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APPENDIX

A.1. Competitive Equilibria and Absolute Maximality

AS NOTED in Section 3.2, several classes of games are known to have separable allocations.
Each such payoff allocation corresponds to an absolutely maximal farsighted stable set.
Remark 2 identifies another important case: a competitive equilibrium when preferences
satisfy local non-satiation and strict convexity.

PROOF OF REMARK 2: Consider a competitive equilibrium ({ξi}�p). We claim that u ≡
{ui(ξi)} is separable. Suppose there is a coalition S such that uS ∈ V (S). This means that
there exists a feasible allocation ξ′ for the economy with agent set S such that

∑
i∈S ξ

′
i =∑

i∈S ωi and ui(ξ
′
i) ≥ ui for all i ∈ S. Since preferences are locally non-satiated, condition

(i) of a competitive equilibrium implies that p · ξ′
i ≥ p ·ωi for all i ∈ S. In fact, it must be

the case that

p · ξ′
i = p ·ωi for all i ∈ S; (A.1)

otherwise, we contradict the feasibility condition
∑

i∈S ξ
′
i = ∑

i∈S ωi. Next, we claim that
ξ′
i = ξi for all i ∈ S. If not, there is some i ∈ S with ξ′

i �= ξi. By the strict convexity of
ui, there is a strict convex combination of ξ′

i and ξi which is strictly preferred to ξi. By
(A.1), it is also affordable. But this contradicts condition (i) of a competitive equilibrium.
It follows that

∑
i∈S ξi = ∑

i∈S ξ
′
i =

∑
i∈S ωi. Because

∑
i∈N ξi = ∑

i∈N ωi, this implies that∑
j∈N−S ξj = ∑

j∈N−S ωj , and uN−S ∈ V (N − S); that is, u is separable. Q.E.D.

Although Remark 2 applies even to economies in which the interior of the core is
empty, it does depend crucially on preferences being strictly convex. Consider an ex-
change economy with three consumers and two commodities that are perfect comple-
ments: ui(xi)= min{xi1�xi2} for all i; preferences are convex but not strictly convex. If the
endowment of consumer 1 is (1�0) and the endowments of the other two are (0�1), the
unique competitive payoff is (1�0�0). This is not separable because agents 2 and 3 can
achieve this on their own but agent 1 cannot get 1 on her own.1

Greenberg, Luo, Oladi and Shitovitz (2002) studied what they called “the sophisticated
stable set” of an exchange economy. This is based on a version of the Harsanyi stable set
in which every step of a blocking chain is also required to be a myopic objection. The core
is consequently a subset of the sophisticated stable set. In general, therefore, the com-
petitive equilibrium is not a single-payoff sophisticated stable set. A second difference
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between the farsighted stable set and the sophisticated stable set is that the latter, as in
Harsanyi (1974), allows a deviating coalition to choose any feasible payoff for the com-
plementary coalition, a notion that is critiqued and dropped in Ray and Vohra’s (2015)
development of the farsighted stable set. Last but not least, our focus here is on maximal-
ity.

A.2. Absolute Maximality in Simple Games

Simple games have proved to be fertile ground for studying stable sets as well as far-
sighted stable sets. In this section, we prove Remark 3 in the main text.

We identify all configurations with no winning coalitions with a single state, and call
this the zero state. The first part of Remark 3 is a consequence of farsighted internal sta-
bility. To prove it, suppose there is a farsighted stable set F for which Property B fails.
Then there are states a and b in F and a coalition T—it must be winning—such that
uT(b) � uT(a) and

∑
i∈T ui(b) ≤ 1. Because T is winning, its complement is losing. So at

state a, T can precipitate the zero state (by breaking up into singletons), counting on the
winning coalition for state b to move to b, making T better off. Therefore, b farsightedly
dominates a, which contradicts the farsighted internal stability of F . So Property B must
hold.

To proceed further, recall that a veto player in a simple game is an individual with a
losing complement (she can single-handedly precipitate the zero state). If the set of all
veto players is winning, say that the game is oligarchic. Oligarchic games have singleton
farsighted stable sets (Ray and Vohra (2015, Theorem 3)).

To examine larger stable sets in non-oligarchic games, consider discriminatory sets:

D(K�c)= {
x ∈ X | ui(x)= ci for i ∈K

}

for some fixed player set K ⊆ N and associated payoff vector c ∈ RK
++. Those in K, the

“discriminated players,” each get a fixed (positive) amount, while the remaining surplus is
divided arbitrarily among the remainder, the “bargaining players.” As shown in Ray and
Vohra (2015, Theorem 5), such sets exist in every standard simple game.2 The following
remark proves Remark 3:

REMARK 4: Every discriminatory farsighted stable set satisfies Property A as well as
Property A′.

Proof. Let a�b ∈ D(K�c), with uj(b) > uj(a) for some j. Clearly, j /∈ K, which means
that there is z ∈ D(K�c) with uk(z) = ck for all k ∈ K, ui(z) > ui(b) for all i ∈ N −K − j,
and uj(z)uj(a). Therefore, D(K�c) satisfies Property A. If b is a regular state, then so is
z, which means that D(K�c) also satisfies Property A′.

Recall that in Example 1 there is a farsighted stable set which is not absolutely maximal.
That game is a regular non-oligarchic simple game; coalition {1�2�3} is a veto coalition
with replaceable members. So it has a discriminatory farsighted stable set, for example,
D({4}�0�1), which is absolutely maximal.

For simple games, another well-studied set—with a discrete collection of payoffs—is
a potential candidate for a stable set (von Neumann and Morgenstern (1944)). For any

2Note that they used the term nonelitist (rather than “standard”) to refer to a veto coalition with replaceable
members.
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vector m ∈RN with m� 0 and
∑

i∈S mi = 1 for every minimal winning coalition S, define

Z(m)= {
x ∈X | S(x) is minimal winning and ui(x)= mi for i ∈ S

}

to be a main simple set. Von Neumann and Morgenstern (1944) showed that if a game
is strong—every coalition is either winning, or its complement is—then the set of utility
profiles corresponding to a main simple set is a vNM stable set. Ray and Vohra (2015)
showed that a main simple set (of a strong, simple game) is a farsighted stable set.

In general, a main simple set may not satisfy Property A, as we saw in Example 1. But
an important subclass of simple games yields a different answer. Say that a simple game
is symmetric if there is some k, where (n+ 1)/2 ≤ k ≤ n, such that every coalition with k
players is a minimal winning coalition. (Supermajority games have this property.) Every
symmetric simple game has a main simple set Z(m), with mi = 1/k for all i. Observe that
a symmetric game may not be strong. Yet its main simple set is indeed a farsighted stable
set, though it may fail to be a vNM stable set.3

Moreover, if the game is non-oligarchic (k< n), Z(m) satisfies Property A. To see this,
suppose a and b are in Z(m), with ui(b) > ui(a). This implies that there is a minimal win-
ning coalition S such that i ∈ S, ui(b) = 1/k, and uj(a)= 0 for all j /∈ S. Since k< n, there
exists j /∈ S. Let S′ = S − i+ j. Given the symmetry of the game, this is a minimal winning
coalition and the corresponding state in Z(m), say z, has the property that ui(z) = 0 and
uj(z)≥ uj(b) for all j �= i, which yields Property A. Because S′ is a minimal winning coali-
tion, z is a regular state, and so Property A′ is also satisfied. To summarize, we have the
following:

REMARK 5: Any non-oligarchic, symmetric simple game possesses a main simple set
which is a farsighted stable set and satisfies Property A as well as Property A′.

A.3. More Remarks on Coalitional Acceptability

In Section 4 of the paper, we discuss a parallel to Theorem 1 to blocking processes;
that is, to ambient processes that employ blocking chains following every history. The re-
sulting Proposition 1 is, however, quite restrictive and does not apply to all characteristic
functions. We redo that proposition here by imposing a still stronger version of Prop-
erty A. Recall that σ is a blocking process if, for each history h, if S(h) is nonempty, then
uS(h)(x

σ(h)) > uS(h)(x(h)).
Recall also the discussion from the main text. To extend Theorem 1 to blocking pro-

cesses, it suffices to strengthen Lemma 2 so that the coalitionally acceptable chain con-
structed to deter deviations is in fact a blocking chain. At a minimum, this will require that

3Consider the non-strong, symmetric simple game with n = 5 and k = 4. Then Z(m) is not vNM stable: the
state x with u(x) = (1/3�1/3�1/3�0�0) has no objection from Z(m). However, there is a farsighted objection
through the zero state initiated by players 4 and 5 (a veto coalition), leading to Z(m). Indeed, farsighted
stability holds for all such games. To see why Z(m) satisfies farsighted external stability, consider x /∈ Z(m).
Clearly, S = {i ∈ N | ui(x) ≥ 1/k} must then be a losing coalition. If the complement of S, N − S = {i ∈ N |
ui(x) < 1/k}, is winning, any minimal winning coalition in N − S can (myopically) block x with a state in Zm.
Otherwise, because S is losing, N − S is a veto coalition and can farsightedly block x by first precipitating
the zero state and then moving (via a suitable minimal winning coalition) to obtain 1/k for all its members.
The main simple set also satisfies farsighted internal stability (under a mild monotonicity restriction on the
effectivity correspondence); see Ray and Vohra (2015) or Dutta and Vohra (2017). Thus Z(m) is a farsighted
stable set. These arguments can be extended to show that a main simple set of any (not necessarily symmetric)
simple game is a farsighted stable set, although absolute maximality cannot be assured, as shown by Example 1.
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when we dissuade an off-path deviation by finding a coalitionally acceptable chain from y
to z ∈ F , all players involved in this chain must receive a strictly positive payoff at z. That
motivated a modification of our Property A to regular states; see Property A′ in the main
text. We go still further here by allowing for strict inequalities.

PROPERTY A′′: Suppose there are two regular states a and b in F such that uj(b) >
uj(a) for some j. Then there exists a regular state z ∈ F such that uj(z) ≤ uj(a), and
ui(z) ≥ ui(b) for all i �= j, with strict inequality holding for player i �= j if and only if i’s
coalition in state z is different from her coalition in state b.

THEOREM 2: If a farsighted stable set satisfies Properties A′′ and B, then it can be embed-
ded in an absorbing, absolutely maximal blocking process.

Observe that a single-payoff farsighted stable set trivially satisfies Property A′′.
We leave it to the reader to check that, to prove Theorem 2, it suffices to prove the

following version of Lemma 2 in which the conclusion relates to a blocking process rather
than a coalitionally acceptable process.

LEMMA 3: Consider a farsighted stable set F that satisfies Properties A′′ and B. Suppose T
moves from state x /∈ F to state y , Ψ(x) = a, and Ψ(y) = b. Then there is a state z ∈ F and
a blocking chain from y to z such that uj(z) ≤ uj(a) for some j ∈ T .

PROOF: Consider states x, y , a, b and a coalition T as in the statement of Lemma 3.
If the conclusion of the lemma is false, uT(b) � uT(a). As in the proof of Lemma 2,
Condition B implies that y �= b, so that y /∈ F . Moreover, as in that proof, we have a player
j ∈ T and a blocking chain c′ = {y� y1� � � � � ym−1� y ′� ym}, {S1� � � � � Sm−1�W − j� Sm}, where
ym = b and Sm = ⋃m−1

j=1 Sj ∪ W is the set of all players who actively move in the blocking
chain c′. By Condition A′′, there is a regular state z such that uj(z) ≤ uj(b) and ui(z) ≥
ui(b) for all i �= j, with strict inequality holding for player i �= j if and only if i’s coalition in
state z is different from her coalition in state b. Modify c′ by replacing the terminal state
with z to construct the chain c̄ = {y� y1� � � � � ym−1� y ′� z}, {S1� � � � � Sm−1�W − j� S′}, where S′

is a minimal set of players needed to replace y ′ with z. We will show that c̄ is a blocking
chain. Recall from the proof of the claim that there can be only two possible reasons why
c̄ may be a coalitionally acceptable but not a blocking chain:

(a) there exists a player k ∈ S′ − Sm for whom uk(z)= uk(y
′)= uk(b), or

(b) j ∈ S′ and uj(z) = uj(y
′)= 0.

To complete the proof, we will rule out each of these possibilities.
Suppose (a) holds and k ∈ S′ − Sm is such that uk(z) = uk(y

′) = uk(b). Let Sk ∈ π(y ′)
be the coalition that contains player k. Given the construction of z, this must mean that
k continues to belong to coalition Sk in π(z), even though k, being a member of S′, is an
active mover from y ′ to z. In fact, by Property A′′, ui(z) = ui(y

′) for all i ∈ Sk. But this
contradicts the fact that S′ is a minimal set of players needed to replace y ′ with z.

Suppose j ∈ S′. Since z is a regular state, uj(z) > 0, so (b) cannot hold. Q.E.D.

A.4. Other Approaches to Maximal Farsightedness

We seek conditions under which a farsighted stable set might satisfy maximality. The
underlying idea is to begin with a solution concept that is the natural farsighted extension
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to a classical notion—vNM stability—and attempt to embed that concept within an ambi-
ent negotiation process satisfying the desideratum of absolute maximality. Alternatively,
one might directly seek to understand the absorbing states of a negotiation process, with-
out asking that any existing solution concept be embedded in it. Such an approach was
followed in Konishi and Ray (2003) and Dutta and Vohra (2017), along with the addi-
tional restriction that the negotiation process σ is Markovian or history-independent: for
any two histories h and h′, x(h) = x(h′) implies that σ(h) = σ(h′).4 A comparison of
these two approaches is instructive.

1. While unclear from its original definition (Harsanyi (1974), Ray and Vohra
(2015)), a farsighted stable set is fundamentally a history-dependent object. There is little
hope of being able to embed a farsighted stable set in a Markovian process, and this is
so even if we ignore the maximality requirement. On the other hand, as our main results
demonstrate, permitting history dependence can make it possible to embed a farsighted
stable set in a process that is absolutely maximal.

2. Absolute maximality can be a more stringent requirement than maximality or
strong maximality even if the focus is on absorbing states that are not necessarily a far-
sighted stable set.5

EXAMPLE 4: A three-player veto game: N = {1�2�3}, ν(N) = ν{1�2} = ν{1�3} = 1, and
ν(S) = 0 for all other S.

Ray and Vohra (2015) showed that every farsighted stable set of this game is a discrim-
inatory set of the form Za = D({1}� a) in which player 1 receives a fixed payoff a ∈ (0�1)
and the remaining surplus is divided in any arbitrary way between players 2 and 3. (In fact,
for every a ∈ (0�1), Za is a farsighted stable set.) By Remark 4, it is absolutely maximal.

But this result depends crucially on allowing the process to be history dependent. As
Dutta and Vohra (2017) pointed out, a set of this form cannot be supported by a Marko-
vian process that is consistent with farsighted external stability. The farsighted external
stability of Za implies that, from any state x with u(x) � 0 and u1(x) > a, there is a
blocking chain ending in Za. It can be shown that any such chain involves players 2 and 3
leaving the grand coalition at state x, resulting in the zero state. This is then followed by
a move by N to a state in Za; see Ray and Vohra (2015) for details. It turns out that the
last step of any such blocking chain must depend on the history.

To see this, suppose σ is a Markovian process that defines, for every state not in Za,
a blocking chain that ends in Za. Consider the zero state, x0, and suppose σ prescribes a
path from x0 that ends at y ∈ Za. Since the process is Markovian, this is the continuation
paths for all histories where the current state is x0. Consider x such that u(x) � 0 and
u1(x) > a. As already observed, any blocking chain from x leading into Za must involve
coalition {2�3} moving to x0, followed by a move by N to y (with u(y ′)� 0). Since u(y ′)�
0, we can find x such that u1(x) > a, u2(x) > u2(y), and u3(x) > 0. The process must
specify a blocking chain from x to a state in Za. But any such blocking chain must be
one in which {2�3} first moves to x0 followed by a move to y . Since u2(x) > u2(y), player
2 cannot gain. In other words, the path prescribed by σ from x is not a blocking chain,
a contradiction.

4History-dependent versions of these solutions were studied in Hyndman and Ray (2007), Ray and Vohra
(2014), and Dutta and Vartiainen (2018).

5With respect to farsighted stable sets, this point has already made; through Example 1 for simple games
and through the examples in Dutta and Vohra (2017) for abstract games.
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This example also illustrates the difference between our approach and one that directly
examines the absorbing states of a process, without seeking to embed a particular solution.
Consider the Dutta and Vohra (2017) notion of a strong rational expectations farsighted
stable set (SREFS) which is defined to be the set of absorbing states, Z, of a Markovian
process σ that satisfies strong maximality, as well as both internal and external stability
when blocking chains are restricted to be consistent with σ . In particular, if a coalition
moves from a state in Z, it cannot eventually gain provided the continuation following
this move is given by σ . There may, however, exist a farsighted blocking chain that is not
consistent with σ , and for this reason Z may not be a farsighted stable set.6 Indeed, this is
a feature of the present example. Dutta and Vohra (2017) showed that there is a SREFS
consisting of states with payoffs ({a + b�b�0)� (a + b�0� b)� (a�b�b)}), where a ∈ (0�1)
and b = (1 − a)/2. Of course, this is not a discriminatory set in which player 1 gets a fixed
payoff, so it cannot be a farsighted stable set.7

While this SREFS satisfies strong maximality, it does not satisfy absolute maximality.
To see this, consider the state x with π(x) = N and u(x) = (a + b − 1/3ε�b − 2/3ε� ε).
Coalition {1�2} can block this is in one step to get payoffs (a + b�b). No coalition that
includes either player 1 or 2 can construct a better deviation, as is required for strong
maximality. However, absolute maximality may not hold because of a deviation by player
3. Suppose that a departure by player 3 results in the other two sharing the extra surplus
equally. Now, if player 3 leaves the grand coalition, the new state leaves player 2 with a
payoff strictly less than b. This only leads to the zero state followed by N moving to the
stationary state with payoffs (a�b�b). Thus, player 3 has a profitable deviation at state x,
and the process is not absolutely maximal.

We make a final comment on folk-theorem-like arguments. In Section 3.4, we remarked
that there are tight restrictions on the structure of absolutely maximal farsighted stable
sets, so it is not the case that anything goes. That argument carries over to the set of
states that comprise any farsighted stable set: “anything doesn’t go” because the internal
stability of a (farsighted) stable set precludes it from being too inclusionary. However,
what would happen under the alternative approach of this section, where we do not insist
in embedding any farsighted stable set? Might that span the entire set of feasible payoffs?
In general, in our model, the answer is still no. That follows from absolute maximality and
our notion of an absorbing state which requires, once such a state is reached, regardless
of the history, it does not change. Together, these two properties imply that a non-core
state and a state that (myopically) dominates it can not both be absorbing states.8 Thus,
in general, the absorbing states cannot span the entire set of feasible payoffs.

A loosening of these restrictions could lead to outcomes in which almost the entire set
of feasible payoffs is supportable. Under the weaker notion of absorption used by Dutta
and Vartiainen (2018), “stable states” need not satisfy internal stability even if the process
is maximal. In fact, in a strictly superadditive game, they coincide with the set of all strictly
positive, feasible payoffs.

6The same is true of the solutions constructed by Dutta and Vartiainen (2018), allowing for history depen-
dence, and using a weaker notion of absorption that we have defined above. Indeed, their solutions may not
even satisfy myopic internal stability.

7There is a farsighted objection from ((a�b�b)�N), led by player 1, to ((a+ b�b�0)� {1�2}).
8In other words, the set of absorbing states must satisfy myopic internal stability.
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A.5. Properties of Examples 1, 2, and 3

Properties of Example 1

To show that F is not absolutely maximal, we impose a “monotonicity condition” on the
effectivity correspondence E.9 Assume that if a winning coalition loses some members but
remains winning, the resulting nonnegative surplus (captured from the departing mem-
bers) is shared equally among the players that remain. Now suppose by way of contradic-
tion that there is an absorbing σ that embeds F and satisfies coalitional acceptability and
absolute maximality. Consider state x with u(x)= (0�0�0�36�0�64) and winning coalition
W (x) = N . Because x /∈ F , there is x′ ∈ F that farsightedly dominates it; that is, σ leads
from history h = {x} to x′. Ray and Vohra (2015, Lemma 2) showed that there are just
two possibilities: either (i) x′ myopically dominates x, or (ii) W + = {i ∈ N | ui(x

′) > ui(x)}
and W (x)−W + are both losing coalitions.10 But W (x) equals N and our game is strong,
so the second option must be eliminated here. It follows that (i) is true: x′ myopically
dominates x. But the only two states in F that do so are x′ = ((1/3�0�0�2/3)� {1�4}) or
x′ = ((0�1/3�0�2/3)� {2�4}). In either case, u3(x

′) = 0. We use this last fact to argue that
player 3 can profitably deviate from the stipulated move at x (to x′), thus violating abso-
lute maximality.

Suppose player 3 leaves the grand coalition at x resulting in state y . Note that the
residual coalition, {1�2�4}, is winning. Given that the residual players share equally in
the surplus released by 3’s departure, u(y) = (0�12�0�12�0�0�76). Since y /∈ F , σ must
prescribe a continuation that is coalitionally acceptable. Using the same kind of argument
as in the previous paragraph, it can be shown that xσ(y) = ((1/3�1/3�1/3�0)� {1�2�3}).11

Player 3 can therefore gain by interfering in this way with any process that attempts to
proceed from x to x′. In other words, F does not satisfy absolute maximality.

Properties of Example 2

We first show that F is a farsighted stable set. Figure A.1 shows all the payoff equivalent
states, with arrows indicating the states in F that farsightedly dominate a state not in F .

To see that F satisfies external farsighted stability: A state with payoff (3�3�0�3�3�0) is
dominated by one in X3 through coalition {2�3�4}. The state with payoff (3�3�0�0�0�0)
is directly dominated by one in X1 through {3�5} and by one in X3 through {2�3�4}.
A state in X8, with payoff profile (1�0�2�0�1�0), is farsightedly dominated by a state in
X1 through the formation of coalition {1�2}, and also by a state in X2 through coalition
{4�5}. It is easy to see from Figure A.1 that other states not in F are also farsightedly
dominated by some state(s) in F .

To see that F satisfies internal farsighted stability: First observe that states x4, x5, x6, and
x7 cannot dominate any other state (these states are in F only because they cannot be
dominated by a state in X1 ∪ X2 ∪ X3). This is so because such a state can emerge in
only one of two ways: either a singleton precipitates it by leaving the grand coalition or
it involves the active participation of player 6. Either case is inconsistent with farsighted
dominance because both the singleton as well as player 6 receive 0. Second, none of these
states can be farsightedly dominated by any other state. All players except for the excluded

9See Ray and Vohra (2015) for a more general version that applies to all games.
10In case (ii), W + can precipitate the zero state by leaving W (x), followed by a move by W (x′) to x′.
11For example, if xσ(y)= ((1/3�0�0�2/3)� {1�4}), coalitional rationality implies that, in the first step, player

1 must leave W (y), resulting in the state y ′ = ((0�0�18�0�0�82)� {2�4}). But from y ′ it is not possible, by coali-
tional rationality, to end up at ((1/3�0�0�2/3)� {1�4}).
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FIGURE A.1.—External farsighted stability of F in Example 2.

singleton are receiving the maximum possible payoff. Only the singleton has an incentive
to change the state, but on her own she is powerless to do so. Thus, in checking internal
stability, we only need to compare states in X1, X2, and X3.

From X1, the only players who could gain by ending up at a state in X2 are players 4 and
5. They cannot move there directly. They could form a coalition of their own, resulting
in payoffs (3�3�0�3�3�0), but that can only be dominated by a state in X3, not one in
X2, resulting in a payoff of 0 to player 5, which is of course not a farsighted improvement
for {4�5}. Player 5 could exit coalition {3�5} resulting in payoffs (3�3�0�0�0�0), but from
there the only possible moves are into X1 or X3, again making it impossible for player 5
to gain.

A state in X1 cannot be farsightedly dominated by one in X3 because any such move
must begin by player 2 leaving coalition {1�2} which results in payoffs (0�0�2�0�2�0) from
which the only further move that is possible is to X1 or to X2, not X3, because players 3
or 5, the only ones who could initiate a move to X3, have no interest in doing so. A similar
argument shows that no state in X2 can be farsightedly dominated by another state in F .
Finally, note that at a state in X3, all the nonzero-payoff players are getting the highest
possible amount and they together belong to one coalition, so no profitable deviation is
possible.

This completes the proof that F satisfies farsighted internal stability.
Finally, we show that F is not absolutely maximal; that is, any coalitionally rational

and absorbing process in which it is embedded must fail to satisfy absolute maximality.
Consider a state in X8 with payoffs (1�0�2�0�1�0). The only possible farsighted blocking
chain from such a state ends in X1 or X2, not in X3. This is so because the only players
who would prefer to have it replaced by one in X3 are 2 and 4, but without the active
participation of player 3 they are unable to carry out such a move. Suppose F is embedded
in a coalitionally acceptable and absorbing process. Consider the history consisting of a
single state in X8. Since the only blocking chains from such a state are into X1 or X2, the
continuation must be a single step into X1 (through coalition {1�2}) or into X2 (through
coalition {4�5}). In the former case, coalition {4�5} has a profitable deviation into X2, and
in the latter, coalition {1�2} has a profitable deviation into X1. Thus, F is not absolutely
maximal, which also shows that Property B cannot be dispensed with in our main theorem.
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FIGURE A.2.—Absolute farsighted stability of F in Example 3.

Properties of Example 3

The farsighted stability of F follows from arguments we already provided in the discus-
sion of Example 2. In Figure A.2, the arrows from states outside F represent a process
that embeds F . We leave it to the reader to check that it satisfies absolute maximality.
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