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APPENDIX A: PROOF OF PROPOSITION 1

IN THE FOLLOWING APPENDIX, we prove Proposition 1. For this purpose, we first establish
the following two lemmas.

LEMMA 1: In the high income state in period 2, the borrowing constraint never binds if

Rk < (1 +Rk ξ−1
ξ )ξ.

PROOF: Suppose the opposite. Then also in the low income state the constraint must
bind, thus cH�L3 = Rkk1 and cH2 = y + b1 + σ . Optimality of b2 = 0 requires cH2 < R

kk1.
At the same time, optimality in period 1 requires u′(c1) = Rku′(c3) (there is no uncer-
tainty regarding period 3 consumption) and thus c3 = Rk

1/ξ
c1, implying c1 = y−b1

1+Rk
1−ξ
ξ

and

c3 = (y − b1)
Rk

1/ξ

1+Rk
1−ξ
ξ

. However, then cH2 > c3, as Rk1/ξ
< 1 + (Rk) ξ−1

ξ by assumption. This

contradicts optimality in period 2. Q.E.D.
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LEMMA 2: If the household holds positive amounts of both assets in period 1 and Rk �= 1,
then the borrowing constraint binds in period 2 in the low income state.

PROOF: As the household holds positive amounts of both assets, it is not borrowing
constrained in period 1, and hence u′(c1)= Eu′(c2) and u′(c1)=RkEu′(c3) from the op-
timality in period 1. Optimality in period 2 in the absence of binding borrowing constraints
implies cH�L2 = cH�L3 , such that Eu′(c3)=RkEu′(c3), which contradicts Rk �= 1. Q.E.D.

We can use these lemmas to prove the actual proposition, which is repeated for the
reader’s convenience.

PROPOSITION 1: Define b∗
1(σ) and k∗

1(σ), the optimal liquid and illiquid asset holdings.
Define b̃1(σ), the liquid asset holdings of a household that does not have the option to invest
in an illiquid asset. Now suppose income uncertainty is large enough such that b∗

1(σ) > 0
and the returns on the illiquid investment are larger than 1, Rk > 1, but not too large, that

is, 1 < Rk < (1 + Rk
ξ−1
ξ )ξ. Then ∂b∗

1
∂σ
> ∂b̃1

∂σ
> 0 > ∂k∗

1
∂σ

, that is, liquid asset holdings increase
in σ and they increase more than in a model where all assets are liquid, while illiquid asset
holdings decrease.

PROOF: The optimal liquid and illiquid asset holdings are determined by the two Euler
equations in period 1. From Lemmas 1 and 2, we know that in period 2, the household
will not be borrowing constrained in the high income state, but it will be constrained in
the low income state. Moreover, we also know that then k1 > 0 follows as marginal utility
diverges to infinity for c→ 0. Therefore, the two Euler equations for b1 and k1 read

u′(y − b∗
1 − k∗

1

) − 1
2

[
u′

(
y + b∗

1 + σ +Rkk∗
1

2

)
+ u′(y + b∗

1 − σ)] = 0� (S1)

u′(y − b∗
1 − k∗

1

) −Rk 1
2

[
u′

(
y + b∗

1 + σ +Rkk∗
1

2

)
+ u′(Rkk∗

1

)] = 0� (S2)

These Euler equations define k∗
1(σ) and b∗

1(σ) as implicit functions of σ .
Removing the option to invest in the illiquid asset, the household is never borrowing

constrained in period 2 and the demand for liquid assets b̃1(σ) is given by the Euler
equation

u′(y − b̃1)− 1
2

[
u′

(
y + b̃1 + σ

2

)
+ u′

(
y + b̃1 − σ

2

)]
= 0� (S3)

We can now use the implicit function theorem to calculate how asset demand changes
in σ . This yields ⎛

⎜⎝
∂b∗

1

∂σ
∂k∗

1

∂σ

⎞
⎟⎠ = 1

4

(
A1 A2

A2 A3

)−1 (
2u′′

2L − u′′
2H

−Rku′′
2H

)

with

A1 := u′′
1 + 1/4

(
u′′

2H + 2u′′
2L

)
< 0�
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A2 := u′′
1 + 1/4Rku′′

2H < 0�

A3 := u′′
1 + 1/4Rk2

(
u′′

2H + u′′
3L

)
< 0�

and

u′′
2L := u′′(cL2 )

< u′′
3L := u′′(cL3 )

< u′′
1 := u′′(c1) < u

′′
2H := u′′(cH2 )

< 0�

and thus ⎛
⎜⎝
∂b∗

1

∂σ
∂k∗

1

∂σ

⎞
⎟⎠ = 1

4
(
A1A3 −A2

2

) (
A3 −A2

−A2 A1

)(
2u′′

2L − u′′
2H

−Rku′′
2H

)

= 1
4
(
A1A3 −A2

2

) (
A3

(
2u′′

2L − u′′
2H

) +RkA2u
′′
2H

−A2

(
2u′′

2L − u′′
2H

) −RkA1u
′′
2H

)
�

In particular, making use of u′′
2H < u

′′
3L < u

′′
2L < 0, we obtain that the numerator

A1A3 −A2
2 >

(
u′′

1 + 3/4u′′
2H

)(
u′′

1 + 1/2R2
ku

′′
2H

) − (
u′′

1 + 1/4Rku′′
2H

)
= 5

16
R2
k

(
u′′

2H

)2 + 3 + 2R2
k

4
u′′

1

(
u′′

2H

) − 2
4
Rku

′′
1

(
u′′

2H

)
> 0

is positive. This implies, as A1�2�3, 2u′′
2L − u′′

2H , and u′′
2H are all negative,

∂b∗
1

∂σ
> 0>

∂k∗
1

∂σ
�

Moreover, we can estimate a lower bound on ∂b∗
1

∂σ
as

∂b∗
1

∂σ
= 1

4
A3

A1A3 −A2
2

(
2u′′

2L − u′′
2H

) + 1
4

A2

A1A3 −A2
2

Rku′′
2H

>
1
4
A3

A1A3

(
2u′′

2L − u′′
2H

) + 1
4

A2

A1A3 −A2
2

Rku′′
2H

>

1
4
(
2u′′

2L − u′′
2H

)
u′′

1 + 1
4
(
u′′

2H + 2u′′
2L

) �

This term, the lower bound on ∂b∗
1

∂σ
, has a form similar to the derivative of liquid asset

demand to income risk when the household can only hold liquid assets. In that case, we
obtain

∂b̃1

∂σ
=

1
4
(
ũ′′

2L − ũ′′
2H

)
ũ′′

1 + 1
4
(
ũ′′

2H + ũ′′
2L

) �

Now define a function U(u′(c)) = u′′(c). This function U = −ξu′ ξ+1
ξ is negative, de-

creasing, and convex in marginal utility. Therefore, the Euler equation implies 0 >
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1/2(u′′
2H + u′′

2L) > u
′′
1 due to convexity and u′′

1 > u
′′
2L because U is decreasing. Analogous

formulas apply for the case without illiquid assets. We can use these estimates to obtain
an upper bound on ∂b̃1

∂σ
and to simplify the lower bound on ∂b∗

1
∂σ

:

∂b̃1

∂σ
= ũ′′

2L − ũ′′
2H

4ũ′′
1 + (

ũ′′
2H + ũ′′

2L

) ≤ ũ′′
2L − ũ′′

2H

3
(
ũ′′

2H + ũ′′
2L

) = ũ′′
2L − ũ′′

2H

6ũ′′
2H + 3

(
ũ′′

2L − ũ′′
2H

)
= 1

3 + 6
ũ′′

2H

ũ′′
2L − ũ′′

2H

�

∂b∗
1

∂σ
>

2u′′
2L − u′′

2H

4u′′
1 + (

u′′
2H + 2u′′

2L

) ≥ 2u′′
2L − u′′

2H

6u′′
2L + u′′

2H

= 2u′′
2L − u′′

2H

3
(
2u′′

2L − u′′
2H

) + 4u′′
2H

= 1

3 + 4
u′′

2H

2u′′
2L − u′′

2H

�

which implies ∂b̃1
∂σ
<

∂b∗
1

∂σ
because 4 u′′

2H
2u′′

2L−u′′
2H
< 6 ũ′′

2H
ũ′′

2L−ũ′′
2H

as 0> ũ′′
2L > u

′′
2L and 0> u′′

2H > ũ
′′
2H .

This completes the proof. Q.E.D.

APPENDIX B: DYNAMIC PLANNING PROBLEM WITH TWO ASSETS AND FIXED
ADJUSTMENT PROBABILITIES

The dynamic planning problem of a household in the model is characterized by two
Bellman equations: Va in the case where the household can adjust its capital holdings and
Vn otherwise. We will first go through the problem with exogenous adjustment probabil-
ities, as the first-order conditions of the model with adjustment decisions that describe
portfolio and consumption choices turn out to be of the same structure as under given
adjustment probabilities.

With fixed adjustment probabilities, the value functions are given by

Va
(
b�k�h;Θ�Rb� s)
= max

k′�b′
a∈�a

u
[
x
(
b�b′

a�k�k
′�h

)]
+β[

νEVa
(
b′
a�k

′�h′;Θ′�R′
b� s

′) + (1 − ν)EVn
(
b′
a�k

′�h′;Θ′�R′
b� s

′)]�
Vn

(
b�k�h;Θ�Rb� s)
= max

b′
n∈�n

u
[
x
(
b�b′

n�k�k�h
)]

+β[
νEVa

(
b′
n�k�h

′;Θ′�R′
b� s

′) + (1 − ν)EVn
(
b′
n�k�h

′;Θ′�R′
b� s

′)]�

(S4)

where the budget sets are given by

�a
(
b�k�h;Θ�Rb� s) =

{
k′ ≥ 0� b′ ≥ B | q(k′ − k) + b′ ≤ rk+ Rb

π
b

+ (1 − τ)
(

γ

1 + γwhN + Ih=0Π

)}
�
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�n
(
b�k�h;Θ�Rb� s) =

{
b′ ≥ B | b′ ≤ rk+ Rb

π
b

+ (1 − τ)
(

γ

1 + γwhN + Ih=0Π

)}
�

x
(
b�b′�k�k′�h;Θ�Rb� s) = γ

1 + γwhN + rk+ Rb

π
b− q(k′ − k) − b′�

where q, π, and Π are functions of (Θ�Rb� s).
To save on notation, let Ω be the set of idiosyncratic state variables controlled by the

household, let Z be the set of states outside the household’s control, let �i :Ω→Ω be the
correspondence describing the feasibility constraints, and let Ai(z) = {(ω�y) ∈ Ω×Ω :
y ∈ �i(ω�z)} be the graph of �i. Hence the states and controls of the household problem
can be defined as

Ω={
ω= (b�k) ∈R

2 : B ≤ b <∞�0 ≤ k <∞}
�

z ={
h�Θ�Rb� s

}
�

and the return function F :A→R reads as

F
(
�i(ω�z)�ω;z) = x1−γ

i

1 − γ �

Define the value before the adjustment/non-adjustment shock is realized as

v(ω�z) := νVa(ω�z)+ (1 − ν)Vn(ω�z)�
Now we can rewrite the optimization problem of the household in terms of the defini-

tions above in a compact form:

Va(ω�z)= max
y∈�a(ω�z)

[
F(ω�y;z)+βEv(y� z′)]� (S5)

Vn(ω�z)= max
y∈�n(ω�z)

[
F(ω�y;z)+βEv(y� z′)]� (S6)

Finally we define the mapping T : C(Ω)→C(Ω), where C(Ω) is the space of bounded,
continuous and weakly concave functions:

(Tv)(ω�z)= νVa(ω�z)+ (1 − ν)Vn(ω�z)�
Va(ω�z)= max

y∈�a(ω�z)
[
F(ω�y;z)+βEv(y� z′)]�

Vn(ω�z)= max
y∈�n(ω�z)

[
F(ω�y;z)+βEv(y� z′)]�

B.1. Properties of Primitives

Abstracting from the noncontinuity in R at b= 0, the following properties of the prim-
itives of the problem obviously hold.

P1: Properties of sets Ω, �a(ω�z), and �n(ω�z):
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(i) The set Ω is a convex subset of R3.
(ii) The correspondence �i(·� z) : Ω → Ω is non-empty, compact-valued, continuous,

monotone and convex for all z.

P2: Properties of return function F . The return function F is bounded, continuous, strongly
concave, C2 differentiable on the interior of A, and strictly increasing in each of its first two
arguments.

B.2. Properties of the Value and Policy Functions

LEMMA 3: The mapping T defined by the Bellman equation for v fulfills Blackwell’s suf-
ficient conditions for a contraction on the set of bounded, continuous, and weakly concave
functions C(Ω).

(a) It satisfies discounting.
(b) It is monotonic.
(c) It preserves boundedness (assuming an arbitrary maximum consumption level).
(d) It preserves strict concavity.

Hence, the solution to the Bellman equation is strictly concave. The policy is a single-valued
function in (b�k), and so is optimal consumption.

PROOF: The proof proceeds item by item and closely follows Stokey and Lucas (1989),
taking into account that the household problem in the extended model consists of two
Bellman equations.

(a) Discounting. Let a ∈R+ and let the rest be defined as above. Then it holds that(
T(v+ a))(ω�z)= ν max

y∈�a(ω�z)
[
F(ω�y� z)+βEv(y� z′) + a]

+ (1 − ν) max
y∈�n(ω�z)

[
F(ω�y� z)+βEv(y� z′) + a]

= (Tv)(ω�z)+βa�
Accordingly, T fulfills discounting.

(b) Monotonicity. Let g :Ω×Z→R2, f :Ω×Z→R2, and g(ω�z)≥ f (ω�z) ∀ω�z ∈
Ω×Z. Then it follows that

(Tg)(ω�z)= ν max
y∈�a(ω�z)

[
F(ω�y� z)+βEg(y� z′)]

+ (1 − ν) max
y∈�n(ω�z)

[
F(ω�y� z)+βEg(y� z′)]

≥ν max
y∈�a(ω�z)

[
F(ω�y� z)+βEf (y� z′)]

+ (1 − ν) max
y∈�n(ω�z)

[
F(ω�y� z)+βEf (y� z′)]

= Tf(ω�z)�
The objective function for which Tg is the maximized value is uniformly higher than

the function for which Tf is the maximized value. Therefore, T preserves monotonicity.
(c) Boundedness. From properties P1, it follows that the mapping T defines a max-

imization problem over the continuous and bounded function [F(ω�y) + βEv(y� z′))]
over the compact sets �i(ω�z) for i = {a�n}. Hence the maximum is attained. Since F
and v are bounded, Tv is also bounded.
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(d) Strict Concavity. Let f ∈ C ′′(Ω), where C ′′ is the set of bounded, continuous,
strictly concave functions on Ω. Since the convex combination of two strictly concave
functions is strictly concave, it is sufficient to show that Ti[C ′′(Ω)] ⊆ C ′′(Ω), where Ti is
defined by

Tiv= max
y∈�i(ω�z)

[
F(ω�y� z)+βEv(y� z′)]� i ∈ {a�n}�

Let ω0 �=ω1, θ ∈ (0�1), and ωθ = θω0 + (1 − θ)ω1. Let yj ∈ �i(ωj� z) be the maximizer of
(Tif )(ωj) for j = {0�1} and i= {a�n}, yθ = θy0 + (1 − θ)y1:

(Tif )(ωθ� z)≥ [
F(ωθ� yθ� z)+βEf (yθ� z′)]

> θ
[
F(ω0� y0� z)+βEf (y0� z

′)] + (1 − θ)[F(ω1� y1� z)+βEf (y1� z
′)]

= θ(Tf )(ω0� z)+ (1 − θ)(Tf )(ω1� z)�

The first inequality follows from yθ being feasible because of convex budget sets. The
second inequality follows from the strict concavity of f . Since ω0 and ω1 are arbitrary,
it follows that Tif is strictly concave, and since f is arbitrary, it follows that T [C ′′(Ω)] ⊆
C ′′(Ω).

Q.E.D.

LEMMA 4: The value function is C2 and the policy function C
1 differentiable.

PROOF: The properties of the choice set P1, of the return function P2, and the proper-
ties of the value function proven in (3) fulfill the assumptions of Santos’s (1991) theorem
on the differentiability of the policy function. According to the theorem, the value func-
tion is C2 and the policy function C1 is differentiable. Note that strong concavity of the
return function holds for CRRA utility, because of the arbitrary maximum we set for con-
sumption. Q.E.D.

LEMMA 5: The total savings S∗
i := b∗

i (ω�z) + q(z)k∗
i (ω�z) and consumption c∗

i , i ∈
{a�n}, are increasing in ω if r(z) is positive. In the adjustment case, total savings and con-
sumption are increasing in total resources Ra(z)= [q(z)+ r(z)]k+ bR(b�z)

π(z)
for any r(z).

PROOF: Define ṽ(S� z) := max{b�k|b+q(z)k≤S}Ev(b�k;z′) and define resources in the case
of no adjustment as Rn = r(z)k+bR(b�z)

π(z)
. Since v is strictly concave and increasing, so is ṽ

by the line of the proof of Lemma 3(d). Denote ϕ(z)= (1 − τ)( γ

1+γw(z)hN + Ih=0Π(z)).
Now we can (re)write the planning problem as

Va(b�k;z)= max
S≤ϕ(z)+Ra

[
u

(
ϕ(z)+ [

q(z)+ r(z)]k+ bR(b�z)
π(z)

− S
)

+βṽ(S� z)
]
�

Vn(b�k;z)= max
b′≤ϕ(z)+Rn

[
u

(
ϕ(z)+ r(z)k+ bR(b�z)

π(z)
− b′

)
+βEv(b′�k;z′)]�

Due to differentiability, we obtain the (sufficient) first-order conditions

∂u
(
ϕ(z)+Ra − S)

∂c
= β∂ṽ(S� z)

∂S
�

∂u
(
ϕ(z)+Rn − b′)

∂c
= β∂v

(
b′�k;z)
∂b′ �

(S7)
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Since the left-hand sides are decreasing in ω = (b�k) and increasing in S (respectively,
b′), and the right-hand side is decreasing in S (respectively, b′),

S∗
i =

{
qk′ + b′ if i= a�
qk+ b′� if i= n�

must be increasing in ω.
Since the right-hand side of (S7) is hence decreasing in ω, so must be the left-hand side

of (S7). Hence consumption must be increasing in ω. The last statement follows directly
from the same proof. Q.E.D.

B.3. Euler Equations

Denote the optimal policies for consumption, for bond holdings, and for capital as x∗
i ,

b∗
i , and k∗, i ∈ {a�n}, respectively. The first-order conditions for an inner solution in the

(non-) adjustment case read

k∗ : ∂u
(
x∗
a

)
∂x

q= βE
[
ν
∂Va

(
b∗
a�k

∗;z′)
∂k

+ (1 − ν)∂Vn
(
b∗
a�k

∗;z′)
∂k

]
� (S8)

b∗
a : ∂u

(
x∗
a

)
∂x

= βE
[
ν
∂Va

(
b∗
a�k

∗;z′)
∂b

+ (1 − ν)∂Vn
(
b∗
a�k

∗;z′)
∂b

]
� (S9)

b∗
n : ∂u

(
x∗
n

)
∂x

= βE
[
ν
∂Va

(
b∗
n�k;z′)
∂b

+ (1 − ν)∂Vn
(
b∗
n�k;z′)
∂b

]
� (S10)

Note the subtle difference between (S9) and (S10), which lies in the different capital
stocks k′ versus k in the right-hand side expressions.

Differentiating the value functions with respect to k and m, we obtain

∂Va(b�k;z)
∂k

= ∂u
[
x∗
a(b�k;z)]
∂x

(
q(z)+ r(z))�

∂Va(b�k;z)
∂b

= ∂u
[
x∗
a(b�k;z)]
∂x

R(b�z)

π(z)
�

∂Vn(b�k;z)
∂b

= ∂u
[
x∗
n(b�k;z)]
∂x

R(b�z)

π(z)
�

∂Vn(b�k;z)
∂k

= r(z)∂u
[
x∗
n(b�k;z)]
∂x

(S11)

+βE
[
ν
∂Va

[
b∗
n(b�k;z)�k;z′]

∂k
+ (1 − ν)∂Vn

[
b∗
n(b�k;z)�k;z′]

∂k

]

= r(z)∂u
[
x∗
n(b�k;z)]
∂x
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+βνE∂u
{
x∗
a

[
b∗
n(b�k;z)�k;z]�k;z′}

∂x

(
q
(
z′) + r(z′))

+β(1 − ν)E∂Vn
{[
b∗
n(b�k;z)�k;z]�k;z′}

∂k

such that the marginal value of capital in non-adjustment is defined recursively.
Now we can plug the second set of equations into the first set of equations and obtain

the Euler equations (in slightly shortened notation)

∂u
[
x∗
a(b�k;z)]
∂x

q(z)

= βE
[
ν
∂u

[
x∗
a

(
b∗
a�k

∗;z′)]
∂x

[
q
(
z′) + r(z′)] + (1 − ν)∂Vn

(
b∗
a�k

∗;z′)
∂k

]
�

(S12)

∂u
[
x∗
a(b�k;z)]
∂x

= βER
(
b∗� z′)
π

(
z′)

[
ν
∂u

[
x∗
a

(
b∗
a�k

∗;z′)]
∂x

+ (1 − ν)∂u
[
x∗
n

(
b∗
a�k

∗;z′)]
∂x

]
�

(S13)

∂u
[
x∗
n(b�k;z)]
∂x

= βER
(
b∗� z′)
π

(
z′)

[
ν
∂u

[
x∗
a

(
b∗
n�k;z′)]
∂x

+ (1 − ν)∂u
[
x∗
n

(
b∗
n�k;z′)]
∂x

]
�

(S14)

In words, when deciding between the liquid and the illiquid asset, the household compares
the one-period return difference between the two assets ER(b∗�z′)

π(z′) − E r(z′)+q(z′)
q(z)

, weighted
with the marginal utility under adjustment and the probability of adjustment, and the
difference between the return in the no adjustment case, ER(b∗�z′)

π(z′)
∂u[x∗

n(b
∗
a�k

∗;z′)]
∂x

, and the

marginal value of illiquid assets when not adjusting ∂Vn(b
∗
a�k

∗;z′)
∂k

. The latter reflects both
the utility derived from the dividend stream and the utility from occasionally selling the
asset. (We abstract from the nondifferentiability at b= 0 in this.)

B.4. Algorithm

The algorithm we use to solve for optimal policies is a version of the Hintermaier and
Koeniger’s (2010) extension of the endogenous grid method, originally developed by Car-
roll (2006).

It works iteratively until convergence of policies as follows. Start with some guess for
the policy functions x∗

a and x∗
n on a given grid (b�k) ∈ B×K. Define the shadow value of

capital:

β−1ψ(b�k;z) := νE
{
∂u

{
x∗
a

[
b∗
n(b�k� z)�k;z′]}
∂x

[
q
(
z′) + r(z′)]}

+ (1 − ν)E∂Vn
[
b∗
n(b�k� z)�k;z′]

∂k
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= νE
{
∂u

{
x∗
a

[
b∗
n(b�k� z)�k;z′]}
∂x

[
q
(
z′) + r(z′)]}

+ (1 − ν)E
{
∂u

{
x∗
n

[
b∗
n(b�k� z)�k;z′]}
∂x

r
(
z′)}

+ (1 − ν)E{
ψ

[
b∗
n(b�k� z)�k;z′]}�

Guess initially ψ= 0. Then iterate over the following steps:
Step 1. Solve for an update of x∗

n by standard endogenous grid methods using equation
(S14), and denote b∗

n(b�k;z) as the optimal bond holdings without capital adjustment.
Step 2. For every k′ on-grid, find some (off-grid) value of b̃∗

a(k
′;z) such that combining

(S13) and (S12) yields

0 = νE
{
∂u

[
x∗
a

(
b̃∗
a

(
k′� z

)
�k′;z′)]

∂x

[
q
(
z′) + r(z′)
q(z)

− R
(
b′� z′)
π

(
z′)

]}

+ (1 − ν)E
{
∂u

[
x∗
n

(
b̃∗
a

(
k′� z

)
�k′;z′)]

∂x

[
r
(
z′)

q(z)
− R

(
b′� z′)
π

(
z′)

]}

+ (1 − ν)E
[
ψ

(
b̃∗
a

(
k′� z

)
�k′;z′)

q(z)

]
�

Note well that Eψ takes the stochastic transitions in h′ into account and does not re-
place the expectations operator in the definition of ψ. If no solution exists, set b̃∗

a = B.
Uniqueness (conditional on existence) of b̃∗

a follows from the strict concavity of v.
Step 3. Solve for total initial resources by solving the Euler equation (S13) for x̃∗(k′� z),

such that

x̃∗(k′� z
)

= ∂u

∂x

−1{
βE

R
(
b∗� z′)
π

(
z′)

[
ν
∂u

{
x∗
a

[
b∗
a

(
k′� z

)
�k′;z′]}

∂x
+ (1 − ν)∂u

{
x∗
n

[
b∗
a

(
k′� z

)
�k′;z′]

∂x

]}
�

where the right-hand side expressions are obtained by interpolating x∗
a(b

∗
a(k

′� z)�k′� z′)
from the on-grid guesses x∗

a(b�k;z) and taking expected values with respect to z′.
This way we obtain total nonhuman resources R̃a(k

′� z) that are compatible with plans
(b∗(k′)�k′) and a consumption policy ˜̃x∗

a(R̃a(k
′� z)� z) in total resources.

Step 4. Since (consumption) policies are increasing in resources, we can obtain con-
sumption policy updates as follows. Calculate total resources for each (b�k) pair
Ra(b�k) = (q + r)k + bR(b)

π
and use the consumption policy obtained before to update

x∗
a(b�k� z) by interpolating at Ra(b�k) from the set {( ˜̃x∗

a(R̃a(k
′� z)� z)�Ra(k

′� z))|k′ ∈
K}.1

1If a boundary solution b̃∗(B) > B is found, we use the “n” problem to obtain consumption policies for
resources below b̃∗(B).
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Step 5. Update ψ: Calculate a new value of ψ using (S11), such that

ψnew(b�k� z)= βνE
{
∂u

{
x∗
a

[
b∗
n(b�k� z)�k;z′]}
∂x

[
q
(
z′) + r(z′)]}

+β(1 − ν)E
{
∂u

{
x∗
n

(
b∗
n(b�k� z)�k;z′)]
∂x

r
(
z′)}

+β(1 − ν)E{
ψold

[
b∗
n(b�k� z)�k;z′]}�

making use of the updated consumption policies.
Note that we wrote the algorithm in a general form that covers both Krusell–Smith equi-
libria, steady states, and first-order perturbations in aggregate dynamics. The difference
lies in specifying the prices r(z), q(z), and R(b�z)�π(z). In a Krusell–Smith equilibrium
these are given by the forecasting rules; in the steady state, prices are fixed; and in an ap-
proximation of the aggregate dynamics by first-order perturbation following Reiter (2002,
2009, 2010), current and future prices get perturbed and obtained as solution to a system
of linearized difference equations.

APPENDIX C: DYNAMIC PLANNING PROBLEM WITH TWO ASSETS AND LOGISTIC
DISTRIBUTION OF ADJUSTMENT COSTS

With logistically distributed adjustment costs, concavity of the value function is no
longer guaranteed, because ν will depend on (ω;z). If the function EV in equation (13)
is convex, then the policy functions will still be continuously differentiable and the value
function will be twice differentiable because the prerequisites of Lemmas 4 and 5 are still
fulfilled.

Let f (χ) be the density function of the adjustment costs. Since Va ≥ Vn, we can write

EV (ω;z)= Vn(ω;z)+
∫ Va(ω;z)−Vn(ω;z)

0

(
Va(ω;z)− Vn(ω;z)−χ)

f (χ)dχ�

In turn, if f (χ) > 0 for all χ > 0 (the adjustment cost distribution has unbounded sup-
port on R+), the derivative of EV w.r.t. ω takes the form

∂EV

∂ω
= ∂Vn

∂ω
+ ν∗(ω;z)

[
∂Va

∂ω
− ∂Vn

∂ω

]
�

In words, first-order conditions of a model with fixed adjustment probabilities and a model
with state-dependent adjustment probabilities are the same. We make use of this fact and
simply replace the state-independent adjustment probability by a guess for an adjustment
probability function in the algorithm described in Appendix B.4. We then update the
adjustment probabilities by making use of the closed-form solution to the expected ad-
justment costs under the logistic distribution assumption for χ when calculating the value
functions in iteration (n):

V (n)
a = u

(
x∗
a
(n)

) +βEV(n)
(
b∗
a
(n)�k∗(n);z′)�

V (n)
n = u

(
x∗
n
(n)

) +βEV(n)
(
b∗
n
(n)�k;z′)�

where

EV (n) = ν∗(n)V (n)
a + (

1 − ν∗(n))V (n)
n −AC(

ν∗(n);μχ�σχ
)
�
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where μχ and σχ are the mean and the scale of the logistic distribution

F(χ)= 1

1 + exp
{
−χ−μχ

σχ

} �

The adjustment probability can be updated after the two value functions have been cal-
culated for a given ν∗(ω�z) as

ν∗(n+1)(ω�z)= F[
V (n)
a (ω�z)− V (n)

n (ω�z)
]
�

Given the new adjustment probabilities, consumption and savings policies can be deter-
mined again using the endogenous grid method. The expected conditional adjustment
cost is given by

AC(ν;μχ�σχ)=
∫ F−1(ν)

0
χdF(χ)=

∫ ν

0
F−1(p)dp

=
∫ ν

0
μχ + σχ

[
logp− log(1 −p)]dp

= μχν+ σχ
[
ν logν+ (1 − ν) log(1 − ν)]�

Given that concavity of the value functions is not guaranteed, we check for monotonic-
ity of the derivatives of the value function and for uniqueness of the optimal portfolio
solution in the algorithm, implementing thereby a version of Fella’s (2014) algorithm,
and find that the solution turns out to be globally concave.

APPENDIX D: PRICE-LEVEL DETERMINACY

This appendix sketches in a more technical way than the main text the question of price-
level determinacy in our non-Ricardian setup. Making the argument in full is beyond the
scope of this paper, so we restrict ourselves to a setup with only bonds, no aggregate
shocks, and flexible prices. With flexible prices there is no output-inflation feedback, so
we can drop output as a determinant of government rules.

The equation that then determines the price level is the bond-market clearing condition
(see Woodford (1995)), which simplifies to the well known series of consumption Euler
equations under complete markets and a representative agent. Given that total output
is fixed under flexible prices, this market clearing condition, when substituted in for the
supply of bonds, simplifies to(

BtR
b
t /πt

B̄R̄b/π̄

)ρB
(
πt

π̄

)−γπ
= Bd

(
Θt;Rbt ;πt

)
B̄

� (S15)

Since in our model tax policy does not adjust, there is no direct feedback from govern-
ment policy to bond demand through household budgets, but only through goods/bonds
markets. Of course, the demand for bonds depends on the entire path of future prices
and wealth distributions (and insofar as our notation is sloppy). We can, however, use the
logic of a local approximation in aggregates (cf. Reiter (2002), a variant of which we use
to solve the model), and write the first-order expansion of (S15) as

ρB
(
B̂t + R̂bt − π̂t

) − γππ̂t = ζB(B̂t − π̂t)+ ζR
(
R̂bt+1 −Etπ̂t+1

)
�



SHOCKS TO HOUSEHOLD INCOME RISK 13

where the x̂ is a log deviation in a variable x from its steady-state value, and ζB�R are the
aggregate wealth and interest elasticities of savings. We approximate the true dynamics
assuming approximate aggregation, that is, that all changes in aggregate government debt
affect debt demand as if they were proportionally distributed according to the steady-state
distribution. This implies that any change in end-of-period t− 1 government debt, Bt , has
the same impact on total demand of liquid assets as has a change in beginning-of-period
real debt, B̂t − π̂t , through inflation and we do not need to model the dynamics of Θt

explicitly. Note that this is a simplifying assumption that we make only here to obtain
analytical results, but not in the actual solution of our model.

Inserting the Taylor rule and plugging in the laws of motion for bonds and nominal
rates, we obtain a system of three equations:

Etπ̂t+1 =
[
(1 − ρR)θπ + γπ

ζR

]
π̂t + ζB − ρB

ζR

(
B̂t − π̂t + R̂bt

) + ρRζR − ζB
ζR

R̂bt �

B̂t+1 = ρB
(
B̂t − π̂t + R̂bt

) − γππ̂t�
R̂bt+1 = ρRR̂

b
t + (1 − ρR)θππt�

which we can write in terms of total real outstanding government obligations Ôt = B̂t −
π̂t + R̂bt as

Etπ̂t+1 =
[
(1 − ρR)θπ + γπ

ζR

]
π̂t + ζB − ρB

ζR
Ôt + ρRζR − ζB

ζR
R̂bt �

EtÔt+1 = −
(
ζR + 1
ζR

γπ

)
π̂t +

(
ρB − ζB
ζR

+ ρB
)
Ôt + ζB

ζR
R̂bt �

R̂bt+1 = ρRR̂
b
t + (1 − ρR)θππt�

For government obligations, we can invoke a transversality condition to rule out explod-
ing paths. This means that if Ô explodes for Ô �= 0, Ô = 0 is the only solution. This directly
implies that π̂ = 0 because real beginning-of-period bonds and interest rates are prede-
termined.

For the special case of an interest rate peg, θπ = ρR = 0, and no active fiscal stabiliza-
tion, γπ = 0, this implies

Et(Ôt+1)=
(
ρB − ζB
ζR

+ ρB
)
Ôt�

such that the government obligations are stable whenever −1 < ρB−ζB
ζR

+ ρB < 1, which
implies local indeterminacy of the price level. If by contrast ρB−ζB

ζR
+ ρB > 1, then any

deviation from steady-state inflation leads to an explosive path of log real debt, and B̂t −
π̂t = 0 is the only solution to the system.

In a representative agent model, we have ζB = 1 and ζR ≈ 1
ξ
C̄

B̄
, which gives rise to fis-

cal theories of the price level (see Leeper (1991)), when households assume that primary
surpluses do not adjust when the real value of debt changes, ρB = 1 (“fiscal dominance”).
With incomplete markets, the elasticity of savings to wealth is strictly smaller than one,
ζB < 1, such that the critical value for ρB is also strictly less than 1. Therefore, we have that
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even when the government does make sure that future surpluses repay any level of gov-
ernment debt, the price level is still determinate, because households are not indifferent
about the paths of government debt. Yet, if government debt is “too” stable, in the sense
that debt reverts relatively fast to its steady-state level, ρB < ζB, indeterminacy still arises.

APPENDIX E: SOLVING THE MODEL WITH AGGREGATE SHOCKS

E.1. Local Approximation

Our model has a three-dimensional idiosyncratic state space with two endogenous
states. We experimented with the grid size for liquid and illiquid asset holdings as well
as for the process of productivity. Given that we focus on second moment changes, we re-
quire nh = 26 productivity states and find that with a log-spaced grid for assets, results are
no longer affected by grid size beyond nb = 80� nk = 80 points. This means that a tensor
grid contains nb × nk × nh = 166�400 points. This renders solving the model by perturb-
ing the histogram and the value functions on a tensor grid infeasible such that we cannot
apply a perturbation method without state-space reduction, as in Reiter (2002).

Instead, we develop a variant of Reiter’s (2009) method to solve heterogeneous agent
models with aggregate risk. We represent the dynamic system as a set of nonlinear differ-
ence equations, for which

EtF(Xt�Xt+1�Yt�Yt+1)= 0

holds, where the set of control variables is Yt = (Vt�
∂Vt
∂b
� ∂Vt
∂k
� Ỹt), that is, value functions

and their marginals with respect to k�b as well as some aggregate controls Ỹt such as
dividends, wages, and so forth. The set of state variables Xt = (Θt�R

b
t � st) is given by the

histogramΘt of the distribution over (b�k�h) and the aggregate statesRbt � st . In principle,
we can solve this system with Schmitt-Grohé and Uribe’s (2004) method as argued in Re-
iter (2002), but in practice the state space is too rich and the solution becomes numerically
infeasible and unstable.

Hence, we need to reduce the dimensionality of the system. We therefore first approxi-
mate value functions and their derivatives at all grid points around their value in the sta-
tionary equilibrium without aggregate risk, V SS(b�k�h), by a sparse polynomial P(b�k�h)
with parameters Ωt =Ω(Θt�R

b
t � st). For example, we write the value function as

V
(
b�k�h;Θt�R

b
t � st

)
/V SS(b�k�h)≈ P(b�k�h)Ωt�

Note the difference from a global approximation of the functions for finding the station-
ary equilibrium without aggregate risk. Here, we only use the sparse polynomial to cap-
ture deviations from the stationary equilibrium values, compared to Ahn, Kaplan, Moll,
Winberry, and Wolf (2017) and different from Winberry (2016) and Reiter (2009). We
define the polynomial basis functions in such a way that the grid points of the tensor grid
coincide with the Chebyshev nodes for this basis.

In the system F , we then use the Bellman equation to obtain Vt from Vt+1 on a tensor
grid and then calculate the difference of Ωt to the regression coefficients for the polyno-
mial that fits Vt(b�k�h)/V SS(b�k�h).

This reduces the number of variables in the difference equation substantially, but leaves
us still with too many state variables from the histogram at the tensor grid. Reiter (2010)
and Ahn et al. (2017) suggest using state-space reduction techniques to deal with this
issue. In continuous time, the state-space reduction can be done based on a Taylor ex-
pansion in time derivatives. In discrete time, there is no obvious basis for the state-space
reduction and the Jacobi matrices involved are substantially less sparse.
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Yet, we use Sklar’s theorem and write the distribution function in its copula form
such that Θt = Ct(Fbt �Fkt �Fht ) with the copula Ct and the marginal distributions for liq-
uid and illiquid assets and productivity Fb�k�ht . Now fixing Ct = C can break the curse of
dimensionality, reducing the number of state variables from nb × nk × nh = 166�400 to
nb + nk + nh = 186, as we now only need to perturb the marginal distributions.

Fixing the copula C to the copula from the stationary distribution, the approximation
does not impose any restriction on the stationary distribution when aggregate shocks are
absent, such that the approximation then becomes exact. Therefore, it is less restrictive
for the stationary state than assuming a parametric form for the distribution function. The
copula itself is obtained by fitting a cubic spline to the stationary distribution of ranks in
b, k, and h.

The idea behind this approach is that given the economic structure of the model, prices
only depend on aggregate asset demand and supply, as in Krusell and Smith (1998), and
not directly on higher moments of the joint distributions Θt and Θt+1. Our approach im-
poses no restriction on how the marginal distributions change, that is, how many more
or less liquid assets the portfolios of the xth percentile have. It only restricts the change
in the likelihood of a household being among the x% percent richest in liquid assets to
be among the y% percent richest in illiquid assets. We check whether the time-constant
copula assumption creates substantial numerical errors and find none by comparing it to
the Krusell and Smith (1998) solution. See Figure S1 for a comparison of the impulse
response functions (IRFs) for our baseline calibration.

In addition, we calculate the R2 statistics for the estimate C(Fbt+1�F
k
t+1�F

h
t+1) of distribu-

tion Θt+1,

R2 = 1 −

∫ [
dC

(
Fbt+1�F

k
t+1�F

h
t+1

) − dΘt+1

]2

∫
[dΘt+1]2

�

plugging in for Fb�k�ht+1 the linearized solutions H(Fb�k�ht �RBt � st) and for dΘt+1 the solution
from iterating the histogram forward given the policy functions. This yields a measure
of fit for our approximation of the distribution function by a fixed copula. Absent ag-
gregate shocks, the measure is 100% by construction. Given the solution technique, the
appropriateness of the fixed copula assumption is captured by the derivative ∂R2

∂xt
of the R2

statistics with respect to state variable xt . We find that this derivative is roughly 0�00019%
with respect to uncertainty, such that, extrapolating linearly, the R2 at 99�9999% remains
extremely high after a 1 standard deviation increase in uncertainty (a shock of size 0�54).

Finally, we check the quality of the linearized solution (in aggregate shocks) by solving
the household planning problem given the implied expected continuation values from
our solution technique but solving for the actual intratemporal equilibrium, as suggested
by Den Haan (2010). We simulate the economy over T = 1000 periods and calculate
the differences between our linearized solution and the nonlinear one. The maximum
difference is 0.45% for the capital stock and 1.66% for bonds, while the mean absolute
errors are substantially smaller; see Table SI.

E.2. Krusell–Smith Equilibrium

As an alternative to the solution method laid out above, we assume that households use
forecasting rules to predict future prices on the basis of a restricted set of moments, as in
Krusell and Smith (1997, 1998).
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TABLE SI

DEN HAAN (2010) STATISTICa

Absolute Error (in %) for

Price of Capital qt Capital Kt Inflation πt Real Bonds Bt

Mean 0.0310 0.1071 0.0359 0.4434
Max 0.1030 0.4543 0.2119 1.6634

aDifferences in percent between the simulation of the linearized solution of the model and a simulation in which we solve for the
actual intratemporal equilibrium prices in every period for t = {1� � � � �1000}; see Den Haan (2010).

Specifically, these rules “nowcast” inflation, πt , and capital price, qt , and forecast the
term [log(1 + πt+1)

Yt+1
Yt

] in the Phillips curve. These rules are used when calculating the
continuation values in the Bellman equation. We assume these functions to be log linear
in government debt, Bt , last period’s nominal interest rate, Rbt , the aggregate stock of
capital, Kt , average hit (denoted Ht below), and the uncertainty state, st (and st+1 for the
forecasting term).

We formulate the problem in terms of relative price nowcasts and inflation forecasts
such that we have a description of the conditional distributions of all future prices house-
holds expect. Note also that it is sufficient to write the problem in terms of price nowcasts
and the Phillips curve forecast, because given these, households can back out future state
variables describing aggregate quantities, {Kt+s�Bt+s}, from the government’s budget con-
straint and the capital supply function, and future nominal rates Rbt+s from the Taylor rule.

In detail, this means that when households knowKt ,Bt ,Rbt � st , andHt , they can back out
markups from the Phillips curve (16) using the stipulated rules for inflation in t and the
conditional inflation forecasts for t+ 1. Given this, they can calculate real wages and total
output. In turn, they know future government debt, Bt+1, from the government’s budget
constraint (18). The future nominal interest rate, Rbt+1, is pinned down by the Taylor rule
(17). Finally, from the nowcast for capital prices (20), households can determine the next
period’s capital stock Kt+1. Using these model-implied forecasts for Kt+1, Bt+1, Rbt+1, and
Ht+1, households can then forecast the next period’s inflation, capital prices and so forth,
conditional on shock realizations ad infinitum. The law of motion for average productivity
is given analytically by

logHt+1 := log
∫
hit+1 = 1

2
var(loghit+1)

= ρ2
h

1
2

var(loghit)+ 1
2
σ̄2
h exp(st)= ρ2

h logHt + 1
2
σ̄2
ε exp(st)�

The functional forms we use in the nowcasts/ forecasts of prices, letting the coefficients
depend on the uncertainty state (a caret denotes deviations from steady state), are

logπt = β1
π(st)+β2

π(st) log B̂t +β3
π(st) log K̂t

+β4
π(st)R̂

b
t +β5

πH
−1
t �

(S16)

logqt = β1
q(st)+β2

q(st) log B̂t +β3
q(st) log K̂t

+β4
q(st)R̂

b
t +β5

qH
−1
t �

(S17)
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log(1 +πt+1)

Yt+1

Yt

]
= β1

Eπ(st)+β2
Eπ(st) log B̂t +β3

Eπ(st) log K̂t

+β4
Eπ(st)R̂

b
t +β5

EπH
−1
t +β6

Eπ(st+1)�

(S18)

Whether these rules yield good nowcasts of prices depends on the asset-demand func-
tions, b∗

a�n and k∗. If these are sufficiently close to linear in human capital, h, and in
nonhuman wealth, b and k, at the mass of Θt , Bt and Kt will suffice and we can ex-
pect approximate aggregation to hold. For our exercise, the four endogenous aggregate
states, Rbt , Ht , Bt , and Kt , and the aggregate stochastic state st are sufficient to describe
the evolution of the aggregate economy.

Technically, finding the equilibrium is the same as in Krusell and Smith (1997), as we
need to find market clearing prices within each period. Concretely, this means that the
posited rules, (S16)–(S18), are used to solve for households’ policy functions. Having
solved for the policy functions conditional on the forecasting rules, we then simulate n
independent sequences of economies for t = 1� � � � �T periods, keeping track of the actual
distribution Θt . In each simulation, the sequence of distributions starts from the station-
ary distribution implied by our model without aggregate risk. We then calculate in each
period t the optimal policies for market clearing inflation rates and capital prices assum-
ing that households resort to the policy functions derived under rules (S16)–(S18) from
period t + 1 onward. Having determined the market clearing prices, we obtain the next
period’s distribution Θt+1. In doing so, we obtain n sequences of equilibria. The first 250
observations of each simulation are discarded to minimize the impact of the initial distri-
bution. We next re-estimate the parameters of (S16)–(S18) from the simulated data and
update the parameters accordingly. By using n = 20 and T = 750, it is possible to make
use of parallel computing resources and obtain 10�000 equilibrium observations. Subse-
quently, we recalculate policy functions and iterate until convergence in the forecasting
rules.

The posited rules, (S16)–(S18), approximate the aggregate behavior of the economy
fairly well. The equilibrium values for the parameters of the rules are given in Table SII.
The minimal within sample R2 is above 99%. The forecast performance is not perfect
because we need to force households to effectively approximate the process for log

∫
h by

a three-state Markov chain. This variable moves slowly and leads to small but persistent
low frequency errors.

E.3. Comparison of Results

Figure S1 compares the impulse response functions obtained from the Reiter method
solution to the nonlinear Krusell–Smith solution. The Krusell–Smith impulse response
functions are generated by linearly interpolating the policy functions, setting the uncer-
tainty state to exactly its expected path after a 1 standard deviation shock, that is, they are
obtained without simulation.

The impulse responses look qualitatively similar across the two methods. One should
take the results and hence the differences, however, with a grain of salt, as we need to
approximate the continuous aggregate states in the Krusell and Smith algorithm very
coarsely with three grid points each for Kt , Bt , Rbt , and Ht , and five grid points for st .
In addition, we need to decrease the points on the idiosyncratic assets grids to 40 each, as
the total number of nodes with nb×nk×nh×ns×nR×nB×nK×nH ≈ 16E(+6) is already
very large. This leads to an underestimation of the persistence of the uncertainty shock
and the slow moving average idiosyncratic productivity, which decreases the aggregate
effects on impact, but makes them somewhat more persistent.
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TABLE SII

LAWS OF MOTION FOR KRUSELL AND SMITHa

s1 s2 s3 s4 s5

Price of Capital logqt (R2: 99.38)
β1
q −1�65 −1�74 −1�84 −1�95 −2�16
β2
q −0�02 −0�02 −0�02 −0�02 −0�01
β3
q −0�28 −0�28 −0�28 −0�28 −0�28
β4
q −0�03 −0�03 −0�03 −0�03 −0�02
β5
q 1�90 1�90 1�90 1�90 1�90

Inflation logπt (R2: 99.95)
β1
π −9�65 −9�76 −9�85 −9�95 −10�09
β2
π −0�07 −0�06 −0�05 −0�04 −0�03
β3
π −0�05 −0�06 −0�06 −0�07 −0�08
β4
π −0�01 −0�01 −0�01 −0�01 −0�01
β5
π 9�96 9�96 9�96 9�96 9�96

Expectation Term [log(1 +πt+1)
Yt+1
Yt

] (R2: 99.68)
β1
Eπ −8�54 −8�62 −8�69 −8�77 −8�88
β2
Eπ −0�06 −0�05 −0�05 −0�04 −0�04
β3
Eπ −0�04 −0�04 −0�05 −0�05 −0�06
β4
Eπ −0�00 −0�01 −0�01 −0�01 −0�01
β5
Eπ 8�76 8�76 8�76 8�76 8�76

aFor readability, all values are multiplied by 100.

APPENDIX F: ESTIMATION OF THE STOCHASTIC VOLATILITY PROCESS FOR
HOUSEHOLD INCOME

F.1. Data

We estimate the income process based on the Survey of Income and Program Partici-
pation (SIPP) panels 1984–1987, 1990–1993, 1996, 2001, 2004, and 2008. We do not use
the 1988 and 1989 surveys because of their known deficiencies due to the survey design
and small sample size that resulted from budgetary constraints.

The SIPP panels provide monthly individual income data for up to 3 years (more in
the 2008 survey) for each household member for each wave. The waves we use span the
period 1983Q4–2013Q1. We constrain the sample to households with two married adults
whose head is between 30 and 55 years of age, and calculate for each household the
labor income after taxes and transfers using NBER TAXSIM. We aggregate income to
quarterly frequency and restrict the sample to households that supply at least 260 hours
of work (both spouses together) per quarter (50% of full-time work).

We then estimate the predictable part of log household income, based on age and edu-
cation dummies, and a linear quadratic term in age for each education level. Furthermore,
we control for time effects, ethnicity, and the number of dependent children. The resid-
uals from this regression form the basis of our subsequent analysis. We eliminate the top
and bottom 0.5% of the residuals from each age–quarter cell to remove outliers.

Then we construct a sequence of quarterly panels containing, for each household in the
panel, current residual income and two lags thereof. We use these data to calculate for
each quarter and age (expressed in quarters) the variance and the first two autocovari-
ances of residual income. We estimate the sampling variance–covariance of the empirical
variance–autocovariance estimates for each quarter and age cell by bootstrapping, where
we stratify by age and quarter.



SHOCKS TO HOUSEHOLD INCOME RISK 19

FIGURE S1.—Comparison of the Krusell–Smith versus the Reiter method. Notes: The liquidity premium is
Etqt+1+rt

qt
− Rbt

Etπt+1
. Impulse responses to a 1 standard deviation increase in the variance of income shocks. All

rates (dividends, interest, liquidity premium) are not annualized.

F.2. Estimation

Our estimation strategy uses the theoretical (autoco-) variances, ω2
0�j(c� t) for j =

0�1�2, as described in equation (4) in Section 2 and their sample counterparts, ac2
0�j(c� t)�

j = 0�1�2, to construct a quasi maximum likelihood (QML) estimator. It is only a quasi
maximum likelihood estimator, as we treat sampling error for the variance terms as if
they are normally distributed although they might not be. Let ψ denote the sampling
error. Then we have

ψj(c� t)=ω2
0�j(c� t)− ac2

0�j(c� t)� (S19)
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We estimate the covariance matrix of ψ, Σψ(c� t), by bootstrapping age–quarter strata.
With these terms in hand, we can specify the log pseudo-likelihood as

−2 logL=
∑
(c�t)∈S

ψ′(c� t)Σψ(c� t)−1ψ(c� t)+
∑
t∈T

(
εst

)2
/σ2

s + #T logσ2
s � (S20)

where S is the set of all cohort–quarter pairs we observe, that is, the cohorts 1959Q1–
2013Q1 (denoted by the quarter they turn 30) between 1983Q4 and 2013Q1, and T
is the set of quarters for which we estimate shocks, that is, 1976Q1–2013Q1. We force∑

t∈T ε
s
t = 0.

We directly estimate the shock series, εt , together with the parameters for the persistent
income shocks (ρh�ρs� σ̄p�σs), the transitory and permanent part, (στ�σμ�ρτ), and the
time trend (θ1� θ2). However, since the data contain only limited information on shocks
far before the sample starts, we set all shocks 8 years before the first sample year (i.e.,
before 1976Q1) to their unconditional mean, that is, to zero, and exclude them from the
calculation of the likelihood. Eight years correspond roughly to the half-life of income
shocks, − log 1/2

logρh
≈ 34 quarters, and thus twice the half-life of deviations in income vari-

ances.

F.3. Bootstrapped Standard Errors

Since asymptotic standard errors might be misleading, we bootstrap the standard er-
rors for our estimates. Yet, bootstrapping the estimator is not entirely trivial. The errors
ψ(c� t) are heteroscedastic. Cells with more information and more income inequality will
have higher sampling variation in the (autoco-) variances of income. What is more, boot-
strapping the microdata to capture sampling error alone also does not suffice, since the
sampling uncertainty also regards the time period we sampled, not only the individuals in
the sample.

Therefore, we proceed as follows to obtain bootstrapped standard errors for Table 1.
We draw b= 1� � � � �B bootstrap samples of shocks {εst�b∗}b=1���B

t∈T from the estimated shock
series {ε̂st }t∈T . We then feed the shocks through the model under the estimated parame-
ters to obtain bootstrapped theoretical autocovariances ω0�j(c� t)

∗
b

for b = 1� � � � �B. We
then use a wild bootstrap using a Rademacher distribution (see Davidson and Flachaire
(2008)) for ν∗ to draw from the estimated sampling errors ψ̂j(c� t) generating the boot-
strapped sampling errors

ψj
∗
b
(c� t)= ν∗

b(c� t)ψ̂j(c� t)�

that is, we draw the entire vector of measurement error for all three autocovariances for
a cohort–year cell. We then generate the resampled data to re-estimate the parameters
and shocks from

ac2
0�j

∗
b
(c� t)=ω0�j

∗
b
(c� t)+ψj∗b(c� t)�

This leaves us with B samples from which to estimate parameters and shocks. To calculate
the standard deviation for each individual income risk shock εst , we subtract the actual
value of the shocks εst

∗
b in each single bootstrap replication from the estimated shock

value for that bootstrap.
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TABLE SIII

PARAMETER ESTIMATESa

ρh ρs σ̄ σs
0.979 0.839 0.059 0.539
(0.060) (0.065) (0.029) (0.097)

ρτ στ σμ θ1 θ2

0.339 0.115 0.271 3.385 −4�401
(0.009) (0.002) (0.005) (0.999) (1.280)

aBootstrapped standard errors are given in parentheses. Time trend parameters are estimated coding the time 1959Q1–2013Q1 as
−1� � � � �1. The estimate for the average uncertainty σ̄ includes the average time–trend effect for 1983–2013.

F.4. Results

Table SIII summarizes the estimated parameter values. The estimated income risk and
income risk shocks have been displayed in Section 2. There is a positive but decreasing
trend in income risk. We take this trend into account in our model by including the aver-
age trend term in the baseline uncertainty.

APPENDIX G: WEALTH DISTRIBUTION, ASSET CLASSES, AND OTHER AGGREGATE
VARIABLES

G.1. Data From the Flow of Funds

We can map our definition of liquid assets to the quarterly Flow of Funds (FoF), Ta-
ble Z1. The financial accounts report the aggregate balance sheet of the U.S. household
sector (including nonprofit organizations serving households) and are used in our analysis
to quantify changes in the aggregate ratio of net liquid to net illiquid assets on a quarterly
basis. Net liquid assets are defined as total currency and deposits, money market fund
shares, various types of debt securities (Treasury, agency backed, government sponsored
enterprise (GSE) backed, municipal, corporate, and foreign), loans (as assets), and total
miscellaneous assets net of consumer credit, depository institution loans not elsewhere
classified, and other loans and advances.

Net illiquid wealth is composed of real estate at market value, life insurance reserves,
pension entitlements, equipment and nonresidential intellectual property products of
nonprofit organizations, proprietors’ equity in noncorporate business, corporate equities,
and mutual fund shares subtracting home mortgages as well as commercial mortgages.
The Flow of Funds computes proprietors’ equity in noncorporate business as the sum of
all capital expenditures and financial assets of that business minus its liabilities. Therefore,
and this is in line with our assumption of nontradable pure profits, it does not contain any
goodwill.

G.2. Data From the Survey of Consumer Finances

We use 11 waves of the Survey of Consumer Finances (SCF, 1983–2013) to calibrate
our model and to compare the cross-sectional implications of our model with the data.

Net liquid assets are classified as all households’ savings and checking accounts, call
and money market accounts (incl. money market funds), certificates of deposit, all types
of bonds (such as savings bonds, U.S. government bonds, Treasury bills, mortgage-backed
bonds, municipal bonds, corporate bonds, and foreign and other tax-free bonds), and
private loans net of credit card debt.
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TABLE SIV

HOUSEHOLD PORTFOLIO COMPOSITIONa

Moments Model Data

Fraction with b < 0 0.16 0.16
Fraction with k > 0 0.88 0.89
Fraction with b≤ 0 and k> 0 0.15 0.14
Gini liquid wealth 0.84 0.86
Gini illiquid wealth 0.79 0.79
Gini total wealth 0.78 0.78

aAverages over the 1983–2013 SCFs using the respective cross-sectional sampling weights. Households whose liquid asset holdings
fall below minus half quarterly average income are dropped from the sample. Ratios of liquid to illiquid wealth are estimated by
first estimating local linear functions that map the percentile of the wealth distribution into average liquid and average illiquid asset
holdings for each year, then averaging over years and finally calculating the ratios. Survey of consumer finances 1983–2013: Married
households with head between 30 and 55 years of age.

All other assets are considered to be illiquid. Most households hold their illiquid wealth
in real estate and pension wealth from retirement accounts and life insurance policies.
Furthermore, we identify business assets, other nonfinancial and managed assets, and
corporate equity in the form of directly held mutual funds and stocks as illiquid, because
a large share of equities owned by private households is not publicly traded or widely
circulated (see Kaplan, Moll, and Violante (2017)). From gross illiquid asset holdings, we
subtract all debt except for credit card debt.

We exclude cars and car debt from the analysis altogether. What is more, we exclude
from the analysis households that hold massive amounts of credit card debt such that
their net liquid assets are below −1 month of average household income, which is the
debt limit we use in our model. Moreover, we exclude all households whose equity in
illiquid assets is below the negative of 1 average annual income. This excludes roughly
5% of U.S. households on average from our analysis and amounts to a debt limit on
unsecured debt of $9273 U.S. in 2013, for example. Table SIV displays some key statistics
of the distribution of liquid and illiquid assets in the population.

We estimate the asset holdings at each percentile of the net worth distribution by run-
ning a local linear regression that maps the percentile rank in net worth into the net
liquid and net illiquid asset holdings. In detail, let LIit and ILit be the value of liquid
and illiquid assets of household i in the SCF of year t, respectively. Let ωit be its sam-
ple weight. Then we first sort the households by total wealth (LI + IL) and calculate the
percentile rank of a household i as prcit =

∑
j<i ωjt/

∑
j ωjt . We then run, for each per-

centile, prc = 0�01�0�02� � � � �1, a local linear regression. For this regression, we calculate

the weight of household i aswit =
√
φ( prcit−prc

h
)ωit , whereφ is the probability density func-

tion of a standard normal and h= 0�05 is the bandwidth. We then estimate the liquid and
illiquid asset holdings at percentile prc at time t as the intercepts λLI�IL(prc� t) obtained
from the weighted regressions for year t:

witLIit = λLI(prc� t)wit +βLI(prc� t)(prcit − prc)wit + ζLI
it � (S21)

witILit = λIL(prc� t)wit +βIL(prc� t)(prcit − prc)wit + ζIL
it � (S22)

where ζ is an error term.
We can use these estimates, for example, to calculate average portfolio liquidity at time

t as
∑

prc λ
LI(prc� t)/

∑
prc λ

IL(prc� t). Figure S2 compares the percentage deviations of
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FIGURE S2.—Percentage deviation of portfolio liquidity from mean in SCF and FoF.

these average portfolio liquidity measures from their long-run mean and to those ob-
tained from the FoF data for the years 1983–2013. The figure reveals that both data
sources capture the very similar changes in the liquidity ratio over time.

However, it is important to note that the SCF, like many comparable surveys on
wealth, systematically underestimates gross financial assets, and, consequently, the av-
erage liquid-to-illiquid assets ratio in the FoF is roughly 20%, about twice as high as in
the SCF. This is because households are more likely to underreport their financial wealth,
and especially deposits and bonds, due to a larger number of potential asset items. In
contrast, they tend to overestimate the value of their real estate and equity (compare also
Table C.1 in Kaplan, Moll, and Violante (2017)).

G.3. Other Aggregate Data

In Section2, we depicted the impulse response functions of the log of real GDP, real per-
sonal consumption, real private investment, real wages, and the real government deficit.
These variables are taken from the national accounts data provided by the Federal Re-
serve Bank of St. Louis (series GDPMC1, PCECC96, GPDIC1, GCEC1, AHETPI) and
data on government deficits from the NIPA tables for the United States (Table 3.1, BEA).

Data on house prices, Treasury bill returns, and the liquidity premium stem from the
same source. We use the secondary market rate of the 3-month Treasury bill (DTB3) as a
measure for the short-term nominal interest rate. House prices are captured by the Case–
Shiller S&P U.S. National Home Price Index (CSUSHPINSA) divided by the all-items
CPI (CPIAUCSL). The liquidity premium we construct from nominal house prices, the
CPI for rents, and the rate on 3-month Treasuries. We measure the liquidity premium as
the excess realized return on housing. This is composed of the rent–price ratio in t, rh�t

qhouse
t

plus the quarterly growth rate of house prices,
qhouse
t+1
qhouse
t

in t + 1, over the nominal return on

riskless 3-month Treasury bills Rbt (converted to a quarterly rate):

LPt = rh�t

qhouse
t

+ qhouse
t+1

qhouse
t

− (
Rbt

) 1
4 � (S23)

Rents are imputed on the basis of the CPI for rents on primary residences paid by all
urban consumers (CUSR0000SEHA) fixing the rent–price ratio in 1981Q1 to 4%.
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The Solow residual series we use is taken from the latest version (date of retrieval
2017-11-01) of Fernald’s raw TFP series (Fernald (2012)). We construct an index from
the reported growth rates and use the log of this index.

APPENDIX H: DETAILS ON THE EMPIRICAL ESTIMATES OF THE RESPONSE TO
SHOCKS TO HOUSEHOLD INCOME RISK

H.1. Local Projection Method

In Figure 3 of Section 2, we presented impulse response functions based on local pro-
jections (see Jordà (2005)). This method does not require the specification and estimation
of a vector autoregressive model for the true data-generating process. Instead, in the spirit
of multi-step direct forecasting, the impulse responses of the endogenous variables X at
time t + j to uncertainty shocks, εst , at time t are estimated using horizon-specific single
regressions, in which the endogenous variable shifted ahead is regressed on the current
normalized uncertainty shock εst , a time trend, lagged income risk st−1, and controls Xt−1.
These controls are specified as the return on T-bills, Rbt−1, and the log of GDP, Yt−1, of
consumption Ct−1, of investment It−1, of TFP, At−1, and of real wages, wt−1, as well as the
GDP share of the government deficit �Bt−1/Yt−1:

Xt+j = βj�0 +βj�εεst /σs +βj�t t +βj�XXt−1 +βj�sst−1 + νt+j� j = 0� � � � �12� (S24)

Hence, the impulse response function βj�ε is estimated just as a sequence of projections
of Xt+j in response to the standardized shock εst /σs, local to each forecast horizon j =
0� � � � �12 quarters. We focus on the post-Volcker disinflation era and use aggregate time
series data from 1983Q1 to 2016Q2.

H.2. Alternative Identification Schemes

An important assumption made for employing the local projection method, which di-
rectly regresses the shocks on the endogenous variable of interest, is that the identified
uncertainty shocks εst obtained from SIPP data are purely exogenous and orthogonal to
all other structural shocks νt+j in the economy.

While this method allows for an identification that is fully consistent with our model,
where all uncertainty fluctuations are exogenous, this identification strategy is arguably
not very conservative. Therefore, we present additional evidence based on two alternative
identification schemes.

Our baseline scheme can be understood as ordering income risk first in a Cholesky-
identified structural vector autoregression (SVAR). Our first robustness check therefore
takes the opposite extreme assumption and assumes that none of the variables in Figure 3
except for income risk itself reacts to an income risk shock, that is, we estimate

Xt+j = βj�0 +βj�εεst /σs +βj�t t +βj�XtXt +βj�Xt−1 Xt−1 +βj�sst−1 + νt+j�
j = 0� � � � �12�

(S25)

Results can be found in Figures S3 and S4. The estimated output response is slightly
smaller and all responses are somewhat more delayed as, by construction, the immediate
impact is zero for output and its components, for measured productivity, real wages, and
the government’s policy variables. Still we find that the liquidity of household portfolios



SHOCKS TO HOUSEHOLD INCOME RISK 25

FIGURE S3.—Empirical response to household income risk shock: alternative identification. Estimated re-
sponse of Xt+j� j = 0� � � � �12, where Xt = [Yt�Ct� It�At��Bt/Yt�wt�R

b
t ], to the estimated shocks to household

income risk, εst . The regressions control for the current and lagged state of the economy, Xt and Xt−1, respec-
tively, and lagged levels of income risk st−1. The nominal rate is the 3-month T-bill rate. Bootstrapped 66%
confidence bounds are shown in gray (block bootstrap).

increases on impact. The results for house prices and the liquidity premium are slightly
more mixed.

Our second alternative identification scheme is somewhat in-between the baseline and
the first alternative scheme. In line with the practice to estimate various small SVARs,
we estimate the local projection, controlling for all lagged variables and only for current
output and the current value of the variable of interest. This is a more parsimonious speci-

FIGURE S4.—Response of household portfolios, house prices, and the liquidity premium to household in-
come risk shock: alternative identification. Estimated response of the liquidity of household portfolios, the
price of houses (Case–Shiller S&P Index), and the difference between the return on housing and the nominal
rate (liquidity premium) to income risk using local projections. The set of control variables is as in Figure S3.
Bootstrapped 66% confidence bounds are shown in gray (block bootstrap).
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FIGURE S5.—Empirical response to household income risk shock: alternative identification. Estimated re-
sponse of Xt+j� j = 0� � � � �12, where Xt = [Yt�Ct� It�At��Bt/Yt�wt�R

b
t ], to the estimated shocks to household

income risk, εst . The regressions control for current output, the current value of the variable of interest, and the
lagged state of the economy, Xt , Yt , and Xt−1, respectively, and lagged levels of income risk st−1. The nominal
rate is the 3-month T-bill rate. Bootstrapped 66% confidence bounds are shown in gray (block bootstrap).

fication, but it comes at the cost of identifying a slightly different shock in each regression.
Results can be found in Figures S5 and S6. Also here results are very much in line with
our baseline treatment of the data.

FIGURE S6.—Response of household portfolios, house prices, and the liquidity premium to household in-
come risk shock: alternative identification. Estimated response of the liquidity of household portfolios, the
price of houses (Case–Shiller S&P Index), and the difference between the return on housing and the nominal
rate (liquidity premium) to income risk using local projections. The set of control variables is as in Figure S5.
Bootstrapped 66% confidence bounds are shown in gray (block bootstrap).
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TABLE SV

BUSINESS CYCLE STATISTICS DATA/MODELa

GDP C I Deficit

Time Series Standard Deviation of . . . (%)
Data 1.38 0.98 6.28 1�33
Model TFP 1.38 0.75 6.28 1�33
Model uncertainty 0.29 0.63 1.33 0�52

Correlation With GDP
Data 1.00 0.92 0.92 −0�76
Model TFP 1.00 0.87 0.96 −0�86
Model uncertainty 1.00 1.00 0.74 0�08

aReal GDP, consumption (C), and investment (I) are in logs. Net government savings (deficit) is given as a fraction of GDP. All
data are Hodrick–Prescott (HP) filtered with λ= 1600. The model refers to the baseline model with TFP or income risk shocks only.

APPENDIX I: UNCONDITIONAL BUSINESS CYCLE STATISTICS

Table SV reports unconditional business cycle statistics for the quarterly U.S. data we
use in the empirical sections and for our model.

APPENDIX J: MODEL EXTENSIONS

J.1. Importance of Illiquid Assets

Even when all assets are liquid, households will decrease their consumption demand for
precautionary motives when income uncertainty rises. We have seen in Section 3 that the
presence of illiquid assets introduces a portfolio adjustment in response to the uncertainty
shock, which augments the increase in demand for liquid assets.

To show the importance of the portfolio adjustment channel also in our full model,
we solve a version of the model where all assets are liquid. In this case, the household
portfolio position between the two assets is indeterminate in the steady state as long as
the expected returns of both assets are equal,

Et

[
rt+1 + qt+1

qt

]
=Et

[
Rbt+1

πt+1

]
� (S26)

and in equilibrium they must be equal for households to be willing to hold a positive
amount of both assets.

Since our solution method linearizes the problem in the presence of aggregate shocks,
the portfolio problem remains indeterminate. Therefore, we assume that all households
hold the same bond-to-capital ratio, which is in the aggregate determined by (S26) and by
the supply of government bonds.

We recalibrate the discount factor to match again the capital-to-output and bond-to-
capital ratio as our baseline model. We also recalibrate the aggregate capital adjustment
cost parameter to match again the relative investment volatility in response to TFP shocks
but keep all other household, policy, and technological parameters as in our baseline.

The response to an income risk shock changes drastically as Figure S7 shows. Output
falls much less than in our baseline, but most important, we get an investment boom. The
level of price stickiness is not sufficiently strong to drive down the capital return such that,
as central bank interest rates fall, the capital stock and hence investment must go up in
equilibrium to equate expected capital and bond returns.
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FIGURE S7.—Aggregate response to household income risk with liquid capital. Notes: The liquidity pre-
mium is Eqt+1+rt

qt
− Rbt

Etπt+1
. Impulse responses to a 1 standard deviation increase in the variance of income shocks.

All rates (dividends, interest, liquidity premium) are not annualized.

J.2. The Role of Price Stickiness

Next we assess the importance of price stickiness for our results. For this purpose, we
set the price adjustment costs to (virtually) zero. We find that the output effects of income
risk shocks are negligible in this specification; see Figure S8. The income risk shock in our
model creates a slump in private demand, but without any price stickiness, this is undone
by price-level movements. Inflation falls and, given the Taylor rule, the real interest rate
on liquid assets falls too. Households then shift their portfolios back to the illiquid asset
that has a higher relative return now. In summary, price stickiness is essential for the
negative output movement that we find.
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FIGURE S8.—Aggregate response to household income risk shock with flexible prices. Notes: The liq-
uidity premium is Eqt+1+rt

qt
− Rbt

Etπt+1
. Impulse responses to a 1 standard deviation increase in the vari-

ance of income shocks. All rates (dividends, interest, liquidity premium) are not annualized. Columns (a),
γπ = 1�5�γT = 0�5075�ρB = 0�86� θπ = 1�25�ρR = 0�8; columns (b), γπ = 0�γT = 0�ρB = 1� θπ = 0�ρR = 1;
columns (c), γπ = 0�γT = 0�ρB = 0�86� θπ = 1�25�ρR = 0�8.

The exact path of aggregates depends on the fiscal and monetary rules in place. With
no fiscal response to inflation, the path of aggregates is very similar to that under perfect
monetary stabilization; see Figure S8, columns (b) and (c). When government spending
increases in response to falling inflation, the effect on and through the real amount of
government debt is different; see Figure S8, column (a). Outstanding government debt
increases more persistently and crowds out private consumption and investment on im-
pact.
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FIGURE S9.—Aggregate response to household income risk shock without stabilization. Notes: The liquidity
premium is Eqt+1+rt

qt
− Rbt

Etπt+1
. Impulse responses to a 1 standard deviation increase in the variance of income

shocks. All rates (dividends, interest, liquidity premium) are not annualized. All stabilization policy parameters
are set to zero; θπ = 0, γπ = 0, γT = 0, and ρB = 1.

J.3. Response of the Model Without Stabilization

To capture what happens if governments do not stabilize (e.g., at the zero lower bound
(ZLB)), we produce the impulse responses for our baseline calibration with an interest
rate peg and no fiscal stabilization; see Figure S9. Output, consumption, and investment
fall drastically.
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J.4. Introducing Asset-Backed Securities

A potential limitation of our model is that it does not include mortgages—an important
way for the banking sector to create liquid assets out of illiquid investments. To capture
the effect of mortgages, we assume that any newly created capital good is partly credit
financed, that is, any investment creates an illiquid asset and a liquid asset-backed security
at the same time. Let ζ be the number of bonds issued as mortgages per unit of capital.
We assume that the fraction ζ cannot be adjusted by the household sector. However,
households can buy back the mortgages originated from “their” illiquid assets.

For this purpose, we model a wedge R between the borrowing and the lending rate on
mortgages due to the costs of intermediation. The rate paid to lenders is the central bank’s
interest rate Rbt , and the rate borrowers pay is Rbt + R. This means that, net of the pay-
ments on the asset-backed securities, the dividend stream from illiquid assets decreases
to rt = FK(K�N) − δ − ζ(Rbt + R). However, the price of illiquid assets also decreases,
which now is qt = 1 − ζ +φKt+1−Kt

Kt
in equilibrium, because the producer of each unit of

illiquid assets can sell ζ units of asset-backed securities for each unit of the illiquid capital
good in addition to that good itself.

To allow households to adjust the extent to which they effectively draw their mortgages,
we assume that the borrowing wedge does not apply to securities backed by assets the
household itself owns. This means that the household now faces three marginal interest
rates on liquid assets, such that the total payout on liquid assets is

repayment =

⎧⎪⎨
⎪⎩
Rbt (bit − ζkit)+ ζkit

(
Rbt +R)

if bit ≥ ζkit�(
Rbt +R)

bit if 0< bit < ζkit�(
Rbt +R)

bit if bit < 0�

The highest interest rate applies to unsecured borrowing b < 0. An intermediate inter-
est rate applies if the household buys back securities originated from the illiquid asset it
owns, 0< b< ζk, that is, that the household saves by paying back a mortgage. The lowest
interest rate applies when the household accumulates liquid assets beyond those it has
originated.

The bond market equilibrium condition then reads

ζKt+1 +Bt+1

=
∫ ∫ ∫

b≥B

[
ν∗b∗

a

(
b�k�h;qt�πt�Rbt+1

)
+ (

1 − ν∗)b∗
n

(
b�k�h;qt�πt�Rbt+1

)]
dΘt(b�k�h)�

(S27)

where ζKt+1 is the amount of asset-backed securities in circulation. The market clearing
condition for illiquid assets remains unchanged.

We have recalibrated the amount of government debt to keep the average portfolio
liquidity unchanged when not counting securities held by the issuer. The ratio of mort-
gage liabilities of households to their net worth in the Flow of Funds (Table Z1-B.101) is
roughly 10%. We set ζ = 10% and calibrate R= 1% p.a.

Figure S10 shows the impulse responses for our baseline calibration with asset-backed
securities (ABS). Compared to our baseline scenario, the recessionary impact of uncer-
tainty is larger, because the rebalancing of portfolios implies a decline in the supply of
liquid assets as households reduce the stock of capital.
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FIGURE S10.—Aggregate response to household income risk with asset-backed securities. Notes: The liq-
uidity premium is Eqt+1+rt

qt
− Rbt

Etπt+1
. Impulse responses to a 1 standard deviation increase in the variance of

income shocks. All rates (dividends, interest, liquidity premium) are not annualized.

J.5. Response of the Model to TFP Shocks

Given our solution technique, it is straightforward to extend the model by other shocks.
For our calibration, we use an extension with time-varying total factor productivity in pro-
duction, such that Yt =AtF(Kt�Lt), where At is total factor productivity and follows an
autoregression (AR(1)) process in logs with a persistence of 0.95 and a standard devia-
tion of 0.00965. We use this model variant to calibrate capital adjustment costs. Figure S11
shows the IRFs to a TFP shock.
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FIGURE S11.—Aggregate response to a TFP shock. Notes: The liquidity premium is Etqt+1+rt
qt

− Rbt
Etπt+1

. Im-
pulse responses to a 1 standard deviation increase in TFP. All rates (dividends, interest, liquidity premium) are
not annualized.

APPENDIX K: INDIVIDUAL CONSUMPTION RESPONSES TO PERSISTENT AND
TRANSITORY INCOME SHOCKS

For the model to provide a useful framework for welfare analysis, it is important that
the model replicates the empirical evidence on consumption responses to persistent and
transitory income shocks (in partial equilibrium). For this purpose, we consider the av-
erage consumption elasticity to a persistent increase in income and an increase in liquid
assets proportional to income (transitory income shock). These two elasticities are key
to understanding the consumption smoothing behavior of an incomplete markets model;
see Kaplan and Violante (2010) and Blundell, Pistaferri, and Preston (2008). Table SVI
provides these statistics for our model.
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TABLE SVI

CONSUMPTION SMOOTHING IN MODEL AND DATAa

Elasticity of Consumption to Transitory and Persistent Income Shocks

Data Model

Transitory income change 0.05 0.05
Persistent income change 0.43 0.44

aData correspond to Kaplan and Violante (2010).

The model replicates the fact that transitory income shocks are well insured, while per-
sistent income shocks are much less insured. Given the below unit-root autocorrelation
of persistent income, our model predicts persistent income shocks to be somewhat better
insured in comparison to assuming permanent shocks.

APPENDIX L: ROBUSTNESS CHECKS

For the risk aversion parameter and the Frisch elasticity of labor supply, we take stan-
dard values from the literature as there is no direct counterpart in the data. To account
for this calibration strategy, we check the robustness of our findings with respect to the as-
sumed parameter values. We do so by varying one parameter at a time while recalibrating
to match the moments of Table 3 by adjusting the discount factor, the mean and variance
of the distribution of adjustment costs, and the borrowing penalty.

We find our results are qualitatively robust to all the considered parameter variations.
The impulse response functions for output, consumption, investment, and the liquidity
premium are displayed in Figure S12. When we reduce the risk aversion, households do
not decrease investment demand as much as in the baseline and, conversely, the liquid-
ity premium increases less. The illiquidity of capital is less important to households. An
increase in the inverse Frisch elasticity is very similar to an increase in risk aversion. As
can be seen from the household budget constraint, when labor supply is maximized out,
the lower is the inverse Frisch elasticity, the less do the resources the household has for
composite consumption fluctuate with productivity h. The recalibration of the illiquidity
of capital only partially offsets this, because the return movements through central bank
policy become relatively more important when households are effectively less affected by
changes in income risk (either because they are less risk averse or better insured through
the labor market).

Furthermore, we set the discount factor used in the firms’ maximization problem to
the median stochastic discount factor for entrepreneurs, taking into account that an en-
trepreneur household becomes a worker household with a certain probability. The re-
sulting discount factor is roughly 77% quarterly. Such an extreme discounting has some
impact on results, making the recessionary effects of income risk larger because future ex-
pected deflation does help less to stabilize output, hence rendering monetary policy with
interest rate smoothing less effective.

As a second robustness check, we vary the utility costs of portfolio adjustment. First,
we make the adjustment probability more reactive to the value gained from adjustment
by lowering the variance of the logistic distribution from which households draw the ad-
justment cost. Second, we consider a case of almost fixed adjustment probabilities by
increasing the variance of the logistic distribution drastically. Third, we lower the mean of
the logistic distribution such that the average adjustment probability goes up to 20% (and
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FIGURE S12.—Robustness A: Aggregate response to household income risk shock. Notes: The liquidity pre-
mium is Eqt+1+rt

qt
− Rbt

πt+1
. Impulse responses to a 1 standard deviation increase in the variance of income shocks.

All rates (dividends, interest, liquidity premium) are not annualized. The asterisk (*) indicates recalibration to
match the moments of Table 3 by adjusting the discount factor, the mean and variance of the distribution of
adjustment costs, and the borrowing penalty.

the average portfolio liquidity falls). All three cases show results qualitatively similar to
our baseline; see Figure S13.

Making adjustment more state dependent yields quantitatively very similar results: the
investment response is only slightly muted. When adjustment probabilities are fully exoge-
nous, the investment response is slightly larger. When the illiquid asset is more liquid, the
effect of a shock to income risk becomes stronger in the short run, but also shorter lived.
The economic intuition seems to be as follows. When the illiquid asset is very liquid, the
demand for liquid assets becomes smaller, but also less elastic to the return differences
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FIGURE S13.—Robustness B: Aggregate response to household income risk shock. Notes: The liquidity
premium is Etqt+1+rt

qt
− Rbt

Etπt+1
. Impulse responses to a 1 standard deviation increase in the variance of income

shocks. All rates (dividends, interest, liquidity premium) are not annualized.

between the assets. Therefore, the central bank’s intervention that cuts rates can stabilize
less. The supply of liquid assets itself becomes more important, but with a small stock
of outside liquidity, the same relative growth in government bonds stabilizes aggregate
demand less. However, as soon as the stock of liquid funds has increased sufficiently,
households start to invest in illiquid assets again.
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