(λ∗�

s))= c′(a∗). Then the binary distribution placing probability masses ρ(s) and 1 − ρ(s) on
the scores s and s, respectively, satisfy the second line of (S12) and the proof is complete.
Otherwise, the previous displayed equation implies that there must exist s1� s2 ∈ S such
that

ρ(s1)su
(
w
(
λ∗� s
))+ (1 − ρ(s1)

)
s1u
(
w
(
λ∗� s1

))
> c′(a∗)�

ρ(s2)su
(
w
(
λ∗� s
))+ (1 − ρ(s2)

)
s1u
(
w
(
λ∗� s2

))
< c′(a∗)�

and hence, there must exist κ ∈ (0�1) such that[
κρ(s1)+ (1 − κ)ρ(s2)

]
su
(
w
(
λ∗� s
))

+ κ
(
1 − ρ(s1)

)
s1u
(
w
(
λ∗� s1

))+ (1 − κ)
(
1 − ρ(s2)

)
s1u
(
w
(
λ∗� s2

))
= c′(a∗)� (S15)

Note that the pair (ρ�κ) defines a probability distribution over the points (s� s1� s2) such
that

Pr(s)= κρ(s1)+(1−κ)ρ(s2)� Pr(s1)= κ
(
1−ρ(s1)

)
� Pr(s2)= (1−κ)

(
1−ρ(s2)

)
�

and let F∗
2 ∈F denote the corresponding CDF. By (S15), the CDF F∗

2 indeed satisfies the
second line of (S12). Q.E.D.

PROOF OF THEOREM 3: To establish the result, we construct a sequence of binary dis-
tributions and corresponding wages that satisfy (IC) and (LL) so that the Principal’s ex-
pected cost converges to w. To this end, for each n ∈N, let us define Fn ∈F as follows:

Fn(s) =

⎧⎪⎪⎨⎪⎪⎩
0 if s <−n−ζ�

n

n+ n−ζ
if s ∈ [−n−ζ� n)�

1 if s ≥ n�

(S16)
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Note that the support of Fn is {sn� sn} = {−n−ζ� n}. Furthermore, Pr(sn)= sn/(sn − sn) and
Pr(sn) = −sn/(sn − sn). Next, we define a wage scheme for each n, so that the Agent’s
incentive constraint, (IC), binds. That is, w(s)=w and w(sn) satisfies(

1 + sn
sn − sn

)
snu(w)− sn

sn − sn
snu
(
w(sn)
)= c′(a∗)�

or equivalently,

w(sn)= u−1

(
u(w)− sn − sn

snsn
c′(a∗))� (S17)

Since w(sn) > w, the Agent’s limited liability constraint, (LL), is satisfied.
The Principal’s expected cost is

sn

sn − sn

[
w+ s2

n

]− sn
sn − sn

[
w(sn)+ s2

n

]= sn

sn − sn
w − sn

sn − sn
w(sn)+ sns

2
n − sns

2
n

sn − sn
� (S18)

Next, we show that this cost converges to w as n goes to infinity. First, note that the
last term, corresponding to the Principal’s cost of information acquisition, tends to zero
because

lim
n→∞

sns
2
n − sns

2
n

sn − sn
= lim

n→∞
n1−2ζ + n2−ζ

n+ n−ζ
≤ lim

n→∞
n1−2ζ + n2−ζ

n
= lim

n→∞
(
n−2ζ + n1−ζ

)= 0� (S19)

where the last equality follows from ζ > 1.
It remains to show that the expected wage cost of the Principal converges to w. First,

we show that the first term on the right-hand side of (S18) goes to w. Note that

lim
n→∞

sn

sn − sn
w = lim

n→∞
n

n+ n−ζ
w = w�

In what follows, we show that the second term of the right-hand side of (S18) converges to
zero. We do this by sandwiching this term between two sequences and showing that both
of these sequences go to zero. To this end, note that

− sn
sn − sn

w ≤ − sn
sn − sn

w(sn)= n−ζ

n+ n−ζ
u−1

(
u(w)+ n+ n−ζ

n1−ζ
c′(a∗))

≤ n−ζ

n+ n−ζ
u−1
(
u(w)+ (1 + nζ

)
c′(a∗))�

where the first inequality follows from w ≤w(sn), the equality follows from (S17), and the
second inequality from 1/n≤ 1. Since, limn→∞[−sn/(sn−sn)] = limn→∞[n−ζ/(n+nζ)] = 0,
it is enough to show that the right-hand side also converges to zero. That is, by letting v
denote u(w)+ c′(a∗), we have to show that

lim
n→∞

u−1
(
v+ nζc′(a∗))
nζ+1 + 1

= 0�

Observe that the denominator goes to infinity, hence, if u is bounded and the numerator
does not go to infinity, this result follows. If u is unbounded, then the numerator also goes
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to infinity and, applying L’Hospital’s rule, we have that

lim
n→∞

u−1
(
v + nζc′(a∗))
nζ+1 + 1

= lim
n→∞

ζnζ−1c′(a∗)
u′(u−1

(
v+ nζc′(a∗)))

(ζ + 1)nζ
≤ c′(a) lim

n→∞

1
u′(u−1

(
v + nζc′(a∗)))

n
�

where the inequality follows from ζ/[n(ζ + 1)] < 1. Since limn→∞ u−1(v + nζc′(a∗)) = ∞
by supposition and limw→∞ u′(w)= 0 by assumption, both the numerator and the denom-
inator of the right-hand-side term above go to infinity. Applying L’Hospital’s rule again,
we have that

c′(a) lim
n→∞

1
u′(u−1

(
v+ nζc′(a∗)))

n
= ζ
[
c′(a∗)]2 lim

n→∞
−u′′(u−1

(
v+ nζc′(a∗)))[

u′(u−1
(
v+ nζc′(a∗)))]3nζ−1�

Letting w = u−1(v+ nζc′(a∗)), the last expression can be rewritten as

ζ
[
c′(a∗)]2 lim

w→∞
−u′′(w)[
u′(w)
]3[u(w)− v

c′(a∗) ]
ζ−1
ζ

≤ ζ
[
c′(a∗)] ζ+1

ζ lim
w→∞

−u′′(w)[
u′(w)
]3 [u(w)

] ζ−1
ζ = 0�

where the inequality follows because u(w) > v and ζ > 1 and the equality follows
from (26). Q.E.D.

Proofs Related to Proposition 1

PROOF OF LEMMA 12: Since c′′
κ(a)/c

′
κ(a) is increasing in κ, its derivative in κ is posi-

tive, that is,

c′
κ(a)

∂c′′
κ(a)

∂κ
− c′′

κ(a)
∂c′

κ(a)

∂κ[
c′
κ(a)
]2 ≥ 0�

Note that the left-hand side of the previous inequality is also the derivative of [∂c′
κ(a)/∂κ]/

c′
κ(a) in a and hence, this function is increasing in a. That is, for all a > ã,[

∂c′
κ(a)/∂κ

]
c′
κ(a)

≥
[
∂c′

κ(̃a)/∂κ
]

c′
κ(̃a)

�

which is equivalent to [
∂c′

κ(a)/∂κ
]
c′
κ(̃a)− [∂c′

κ(̃a)/∂κ
]
c′
κ(a)[

c′
κ(a)
]2 ≥ 0�

Note that the left-hand side is ∂[ c′
κ(a)

c′
κ(̃a)

]/∂κ and hence, the previous inequality implies that
c′
κ(a)/c

′
κ(̃a) is increasing in κ.

Finally, observe that

lim
κ→∞

c′
κ(a)

c′
κ(̃a)

= lim
κ→∞

∫ a

ã

c′′
κ(x)dx

c′
κ(̃a)

≥ lim
κ→∞

∫ a

ã

c′′
κ(x)

c′
κ(x)

dx= ∞�
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where the first equality follows from the fundamental theorem of calculus, the inequality
follows from c′

κ being increasing in a, and the last equality is implied by Condition 1 and
Lebesgue’s monotone convergence theorem. Q.E.D.

We now establish two additional lemmas.

LEMMA S1: Suppose that the Agent’s utility function, u, satisfies Assumption 1. Let
{λ∗�F∗} denote the unique equilibrium characterized in Theorem 1, and let δ∗ := c′(a∗). Then
λ∗, and the (two) scores in the support of F∗, s and s, are continuously differentiable in δ∗,
and

dλ∗

dδ∗ > 0�
ds′

dδ∗ < 0 and
ds′

dδ∗ > 0�

Moreover, both the Agent’s bonus, w(λ∗� s) − w, and the Principal’s expected information-
acquisition cost, EF∗ [s2], are strictly increasing in δ∗.

PROOF OF LEMMA S1: It follows from Sections 5.1.1 and 5.1.2 that λ∗, s, and s satisfy
the following equations:

Z2

(
λ∗� s
)=Z2

(
λ∗� s
)
�

Z
(
λ∗� s
)=Z
(
λ∗� s
)+ (s − s)Z2

(
λ∗� s
)
�

EF∗
[
su
(
w
(
λ∗� s
))]= δ∗�

The first two equations specify that the points (s�Z(λ∗� s)) and (s�Z(λ∗� s)) lie on a line
that is tangent to Z(λ∗� ·) at s ∈ {s� s}, as mandated by (21) and Lemma 8. The third
equation stipulates that the Agent’s incentive constraint must be satisfied with equality
per Lemma 6. Moreover, we must have Z22(λ

∗� s) = (λ∗)2[(u′)3/u′′] + 2 > 0, where u′ and
u′′ are evaluated at w(λ∗� s). Theorem 1 guarantees the uniqueness of λ∗, s, and s when
Assumption 1 is satisfied.

Using the definition of Z(λ∗� ·) and that EF∗ [s] = 0, these equations can be rewritten
as

λ∗[u(w(λ∗� s
))− u(w)

]= 2(s − s)�

w
(
λ∗� s
)−w + (s − s)2 = λ∗s

[
u
(
w
(
λ∗� s
))− u(w)

]
�

− ss

s − s

[
u
(
w
(
λ∗� s
))− u(w)

]= δ∗�

(S20)

where λ∗su′(w(λ∗� s)))= 1. Using (S20), the second and third equations can be rewritten
as

λ∗δ∗ = −2ss and (S21)

w
(
λ∗� s
)−w = s2 − s2� (S22)

respectively. Therefore, an equilibrium to the zero-sum game is fully characterized by a
three-tuple {λ∗� s� s} that satisfies (S20)–(S22). Define

f1(s� s�λ) := λ
[
u
(
w(λ� s)

)− u(w)
]− 2(s − s)�
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f2(s� s�λ) := λδ∗ + 2ss�

f3(s� s�λ) :=w(λ� s)−w− (s2 − s2
)
�

One can show using straightforward algebra that the determinant of the Jacobian matrix

J :=
⎡⎣J11 J12 J13

J21 J22 J23

J31 J32 J33

⎤⎦=

⎡⎢⎢⎢⎢⎢⎢⎣

∂f1

∂s

∂f1

∂s

∂f1

∂λ
∂f2

∂s

∂f2

∂s

∂f2

∂λ
∂f3

∂s

∂f3

∂s

∂f3

∂λ

⎤⎥⎥⎥⎥⎥⎥⎦
evaluated at a three-tuple {λ∗� s� s} that satisfies (S20)–(S22) is strictly positive, which
implies that J is invertible, and so we can apply the implicit function theorem. Then its
inverse can be written as

J−1 = 1
det(J)

⎡⎣j11 j12 j13

j21 j22 j23

j31 j32 j33

⎤⎦ �
where jkl/det(J) denotes the entry of row k and column l of the inverse of matrix J. By
the implicit function theorem, we have that⎡⎢⎢⎢⎢⎣

ds

dδ∗
ds

dδ∗
dλ∗

dδ∗

⎤⎥⎥⎥⎥⎦= −J−1

⎡⎢⎢⎢⎢⎣
∂f1

∂δ∗
∂f2

∂δ∗
∂f3

∂δ∗

⎤⎥⎥⎥⎥⎦= − 1
det(J)

⎡⎣j11 j12 j13

j21 j22 j23

j31 j32 j33

⎤⎦⎡⎣ 0
λ∗

0

⎤⎦= − λ∗

det(J)︸ ︷︷ ︸
<0

⎡⎣j12

j22

j32

⎤⎦ �

Therefore, to establish (i), it suffices to show that j12 < 0, j22 > 0, and j32 < 0, which is easy
to show using the facts that u′′ < 0, s < 0, and Z22(λ

∗� s) > 0.
Finally, (ii) follows immediately by observing that

dw
(
λ∗� s
)

dδ∗ = dw
(
λ∗� s
)

∂λ∗
dλ∗

dδ∗ + dw
(
λ∗� s
)

∂s

ds

dδ∗ = − u′

λ∗u′′
dλ∗

dδ∗ − u′

su′′
ds

dδ∗ > 0 and

d

dδ∗EF∗
[
s2
]= d(−ss)

dδ∗ = −s
ds

dδ∗ − s
ds

dδ∗ > 0� Q.E.D.

Notice that the fraction p1(a�δ)/p1(a
∗� δ) is not defined for δ = 0. The following

lemma shows that this function can be continuously extended to the compact interval
[0� d] by showing that the limit of this fraction exists and it is not zero as δ converges to
zero.

LEMMA S2: For all a�a∗ ∈ R+, limd→0 p1(a�d)/p1(a
∗� d) > 0.

PROOF OF LEMMA S2: Using L’Hospital’s rule, it is easy to show that

p1(a�δ)

p1

(
a∗� δ
) = 2
(

−s − s

ss

)
se−2(a−a∗)s − se−2(a−a∗)s − (s − s)e−2(a−a∗)(s+s)[

e−2(a−a∗)s − e−2(a−a∗)s]2 � (S23)
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where we drop the dependence of s and s for notational convenience. By Lemma S1, s in-
creases in δ, while s decreases in δ. Let sH := infδ∈(0�1]{s(δ)} and sL := supδ∈(0�1]{s(δ)}.
It follows from the fact that s > 0 > s and the monotone convergence theorem that
limδ→0 s = sH and limδ→0 s = sL. If sH > 0 > sL, then because both p1(a�δ) > 0 and
p1(a

∗� δ) > 0, the desired conclusion holds. We consider three cases.
First, suppose that sH > 0 and sL = 0. Applying L’Hospital’s rule once, we have

lim
s→0

p1(a�δ)

p1

(
a∗� δ
) = 2

1 − e−2(a−a∗)s − 2
(
a− a∗)se−2(a−a∗)s[

1 − e−2(a−a∗)s]2 > 0�

Next, suppose that sH = 0 and sL < 0. Applying L’Hospital’s rule once, we have

lim
s→0

p1(a�δ)

p1

(
a∗� δ
) = 2

1 − e−2(a−a∗)s − 2
(
a− a∗)se−2(a−a∗)s[

1 − e−2(a−a∗)s]2 > 0�

Finally, we rule out the possibility that sH = sL = 0. Note that it is enough to show that
s + s cannot converge to zero as δ goes to zero. Recall from the proof of Lemma S1 that
for every δ > 0, there exists an equilibrium {λ∗� s� s}, which is characterized by a solution
to the following system of equations:

λ∗[u(w(λ∗� s
))− u(w)

]= 2(s − s)� (S24)

λ∗d = −2ss� (S25)

w
(
λ∗� s
)−w = s2 − s2� (S26)

where λ∗su′(w(λ∗� s)))= 1 and λ∗ > 0. Observe that

lim
δ→0

2
s + s

= lim
δ→0

λ∗u
(
w
(
λ∗� s
))− u(w)

w
(
λ∗� s
)−w

≤ lim
δ→0

λ∗u′(w)�

where the equality follows from dividing both sides of (S24) by the corresponding sides of
(S26) and the inequality follows from the concavity of u. Note that since, by Lemma S1,
λ∗ is increasing in δ and u′(w) <∞, the right-hand side of the previous inequality chain is
bounded from above. Consequently, the left-hand side must also be bounded from above
and hence, limδ→∞(s + s) �= 0. Q.E.D.

Finally, we are in a position to prove Proposition 1.

PROOF OF PROPOSITION 1: First, we show that if a∗ ≤ a, the Agent’s cost function
is cκ, and the Principal’s contract is defined by the scores {s(δ∗

κ)� s(δ
∗
κ)} and wages

{w�W̃ (s(δ∗
κ))}, where δ∗

κ = c′
κ(a

∗), then there exists â(> a) such that the Agent is bet-
ter off exerting effort zero than any a > â. Importantly, â depends neither on κ nor on a∗.
Observe that a consequence of the existence of such an â is that if the incentive constraint
is satisfied at zero, then it is also satisfied at any effort level above â. To this end, let â be
defined as follows:

â= a+
[
u
(
W̃
(
s(d)
))− u(w)

]
d

�
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Observe that for all a > â,

cκ(a) ≥ cκ(a)+ c′
κ(a)(a− a)≥ cκ(a)+ d(a− a) > d(a− a)� (S27)

where the first inequality follows from the convexity of cκ, the second one from Condition
2, and the third one from cκ(a) > 0. Note that the Agent’s payoff gain from exerting effort
a(> a) instead of zero is

u
(
W̃
(
s
(
δ∗
κ

)))− u(w)− cκ(a)�

because the increase in the probability of getting wage W̃ (s(δ∗
κ)) instead of w is bounded

from above by 1. It is enough to show that this payoff gain is negative. Observe that for all
a > â,

u
(
W̃
(
s
(
δ∗
κ

)))− u(w)− cκ(a)

≤ sup
δ∗∈(0�d]

u
(
W̃
(
s
(
δ∗)))− u(w)− cκ(a)

= u
(
W̃
(
s(d)
))− u(w)− cκ(a) < u

(
W̃
(
s(d)
))− u(w)− d(a− a) < 0�

where the first equality follows Lemma S1, the second inequality follows from equation
(S27), and the last inequality follows from the definition of â.

Next, let us define p1(a�0)/p1(a
∗�0) to be limδ→0 p1(a�δ)/p1(a

∗� δ) for each a∗ ∈ (0� a]
and a ∈ R+. We show that for each (a∗� a) ∈ [a�a] × [0�∞), there exists K such that
whenever κ >K,

inf
δ∈[0�d]

p1(a�δ)

p1

(
a∗� δ
) > c′

κ(a)

c′
κ

(
a∗) if a < a∗ and

sup
δ∈[0�d]

p1(a�δ)

p1

(
a∗� δ
) < c′

κ(a)

c′
κ

(
a∗) if a∗ < a ≤ â�

(S28)

Observe that p′(a�δ)/p′(a∗� δ) is strictly positive for all a�a∗ ∈ R+ and δ ∈ (0� d]. There-
fore, by Lemma S2 and the theorem of the maximum, the two terms on the left-hand
sides of the inequalities in (S28) are continuous in a and strictly positive. In what follows,
we show that for each pair (a∗� a) ∈ [a�a] × [0� â], there exists a Ka

a∗ and an open neigh-
borhood of (a∗� a), Na

a∗ , such that (S28) is satisfied for any κ ≥ Ka
a∗ and for each pair in

Na
a∗ .
First, fix an effort level a < a∗. Since infδ∈[0�d][p1(a�δ)/p1(a

∗� δ)] > 0, Lemma 12 im-
plies that there exists Ka

a∗ ∈R+ such that

inf
δ∈[0�d]

p1(a�δ)

p1

(
a∗� δ
) > c′

Ka
a∗ (a)

c′
Ka
a∗
(
a∗) �

Furthermore, by the continuity of c′
Ka
a

and infδ∈[0�d][p1(a�δ)/p1(a
∗� δ)], there exists a

neighborhood around (a∗� a), Na
a∗ , such that the previous inequality is satisfied for all

(̃a∗� ã) ∈ Na
a∗ . Since c′

κ(̃a)/c
′
κ(a

∗) is decreasing in k by Lemma 12, it follows that for all
(̃a∗� ã) ∈ Na

a∗ and κ ≥Ka
a∗ ,

inf
δ∈[0�d]

p1(ã� δ)

p1

(̃
a∗� δ
) > c′

κ(ã)

c′
κ

(̃
a∗) � (S29)
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Second, fix an effort level a > a∗. Again, Lemma 12 implies the existence of Ka
a∗ ∈ R+

such that

sup
δ∈[0�d]

p1(a�δ)

p1

(
a∗� δ
) < c′

Ka
a∗ (a)

c′
Ka
a∗
(
a∗) �

Furthermore, by the continuity of c′
Ka
a∗ and supδ∈(0�d][p1(a�δ)/p1(a

∗� δ)], there exists an
open neighborhood of (a∗� a), Na

a∗ , such that the previous inequality is satisfied for all
(̃a∗� ã) ∈ Na

a∗ . Since c′
κ(̃a)/c

′
κ(a∗) is increasing in κ by Lemma 12, it follows that for all

(̃a∗� ã) ∈ Na
a∗ and κ ≥Ka

a∗ ,

sup
δ∈[0�d]

p1(ã� δ)

p1

(̃
a∗� δ
) < c′

κ(ã)

c′
κ

(̃
a∗) � (S30)

Now, consider a= a∗. We first show that there exists an open neighborhood of (a∗� a∗),
Na∗

a∗ , and Ka∗
a∗ ∈ R+, such that if (̃a∗� ã) ∈Na∗

a∗ then

inf
δ∈[0�d]

p1(ã� δ)

p1

(̃
a∗� δ
) > c′

Ka∗
a∗
(̃a)

c′
Ka∗
a∗

(̃
a∗) if ã < ã∗�

sup
δ∈[0�d]

p1(ã� δ)

p1

(̃
a∗� δ
) < c′

Ka∗
a∗
(̃a)

c′
Ka∗
a∗

(̃
a∗) if ã > ã∗�

(S31)

We note that p1(a�δ)/p1(a
∗� δ) is continuously differentiable in a and the derivative is

continuous in δ and a∗. Therefore, there exists an open ball around (a∗� a∗), N1, such
that p11(̃a� δ)/p1(̃a

∗� δ) < B for all (̃a∗� ã) ∈ N1 and δ ∈ [0� d]. This implies that for all
(̃a∗� ã) ∈ N1 and δ ∈ [0� d],

p1(̃a� δ)

p1

(̃
a∗� δ
) > 1 −B

(̃
a∗ − ã

)
if ã < ã∗ and

p1(̃a� δ)

p1

(̃
a∗� δ
) < 1 +B

(̃
a− ã∗) if ã > ã∗�

(S32)

By Condition 1, there exist Ka∗
a∗ ∈R+ and an ε > 0 such that c′′

Ka∗ (̃a
∗)/c′

Ka∗ (̃a
∗) > 2B for all

ã∗ ∈ (a∗ − ε�a∗ + ε). Hence, by the continuity of c′′
Ka∗
a∗

, there is an open neighborhood of

(a∗� a∗), N2, such that for all (̃a∗� ã) ∈ N2,

c′
Ka∗
a∗
(̃a)

c′
Ka∗
a∗

(̃
a∗) < 1 −B

(̃
a∗ − ã

)
if ã < ã∗ and

c′
Ka∗
a∗
(̃a)

c′
Ka∗
a∗

(̃
a∗) > 1 +B

(̃
a− ã∗) if ã > ã∗�

(S33)
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Observe that equations (S32) and (S33) imply equation (S31) for all (̃a∗� ã) ∈ N1 ∩N2 =:
Na∗

a∗ . Finally, by Lemma 12, it follows that for all (̃a∗� ã) ∈ Na∗
a∗ and κ≥ Ka∗

a∗ ,

inf
δ∈[0�d]

p1(ã� δ)

p1

(̃
a∗� δ
) > c′

κ(̃a)

c′
κ

(̃
a∗) if ã < a∗�

sup
δ∈[0�d]

p1(ã� δ)

p1

(̃
a∗� δ
) < c′

κ(̃a)

c′
κ

(̃
a∗) if ã > a∗�

(S34)

Since the set [a�a]× [0� â] is compact and Na
a∗ is open for all (a∗� a) ∈ [a�a]× [0� â],

there exist finitely many points, {(a∗
j � aj)}m1 ⊂ [a�a]× [0� â], such that

[a�a] × [0� â] =
⋃

j∈{1�����m}
N

aj
a∗
j
� (S35)

Now, let us define

K = max
{
K

a1
a∗

1
� � � � �Kam

a∗
m

}
� (S36)

and let us consider cκ such that κ > K. We show that ck satisfies (30) whenever a ≤ â.
By (S35), for each (a∗� a) ∈ [a�a]× [0� â], there is j ∈ {1� � � � �m} such that (a∗� a) ∈ N

aj
a∗
j
.

If aj < a∗
j , then (a∗� a) satisfies (S29) because κ > K ≥ K

aj
a∗
j

by (S36). If aj = a∗
j , then

(a∗� a) satisfies (S34) because κ >K ≥ K
aj
a∗
j
. If aj > a∗, then (a∗� a) satisfies (S30) because

κ >K ≥K
aj
a∗
j

by (S36). Q.E.D.
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