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SUPPLEMENT TO “PRICING AND LIQUIDITY IN
DECENTRALIZED ASSET MARKETS”

Semi̇h Üslü

APPENDIX B: OPTIMIZATION

This appendix covers the stochastic control problem that an individual investor
with the reduced-form quasi-linear utility faces in the OTC market equilibrium of
Section 2. I define the investor’s problem and provide HJB equations and an op-
timality verification argument along the lines of Duffie, Gârleanu, and Pedersen
(2005) and Vayanos and Weill (2008). I conclude by establishing the existence
and uniqueness of the solution to the individual investor’s problem taking as
given the joint distribution of taste types, asset positions, and speed types.

Investor’s Problem

I fix a probability space (Ω,F ,Pr) and a filtration {Ft, t ≥ 0} of sub-σ-algebras
satisfying the usual conditions (see Protter, 2004). An investor can be of either
one of the three-dimensional continuum of types denoted by (δ, a, λ) ∈ T ≡
[δL, δH ]×R× [0,M ]. The arrival times of changes of taste types and of potential
counterparties are counted by two independent adapted counting processes Nα

andNλ with constant intensities α andm (λ,Λ), respectively. The details of these
counting processes that govern idiosyncratic shocks and trade are as described
in Section 2.

An investor with initial type (δ0, a0, λ) and initial wealth W0 chooses a fea-
sible trading strategy {at}t∈[0,∞) and an adapted consumption and wealth pro-

cess {(ct,Wt)}t∈[0,∞) subject to the following feasibility conditions. First, the

type (δt, at, λ) must remain constant during the inter- and intra-arrival times
of the counting processes Nα and Nλ. Second, when the investor is in state
(δ, a, λ) ∈ T and when the process Nα

t jumps, the investor transitions into the
state (δ′, a, λ) ∈ T , where the investor’s new taste type, δ′, is drawn accord-
ing to the pdf f on [δL, δH ]. Third, when the investor is in state (δ, a, λ) ∈ T
and when the process Nλ

t jumps, the investor transitions into the state (δ, a +
qt [(δ, a, λ) , (δ′, a′, λ′)] , λ) ∈ T , where the trade quantity, qt [(δ, a, λ) , (δ′, a′, λ′)],
is bargained with the counterparty of type (δ′, a′, λ′) who is drawn according to
the stationary joint cdf, Φ(δ′, a′, λ′), of taste types, asset positions, and speed

types, with the likelihood,
m(λ,λ′)
m(λ,Λ) , that depends on her speed type λ′.1
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1Since investors have quasi-linear preferences, terms of trade are independent of wealth
levels, as will be clear shortly.
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First, I start by describing an investor’s continuation utility at time t from
remaining lifetime consumption. For a particular investor, the arguments of this
continuation utility function are, naturally, the investor’s current wealth Wt, her
current type (δt, at, λ), and time t. More precisely, the continuation utility is

(B.1) U (Wt, δt, at, λ, t) = sup
C,a

Et

∞∫
0

e−rsdCt+s

s.t.

dWt = rWtdt− dCt + u (δt, at) dt− Pt [(δt−, at−, λ) , (δ′t, a
′
t, λ
′
t)] dat,(B.2)

dat =

{
qt [(δt−, at−, λ) , (δ′t, a

′
t, λ
′
t)] if (δ′t, a

′
t, λ
′
t) is contacted

0 if no contact,

where

{qt [(δ, a, λ) , (δ′, a′, λ′)] , Pt [(δ, a, λ) , (δ′, a′, λ′)]} =

arg max
q,P

{
[U(W − qP, δ, a+ q, λ, t)− U(W, δ, a, λ, t)]

1
2

[U(W ′ + qP, δ′, a′ − q, λ′, t)− U(W ′, δ′, a′, λ′, t)]
1
2

}
,

s.t.

U(W − qP, δ, a+ q, λ, t) ≥ U(W, δ, a, λ, t),

U(W ′ + qP, δ′, a′ − q, λ′, t) ≥ U(W ′, δ′, a′, λ′, t).

where Et denotes expectation conditional on the information at time t, {Ct}t∈[0,∞)

is a cumulative consumption process, {(ρt, at, λ)}t∈[0,∞) is a T -valued type pro-

cess induced by the feasible trading strategy {at}t∈[0,∞), and the benefit u (ρt, at)

has a similar holding benefit/cost interpretation as in Duffie et al. (2005). The
difference is that I assume the holding benefit is a concave quadratic function
of asset position while it is linear in Duffie et al. (2005). (B.1) and (B.2) im-
ply that the continuation utility is linear in wealth, i.e., U (Wt, δt, at, λ, t) =
Wt + J (δt, at, λ, t), where

(B.3) J (δt, at, λ, t) =

sup
a
Et

∞∫
t

e−r(s−t)u (δs, as) ds− e−r(s−t)Ps [(δs−, as−, λ),(δ′s, a
′
s, λ
′
s)] das

.
Finally, to guarantee the global optimality of the trading strategy induced by

(B.3), I impose the transversality condition

(B.4a) lim
t→∞

e−rtJ (δ, a, λ, t) = 0



LIQUIDITY IN DECENTRALIZED MARKETS 3

for all (δ, a, λ) ∈ T and the condition

(B.4b) E

 T∫
0

(
e−rsJ (δs, as, λ, s)

)2
ds

 <∞
for any T > 0, for any initial investor type (δ0, a0, λ), any feasible trading strategy
{at}t∈[0,∞), and the associated type process {(δt, at, λ)}t∈[0,∞). These conditions
will allow me to complete the usual verification argument for stochastic control.

HJB Equations

In order to derive J , q, and P , I focus on a particular investor and a par-
ticular time t. I let τα be an exponential random variable that represents the
next (stopping) time at which that investor’s taste type changes, let τλ be an
exponential random variable that represents the next (stopping) time at which
another investor is met, and let τ = min {τα, τλ}. Then,

(B.5) J (δt, at, λ, t)

= Et

 τ∫
t

e−r(s−t)u (δs, as) ds+ e−r(τα−t)I{τα=τ}

δH∫
δL

J(δ′, at, λ)f(δ′)dδ′

+e−r(τλ−t)I{τλ=τ}

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

m (λ,Λ)
{J(δt, at + qτλ[(δ, a, λ),(δ′, a′, λ′)], λ)

−qτλ [(δt, at, λ) , (δ′, a′, λ′)]Pτλ [(δt, at, λ) , (δ′, a′, λ′)]}Φ(dδ′, da′, dλ′)] .

Differentiating the both sides of (B.5) with respect to time argument t and
suppressing it, I arrive at

(B.6)
.

J (δ, a, λ) = rJ(δ, a, λ)− u(δ, a)− α
δH∫
δL

[J(δ′, a, λ)− J(δ, a, λ)]f(δ′)dδ′

−
M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {J(δ, a+ q [(δ, a, λ) , (δ′, a′, λ′)] , λ)− J(δ, a, λ)

−q [(δ, a, λ) , (δ′, a′, λ′)]P [(δ, a, λ) , (δ′, a′, λ′)]}Φ(dδ′, da′, dλ′).

In steady state,
.

J (δ, a, λ) = 0 and hence (B.6) implies the HJB equation (3.1)
of Section 3. After using the Nash bargaining procedure for the determination of
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q [(δ, a, λ) , (δ′, a′, λ′)] and P [(δ, a, λ) , (δ′, a′, λ′)], I get the auxiliary HJB equa-
tion (3.13) of Subsection 3.3:

(B.7) rJ(δ, a, λ) = δa− 1

2
κa2 + α

δH∫
δL

[J(δ′, a, λ)− J(δ, a, λ)]f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
1

2

[
max
q
{J(δ, a+ q, λ)− J(δ, a, λ)

+J(δ′, a′ − q, λ′)− J(δ′, a′, λ′)}] Φ(dδ′, da′, dλ′).

Optimality Verification

Now, to verify the sufficiency of the HJB equation (3.1) for individual optimal-
ity, I consider any initial investor type (δ0, a0, λ), any feasible trading strategy
{at}t∈[0,∞), and the associated type process {(δt, at, λ)}t∈[0,∞). I assume, with-
out loss of generality, the wealth process is Wt = 0 for all t ≥ 0. Therefore, the
resulting cumulative consumption process {Cat }t∈[0,∞) satisfies

(B.8) dCat = u (δt, at) dt− Pt [(δt−, at−, λ) , (δ′t, a
′
t, λ
′
t)] dat.

At any time T > 0,

(B.9) E

 T∫
0

e−rsdCas + e−rTJ(δT , aT , λ)


= E

 T∫
0

e−rsdCas + J(δ0, a0, λ) +

T∫
0

d
(
e−rsJ(δs, as, λ)

)
= E

J(δ0, a0, λ) +

T∫
0

e−rsdCas +

T∫
0

(
−re−rsJ(δs, as, λ)

)
ds

+

T∫
0

e−rsd (J(δs, as, λ))


= E

J(δ0, a0, λ) +

T∫
0

e−rs (dCas − rJ(δs, as, λ)

+ (J(δs, as, λ)− J(δs−, as, λ)) dNα
s

+ (J(δs, as + qs [(δs−, as−, λ) , (δ′s, a
′
s, λ
′)] , λ)− J(δs, as, λ)) dNλ

s

)]
,



LIQUIDITY IN DECENTRALIZED MARKETS 5

where Nα
s and Nλ

s are counting processes that govern the arrivals of idiosyncratic
shocks and of potential counterparties, respectively. Note that any transfer of the
numéraire at an arrival time of Nλ is reflected by Ca according to (B.8).

The next step is to calculate the stochastic integrals containing the counting
processes. The condition (B.4b) implies that,

T∫
0

|J(δs, as, λ)− J(δs−, as, λ)| ds ≤ sup
s,s′∈[0,T ]

|J(δs′ , as′ , λ)− J(δs, as, λ)|T <∞.

Corollary C4 of Brémaud (1981, p. 235), in turn, implies that

E

 T∫
0

e−rs (J(δs, as, λ)− J(δs−, as, λ)) dNα
s


= E

 T∫
0

e−rsα


δH∫
δL

(J(δs, as, λ)− J(δs−, as, λ)) f(δ′s)dδ
′
s

 ds

 .

Similarly,

E

 T∫
0

e−rs(J(δs, as + qs [(δs−, as−, λ),(δ′s, a
′
s, λ
′)], λ)− J(δs, as, λ)) dNλ

s


=E

T∫
0

e−rs


M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′s)(J(δs, as + qs[(δs−, as−, λ),(δ′s, a
′
s, λ
′)], λ)

−J(δs, as, λ)) Φ(dδ′s, da
′
s, dλ

′
s)} ds] .

Using these equalities in (B.9),

E

 T∫
0

e−rsdCas + e−rTJ(δT , aT , λ)

 = E

J(δ0, a0, λ) +

T∫
0

e−rsdCas

+

T∫
0

e−rs

αδH∫
δL

(J(δs, as, λ)− J(δs−, as, λ)) f(δ′s)dδ
′
s − rJ(δs, as, λ)

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′s) (J(δs, as + qs [(δs−, as−, λ) , (δ′s, a
′
s, λ
′)] , λ)

−J(δs, as, λ)) Φ(dδ′s, da
′
s, dλ

′
s)) ds]
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≤ E

J(δ0, a0, λ) + sup
C


T∫
0

e−rsdCs

+

T∫
0

e−rs

αδH∫
δL

(J(δs, as, λ)− J(δs−, as, λ)) f(δ′s)dδ
′
s − rJ(δs, as, λ)

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′s) (J(δs, as + qs [(δs−, as−, λ) , (δ′s, a
′
s, λ
′)] , λ)

−J(δs, as, λ)) Φ(dδ′s, da
′
s, dλ

′
s)) ds}] = J(δ0, a0, λ).

This means that, at any future meeting date τn, n ∈ N,

J(δ0, a0, λ) ≥ E

τn∫
0

e−rtdCat

+ E
[
e−rτ

n

J(δτn , aτn , λ)
]

.

Then, letting n → ∞ and using the transversality condition (B.4a), I find
J(δ0, a0, λ) ≥ U (Ca). Since J(δ0, a0, λ) = U (C∗), where C∗ is the consumption
process associated with the candidate equilibrium strategy, I have established
optimality.

Existence and Uniqueness

In Appendix A, I construct a solution to the HJB equation (B.7) for J(δ, a, λ).
Taking as given the equilibrium joint cdf Φ(δ, a, λ) of taste types, asset positions,
and speed types, here I provide a formal proof to establish that (B.7) does not
admit another real solution. The argument does not use standard fixed point
tools for dynamic programming unlike the earlier models with unrestricted asset
positions, such as Gârleanu (2009) and Lagos and Rocheteau (2009), because the
return function, u, is unbounded below in the support of the equilibrium asset
distribution, which is the entire real line. Thus, I prove the uniqueness without
relying on the boundedness of the return function along feasible paths. In par-
ticular, I follow the metric approach of Rincón-Zapatero and Rodŕıguez-Palmero
(2003) and Martins-da Rocha and Vailakis (2010) and show that the operator
defined by (B.7) is a contraction. Then, the contraction mapping theorem implies
that it has a unique fixed point.

Let ω− ≤ ω+ < ω be three real-valued continuous functions defined on T ,
such that

ω− (δ, a, λ) =
1

r

ru (δ, a) + αu
(
δ, a
)

r + α
,

ω+ (δ, a, λ) =
1

r

ru (δ, a) +
(
α+ 1

2m (λ,Λ)
)
u
(
δH ,

δH
κ

)
r + α+ 1

2m (λ,Λ)
,
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and

ω (δ, a, λ) =
η

r
u

(
δH ,

δH
κ

)
,

where η > 1 is an arbitrarily large real number. Now consider the following
metric on C (T ) ≡ {f : T → R |f is continuous, ω− ≤ f ≤ ω+}:

d (f, g) = sup
x∈T

∣∣∣∣log

(
f − ω
ω+ − ω

(x)

)
− log

(
g − ω
ω+ − ω

(x)

)∣∣∣∣ , f, g ∈ C (T ) .

Here, ω− and ω+ functions provide natural lower and upper bounds for the
candidate equilibrium value function, respectively. The function ω− is calculated
assuming the investor cannot trade, i.e., m (λ, λ′) = 0. The function ω (which
is in fact a constant) is the value of receiving the highest possible utility flow
forever, scaled up by the coefficient η. As will be clear shortly, choosing η large
enough makes the operator, defined by (B.7), a contraction that maps C (T )
into itself. Lastly, ω+ is the value of of receiving the highest possible utility flow
forever after the operator is applied once.

Lemma 5 (C (T ) , d) is a complete metric space.

Proof: That d is a metric is obvious (Stokey and Lucas, 1989, p. 44). It suf-
fices to show that every Cauchy sequence in C (T ) converges to a function in
C (T ). I do it in three steps. First, given a Cauchy sequence {fn} in C (T ) I
find a candidate limiting function f . Second, I show that {fn} converges to the
candidate functions in d metric. Finally, I show that the candidate function f
belongs to C (T ).

1. Given a Cauchy sequence {fn} in C (T ), it holds that d (fn, fm) → 0 as

n,m→∞. Fix x ∈ T ; then the sequence of real numbers
{

log
(
fn−ω
ω+−ω (x)

)}
satisfies the Cauchy criterion; and by the completeness of real numbers, it
converges to a limit point—call it g (x). The limiting values define a func-
tion g : T → R+. I take our “candidate” limiting function for {fn} to be
f ≡ eg (ω+ − ω) + ω.

2.

d (fn, f) = d (fn, e
g (ω+ − ω) + ω) = sup

x∈T

∣∣∣∣log

(
f − ω
ω+ − ω

(x)

)
− g (x)

∣∣∣∣
tends to zero as n→∞.

3. I have to show that f is continuous and ω− ≤ f ≤ ω+. To prove that f is
continuous, I must show that for every ε > 0 and every x ∈ T , there exists
ζ > 0 such that∣∣∣∣log

(
f − ω
ω+ − ω

(x)

)
− log

(
f − ω
ω+ − ω

(y)

)∣∣∣∣ < ε if ‖x− y‖E < ζ,
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where ‖.‖E is the Euclidean sup norm on R3. Let ε and x be given. Choose
k so that d (f, fk) < ε/3; since fn → f , such a choice possible. Then choose
ζ so that

‖x− y‖E < ζ implies

∣∣∣∣log

(
fk − ω
ω+ − ω

(x)

)
− log

(
fk − ω
ω+ − ω

(y)

)∣∣∣∣ < ε/3.

Since fk is continuous, such a choice is possible. Then,∣∣∣∣log

(
f − ω
ω+ − ω

(x)

)
− log

(
f − ω
ω+ − ω

(y)

)∣∣∣∣
≤
∣∣∣∣log

(
f − ω
ω+ − ω

(x)

)
− log

(
fk − ω
ω+ − ω

(x)

)∣∣∣∣
+

∣∣∣∣log

(
fk − ω
ω+ − ω

(x)

)
− log

(
fk − ω
ω+ − ω

(y)

)∣∣∣∣
+

∣∣∣∣log

(
fk − ω
ω+ − ω

(y)

)
− log

(
f − ω
ω+ − ω

(y)

)∣∣∣∣
≤ 2d (f, fk) +

∣∣∣∣log

(
fk − ω
ω+ − ω

(x)

)
− log

(
fk − ω
ω+ − ω

(y)

)∣∣∣∣ < ε,

which implies that f is continuous. Lastly, ω− ≤ f ≤ ω+ follows from the
fact that ≤ is a continuous relation.

Q.E.D.

Lemma 6 Suppose J ∈ C (T ). Let S : T 2 × R→ R and S∗ : T 2 → R be

S [(δ, a, λ), (δ′, a′, λ′), q] = J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

and

S∗ [(δ, a, λ), (δ′, a′, λ′)] = max
q∈R

S [(δ, a, λ), (δ′, a′, λ′), q] ,

respectively. Then, S∗ is continuous.

Proof: This result is a direct application of Theorem 3.1 of Montes-de Oca
and Lemus-Rodŕıguez (2012), which is a generalization of Berge’s theorem that
permits to deal with optimization problems with unbounded objective function
and noncompact restrictions set. The theorem states that if the restrictions set
is a closed-valued and continuous correspondence and if the objective function of
the minimization problem is continuous, inf-compact, and satisfies the Moment
Condition (MC), then the minimized values define a continuous function on the
parameter space (Montes-de Oca and Lemus-Rodŕıguez, 2012, p. 272).

Our restrictions correspondence takes the value of R for all [(δ, a, λ), (δ′, a′, λ′)]
∈ T 2, which means it is closed-valued and continuous. Then, when I show that
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−S [(δ, a, λ), (δ′, a′, λ′), q] is continuous, satisfies the MC, and is inf-compact, the
proof will be complete. Continuity follows from the assumption that J ∈ C (T ).
To see the MC holds, let Tn = [δL, δH ] × [−n, n] × [0,M ] and consider the
sequence of compact sets be {Kn} =

{
T 2
n × [−n, n]

}
such that Kn ↑ T 2 × R.

Since J ∈ C (T ),

− ω+(δ, a+ q, λ)− ω+(δ′, a′ − q, λ′) ≤ −S [(δ, a, λ), (δ′, a′, λ′), q]

≤ −ω−(δ, a + q, λ) − ω−(δ′, a′ − q, λ′).

Thus,

inf
[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn

− ω+(δ, a+ q, λ)− ω+(δ′, a′ − q, λ′)

≤ inf
[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn

− S [(δ, a, λ), (δ′, a′, λ′), q]

≤ inf
[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn

− ω−(δ, a+ q, λ)− ω−(δ′, a′ − q, λ′).

Since

lim
n→∞

(
inf

[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn
− ω+(δ, a+ q, λ)− ω+(δ′, a′ − q, λ′)

)
=∞

and

lim
n→∞

(
inf

[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn
− ω−(δ, a+ q, λ)− ω−(δ′, a′ − q, λ′)

)
=∞,

then, by Squeeze Theorem,

lim
n→∞

(
inf

[(δ,a,λ),(δ′,a′,λ′),q]/∈Kn
− S [(δ, a, λ), (δ′, a′, λ′), q]

)
=∞,

which means the MC holds. Finally, to show that −S is inf-compact, I must
show that the set {q ∈ R | S [(δ, a, λ), (δ′, a′, λ′), q] ≥ c} is compact for every
[(δ, a, λ), (δ′, a′, λ′)] ∈ T 2 and c ∈ R (Montes-de Oca and Lemus-Rodŕıguez,
2012, p. 271). It suffices to show that the set is bounded and closed. Note that
J ∈ C (T ) implies

{q ∈ R | S [(δ, a, λ), (δ′, a′, λ′), q] ≥ c}
⊂ {q ∈ R | ω+(δ, a+ q, λ) + ω+(δ′, a′ − q, λ′) ≥ c} .

As ω+(δ, a + q, λ) + ω+(δ′, a′ − q, λ′) is a concave-quadratic function of q, the
latter set is bounded, which implies that the former is bounded as well. To
see closedness, let {qn} ⊂ {q ∈ R | S [(δ, a, λ), (δ′, a′, λ′), q] ≥ c} and qn → q∗.
Then, because S [(δ, a, λ), (δ′, a′, λ′), qn] ≥ c and the weak inequality is preserved
under the limit, we have S [(δ, a, λ), (δ′, a′, λ′), q∗] ≥ c, which completes the proof.
Q.E.D.
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Lemma 7 Suppose Φ is a joint cdf such that

(B.10)

M∫
0

∞∫
−∞

δH∫
δL

f (x) dΦ (x) <∞

for any f ∈ C (T ). Then, in the set C (T ), there exists a unique solution to
(3.13) (or B.7).

Proof: Rewrite (3.13) as

(B.11) J(δ, a, λ) =
1

r + α+ 1
2m (λ,Λ)

u (δ, a) + α

δH∫
δL

J(δ′, a, λ)f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

−J(δ′, a′, λ′)}] Φ(dδ′, da′, dλ′)) .

The RHS of (B.11) defines a mapping O:

(OJ) (δ, a, λ) =
1

r + α+ 1
2m (λ,Λ)

u (δ, a) + α

δH∫
δL

J(δ′, a, λ)f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

−J(δ′, a′, λ′)}] Φ(dδ′, da′, dλ′)) .

I want to show that there exists a unique solution J to OJ = J . I do so in two
steps. In the first step, I establish that O : C (T ) → C (T ). In the second step,
I show that O is a contraction. Then, it follows from the contraction mapping
theorem that O has a unique fixed point J ∈ C (T ).

1. Suppose J ∈ C (T ), then by Lemma 6 OJ is continuous. Next, I show
ω− ≤ OJ ≤ ω+. For ω− ≤ OJ , it suffices to show that

u (δ, a) + α

δH∫
δL

J(δ′, a, λ)f(δ′)dδ′ − (r + α)ω− (δ, a, λ)

+

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

−ω− (δ, a, λ)− J(δ′, a′, λ′)}] Φ(dδ′, da′, dλ′) ≥ 0
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for all (δ, a, λ) ∈ T . The expression in the last two lines is weakly larger
than zero by the choice of q = 0. And,

u (δ, a) + α

δH∫
δL

J(δ′, a, λ)f(δ′)dδ′ − (r + α)ω− (δ, a, λ)

≥ u (δ, a) + α

δH∫
δL

ω−(δ′, a, λ)f(δ′)dδ′ − (r + α)ω− (δ, a, λ) = 0,

which implies ω− ≤ OJ . For OJ ≤ ω+, it suffices to show that

u (δ, a)− u (δ, a) + α

δH∫
δL

J(δ′, a, λ)f(δ′)dδ′ − αη
r
u

(
δH ,

δH
κ

)

+

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

−η
r
u

(
δH ,

δH
κ

)
− J(δ′, a′, λ′)

}]
Φ(dδ′, da′, dλ′) ≤ 0

for all (δ, a, λ) ∈ T . That the first line is weakly smaller than zero is
obvious. And,

M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{J(δ, a+ q, λ) + J(δ′, a′ − q, λ′)

−η
r
u

(
δH ,

δH
κ

)
− J(δ′, a′, λ′)

}]
Φ(dδ′, da′, dλ′)

≤
M∫
0

∞∫
−∞

δH∫
δL

1

2
m (λ, λ′)

[
max
q
{ω+(δ, a+ q, λ) + ω+(δ′, a′ − q, λ′)

−η
r
u

(
δH ,

δH
κ

)
− ω−(δ′, a′, λ′)

}]
Φ(dδ′, da′, dλ′)

Thanks to (B.10), it is possible to choose η sufficiently large so that the
RHS of the previous inequality is weakly smaller than zero, which implies
OJ ≤ ω+. Hence, O : C (T )→ C (T ).

2. I next show that O is a contraction mapping. The main property of the
mapping O, I use in this proof is convexity, i.e., for ζ ∈ [0, 1],

O
(
ζJA + (1− ζ)JB

)
≤ ζOJA + (1− ζ)OJB ,
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thanks to the convexity of the max operator. Moreover, I make use of
a version of monotonicity. It is easy to see that O does not have to be
monotone because of the “−J(δ′, a′, λ′)” term at the end of its definition.
As a result, I use the monotonicity of

(Of) (δ, a, λ) +

M∫
0

∞∫
−∞

δH∫
δL

1
2m (λ, λ′) f(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α+ 1
2m (λ,Λ)

,

which is the property that JA ≤ JB implies

(
OJA

)
(δ, a, λ) +

M∫
0

∞∫
−∞

δH∫
δL

1
2m (λ, λ′) JA(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α+ 1
2m (λ,Λ)

≤
(
OJB

)
(δ, a, λ)+

M∫
0

∞∫
−∞

δH∫
δL

1
2m (λ, λ′) JB(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α+ 1
2m (λ,Λ)

.

Following the same steps as in Rincón-Zapatero and Rodŕıguez-Palmero
(2003, p. 1553),

(B.12) JA ≤ e−d(J
A,JB)JB +

(
1− e−d(J

A,JB)
)
ω

for all JA, JB with d
(
JA, JB

)
being well defined. Using the monotonicity

and convexity,

(
OJA

)
(δ, a, λ) +

M∫
0

∞∫
−∞

δH∫
δL

1
2m (λ, λ′) JA(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α+ 1
2m (λ,Λ)

≤ O
(
e−d(J

A,JB)JB +
(

1− e−d(J
A,JB)

)
ω
)

(δ, a, λ)

+

(
1− e−d(J

A,JB)
)

1
2m (λ,Λ)

r + α+ 1
2m (λ,Λ)

ω

+

e−d(J
A,JB)

M∫
0

∞∫
−∞

δH∫
δL

1
2m (λ, λ′) JB(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α+ 1
2m (λ,Λ)
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≤ e−d(J
A,JB)OJB(δ, a, λ) +

(
1− e−d(J

A,JB)
)
Oω(δ, a, λ)

+

(
1− e−d(J

A,JB)
)

1
2m (λ,Λ)

r + α+ 1
2m (λ,Λ)

ω

+

e−d(J
A,JB)

M∫
0

∞∫
−∞

δH∫
δL

1
2m (λ, λ′) JB(δ′, a′, λ′)Φ(dδ′, da′, dλ′)

r + α+ 1
2m (λ,Λ)

.

Defining

h(δ, a, λ|JA, JB) ≡
M∫
0

∞∫
−∞

δH∫
δL

m(λ,λ′)
m(λ,Λ)

[
e−d(J

A,JB)JB(δ′, a′, λ′)−JA(δ′, a′, λ′)
]
Φ(dδ′, da′, dλ′)

e−d(JA,JB) − 1

and suppressing (δ, a, λ)s,

OJA ≤ e−d(J
A,JB)OJB +

(
1− e−d(J

A,JB)
)
Oω

+
(

1− e−d(J
A,JB)

) 1
2m (λ,Λ)

r + α+ 1
2m (λ,Λ)

ω

+
(
e−d(J

A,JB) − 1
) 1

2m (λ,Λ)

r + α+ 1
2m (λ,Λ)

h.

Applying (B.12) to the second and the last terms on the RHS,2

OJA ≤ e−d(J
A,JB)OJB

+
(

1− e−d(J
A,JB)

) [
e−d(OJ

B ,Oω)OJB +
(

1− e−d(OJ
B ,Oω)

)
ω
]

+
(

1− e−d(J
A,JB)

) 1
2m (λ,Λ)

r + α+ 1
2m (λ,Λ)

ω

+
(
e−d(J

A,JB) − 1
) 1

2m (λ,Λ)

r + α+ 1
2m (λ,Λ)[

e−d(OJ
B ,h)OJB +

(
1− e−d(OJ

B ,h)
)
ω
]
.

2Note that h does not have to be an element of the set C (T ) to write down these intermediate
inequalities. The only requirement we need is h < ω, which follows from JA, JB < ω, (B.10),
and the fact that η is arbitrarily large.
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Subtracting ω from both sides and dividing both sides by ω+ − ω,

OJA − ω
ω+ − ω

≥ OJB − ω
ω+ − ω

×
[
e−d(OJ

B ,Oω) −
1
2m (λ,Λ)

r + α+ 1
2m (λ,Λ)

e−d(OJ
B ,h)

+
(

1− e−d(OJ
B ,Oω)

)
(

1− e−d(OJ
B ,Oω) +

1
2m (λ,Λ)

r + α+ 1
2m (λ,Λ)

e−d(OJ
B ,h)

)]
.

Taking the logarithm of both sides,

(B.13) log

(
OJA − ω
ω+ − ω

)
≥ log (z) + log

(
OJB − ω
ω+ − ω

)
,

where

z = e−d(OJ
B ,Oω) −

1
2m (λ,Λ)

r + α+ 1
2m (λ,Λ)

e−d(OJ
B ,h)

+
(

1− e−d(OJ
B ,Oω)

)
(

1− e−d(OJ
B ,Oω) +

1
2m (λ,Λ)

r + α+ 1
2m (λ,Λ)

e−d(OJ
B ,h)

)
.

Appendix B of Rincón-Zapatero and Rodŕıguez-Palmero (2003, p. 1554)
shows that log (a+ e−x(1− a)) ≥ − (1− a)x. Applying to (B.13),

log

(
OJB − ω
ω+ − ω

)
≤ log

(
OJA − ω
ω+ − ω

)
+

(
1− e−d(OJ

B ,Oω) +
1
2m (λ,Λ)

r + α+ 1
2m (λ,Λ)

e−d(OJ
B,h)
)
d
(
JA, JB

)
.

Applying the same procedure in reverse establishes

log

(
OJA − ω
ω+ − ω

)
≤ log

(
OJB − ω
ω+ − ω

)
+

(
1− e−d(OJ

A,Oω) +
1
2m (λ,Λ)

r + α+ 1
2m (λ,Λ)

e−d(OJ
A,h′)
)
d
(
JA, JB

)
,
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where

h′(δ, a, λ|JA, JB) ≡
M∫
0

∞∫
−∞

δH∫
δL

m(λ,λ′)
m(λ,Λ)

[
e−d(J

A,JB)JA(δ′, a′, λ′)−JB(δ′, a′, λ′)
]
Φ(dδ′, da′, dλ′)

e−d(JA,JB) − 1
.

Thus, to show that O is a contraction, I have to establish that

(B.14) sup
JA,JB∈C(T )

max

{
1−e−d(OJ

B,Oω)+
1
2m (M,Λ)

r + α+ 1
2m (M,Λ)

e−d(OJ
B,h),

1− e−d(OJ
A,Oω) +

1
2m (M,Λ)

r + α+ 1
2m (M,Λ)

e−d(OJ
A,h′)

}
< 1.

One can easily verify that

lim
η→∞

d (J,Oω) = log

(
r + α+ 1

2m (M,Λ)

r

)
,

lim
η→∞

d
(
J, h

(
JA, JB

))
=∞,

and

lim
η→∞

d
(
J, h′

(
JA, JB

))
=∞

for any J, JA, JB ∈ C (T ). Then, as η →∞, the LHS of (B.14) approaches
α+ 1

2m(M,Λ)

r+α+ 1
2m(M,Λ)

. Thus, it is possible to choose η sufficiently large so that

the LHS of (B.14) is strictly smaller than 1, which implies that O is a
contraction mapping on the complete metric space (C (T ) , d), as is proven
in Lemma 5. Hence, it follows from the contraction mapping theorem that
O has a unique fixed point J ∈ C (T ) (Theorem 3.2 of Stokey and Lucas,
1989, p. 50).

Q.E.D.
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APPENDIX C: PROOFS OMITTED FROM THE PRINTED VERSION

Proof of Proposition 4

Using Proposition 2,

GV (θ, λ) =

M∫
0

∞∫
−∞

m (λ, λ′) |q [(θ, λ) , (θ′, λ′)]| gλ′ (θ′)ψ (λ′) dθ′dλ′

=

M∫
0

∞∫
−∞

m (λ, λ′)

∣∣∣∣ r̃ (λ′) θ − r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)

∣∣∣∣ gλ′ (θ′)ψ (λ′) dθ′dλ′

=

M∫
0

m (λ, λ′)


r̃(λ′)
r̃(λ)

θ∫
−∞

r̃ (λ′) θ − r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

+

∞∫
r̃(λ′)
r̃(λ)

θ

r̃ (λ) θ′ − r̃ (λ′) θ

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

ψ (λ′) dλ′.

and

NV (θ, λ) =

∣∣∣∣∣∣
M∫
0

∞∫
−∞

m (λ, λ′) q [(θ, λ) , (θ′, λ′)] gλ′ (θ
′)ψ (λ′) dθ′dλ′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∫
0

∞∫
−∞

m (λ, λ′)
r̃ (λ′) θ − r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′)ψ (λ′) dθ′dλ′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∫
0

∞∫
−∞

m (λ, λ′)
r̃ (λ′) θ

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′)ψ (λ′) dθ′dλ′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∫
0

m (λ, λ′)
r̃ (λ′) θ

r̃ (λ) + r̃ (λ′)
ψ (λ′) dλ′

∣∣∣∣∣∣ = 2 (r̃ (λ)− r) |θ| .

Therefore,

IV (θ, λ) =

M∫
0

m (λ, λ′)


r̃(λ′)
r̃(λ)

θ∫
−∞

r̃ (λ′) [θ − |θ|]− r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

+

∞∫
r̃(λ′)
r̃(λ)

θ

r̃ (λ) θ′ − r̃ (λ′) [θ + |θ|]
r̃ (λ) + r̃ (λ′)

gλ′ (θ
′) dθ′

ψ (λ′) dλ′.
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To derive (i), one can take derivative with respect to θ applying the Leibniz rule
whenever necessary:

∂GV (θ, λ)

∂θ
=

M∫
0

m (λ, λ′)
r̃ (λ′)

r̃ (λ) + r̃ (λ′)

[
2Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

)
− 1

]
ψ (λ′) dλ′,

∂NV (θ, λ)

∂θ
= 2 (r̃ (λ)− r) sgn θ,

∂IV (θ, λ)

∂θ
=

M∫
0

m (λ,λ′)
r̃ (λ′)

r̃ (λ) + r̃ (λ′)

[
2Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

)
− 1− sgn θ

]
ψ (λ′)dλ′.

Since δ is distributed symmetrically, Equation (3.28) implies ĝλ (z) = ĝλ (−z),
and hence, θ is distributed symmetrically conditional on λ. Then,

∂GV (θ, λ)

∂θ

 < 0 if θ < 0
= 0 if θ = 0
> 0 if θ > 0

and the gross volume is minimized at θ = 0. The behavior of the net volume is
also the same. However, the intermediation volume behaves oppositely:

∂IV (θ, λ)

∂θ

 < 0 if θ > 0
= 0 if θ = 0
> 0 if θ < 0,

hence the intermediation volume is maximized at θ = 0.
To derive (ii), one takes derivative with respect to λ using Lemma 1 and

applying the chain rule and the Leibniz rule whenever necessary:

∂GV (θ, λ)

∂λ
=

M∫
0

m (λ, λ′)
r̃ (λ′)

(r̃ (λ) + r̃ (λ′))
2{(

Eg
[
θ′|θ′ > r̃ (λ′)

r̃ (λ)
θ, λ′

]
+ θ

)(
1−Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

))
−
(
Eg
[
θ′|θ′ < r̃ (λ′)

r̃ (λ)
θ, λ′

]
+ θ

)
Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

)}
ψ(λ′)dλ′

]
r̃′(λ)

+

M∫
0

∂m (λ, λ′)

∂λ


r̃(λ′)
r̃(λ)

θ∫
−∞

r̃ (λ′) θ − r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

+

∞∫
r̃(λ′)
r̃(λ)

θ

r̃ (λ) θ′ − r̃ (λ′) θ

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

ψ (λ′) dλ′,
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∂NV (θ, λ)

∂λ
= 2r̃′ (λ) |θ| ,

∂IV (θ, λ)

∂λ
=

M∫
0

m (λ, λ′)
r̃ (λ′)

(r̃ (λ) + r̃ (λ′))
2

{
−θ
(

2Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

)
− 1

)
+ |θ|

+Eg
[
θ′|θ′ > r̃ (λ′)

r̃ (λ)
θ, λ′

](
1−Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

))
−Eg

[
θ′|θ′ < r̃ (λ′)

r̃ (λ)
θ, λ′

](
Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

))}
ψ (λ′) dλ′

]
r̃′ (λ)

+

M∫
0

∂m (λ, λ′)

∂λ


r̃(λ′)
r̃(λ)

θ∫
−∞

r̃ (λ′) [θ − |θ|]− r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
gλ′ (θ

′) dθ′

+

∞∫
r̃(λ′)
r̃(λ)

θ

r̃ (λ) θ′ − r̃ (λ′) [θ + |θ|]
r̃ (λ) + r̃ (λ′)

gλ′ (θ
′) dθ′

ψ (λ′) dλ′.

Using the symmetry of θ around 0 for all λs, Eg
[
θ′|θ′ > r̃(λ′)

r̃(λ) θ, λ
′
]
> 0 and

Eg
[
θ′|θ′ < r̃(λ′)

r̃(λ) θ, λ
′
]
< 0. Therefore, the first term of ∂GV(θ,λ)

∂λ is strictly posi-

tive. Since m (λ, λ′) is a linear increasing function of λ, the second term is strictly

positive as well, impliying ∂GV(θ,λ)
∂λ > 0. ∂NV(θ,λ)

∂λ ≥ 0 (with equality if θ = 0)

by the definition of absolute value. −θ
(

2Gλ′

(
r̃(λ′)
r̃(λ) θ

)
− 1

)
+ |θ| ≥ 0 by the

definition of absolute value and the symmetry of θ around 0. The second line of
∂IV(θ,λ)

∂λ is strictly positive by the same argument that is used for the first term

of ∂GV(θ,λ)
∂λ , implying the first term of ∂IV(θ,λ)

∂λ (sum of first two lines) is strictly
positive. Since m (λ, λ′) is a linear increasing function of λ, the second term is

weakly positive, implying ∂IV(θ,λ)
∂λ > 0.

Finally, to derive (iii), one takes derivative with respect to λ using Lemma 1
and applying the chain rule and the Leibniz rule whenever necessary:

∂GVpm (θ, λ)

∂λ
= r̃′ (λ)

M∫
0

m (λ, λ′)

m (λ,Λ)

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))
2{(

Eg
[
θ′|θ′ > r̃ (λ′)

r̃ (λ)
θ, λ′

]
+ θ

)(
1−Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

))
−
(
Eg
[
θ′|θ′ < r̃ (λ′)

r̃ (λ)
θ, λ′

]
+ θ

)
Gλ′

(
r̃ (λ′)

r̃ (λ)
θ

)}
ψ(λ′)dλ′

]
,
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∂NVpm (θ, λ)

∂λ
=

2 |θ|

(m (λ,Λ))
2

(
1 +

M∫
0

1
2m (λ, λ′) r̃(λ′)

(r̃(λ)+r̃(λ′))2
ψ(λ′)dλ′

)
m (λ,Λ)

M∫
0

1

2

∂m (λ, λ′)

∂λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′

− ∂m (λ,Λ)

∂λ

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′

− ∂m (λ,Λ)

∂λ

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′

M∫
0

1

2
m (λ, λ′)

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))
2ψ(λ′)dλ′

 .

Strict positivity of ∂GVpm(θ,λ)
∂λ follows from the strict positivity of the first term

of ∂GV(θ,λ)
∂λ . Since m (λ, λ′) = 2λλ

′

Λ , then ∂NVpm(θ,λ)
∂λ ≤ 0 (with equality if θ = 0).

The strict positivity of ∂IV
pm(θ,λ)
∂λ follows from ∂GVpm(θ,λ)

∂λ > 0 and ∂NVpm(θ,λ)
∂λ ≤

0.

Proof of Proposition 6

Let us start by calculating E [θ + q|θ, λ]. Proposition 2 implies

E [θ + q|θ, λ] = θ + E [q|θ, λ] = θ + E
[
−r̃ (λ′) θ + r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
|θ, λ

]

= θ +

M∫
0

∞∫
−∞

m (λ, λ′)

m (λ,Λ)

−r̃ (λ′) θ + r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
G (dθ′, dλ′)

= θ +

M∫
0

m (λ, λ′)

m (λ,Λ)

−r̃ (λ′) θ + r̃ (λ)Eg [θ′|λ′]
r̃ (λ) + r̃ (λ′)

ψ (λ′) dλ′

= θ − θ

m (λ,Λ)

M∫
0

m (λ, λ′)
r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ (λ′) dλ′

= θ − 2 (r̃ (λ)− r)
m (λ,Λ)

θ = θ

[
1− 2 (r̃ (λ)− r)

m (λ,Λ)

]
,

where the last equality follows from the definition of r̃ (λ) in Theorem 1 and the
previous one follows from the fact that Eg [θ′|λ′] = 0 for λ′ ∈ [0,M ].
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Now, let us calculate var [θ + q|θ, λ].

var [θ + q|θ, λ] = E
[
(θ + q − E [θ + q|θ, λ])

2 |θ, λ
]

= E

[(
θ + q − θ

[
1− 2 (r̃ (λ)− r)

m (λ,Λ)

])2

|θ, λ

]

= E

[(
q + θ

2 (r̃ (λ)− r)
m (λ,Λ)

)2

|θ, λ

]

= E

[(
−r̃ (λ′) θ + r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)
+ θ

2 (r̃ (λ)− r)
m (λ,Λ)

)2

|θ, λ

]

= E

[(
θ

[
2 (r̃ (λ)− r)
m (λ,Λ)

− r̃ (λ′)

r̃ (λ) + r̃ (λ′)

]
+

r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)

)2

|θ, λ

]

= E

[(
θ

[
2 (r̃ (λ)− r)
m (λ,Λ)

− r̃ (λ′)

r̃ (λ) + r̃ (λ′)

])2

|θ, λ

]
+E

[(
r̃ (λ) θ′

r̃ (λ) + r̃ (λ′)

)2

|θ, λ

]

= θ2var

[
r̃ (λ′)

r̃ (λ) + r̃ (λ′)
| λ
]

+

M∫
0

m (λ, λ′)

m (λ,Λ)
varg [θ | λ′]

(
r̃ (λ)

r̃ (λ) + r̃ (λ′)

)2

ψ (λ′) dλ′,

where the last equality follows from the definition of r̃ (λ) in Theorem 1 and the
previous one follows from the fact that Eg [θ′|λ′] = 0 for λ′ ∈ [0,M ].

The definition of r̃ (λ) in Theorem 1 implies

2 (r̃ (λ)− r)
m (λ,Λ)

=

M∫
0

m (λ, λ′)

m (λ,Λ)

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′ ∈ (0, 1) ,

because r̃ (λ) ≥ r and

M∫
0

m (λ, λ′)

m (λ,Λ)
ψ(λ′)dλ′ = 1.

Calculate the derivative of this:

d

dλ

2 (r̃ (λ)− r)
m (λ,Λ)

=
2r̃′ (λ)m (λ,Λ)− 2 (r̃ (λ)− r)m1 (λ,Λ)

(m (λ,Λ))
2 < 0,

which follows by taking the derivative of (3.17) and using the fact that r̃′ (λ) > 0.
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Lastly, the definition of r̃ (λ) in Theorem 1 implies

var

[
r̃ (λ′)

r̃ (λ) + r̃ (λ′)
| λ
]

=

M∫
0

λ′

Λ

(
r̃ (λ′)

r̃ (λ) + r̃ (λ′)

)2

ψ(λ′)dλ′ −
(

2 (r̃ (λ)− r)
m (λ,Λ)

)2

∈ (0, 1) ,

because both terms on the RHS are between 0 and 1 and the first term is larger.
Calculate the derivative of this:

d

dλ
var

[
r̃ (λ′)

r̃ (λ) + r̃ (λ′)
| λ
]

= −2r̃′ (λ)

M∫
0

λ′

Λ

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))
2

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′

− 8 (r̃ (λ)− r) r̃′ (λ)

(m (λ,Λ))
2 +

8 ((r̃ (λ)− r))2

(m (λ,Λ))
2
λ

=
4r̃′ (λ)

m (λ,Λ)
− 4 (r̃ (λ)− r)

m (λ,Λ)λ

− 2r̃′ (λ)

M∫
0

λ′

Λ

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))
2

r̃ (λ)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′

− 8 (r̃ (λ)− r) r̃′ (λ)

(m (λ,Λ))
2 +

8 ((r̃ (λ)− r))2

(m (λ,Λ))
2
λ

=
4

m (λ,Λ)

[
1− 2 (r̃ (λ)− r)

m (λ,Λ)

] [
r̃′ (λ)− r̃ (λ)− r

λ

]

− 2r̃′ (λ)

M∫
0

λ′

Λ

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))
2

r̃ (λ)

r̃ (λ) + r̃ (λ′)
ψ(λ′)dλ′ < 0,

where the second equality follows from

2 (r̃ (λ)− r)
m (λ,Λ)λ

− 2r̃′ (λ)

m (λ,Λ)
= r̃′ (λ)

M∫
0

λ′

Λ

r̃ (λ′)

(r̃ (λ) + r̃ (λ′))
2ψ(λ′)dλ′,

which follows by taking the derivative of (3.17).

APPENDIX D: DETAILS OF THE WALRASIAN BENCHMARK

I solve the stationary equilibrium of a continuous frictionless Walrasian market
as a benchmark. As is typical in models with continuous access to a trading venue
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but infrequent need to trade, I start by decomposing the state space into inaction
and action regions. In the inaction region, an investor enjoys the flow utility from
holding the asset. In the action region, she immediately accesses the Walrasian
market and rebalances her asset position to end up in the inaction region.

The flow Bellman equation of investors in the inaction region can be written
as the following integral equation:

(D.1) u (δ, a)− rJW (δ, a) + α

δH∫
δL

[
JW (δ′, a)− JW (δ, a)

]
f(δ′)dδ′ = 0.

The first term is the investor’s utility flow. The second term is the time discount.
The last term is the expected change in the investor’s continuation utility, con-
ditional on switching taste types, which occurs with Poisson intensity α.

In the action region, the value function satisfies the condition

(D.2) JW (δ, a) = max
a

{
JW (δ, a)− PW (a− a)

}
,

which basically states that it is indeed optimal for the investor to access the
market, costing her PW (a− a) units of the numéraire, where PW is the market-
clearing price. In addition, I need to make sure that staying at a given asset
position level in the action region for an infinitesimal amount of time results in
a marginal utility loss. Combining with (D.1), this means that JW (δ, a) must
satisfy the following variational inequality:

u (δ, a)− rJW (δ, a) + α

δH∫
δL

[
JW (δ′, a)− JW (δ, a)

]
f(δ′)dδ′ ≤ 0.

Collecting together, the flow Bellman equation of investors can be written as an
impulse control problem:

max {u (δ, a)− rJW (δ, a) + α

δH∫
δL

[
JW (δ′, a)− JW (δ, a)

]
f(δ′)dδ′,

JW (δ, a)−
(
JW (δ, a)− PW (a− a)

)}
= 0,

where

a = argmax
a

{
JW (δ, a)− PW (a− a)

}
.

Thanks to the absence of frictions, I conjecture (and later verify) that, given
PW , the inaction region is a measure-zero point

[
δ, â(δ;PW )

]
for investors with
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taste type δ, where â(.;PW ) is a strictly monotone function. Under this con-
jecture, one can use (D.2) to substitute out JW (δ′, a) in (D.1) to obtain the
auxiliary HJB equation (3.8) of Subsection 3.2.

rJW (δ, a) = u (δ, a)+α

δH∫
δL

max
a′

{
JW (δ′, a′)− JW (δ, a)− PW (a′ − a)

}
f(δ′)dδ′.

The FOC for the asset position and the envelope condition3 are

JW2 (δ′, a′) = PW

and

rJW2 (δ, a) = u2 (δ, a) + α
(
−JW2 (δ, a) + PW

)
,

where u2 (., .) represents the partial derivative with respect to the second argu-
ment. Combining these two conditions, I get the optimal demand of the investor
with δ, which places her in the inaction region:

â(δ;PW ) =
r

κ

(
δ

r
− PW

)
.

APPENDIX E: CALCULATION OF INTERMEDIATION MARKUPS

First, calculate the transaction price for the initial trade at which the investor
with 0 inventory and speed type λ provides intermediation to a counterparty with
speed type λ′ by buying θ units of the asset from him. According to Equation
(3.19) this price must be

P = Jθ (θ, λ) +
κθ

4

(
1

r̃ (λ)
− 1

r̃ (λ′)

)
.

Using the marginal valuation formula from Proposition 2,

(E.1)

P =
u2

(
δ, A

)
r

− κ θ

r̃ (λ)︸ ︷︷ ︸
P ihr

+
κ

4

(
1

r̃ (λ)
− 1

r̃ (λ′)

)
θ︸ ︷︷ ︸

P sp

=
u2

(
δ, A

)
r

−κθ
4

(
3

r̃ (λ)
+

1

r̃ (λ′)

)
,

where P ihr is the post-trade marginal valuation and P sp is the speed premium.
Now, calculate the expected price the investor will receive while trying to

unload this inventory of θ:

E [Pq|θ, λ; η]

E [q|θ, λ; η]
.

3To write down these conditions, I assume that JW (δ, .) is strictly concave and continuously
differentiable. This assumption is also verified ex post.
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Let us start by calculating E [q|θ, λ; η]. First, note that since δ is distributed
symmetrically, Equation (3.28) implies ĝλ′′ (z) = ĝλ′′ (−z), and hence, θ is dis-
tributed symmetrically conditional on λ′′. Then, Eg [θ′′|λ′′; η] = 0 for λ′′ ∈ [0,M ].
Proposition 2 implies

E [q|θ, λ; η] = E
[
−r̃ (λ′′) θ + r̃ (λ) θ′′

r̃ (λ) + r̃ (λ′′)
|θ, λ; η

]
(E.2)

=

M∫
0

η∫
−η

m (λ, λ′′)

m (λ,Λ)

−r̃ (λ′′) θ + r̃ (λ) θ′′

r̃ (λ) + r̃ (λ′′)

G (dθ′′, dλ′′)

Gλ′′ (η)−Gλ′′ (−η)

=

M∫
0

m (λ, λ′′)

m (λ,Λ)

−r̃ (λ′′) θ + r̃ (λ)Eg [θ′′|λ′′; η]

r̃ (λ) + r̃ (λ′′)
ψ (λ′′) dλ′′

= − θ

m (λ,Λ)

M∫
0

m (λ, λ′′)
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)
ψ (λ′′) dλ′′

= −2 (r̃ (λ)− r)
m (λ,Λ)

θ,

where the last equality follows from the definition of r̃ (λ) in Theorem 1 and the
previous one follows from the fact that Eg [θ′′|λ′′; η] = 0 for λ′′ ∈ [0,M ].

Now, let us calculate E [Pq|θ, λ; η]. E [Pq|θ, λ; η] will have a component due
to post-trade marginal valuation and another component due to speed pre-
mium. Call these, respectively, Eihr [Pq|θ, λ; η] and Esp [Pq|θ, λ; η]. First, note
from Proposition 2 that the transaction price P [(θ, λ) , (θ′′, λ′′)] can be written
as

u2

(
δ,A

)
r

− κ θ + θ′′

r̃ (λ) + r̃ (λ′′)︸ ︷︷ ︸
post-trade marg. val.

+
κ

4

r̃ (λ′′)− r̃ (λ)

r̃ (λ) + r̃ (λ′′)

(
− θ

r̃ (λ)
+

θ′′

r̃ (λ′′)

)
︸ ︷︷ ︸

speed premium

.

Thus,

Eihr [Pq|θ, λ; η]

= E

[
−r̃ (λ′′) θ + r̃ (λ) θ′′

r̃ (λ) + r̃ (λ′′)

(
u2

(
δ, A

)
r

− κ θ + θ′′

r̃ (λ) + r̃ (λ′′)

)
|θ, λ; η

]
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= E

[
−r̃ (λ′′) θ + r̃ (λ) θ′′

r̃ (λ) + r̃ (λ′′)

u2

(
δ,A

)
r

+ κθ2 r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))
2

−κ (θ′′)
2 r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
2 |θ, λ; η

]

= E [q|θ, λ; η]
u2

(
δ, A

)
r

+ κθ2

M∫
0

m (λ, λ′′)

m (λ,Λ)

r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))
2ψ (λ′′) dλ′′

− κ
M∫
0

m (λ, λ′′)

m (λ,Λ)

r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
2Eg

[
(θ′′)

2 |λ′′; η
]
ψ (λ′′) dλ′′,

where the last equality follows from (E.2) and the previous equality follows from
the fact that Eg [θ′′|λ′′; η] = 0 for λ′′ ∈ [0,M ]. Similarly,

Esp [Pq|θ, λ; η] =

E
[
−r̃ (λ′′) θ + r̃ (λ) θ′′

r̃ (λ) + r̃ (λ′′)

{
κ

4

r̃ (λ′′)− r̃ (λ)

r̃ (λ) + r̃ (λ′′)

(
− θ

r̃ (λ)
+

θ′′

r̃ (λ′′)

)}
|θ, λ; η

]
=E

[
κθ2

4

r̃ (λ′′)− r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
2

r̃ (λ′′)

r̃ (λ)
+
κ (θ′′)

2

4

r̃ (λ′′)− r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
2

r̃ (λ)

r̃ (λ′′)
|θ,λ;η

]

=
κθ2

4

M∫
0

m (λ, λ′′)

m (λ,Λ)

r̃ (λ′′)− r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
2

r̃ (λ′′)

r̃ (λ)
ψ (λ′′) dλ′′

+
κ

4

M∫
0

m (λ, λ′′)

m (λ,Λ)

r̃ (λ′′)− r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
2

r̃ (λ)

r̃ (λ′′)
Eg
[
(θ′′)

2 |λ′′; η
]
ψ (λ′′) dλ′′.

Then, the expected price the investor will receive by unloading the inventory
of θ becomes:

(E.3)
E [Pq|θ, λ; η]

E [q|θ, λ; η]
=

Eihr [Pq|θ, λ; η]

E [q|θ, λ; η]
+

Esp [Pq|θ, λ; η]

E [q|θ, λ; η]
,

where

Eihr [Pq|θ, λ; η]

E [q|θ, λ; η]
=
u2

(
δ, A

)
r

− κθ
M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))
2ψ (λ′′) dλ′′

+
κ

θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
2 varg [θ′′|λ′′; η]ψ (λ′′) dλ′′
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and

Esp [Pq|θ, λ; η]

E [q|θ, λ; η]
=
κθ

4

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ)− r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))
2

r̃ (λ′′)

r̃ (λ)
ψ (λ′′) dλ′′

+
κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ)− r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))
2

r̃ (λ)

r̃ (λ′′)
varg [θ′′|λ′′; η]ψ (λ′′) dλ′′.

Define the markup as

µ (θ, λ, λ′) ≡
E[Pq|θ,λ;η]
E[q|θ,λ;η] − P

P
=

Eihr[Pq|θ,λ;η]
E[q|θ,λ;η] − P ihr

P︸ ︷︷ ︸
≡µihr(θ,λ,λ′)

+

Esp[Pq|θ,λ;η]
E[q|θ,λ;η] − P

sp

P︸ ︷︷ ︸
≡µsp(θ,λ,λ′)

.

Using (E.1), (E.3), and the fact that

2 (r̃ (λ)− r) =

M∫
0

m (λ, λ′′)
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)
ψ (λ′′) dλ′′,

one obtains (4.6).

Using the same equation and the fact that r̃ (λ) ≥ r for all λ ∈ [0,M ], one
can also show that the markup (4.6) is positive when the normalizing price (E.1)
and θ are positive.

Proof of Proposition 7

Rewrite the numerator of markup:

κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
2

[
r̃ (λ)

r̃ (λ′′)
+ 3

]
varg [θ′′|λ′′; η]ψ (λ′′) dλ′′+ε (λ) ,

where ε (λ) collects the terms that do not contain varg [θ′′|λ′′; η]. Take derivative
w.r.t. λ:
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κ

4θ

M∫
0

mλ (λ, λ′′) 2 (r̃ (λ)− r)−m (λ, λ′′) 2r̃′ (λ)

[2 (r̃ (λ)− r)]2

[r̃ (λ)]
2

+ 3r̃ (λ′′) r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
2

1

r̃ (λ′′)
var [θ′′|λ′′; η]ψ (λ′′) dλ′′

+
κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃′ (λ) r̃ (λ′′)

3r̃ (λ′′)− r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
3

1

r̃ (λ′′)
var [θ′′|λ′′; η]ψ (λ′′) dλ′′ + ε′ (λ)

=
κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
[r̃ (λ)]

2
+ 3r̃ (λ′′) r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
2

1

λ

1

r̃ (λ′′)
var [θ′′|λ′′;η]ψ(λ′′)dλ′′

− κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
[r̃ (λ)]

2
+ 3r̃ (λ′′) r̃ (λ)

(r̃ (λ) + r̃ (λ′′))
2

r̃′ (λ)

r̃ (λ)− r

1

r̃ (λ′′)
var [θ′′|λ′′; η]ψ (λ′′) dλ′′

− κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃ (λ) r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))
2

r̃′ (λ)

r̃ (λ) + r̃ (λ′′)

1

r̃ (λ′′)
var [θ′′|λ′′; η]ψ (λ′′) dλ′′

+
κ

4θ

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
r̃′ (λ) r̃ (λ′′)

3r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))
3

1

r̃ (λ′′)
var [θ′′|λ′′; η]ψ (λ′′) dλ′′ + ε′ (λ) .

Using the fact that

(E.4) r̃′ (λ)

1 +

M∫
0

m (λ, λ′′)
r̃ (λ′′)

(r̃ (λ) + r̃ (λ′′))
2ψ (λ′′) dλ′′

 =
r̃ (λ)− r

λ
,

one can show that the sum of the terms before ε′ (λ) is positive. It is easy
to verify that the denominator of markup is an increasing function of λ, and
hence, it will contribute negatively to the derivative of markup. Also, the sign
of ε′ (λ) can be negative or positive. However, it is certain that the terms with
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varg [θ′′|λ′′; η] contribute positively to the derivative of markup. Thus, from con-
tinuity, varg [θ′′|λ′′; η]s must be large enough for the total derivative to be posi-
tive, which completes the part (ii) of the proposition.

To show the part (i), rewrite the numerator of markup:

κθ

4r̃ (λ′)
+

1

2

κθ

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2

ψ (λ′′) dλ′′ + ε (λ) ,

where ε (λ) represents the terms with integral of varg [θ′′|λ′′; η].

Take the derivative w.r.t. λ:

−1

2

κθr̃′ (λ)

[r̃ (λ)]
2

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2

ψ (λ′′) dλ′′

+
1

2

κθ

r̃ (λ)

M∫
0

mλ (λ, λ′′) 2 (r̃ (λ)− r)−m (λ, λ′′) 2r̃′ (λ)

[2 (r̃ (λ)− r)]2(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2

ψ (λ′′) dλ′′ − 1

2

κθ

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)
2

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)
r̃ (λ′′) r̃′ (λ)

(r̃ (λ) + r̃ (λ′′))
2ψ (λ′′) dλ′′ + ε′ (λ)

= −1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
1

r̃ (λ)
ψ (λ′′) dλ′′

+
1

2

κθ

r̃ (λ)

M∫
0

m (λ, λ′′) 2 (r̃ (λ)− r)−m (λ, λ′′)λ2r̃′ (λ)

[2 (r̃ (λ)− r)]2 λ(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2

ψ (λ′′) dλ′′ − 1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
2

r̃ (λ) + r̃ (λ′′)
ψ (λ′′) dλ′′ + ε′ (λ)



LIQUIDITY IN DECENTRALIZED MARKETS 29

=
1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
1

λr̃′ (λ)
ψ (λ′′) dλ′′

− 1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
1

r̃ (λ)
ψ (λ′′) dλ′′

− 1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
2

r̃ (λ) + r̃ (λ′′)
ψ (λ′′) dλ′′

−1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2
1

r̃ (λ)− r
ψ (λ′′) dλ′′+ε′ (λ)

=
1

2

κθr̃′ (λ)

r̃ (λ)

M∫
0

m (λ, λ′′)

2 (r̃ (λ)− r)

(
r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)2

[
1

λr̃′ (λ)
− 1

r̃ (λ)
− 2

r̃ (λ) + r̃ (λ′′)
− 1

r̃ (λ)− r

]
ψ (λ′′) dλ′′ + ε′ (λ) .

Again, using (E.4) and that the lower bound of the distribution of λs is 1/8,
one can show that the first term of the derivative is negative. Since ε′ (λ) is
positive, from continuity, varg [θ′′|λ′′; η]s must be small enough for the total
derivative to be negative. It is easy to verify that the denominator of markup is
an increasing function of λ. Thus, the derivative of the markup is negative when
varg [θ′′|λ′′; η]s are small enough.

APPENDIX F: PLANNER’S PROBLEM

I define social welfare as the discounted sum of the utility flows of all investors,

(F.1) W =

∞∫
0

e−rt


M∫
0

∞∫
−∞

δH∫
δL

u (δ, a)φt (δ, a, λ) dδdadλ

 dt.

Any transfer of the numéraire good from one investor to another does not enter
W because of quasi-linear preferences. The planner maximizes W with respect
to controls, qt [(δ, a, λ) , (δ′, a′, λ′)], subject to the laws of motion for the state
variables, φt (δ, a, λ), and to the feasibility condition of asset reallocation,

(F.2) qt [(δ, a, λ) , (δ′, a′, λ′)] + qt [(δ′, a′, λ′) , (δ, a, λ)] = 0,

which also results in the imposition that the solution does not depend on the
identities or “names” of investors.
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Since δ, a, and λ are continuous variables, we have a continuum of control vari-
ables (and of dynamic restrictions and co-state variables, too), corresponding to
the continuum of investor characteristics. van Imhoff (1982) describes a heuristic
method of solving such problems. This method relies on interpreting the integral
(F.1) as a summation of discrete variables over intervals with widths dδ, da, and
dλ. An application of Lebesgue dominated convergence theorem4 guarantees the
convergence of this summation to the integral (F.1) as the widths of intervals
approach 0.

Keeping in mind van Imhoff (1982)’s interpretation, the planner’s current-
value Hamiltonian can be written as

L (q|Φ) =

M∫
0

∞∫
−∞

δH∫
δL

u (δ, a) Φ (dδ, da, dλ)

+ α

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

(ϑ (δ′, a, λ)− ϑ (δ, a, λ)) f (δ′) dδ′Φ (dδ, da, dλ)

+

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {ϑ (δ, a+ q [(δ, a, λ) , (δ′, a′, λ′)] , λ)

−ϑ (δ, a, λ)}Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

+

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {q [(δ, a, λ) , (δ′, a′, λ′)]

+q [(δ′, a′, λ′) , (δ, a, λ)]}Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ) ,

where φ induces the cdf Φ; ϑ denotes the current-value co-state variable asso-
ciated with φ; and ζ is the Lagrange multiplier associated with the condition
(F.2).

First-order conditions. Take any optimal qe and let

ϑe (δ, a, λ) = ϑ (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ) ,(F.3)

and let

q̂ [(δ, a, λ) , (δ′, a′, λ′)] = qe [(δ, a, λ) , (δ′, a′, λ′)]

+ εI{ϑe(δ,a,λ)>ϑe(δ′,a′,λ′)} − εI{ϑe(δ,a,λ)<ϑe(δ′,a′,λ′)}

= qe [(δ, a, λ) , (δ′, a′, λ′)] + ε∆ [(δ, a, λ) , (δ′, a′, λ′)] .

4See, for a reference, Hutson, Pym, and Cloud (2005, p. 55).



LIQUIDITY IN DECENTRALIZED MARKETS 31

For small ε, I obtain up to second-order terms:

L (q̂|Φ)− L (qe|Φ) = ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)ϑe2 (δ, a, λ)

∆ [(δ, a, λ) , (δ′, a′, λ′)] Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {∆ [(δ, a, λ) , (δ′, a′, λ′)]

+∆ [(δ′, a′, λ′) , (δ, a, λ)]}Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

=
ε

2

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)ϑe2 (δ, a, λ) ∆ [(δ, a, λ) , (δ′, a′, λ′)]

Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ) +
ε

2

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ,λ′)ϑe2 (δ′, a′, λ′)

∆ [(δ′, a′, λ′) , (δ, a, λ)] Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {∆ [(δ, a, λ) , (δ′, a′, λ′)]

+∆ [(δ′, a′, λ′) , (δ, a, λ)]}Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

=
ε

2

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {ϑe2 (δ, a, λ)− ϑe2 (δ′, a′, λ′)}

∆ [(δ, a, λ) , (δ′, a′, λ′)] Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {∆ [(δ, a, λ) , (δ′, a′, λ′)]

+∆ [(δ′, a′, λ′) , (δ, a, λ)]}Φ (dδ′, da′, dλ′) Φ (dδ, da, dλ)

If qe is optimal, this must be negative. The second term is 0 by construction.
Since the integrand in the first term is positive, it must be zero everywhere.
Recalling (F.2) and (F.3), thus, the FOC becomes

(F.4)

ϑ2 (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ) = ϑ2 (δ′, a′ − qe [(δ, a, λ) , (δ′, a′, λ′)] , λ′) .
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ODE for co-state variables. In an optimum, the co-state variables must satisfy
the ODEs,

(F.5) ∇n(δ,a,λ)L (qe|Φ) = rϑ (δ, a, λ)−
.

ϑ (δ, a, λ) ,

where n (δ, a, λ) is the degenerate measure which puts all the probability on the
type (δ, a, λ) and ∇n denotes the Gâteaux differential in the direction of measure
n:

∇nL (qe|Φ) = lim
ε→0

L (qe|Φ + εn)− L (qe|Φ)

ε
.

For small ε, I obtain up to second-order terms:

L (qe|Φ + εn)− L (qe|Φ) = ε

M∫
0

∞∫
−∞

δH∫
δL

u (δ, a)n (dδ, da, dλ)

+ εα

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

(ϑ (δ′, a, λ)− ϑ (δ, a, λ)) f (δ′) dδ′n (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

1∫
−1

M∫
0

∞∫
−∞

1∫
−1

m (λ, λ′) {ϑ (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ)

−ϑ (δ, a, λ)}Φ (dδ′, da′, dλ′)n (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {ϑ (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ)

−ϑ (δ, a, λ)}n (dδ′, da′, dλ′) Φ (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {qe [(δ, a, λ) , (δ′, a′, λ′)]

+qe [(δ′, a′, λ′) , (δ, a, λ)]}Φ (dδ′, da′, dλ′)n (dδ, da, dλ)

+ ε

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

ζ [(δ, a, λ) , (δ′, a′, λ′)] {qe [(δ, a, λ) , (δ′, a′, λ′)]

+qe [(δ′, a′, λ′) , (δ, a, λ)]}n (dδ′, da′, dλ′) Φ (dδ, da, dλ) .
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Thus,

∇n(δ,a,λ)L (qe|Φ) = u (δ, a) + α

δH∫
δL

(ϑ (δ′, a, λ)− ϑ (δ, a, λ)) f (δ′) dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {ϑ (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ)− ϑ (δ, a, λ)

+ϑ (δ′, a′ + qe [(δ′, a′, λ′) , (δ, a, λ)] , λ′)− ϑ (δ′, a′, λ′)}Φ (dδ′, da′, dλ′)

+

M∫
0

∞∫
−∞

δH∫
δL

{ζ [(δ, a, λ) , (δ′, a′, λ′)] + ζ [(δ′, a′, λ′) , (δ, a, λ)]}

{qe [(δ, a, λ) , (δ′, a′, λ′)] + qe [(δ′, a′, λ′) , (δ, a, λ)]}Φ (dδ′, da′, dλ′) .

Using (F.2), (F.5), and the FOC (F.4), the following ODE for the co-state vari-
ables obtains in an optimum:

rϑ (δ, a, λ)−
.

ϑ (δ, a, λ) = u (δ, a)

+ α

δH∫
δL

(ϑ (δ′, a, λ)− ϑ (δ, a, λ)) f (δ′) dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) {ϑ (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ)− ϑ (δ, a, λ)

+ϑ (δ′, a′ − qe [(δ, a, λ) , (δ′, a′, λ′)] , λ′)− ϑ (δ′, a′, λ′)}φ (δ′, a′, λ′)

dδ′da′dλ′

s.t.

ϑ2 (δ, a+ qe [(δ, a, λ) , (δ′, a′, λ′)] , λ) = ϑ2 (δ′, a′ − qe [(δ, a, λ) , (δ′, a′, λ′)] , λ′) .

Checking that the planner’s optimality conditions do not coincide with the
equilibrium conditions is easy. More specifically, the comparison with Equation
(3.13) reveals that the planner’s optimality conditions and the equilibrium condi-
tions would be identical if there was not 1/2 in front of the matching function in
the equilibrium condition. This difference is because of a composition externality
typical of ex post bargaining environments, as discussed by Afonso and Lagos
(2015). An individual investor of current type (δ, a, λ) internalizes only half the
surpluses that her trades create. As a result, she does not internalize fully the so-
cial benefit that arises from the fact that having her in the current state (δ, a, λ)
increases the meeting intensity of all other investors with an investor of type
(δ, a, λ).
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The solution method for the planner’s problem is exactly the same as the
solution method I used for equilibrium. In the end, the difference between the
planner’s solution and the equilibrium solution boils down to the use of a different
endogenous inventory aversion. The inventory aversion that the benevolent social
planner would assign to investors with λ solves the functional equation (4.7). The
quantities chosen by the planner are given by (4.8).

Given the socially optimal trade quantities described above, the distribution
of inventories solves the following system of Fourier transforms:

0 = − (α+m (λ,Λ)) ĝeδ,λ (z) + α

δH∫
δL

e−i2π(δ′−δ)Ce(λ)z ĝeδ′,λ (z) f (δ′) dδ′(F.6)

+

M∫
0

δH∫
δL

m (λ, λ′) ĝeδ,λ

 z

1 + r̃e(λ′)
r̃e(λ)

 ĝeδ′,λ′

 z

1 + r̃e(λ′)
r̃e(λ)

 f (δ′)ψ (λ′) dδ′dλ′

for all λ ∈ [0,M ], δ ∈ [δL, δH ] and for all z ∈ R;

ĝeδ,λ(0) = 1

for all λ ∈ [0,M ] and δ ∈ [δL, δH ]; and

M∫
0

δH∫
δL

(
ĝeδ,λ

)′
(0)f (δ)ψ (λ) dδdλ = 0,

where

Ce (λ) ≡ 1

κ

r̃e (λ)

r̃e (λ) + α
.

So far, I have shown that the distortion of investors’ decisions on the inten-
sive margin leads to too cautious a trading behavior relative to the constrained
efficient trading behavior. Next, I show how trade-size dependent transaction
taxes/subsidies help eliminate this distortion. Suppose trading q units of the as-
set incurs a tax payment of τ1(λ)(2aq + q2)/2 + τ2(λ)

(
δ − δ

)
q on the investor

of type (δ, a, λ).5 On the regulators’ side, implementing such a policy in practice
would require measuring the transaction frequencies of market participants and
monitoring their risk exposures and asset positions. The recently implemented
section of the Dodd-Frank Act, often referred to as “the Volcker Rule,” which
disallows proprietary trading by banks and their affiliates, also requires a similar

5Financial transaction taxes that are quadratic in trade size are also used in centralized
market models, such as Subrahmanyam (1998) and Dow and Rahi (2000). The benefit of this
specification is that it does not generate inaction regions in CARA-normal environments, and
hence, allows for analytical and interior solution for trading rules.
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level of monitoring. Some proprietary-trading forms are exempted from the Vol-
cker Rule, such as those related to market making or hedging. Thus, regulators
must monitor banks’ positions and trading behavior and calculate certain metrics
like transaction frequency or taste to determine proprietary trading unrelated to
hedging or market making.

The bargaining problem of investors in the OTC market equilibrium with taxes
will be

{q [(δ, a, λ) , (δ′, a′, λ′)] , P [(δ, a, λ) , (δ′, a′, λ′)]}

= arg max
q,P

[
J(δ, a+ q, λ)− J(δ, a, λ)− Pq − 1

2
τ1(λ)(2aq + q2)

− τ2(λ)
(
δ − δ

)
q

] 1
2
[
J(δ′, a′ − q, λ′)− J(δ′, a′, λ′) + Pq

− 1

2
τ1(λ′)(−2a′q+ q2) + τ2(λ′)

(
δ′ − δ

)
q

] 1
2

,

s.t.

J(δ, a+ q, λ)−J(δ, a, λ)−Pq− 1

2
τ1(λ)(2aq+ q2)−τ2(λ)

(
δ−δ

)
q ≥ 0,

J(δ′, a′ − q, λ′)− J(δ′, a′, λ′) + Pq − 1

2
τ1(λ′)(−2a′q + q2)

+ τ2(λ′)
(
δ′ − δ

)
q ≥ 0.

The first-order necessary and sufficient conditions and the Kuhn-Tucker condi-
tions imply that the trade size, q [(δ, a, λ) , (δ′, a′, λ′)], maximizes the joint surplus
net of total transaction tax; and the transaction price, P [(δ, a, λ) , (δ′, a′, λ′)], is
set so that the maximized surplus net of total transaction tax is split equally be-
tween the bargaining parties; i.e., q [(δ, a, λ) , (δ′, a′, λ′)] and P [(δ, a, λ) , (δ′, a′, λ′)]
solve the system

J2(δ, a+ q, λ)− τ2(λ)
(
δ − δ

)
− τ1(λ)a

= J2(δ′, a′ − q, λ′)− τ2(λ′)
(
δ′ − δ

)
− τ1(λ′)a′ + [τ1(λ) + τ1(λ′)] q

P =
J(δ, a+ q, λ)− J(δ, a, λ)− (J(δ′, a′ − q, λ′)− J(δ′, a′, λ′))

2q

− 1

2

[
τ2(λ)

(
δ − δ

)
+ τ2(λ′)

(
δ′ − δ

)
+ τ1(λ)a+ τ1(λ′)a′

]
− 1

4
[τ1(λ)− τ1(λ′)] q.

Using this result, the HJB equation of investors becomes
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rJ(δ, a, λ) = u (δ, a) + T + α

δH∫
δL

[J(δ′, a, λ)− J(δ, a, λ)]f(δ′)dδ′

+

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
1

2

[
max
q
{J(δ, a+ q, λ)− J(δ, a, λ) + J(δ′, a′−q, λ′)

− J(δ′, a′, λ′)−
[
τ2(λ)

(
δ − δ

)
− τ2(λ′)

(
δ′ − δ

)
+ τ1(λ)a− τ1(λ′)a′

]
q

−1

2
[τ1(λ) + τ1(λ′)] q2

}]
Φ(dδ′, da′, dλ′),

where

T =

M∫
0

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

(
τ1(λ)

2
{2aq [(δ, a, λ) , (δ′, a′, λ′)]

+ (q [(δ, a, λ) , (δ′, a′, λ′)])
2
}

+ τ2(λ)
(
δ − δ

)
q [(δ, a, λ) , (δ′, a′, λ′)]

)
Φ(dδ′, da′, dλ′)Φ(dδ, da, dλ)

is the flow transfer from the government to investors.
The solution method for this problem is exactly the same as the solution

method I used for equilibrium without taxes. The trade quantities in the equi-
librium with taxes turn out to be

(F.7) q [(δ, a, λ) , (δ′, a′, λ′)] =

[
κ+ rτ1(λ)

r̃ (λ)
+
κ+ rτ1(λ′)

r̃ (λ′)

]−1

[
−κ− (r̃ (λ)− r) τ1(λ)

r̃ (λ)
θ(δ, a, λ) +

κ− (r̃ (λ′)− r) τ1(λ′)

r̃ (λ′)
θ(δ′, a′, λ′)

−τ1(λ)a− τ2(λ)
(
δ − δ

)
+ τ1(λ′)a′ + τ2(λ′)

(
δ′ − δ

)]
,

where

(F.8) θ(δ, a, λ) = a−A− 1− (r̃ (λ)− r) τ2(λ)

κ1 − (r̃ (λ)− r) τ1(λ)

r̃ (λ)

r̃ (λ) + α

(
δ − δ

)
and

(F.9) r̃ (λ) = r +

M∫
0

1

2
m (λ, λ′)

κ−(r̃(λ)−r)τ1(λ)
r̃(λ)

κ+rτ1(λ)
r̃(λ) + κ+rτ1(λ′)

r̃(λ′)

ψ(λ′)dλ′.

Given this equilibrium trading behavior under the presence of taxes, the opti-
mal policy presented in Proposition 8 is to choose τ1(λ) and τ2(λ) so that the
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equilibrium trade quantities (F.7) coincide with the constrained efficient trade
quantities (4.8).

The social inefficiency in the OTC market equilibrium manifests itself in two
intensive margin effects. First, investors’ marginal valuation is more sensitive to
inventories than the socially efficient marginal valuations. Thus, controlling for
inventories, investors trade more cautiously leading to a less dispersed asset posi-
tion distribution than the socially efficient asset position distribution. Second, in
the calculation of (excess) inventories, investors put less weight on their current
taste, which leads to less dispersed inventories. The roles of τ1(λ) and τ2(λ) are
essentially to correct these two distortions, respectively.

Proposition 8 shows that τ1(λ) is negative. This means that it is a subsidy
whenever an investor with holding a trades in a way that her post-trade asset
position is more extreme than |a|. Similarly, it is a tax whenever the investor
ends up with a post-trade position less extreme than |a|. In short, τ1(λ) gives
investors incentive to increase the dispersion of asset position distribution. Over
the lifetime of an investor, these taxes and subsidies stemming from terms with
τ1(λ) net out to zero.

In a similar fashion to τ1(λ), τ2(λ) gives investors incentive to make their
inventories more dispersed. In particular, τ2(λ) encourages an investor to sell
when she has a strong taste for holding (δ > δ) and encourages her to buy when
she has a weak taste for holding (δ < δ). Over an investor’s lifetime, these taxes
and subsidies stemming from terms with τ2(λ) net out to a payment from the
investor to the government simply because investors receive idiosyncratic taste
shocks over time. During normal times, liquidity provision behavior typically
leads to a subsidy and mean reversion to target holding leads to a tax, and these
cancel each other out. However, immediately following an idiosyncratic shock,
it takes the investor some time to reach her new target position, and she pays
taxes during these episodes.

Proof of Proposition 8

Using τ1 (λ) specified in the proposition, (F.9) becomes:

r̃ (λ) = r +

M∫
0

1

2
m (λ, λ′)

κ
r̃e(λ) + κ

r̃e(λ)
r̃e(λ)−r
r̃e(λ)+r

κ
r̃e(λ) + κ

r̃e(λ′)

ψ (λ′) dλ′,

where r̃e (λ) is the solution of the corresponding functional equation (4.7) for
the planner. Using (4.7), one notices that

r̃ (λ) =
[r̃e (λ)]

2
+ r2

r̃e (λ) + r
⇔ r̃e (λ) =

r̃ (λ) +

√
[r̃ (λ)]

2
+ 4r (r̃ (λ)− r)

2
.
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After noticing this and using τ1 (λ) and τ2 (λ) specified in the proposition, it
follows from (4.8), (4.9), (F.7), and (F.8) that

qe [(δ, a, λ) , (δ′, a′, λ′)] = q [(δ, a, λ) , (δ′, a′, λ′)]

and

θe (δ, a, λ) = θ (δ, a, λ) ,

which establishes that the specified tax scheme decentralizes the constrained
efficient allocation.

Now define and calculate, τ (λ), the instantaneous average financial transaction
tax collected from investors with speed type λ:

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

(
τ1 (λ)

2
{2aqe [(δ, a, λ) , (δ′, a′, λ′)]

+ (qe [(δ, a, λ) , (δ′, a′, λ′)])
2
}

+ τ2 (λ)
(
δ − δ

)
qe [(δ, a, λ) , (δ′, a′, λ′)]

)
Φ (dδ′, da′, dλ′) Φλ (dδ, da) ≡ τ (λ) .

The integrand has three terms: The first two are related to τ1 (λ) and the last
one is related to τ2 (λ). Let us calculate these terms one by one. The first term
is:

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
τ1 (λ)

2
2aqe [(δ, a, λ) , (δ′, a′, λ′)]

Φ (dδ′, da′, dλ′) Φλ (dδ, da)

= τ1 (λ)

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
−r̃e (λ′) θe (δ, a, λ) + r̃e (λ) θe (δ′, a′, λ′)

r̃e (λ) + r̃e (λ′)

aΦ (dδ′, da′, dλ′) Φλ (dδ, da)

=−τ1(λ)

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
r̃e (λ′)

r̃e (λ) + r̃e (λ′)
aθe(δ, a, λ) Φλ(dδ, da)ψ (λ′)dλ′

= −τ1(λ)

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
r̃e (λ′)

r̃e (λ) + r̃e (λ′)

[
θe (δ, a, λ) + Ce (λ)

(
δ − δ

)]
θe (δ, a, λ) Φλ (dδ, da)ψ (λ′) dλ′
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= −τ1 (λ)

M∫
0

m (λ, λ′)
r̃e (λ′)

r̃e (λ) + r̃e (λ′)
ψ (λ′) dλ′

∞∫
−∞

δH∫
δL

[
θe (δ, a, λ) + Ce (λ)

(
δ − δ

)]
θe (δ, a, λ) Φλ (dδ, da)

= −τ1 (λ) (r̃e (λ)− r) {var [θe|λ] + Ce (λ) cov [δ, θe|λ]} .

The second term is:

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
τ1 (λ)

2
(qe [(δ, a, λ) , (δ′, a′, λ′)])

2

Φ (dδ′, da′, dλ′) Φλ (dδ, da)

=
τ1 (λ)

2

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

(
−r̃e (λ′) θe (δ, a, λ) + r̃e (λ) θe (δ′, a′, λ′)

r̃e (λ) + r̃e (λ′)

)2

Φ(dδ′, da′, dλ′)Φλ(dδ,da)

=
τ1 (λ)

2

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)

[(
−r̃e (λ′) θe (δ, a, λ)

r̃e (λ) + r̃e (λ′)

)2

+

(
r̃e (λ) θe (δ′, a′, λ′)

r̃e (λ) + r̃e (λ′)

)2
]

Φ (dδ′, da′, dλ′) Φλ (dδ, da)

=
τ1 (λ)

2

var [θe|λ]

M∫
0

m (λ, λ′)

(
r̃e (λ′)

r̃e (λ) + r̃e (λ′)

)2

ψ (λ′) dλ′

+

M∫
0

m (λ, λ′)

(
r̃e (λ)

r̃e (λ) + r̃e (λ′)

)2

var [θe|λ′]ψ (λ′) dλ′

 .

By taking the derivative of (F.6) twice and evaluating it at z = 0 in the same
fashion as the proof of Proposition 3, I obtain
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m (λ,Λ)−
M∫
0

m (λ, λ′)

(
r̃e (λ)

r̃e (λ) + r̃e (λ′)

)2

ψ (λ′) dλ′

 var [θe|λ]

= −2Ce (λ) cov [δ, θe|λ]

+

M∫
0

m (λ, λ′)

(
r̃e (λ)

r̃e (λ) + r̃e (λ′)

)2

var [θe|λ′]ψ (λ′) dλ′.

Substituting this into the previous expression, the second term of τ (λ) becomes

τ1(λ)

2

m (λ,Λ)var [θe|λ]+var [θe|λ]

M∫
0

m (λ,λ′)
[r̃e (λ′)]

2 − [r̃e (λ)]
2

[r̃e (λ) + r̃e (λ′)]
2 ψ(λ′)dλ′

2 (r̃e (λ)− r)Ce (λ) cov [δ, θe|λ]]

=
τ1 (λ)

2

m (λ,Λ) var [θe|λ] + var [θe|λ]

M∫
0

m (λ, λ′)
r̃e (λ′)− r̃e (λ)

r̃e (λ) + r̃e (λ′)
ψ (λ′) dλ′

2 (r̃e (λ)− r)Ce (λ) cov [δ, θe|λ]]

=
τ1 (λ)

2
[m (λ,Λ) var [θe|λ]−m (λ,Λ) var [θe|λ] + 2 (r̃e (λ)− r) var [θe|λ]

2 (r̃e (λ)− r)Ce (λ) cov [δ, θe|λ]]

= τ1 (λ) [(r̃e (λ)− r) var [θe|λ] + (r̃e (λ)− r)Ce (λ) cov [δ, θe|λ]] .

Now one sees that the first and second terms of τ (λ) cancel each other out.
Thus, only the last term will contribute. The last term is:

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′) τ2 (λ)
(
δ − δ

)
qe [(δ, a, λ) , (δ′, a′, λ′)]

Φ (dδ′, da′, dλ′) Φλ (dδ, da)

= τ2 (λ)

∞∫
−∞

δH∫
δL

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
(
δ − δ

)
−r̃e (λ′) θe (δ, a, λ) + r̃e (λ) θe (δ′, a′, λ′)

r̃e (λ) + r̃e (λ′)
Φ (dδ′, da′, dλ′) Φλ (dδ, da)

= −τ2 (λ)

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
r̃e (λ′)

r̃e (λ) + r̃e (λ′)

(
δ − δ

)
θe (δ, a, λ)

Φλ (dδ, da)ψ (λ′) dλ′
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= −τ2 (λ)

M∫
0

∞∫
−∞

δH∫
δL

m (λ, λ′)
r̃e (λ′)

r̃e (λ) + r̃e (λ′)
ψ (λ′) dλ′cov [δ, θe|λ]

= −τ2 (λ) (r̃e (λ)− r) cov [δ, θe|λ] .

Again, taking the derivative of (F.6) and evaluating it at z = 0 in the same
fashion as the proof of Proposition 3 leads to:

cov [δ, θe|λ] =
α

α+ r̃e (λ)− r
1

κ

r̃e (λ)

r̃e (λ) + α
var [δ] .

Hence,

τ (λ) = −τ2 (λ)
α (r̃e (λ)− r)
α+ r̃e (λ)− r

1

κ

r̃e (λ)

r̃e (λ) + α
var [δ] .

After using τ2 (λ) defined in the proposition, the derivation of τ (λ) is complete.

APPENDIX G: DETAILS OF THE NETWORK MODEL

Bilateral trades. Using (5.1) and after simplification, (5.3) becomes

(G.1) (qij , Pij) = arg max
q,P

(
1− e−γ[u(δi,a

1
−ij+qij)−u(δi,a

1
−ij)−qijPij]

) 1
2

(
1− e−γ[u(δj ,a

1
−ji−qij)−u(δj ,a

1
−ji)+qijPij]

) 1
2

,

s.t.

1− e−γ[u(δi,a
1
−ij+qij)−u(δi,a

1
−ij)−qijPij] ≥ 0,

1− e−γ[u(δj ,a
1
−ji−qij)−u(δj ,a

1
−ji)+qijPij] ≥ 0,

where a1
−ij is investor i’s post-trade asset position if she decides not to trade

with investor j.

The solution (qij , Pij) of the constrained optimization problem (G.1) satisfies
the system

u2

(
δi, a

1
−ij + qij

)
= u2

(
δj , a

1
−ji − qij

)
(G.2a)

Pij =
u
(
δi, a

1
−ij + qij

)
−u

(
δi, a

1
−ij
)
−
(
u
(
δj , a

1
−ji − qij

)
−u

(
δj , a

1
−ji
))

2qij
.(G.2b)
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Using the definition of utility (5.2), the solution is

qij =
a1
−ji − a1

−ij

2
− 1

κ

ρj − ρi
2

,(G.3a)

Pij = δ − κ

(
a1
−ij + a1

−ji

2
− 1

κ

δi + δj
2

)
.(G.3b)

Using a1
−ij = a1

i − qij , (G.3a) can be written as

qij = a1
−ji − a1

i +
1

κ
(δi − δj) .

Summing qik over all counterparties, k, of investor i, except for one particular
counterparty j, one obtains Equation (5.4).

Equilibrium threat points. Equation (5.5) gives us a1
−ij as a function of a0

i ,

δi, qij , and λi. The main reason why the initial endowment, a0
i , is a determi-

nant of a1
−ij is the price impact. The presence of price impact due to bargaining

makes the investor unload her initial endowment to her counterparties imper-
fectly. Naturally, a0

i enters the equation positively because even if the investor
does not trade with investor j, a higher initial endowment leads to higher asset
position for her. Secondly, the taste type, δi, enters the equation positively be-
cause higher δi means strong taste for holding the asset, and hence, the investor
expects to buy more.

Substituting (5.5) into (G.3a) and (G3.b), all equilibrium objects can be writ-
ten as a function of initial endowment, taste type, and number of counterparties,
which leads to Proposition 9.

Comparison with the search model. Comparing (5.7) with (3.23) implies that
the reciprocal of the number of counterparties has the role of determining the
weight of an investor’s inventory in the trade quantity in both models. However,
the number of counterparties enters linearly in the network model, while it enters
with a concave transformation in the search model. This means that the marginal
liquidity provision incentive from having access to one additional counterparty
stays constant in the network model, while it is decreasing in the search model.
This difference arises due to the static vs. dynamic nature of the two models. In
the search model, the calculation of r̃ (λ) takes into account the fact that a fast
investor’s post-trade inventory in her future trades will be dictated, to a large
extent, by her counterparties’ trading needs, which creates a secondary negative
impact of λ on r̃ (λ) leading to concavity. This effect is missing in the static
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network model because an investor conducts all her trades simultaneously so she
coordinates directly all her trades as shown by Equation (5.5).

Finally, comparing (5.8) with (3.24) reveals that there is no “connectedness”
premium in the network model. As is clear from (G.2a) and (G.2b), the bargain-
ing parties contribute equally to the trade surplus and then split it equally by
taking the threat points as given. Thus, the speed premium term of (3.24) that
appears in the search model does not appear in (5.8) of the network model.

Proof of Proposition 9

(5.5) implies

(G.4) a1
−ij =

1

λi
a0
i +

λi − 1

λi

[
A− qij −

1

κ

(
δ − δi

)]
and

(G.5) a1
−ji =

1

λj
a0
j +

λj − 1

λj

[
A+ qij −

1

κ

(
δ − δj

)]
.

Substituting these to (G.3a) and rearranging,

(G.6) qij =
−a

0
i−A
λi

+ 1
κ
δi−δ
λi

+
a0j−A
λj
− 1

κ
δj−δ
λj

1
λi

+ 1
λj

,

which is equal to (5.7).
Substituting (G.4), (G.5), and (G.6) to (G.3b) and rearranging,

Pij = −κ
a0
i + (λi − 1)A− 1

κ

(
δi + (λi − 1) δ

)
+ a0

j

λi + λj

− κ
(λj − 1)A− 1

κ

(
δj + (λj − 1) δ

)
λi + λj

= δ − κA− κ
a0
i −A− 1

κ

(
δi − δ

)
+ a0

j −A− 1
κ

(
δj − δ

)
λi + λj

,

which is equal to (5.8).

APPENDIX H: MICRO-FOUNDATIONS FOR THE QUADRATIC UTILITY FLOW

Assume that there are two assets. One asset is riskless and pays interest at an
exogenously given rate r. This asset is traded in a continuous frictionless market.
The other asset is risky, traded over the counter, and is in supply denoted by A.
This asset pays a cumulative dividend:

dDt = mDdt+ σDdBt,



44 S. ÜSLÜ

where Bt is a standard Brownian motion.

I borrow the specification of preferences and trading motives from Duffie,
Gârleanu, and Pedersen (2007) and Gârleanu (2009). Investors are subjective
expected utility maximizers with CARA felicity functions. Investors’ coefficient
of absolute risk aversion and time preference rate are denoted by γ and r respec-
tively.

Investor i has cumulative income process ηi:

dηit = mηdt+ σηdB
i
t,

where

dBit = ρitdBt +

√
1−

(
ρit
)2
dZit .

The standard Brownian motion Zit is independent of Bt, and ρit captures the
instantaneous correlation between the payoff of the risky asset and the income
of investor i. This correlation is time-varying and heterogeneous across investors.
Thus, this heterogeneity creates the gains from trade. In the context of different
markets, this heterogeneity can be interpreted in different ways such as hedging
demands or liquidity needs. In the case of a credit derivatives market, for ex-
ample, the correlation captures the exposure to credit risk. If a bank’s exposure
to the credit risk of a certain bond or loan is high, the correlation between the
bank’s income and the payoff of the derivative written on that specific bond
or loan will be negative, implying that the derivative provides hedging to the
bank. Therefore, that bank will have a high valuation for the derivative. An-
other bank with a short position in the bond will have a positive correlation
and, consequently, a low valuation for the derivative.

I assume that the correlation between an investor’s income and the payoff
of risky asset is itself stochastic. Stochastic processes that govern idiosyncratic
shocks and trade are as described in Section 2.

Let V (W,ρ, a, λ) be the maximum attainable continuation utility of investor
of type (ρ, a, λ) with current wealth W . It satisfies

V (W,ρ, a, λ) = sup
c

Et

−∞∫
t

e−r(s−t)e−γcsds |Wt = W , ρt = ρ, at = a

 ,

s.t.

dWt = (rWt − ct)dt+ at−dDt + dηt − P [(ρt−, at−, λ) , (ρ′t, a
′
t, λ
′
t)] dat

dat =

{
q [(ρt−, at−, λ) , (ρ′t, a

′
t, λ
′
t)] if (ρ′t, a

′
t, λ
′
t) is contacted

0 if no contact,
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where

(H.1) {q [(ρ, a, λ) , (ρ′, a′, λ′)] , P [(ρ, a, λ) , (ρ′, a′, λ′)]}

= arg max
q,P

[V (W − qP, ρ, a+ q, λ)− V (W,ρ, a, λ)]
1
2

[V (W ′ + qP, ρ′, a′ − q, λ′)− V (W ′, ρ′, a′, λ′)]
1
2 ,

s.t.

V (W − qP, ρ, a+ q, λ) ≥ V (W,ρ, a, λ),

V (W ′ + qP, ρ′, a′ − q, λ′) ≥ V (W ′, ρ′, a′, λ′).

Since investors have CARA preferences, terms of trade are independent of wealth
levels as I will show later. To eliminate Ponzi-like schemes, I impose the transver-
sality condition

lim
T→∞

e−r(T−t)Et
[
e−rγWT

]
= 0.

To derive the optimal rules, the technique of stochastic dynamic programming
is used. Assuming sufficient differentiability and applying Ito’s lemma for jump-
diffusion processes, the investor’s value function V (W,ρ, a, λ) satisfies the HJB
equation

(H.2) 0 = sup
c
{−e−γc + VW (W,ρ, a, λ)[rW − c+ amD +mη]

+
1

2
VWW (W,ρ, a, λ)[σ2

η + 2ρaσDση + a2σ2
D]

− rV (W,ρ, a, λ) + α

1∫
−1

[V (W,ρ′, a, λ)− V (W,ρ, a, λ)]f(ρ′)dρ′

+

M∫
0

∞∫
−∞

1∫
−1

m (λ, λ′)

{V (W − q [(ρ, a, λ) , x′]P [(ρ, a, λ) , x′] , ρ, a+ q [(ρ, a, λ) , x′] , λ)

−V (W,ρ, a, λ)}Φ(dρ′, da′, dλ′)},

where x′ ≡ (ρ′, a′, λ′).
Following Duffie et al. (2007), I guess that V (W,ρ, a, λ) takes the form

V (W,ρ, a) = −e−rγ(W+J(ρ,a,λ)+J)

for some function J(ρ, a), where

J =
1

r

(
mη +

log r

γ
− 1

2
rγσ2

η

)
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is a constant. Replacing into (H.2), I find that the optimal consumption is

c = − log r

γ
+ r(W + J(ρ, a, λ) + J).

After plugging c back into (H.2) and dividing by rγV (W,ρ, a, λ), I find that
(H.2) is satisfied iff

(H.3) rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2

D + 2ρaσDση
)

+ α

1∫
−1

1− e−rγ[J(ρ′,a,λ)−J(ρ,a,λ)]

rγ
f(ρ′)dρ′

+

M∫
0

∞∫
−∞

1∫
−1

1− e−rγ{J(ρ,a+q[(ρ,a,λ),x′],λ)−J(ρ,a,λ)−q[(ρ,a,λ),x′]P [(ρ,a,λ),x′]}

rγ

m (λ, λ′) Φ(dρ′, da′, dλ′).

Terms of individual trades, q [(ρ, a, λ) , (ρ′, a′, λ′)] and P [(ρ, a, λ) , (ρ′, a′, λ′)],
are determined by a Nash bargaining game with the solution given by the opti-
mization problem (H.1). Dividing by V (W,ρ, a, λ)

1
2V (W ′, ρ′, a′, λ′)

1
2 , (H.1) can

be written as

{q [(ρ, a, λ) , (ρ′, a′, λ′)] , P [(ρ, a, λ) , (ρ′, a′, λ′)]}

= arg max
q,P

[1− e−rγ[J(ρ,a+q,λ)−J(ρ,a,λ)−qP ]]
1
2

[1 − e−rγ[J(ρ′,a′−q,λ′)−J(ρ′,a′,λ′)+qP ]]
1
2 ,

s.t.

1− e−rγ[J(ρ,a+q,λ)−J(ρ,a,λ)−qP ] ≥ 0

1− e−rγ[J(ρ′,a′−q,λ′)−J(ρ′,a′,λ′)+qP ] ≥ 0.

As can be seen, terms of trade are independent of wealth levels. Solving this prob-
lem is relatively straightforward: I set up the Lagrangian of this problem. Then
using the first-order and Kuhn-Tucker conditions, trade size q [(ρ, a, λ) , (ρ′, a′, λ′)]
solves (3.10). And, transaction price P [(ρ, a, λ) , (ρ′, a′, λ′)] is given by (3.12) if
J2(ρ, a, λ) 6= J2(ρ′, a′, λ′); and P = J2(ρ, a, λ) if J2(ρ, a, λ) = J2(ρ′, a′, λ′). Sub-
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stituting the transaction price into (H.3), I get

(H.4) rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2

D + 2ρaσDση
)

+ α

1∫
−1

1− e−rγ[J(ρ′,a,λ)−J(ρ,a,λ′)]

rγ
f(ρ′)dρ′

+

M∫
0

∞∫
−∞

1∫
−1

m (λ, λ′)

1− e−
rγ
2 {J(ρ,a+q[(ρ,a,λ),x′],λ)−J(ρ,a,λ)+J(ρ′,a′−q[(ρ,a,λ),x′],λ′)−J(x′)}

rγ

Φ(dρ′, da′, dλ′),

subject to (3.10).
Eq. (H.4) cannot be solved in closed form. Consequently, following Gârleanu

(2009), I use the linearization 1−e−rγx
rγ ≈ x that ignores terms of order higher

than 1 in [J(ρ′, a, λ)− J(ρ, a, λ)]. The same approximation is also used by Biais
(1993), Duffie et al. (2007), Vayanos and Weill (2008), and Praz (2014). Eco-
nomic meaning of this approximation is that I assume investors are risk averse
towards diffusion risks while they are risk neutral towards jump risks. The as-
sumption does not suppress the impact of risk aversion as investors’ preferences
feature the fundamental risk-return trade-off associated with asset holdings. It
only linearizes the preferences of investors over jumps in the continuation values
created by trade or idiosyncratic shocks. The approximation yields the following
lemma.

Lemma 8 Fix parameters γ, σD and ση, and let σD = σD
√
γ/γ and ση =

ση
√
γ/γ. In any stationary equilibrium, investors’ value functions solve the fol-

lowing HJB equation in the limit as γ goes to zero:

rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2

D + 2ρaσDση
)

+ α

1∫
−1

[J(ρ′, a, λ)− J(ρ, a, λ)]f(ρ′)dρ′

+

M∫
0

∞∫
−∞

1∫
−1

1

2
m (λ, λ′) {J(ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)− J(ρ, a, λ)

+J(ρ′, a′ − q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ′)− J(ρ′, a′, λ′)}Φ(dρ′, da′, dλ′),

subject to (3.10).
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Setting κ ≡ rγ σ2
D and δ ≡ mD − rγ σDσηρ, the problem is equivalent to the

one with the reduced-form quadratic utility flow.

APPENDIX I: TWO-DIMENSIONAL EX ANTE HETEROGENEITY

In this appendix, I consider a generalization of the baseline OTC model to two-
dimensional ex ante heterogeneity: speed type, λ, and risk aversion parameter,
γ:

u(ρ, a, γ) ≡ mDa−
1

2
rγ
(
σ2
Da

2 + 2σDσηρa
)
.

Let Ψ (λ, γ) denote the joint cdf of speed types and risk aversion levels on [0,M ]×
[γL, γH ]. Speed types and risk aversion levels are allowed to be correlated but
they are distributed independently from the hedging need types and from all the
stochastic processes in the model. Differently from the baseline model, I assume
A = 0 and ρ = 0. In the baseline model without risk aversion heterogeneity,
the result Eφ [a | λ] = A obtains for an arbitrary positive A and an arbitrary
ρ. In this extended version, investors with low risk aversion levels want to have
higher exposure to the aggregate endowment of risk, A+

ση
σD
ρ. Thus, the result

Eφ [a | λ, γ] = A and the resulting simplifications afforded by the quadratic utility
obtain only when A = 0 and ρ = 0 in the extended model.

The investors’ generalized problem (the counterpart of Equation (3.13)) can
be written as

rJ(ρ, a, λ, γ) = u (ρ, a, γ) + α

1∫
−1

[J(ρ′, a, λ, γ)− J(ρ, a, λ, γ)]f(ρ′)dρ′

+

γH∫
γL

M∫
0

∞∫
−∞

1∫
−1

m (λ, λ′)
1

2

[
max
q
{J(ρ, a+ q, λ, γ)− J(ρ, a, λ, γ)

+J(ρ′, a′ − q, λ′, γ′)− J(ρ′, a′, λ′, γ′)}] Φ(dρ′, da′, dλ′, dγ′).

To find the marginal valuation, I differentiate this equation with respect to a,
applying the envelope theorem:

rJ2(ρ, a, λ, γ) = u2 (ρ, a, γ)

+ α

1∫
−1

[J2(ρ′, a, λ, γ)− J2(ρ, a, λ, γ)]f(ρ′)dρ′

+

γH∫
γL

M∫
0

∞∫
−∞

1∫
−1

1

2
m (λ, λ′) {J2(ρ, a+ q [(ρ, a, λ, γ) , (ρ′, a′, λ′)] , λ)

−J2(ρ, a, λ, γ)}Φ(dρ′, da′, dλ′, γ′),
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Figure 1.—Inventory aversion as a function of λ and γ, when r = 0.05, σD =
√

2000,
m (λ, λ′) = 2λλ

′

Λ
, λ ∼ U [5, 10], γ ∼ U [2, 5], and λ and γ are independently distributed.

where

u2(ρ, a, γ) = mD − rγσ2
Da− rγσDσηρ.

Following the exact same steps in the proof of Theorem 1 and Proposition 2, the
equilibrium marginal valuation is

J2(ρ, a, λ, γ) =
mD

r
− γσ2

D

r̃ (λ, γ)
θ(ρ, a, λ, γ),

where

θ(ρ, a, λ, γ) = a+
ση
σD

r̃ (λ, γ)

r̃ (λ, γ) + α
ρ

and r̃ (λ, γ) solves the following generalized version of the functional equation
(3.17):

(I.1) r̃ (λ, γ) = r +

γH∫
γL

M∫
0

1

2
m (λ, λ′)

γ
r̃(λ,γ)

γ
r̃(λ,γ) + γ′

r̃(λ′,γ′)

Ψ(dλ′, dγ′).
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Here, the endogenous degree of inventory aversion of an investor is given by
γσ2
D

r̃(λ,γ) . In the baseline model without heterogeneity in risk aversion, λ was the

only source of heterogeneity in investors’ inventory aversion. Now, λ and γ jointly
determine the inventory aversion.

Solving (I.1) numerically reveals that the inventory aversion is an increasing
function of risk aversion and a decreasing function of speed type. Thus, Figure
1 shows that upward-sloping iso-inventory-aversion curves arise on the plane of
risk aversion and trading speed because risk aversion and trading speed have
opposite impact on the inventory aversion of an investor.

This generalization implies that if investors differ in their exogenous risk aver-
sion levels as well as speed types, the main intermediaries are those with “low
risk aversion and high speed type.” Because these investors have the lowest en-
dogenous inventory aversion, they have the comparative advantage in providing
liquidity to others. As a result, investor centrality increases in the southeast
direction of Figure 1.

APPENDIX J: THE CORPORATE BOND MARKET

TABLE I

Distribution of Trade Sizesa

Sample Obs.b P1b P10b P50b P90b P99b Meanb SDb Nrm. SD

2014

A and above 2,979 1 5 31 1,220 10,000 631 2,825 4.47
Investment gr. 5,534 1 5 30 1,167 10,000 593 2,467 4.16
All bonds 8,941 1 5 43 1,410 10,000 599 2,523 4.21

2012–2014

A and above 9,872 1 5 29 1,000 10,000 571 2,646 4.64
Investment gr. 18,323 1 5 28 1,000 10,000 525 2,293 4.37
All bonds 28,127 1 5 35 1,065 8,675 536 2,366 4.42

2005–2014

A and above 32,939 1 5 25 1,000 10,000 549 3,233 5.89
Investment gr. 51,899 1 5 25 1,000 10,000 550 2,950 5.36
All bonds 75,246 1 5 25 1,325 10,000 587 3,463 5.90

aThis table presents descriptive statistics for par value volume of transactions in the corporate
bond market for the sample period from 2005 to 2014. “Sample” column specifies the subsample
which statistics are based on. “P1,” “P10,” “P50,” “P90,” and “P99” show the 1st, 10th, 50th, 90th,
and 99th percentile observation of the distribution, respectively. “Nrm. SD” (normalized standard
deviation) is the ratio of sample standard deviation to sample mean.

bIn thousands.

Trade Reporting and Compliance Engine (TRACE) was launched by the Na-
tional Association of Securities Dealers (NASD) in 2002, by publicly reporting



LIQUIDITY IN DECENTRALIZED MARKETS 51

the transactions of approximately five hundred corporate bond issues of large
and good credit entities at the beginning. The coverage expanded steadily over a
few years, and by February 2005 it began disseminating 99% of all transactions in
eligible corporate debt securities. I use enhanced TRACE database in this analy-
sis, which includes trades that were not originally captured by standard TRACE
database. I use the data filters proposed by Dick-Nielsen (2014) in cleaning en-
hanced TRACE data. This procedure eliminates potentially erroneous entries,
reversals as well as canceled, corrected, and commissioned trades.

Figure 2.—This figure presents the distribution of corporate bond transactions across
rating groups over different time periods. The sample includes all bond transactions ob-
tained from TRACE. “q” represents the par value volume of the reported transaction.
“2014,” “2012–2014,” and “2005–2014” indicate the three subsamples which distribu-
tions of trade sizes are presented. “A and above,” “Investment grade,” and “All bonds”
show the trade size distributions of bonds with A and above credit rating, investment
grade bonds, and all bonds, respectively.
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