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In these online Appendices, we (i) provide formal proofs of Proposition 1–5; (ii) de-
scribe the iterative algorithm and solution approximation methods for calculating the
marriage market equilibrium; (iii) describe our empirical tax and transfer schedule im-
plementation; (iv) describe the set of targeted estimation moments; (v) present addi-
tional tables and simulation results.

APPENDIX A: PROOF OF PROPOSITION 1

WE ASSUME that the distribution Gij(w�X�ε) is absolutely continuous and twice contin-
uously differentiable. The individual utility functions ui(�i� qi�Q;Xi) and uj(�j� qj�Q;Xj)
are assumed increasing and concave in �, q, and Q, and with limqi→0 u

i(�i� qi�Q;Xi) =
limqj→0 u

j(�j� qj�Q;Xj)= −∞. To proceed, we define the excess demand function as

EDij(λ)= μdij
(
λi

) −μsij
(
λj

)
� ∀i= 1� � � � � I� j = 1� � � � � J�

Here and in what follows, we suppress the dependence of the excess demand functions
(and other objects) on the tax system T . Equilibrium existence is synonymous with the
excess demand for all types being equal to zero at some vector λ∗ ∈ [0�1]I×J , that is,
EDij(λ

∗) = 0, ∀i� j. Equilibrium uniqueness implies that there is a single vector that
achieves this.1 Under our regularity conditions, we have that: (i) Ui

ij(λij) and Uj
ij(λij)

are continuously differentiable in λij ; (ii) ∂Ui
ij(λij)/∂λ = −λij/(1 − λij) · ∂Uj

ij(λij)/∂λ < 0;
(iii) limλij→0EDij(λij�λ−ij) > 0; and (iv) limλij→1EDij(λij�λ−ij) < 0.

A.1. Properties of the Excess Demand Functions

We now state further properties of the excess demand functions. We have

∂EDij(λ)/∂λij < 0� (1a)

∂EDik(λ)/∂λij > 0; if k �= j� (1b)

∂EDkj(λ)/∂λij > 0; if k �= i� (1c)

∂EDkl(λ)/∂λij = 0; if k �= i� l �= j� (1d)

where equation (1d) follows the Type-I extreme value distribution’s IIA property.
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Andrew Shephard: asheph@econ.upenn.edu
1Reformulating their matching model as a demand system, Galichon, Kominers, and Weber (2018) also

used the properties of the excess demand function to provide a proof of existence and uniqueness with a more
general heterogeneity structure. A proof using the marriage matching function and Type-I extreme value errors
is presented in Galichon, Kominers, and Weber (2014).
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A.2. Equilibrium Existence

We construct a continuous function � : [0�1]I×J → [0�1]I×J such that any fixed-point
λ∗ is an equilibrium of the marriage market. Brouwer’s fixed-point theorem then implies
existence. Letting ψ> 0, we define

� (λ)=ψ · ED(λ)+λ�

Notice that λ∗ is a fixed point, λ∗ = ψ · ED(λ∗) + λ∗, if and only if excess demand is
identically zero, that is, ED(λ∗)= 0. The following lemmas establish that we can choose
ψ small enough so that the range of � is [0�1]I×J .

LEMMA 1: The excess demand functions are continuously differentiable with ED(0I×J)�
0I×J and ED(1I×J)� 0I×J .

PROOF OF LEMMA 1: The continuous differentiability follows directly from the regu-
larity conditions described above. ED(0I×J) � 0I×J and ED(1I×J) � 0I×J follow from our
regularity conditions along with equations (1a)–(1d). Intuitively, there is no supply when
λ = 0I×J , and no demand when λ = 1I×J . Q.E.D.

LEMMA 2: Let 0<ψ≤ (supi�j�λ | ∂EDij(λ)
∂λij

|)−1, then 0I×J � � (λ)� 1I×J .

PROOF OF LEMMA 2: Such a ψ exists by the extreme value theorem because ED(λ)
is continuously differentiable on [0�1]I×J . Now, we have that ψ · ∂EDij(λ)/∂λij + 1 ≥ 0.
This combined with equations (1b)–(1d) being nonnegative implies that ∂� (λ)/∂λ� 0I×J .
Consequentially,

� (0I×J)� � (λ)� � (1I×J)�

Finally, by Lemma 1, 0I×J � � (0I×J) and � (1I×J)� 1I×J . Q.E.D.

Thus, from Lemma 2, Brouwer’s conditions are satisfied and an equilibrium exists.

A.3. Equilibrium Uniqueness

Suppose the equilibrium is not unique. Consider any distinct vectors of Pareto weights
λ∗ �= λ′ with ED(λ∗) = ED(λ′) = 0. Then let B∗ = {〈i� j〉|λ∗

i�j < λ
′
i�j} denote the pairings

where λ∗ is strictly less than λ′. As the labeling of λ∗ and λ′ is arbitrary, without loss of
generality, we take B∗ to be nonempty. Defining Ui

i0(λi0)=Ui
i0 the following holds:∑

〈i�j〉∈B∗
μdij

(
λ∗) =

∑
i

mi Pr
[

max
{j:〈i�j〉∈B∗}

{
Ui
ij

(
λ∗
ij

) + θiij
}
> max

{j:〈i�j〉/∈B∗∨j=0}

{
Ui
ij

(
λ∗
ij

) + θiij
}]

>
∑
i

mi Pr
[

max
{j:〈i�j〉∈B∗}

{
Ui
ij

(
λ′
ij

) + θiij
}
> max

{j:〈i�j〉/∈B∗∨j=0}
{
Ui
ij

(
λ′
ij

) + θiij
}]

=
∑

〈i�j〉∈B∗
μdij

(
λ′)�

The outside inequality is strict because Ui
ij(λij) is strictly decreasing in λij , and because

θiij has full support. Thus, the measure of type-i men who would choose type-j women
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(the demand) from the set B∗ is strictly higher under λ∗ compared to λ′. By the same
arguments, the measure of type-j females who would choose type-i males (the supply)
from the set B∗ is strictly lower under λ∗ compared to λ′. It therefore follows that∑

〈i�j〉∈B∗
EDij

(
λ∗)> ∑

〈i�j〉∈B∗
EDij

(
λ′)�

which is a contradiction. Hence, the equilibrium must be unique.

APPENDIX B: MARRIAGE MARKET NUMERICAL ALGORITHM

In this Appendix, we describe the iterative algorithm and the solution approximation
method that we use to calculate the market clearing vector of Pareto weights. The algo-
rithm is based on that presented in Galichon, Kominers, and Weber (2014, 2018). We first
note that using the conditional choice probabilities from equation (5) we are able to write
the quasi-demand equation of type-i men for type-j spouses as

σθ × [
lnμdij

(
T�λi

) − lnμdi0
(
T�λi

)] =Ui
ij(T�λij)−Ui

i0(T)� (2)

Similarly, the conditional choice probabilities for females from equation (6) allows us to
express the quasi-supply equation of type-j women to the 〈i� j〉 submarket as

σθ × [
lnμsij

(
T�λj

) − lnμs0j
(
T�λj

)] =Uj
ij(T�λij)−Uj

0j(T )� (3)

The algorithm proceeds as follows:
1. Provide an initial guess of the measure of both single males 0 < μdi0 < mi for i =

1� � � � � I, and single females 0<μs0j < fj for j = 1� � � � � J.
2. Taking the difference of the quasi-demand (equation (2)) and the quasi-supply

(equation (3)) functions for each 〈i� j〉 submarriage market and imposing the market
clearing condition μdij(T�λ

i)= μsij(T�λj) we obtain

σθ × [
lnμs0j − lnμdi0

] =Ui
ij(T�λij)−Ui

i0(T)− [
U
j
ij(T�λij)−Uj

0j(T )
]
� (4)

which given the single measures μdi0 and μs0j (and the tax schedule T ) are only a function
of the Pareto weight for that submarriage-market λij . Given our assumptions on the util-
ity functions, there exists a unique solution to equation (4). This step therefore requires
solving for the root of I × J univariate equations.

3. From Step 2, we have a matrix of Pareto weights λ given the single measures μdi0
and μs0j from Step 1. These measures can be updated by calculating the conditional choice
probabilities (equations (5) and (6)). The algorithm returns to Step 2 and repeats until
the vector of single measures for both males and females has converged.

In practice, we are able to implement this algorithm by first evaluating the expected
utilities Ui

ij(T�λ) and Uj
ij(T�λ) for each marital match combination 〈i� j〉 on a fixed grid

of Pareto weights λ ∈ λgrid with inf[λgrid] � 0 and sup[λgrid] � 1. We may then replace
Ui
ij(T�λ) and Uj

ij(T�λ) with an approximating parametric function so that no expected
values are actually evaluated within the iterative algorithm.

Note that calculating the expected values within a match are (by many orders of mag-
nitude) the most computationally expensive part of the algorithm. While our empirical
exercise incorporates market variation in taxes and transfers, in an application where
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each market only differs by the population vectors and/or the demographic transition
functions, the computational cost in calculating the equilibrium for all markets is approx-
imately independent of the number of markets K considered. This follows given that the
initial evaluation of expected values on λgrid is independent of market in this case.

APPENDIX C: EMPIRICAL TAX AND TRANSFER SCHEDULE IMPLEMENTATION

In this Appendix, we describe our implementation of the empirical tax and transfer
schedules for our estimation exercise. Since some program rules will vary by U.S. state,
here we are explicit in indexing the respective parameters by market.2 Our measure of
taxes includes both state and federal Earned Income Tax Credit (EITC) programs, and
we also account for the Food Stamps Program and the Temporary Assistance for Needy
Families (TANF) program. It does not include other transfers (e.g., Medicaid) and non-
income taxes such as sales and excises taxes.3

Consider (a married or single) household ι in market k, with household earnings
Eιk = hιkw · wιk and demographic characteristics Xιk. As before, the demographic condi-
tioning vector comprises marital status and children. The total net tax liability for such
a household is given by Tιk = T̃ιk − Yιk

TANF − Yιk
FSP, where T̃ιk is the (potentially negative)

tax liability from income taxes and the EITC, Yιk
TANF and Yιk

FSP are the respective (non-
negative) amounts of TANF and Food Stamps.

Income taxes and EITC. Our measure of income taxes T̃ιk includes both federal and
state income taxes, as well as federal and state EITC. In addition to market, the tax
schedules that we calculate may also vary with marital status and with children. These
schedules are calculated prior to estimation with the National Bureau of Economic Re-
search TAXSIM calculator, as described in Feenberg and Coutts (1993). We assume joint
filing status for married couples. For singles with children, we assume head-of-household
filing status.

Food Stamp Program. Food Stamps are available to low-income households both with
and without children.4 For the purposes of determining the entitlement amount, net
household earnings are defined as

Nιk
FSP = max

{
0�Eιk +Yιk

TANF −DFSP[Xιk]
}
�

where Yιk
TANF is the dollar amount of TANF benefit received by this household (see below),

and DFSP[Xιk] is the standard deduction, which may vary with household type. The dollar

2Since we define a market as a Census Bureau-designated division, we apply the state tax rules that corre-
spond to the most populous state within a defined market.

3While Medicaid is the largest U.S. means-tested program in terms of overall expenditure, the bulk of this
expenditure (67% in 2006) goes on the disabled and aged population. Neither of these groups are part of our
analysis. Furthermore, very few structural labor supply models actually incorporate in-kind transfers such as
Medicaid, as quantifying the value to recipients is much more complicated. See the recent survey by Chan
and Moffitt (2018). In the case of Medicaid, there is both a transfer and an insurance component, and we have
experimented with incorporating the transfer value in the budget constraint. We construct this value using data
from the full-year consolidated Household Component data files of the Medical Expenditure Survey, together
with the 2006 state Medicaid rules from Ross, Cox, and Marks (2007) to determine eligibility, and find that
incorporating this transfer value has very little impact on either the initial estimation results, or our subsequent
optimality simulations.

4Food Stamp parameters for 2006 are obtained from U.S. Department of Agriculture, Food and Nutrition
Service (Wolkwitz, 2007).
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amount of Food Stamp entitlement is then given by

Yιk
FSP = max

{
0�Ymax

FSP [Xιk] − τFSP ×Nιk
FSP

}
�

where Ymax
FSP [Xιk] is the maximum food stamp benefit amount for a household of a given

size and τFSP = 0�3 is the phase-out rate.5
TANF. Financial support to families with children is provided by TANF.6 Given the

static framework we are considering, we are not able to incorporate certain features of
the TANF program, notably the time limits in benefit eligibility (see Chan, 2013). For the
purposes of entitlement calculation, we define net household earnings as

Nιk
TANF = max

{
0�

(
1 −RkTANF

) × (
Eιk −Dk

TANF[Xιk]
)}
�

where the dollar earnings disregardDk
TANF[Xιk] varies by market and household character-

istics. The market-level percent disregard is given by RkTANF. The dollar amount of TANF
entitlement is then given by

Yιk
TANF = min

{
Ymax

TANF[Xιk]�max
{
0� rkTANF × (

Y m̂ax
TANF[Xιk] −Nιk

TANF

)}}
�

Here, Ymax
TANF[Xιk] defines the maximum TANF receipt in market k for a household with

characteristics Xιk, while Y m̂ax
TANF[Xιk] defines what is typically referred to as the payment

standard. The ratio rkTANF is used in some markets to adjust the total TANF amount.7

APPENDIX D: IDENTIFICATION

D.1. Proof of Proposition 2

Consider a given market k ≤ K. From the conditional choice probabilities (equa-
tions (5) and (6)) and imposing market clearing μdij(T�λ

i) = μ
j
ij(T�λ

j) = μij(T�λ), we
have that

lnμij(T�λ)− lnμi0
(
T�λi

) = [
Ui
ij(T�λij)−Ui

i0(T)
]
/σθ� (5a)

lnμij(T�λ)− lnμ0j

(
T�λj

) = [
U
j
ij(T�λij)−Uj

0j(T )
]
/σθ� (5b)

The left-hand side of equations (5a) and (5b) are obtained from the empirical marriage
matching function and is therefore identified. Now consider variation in this object as we
vary population vectors. Importantly, variation in population vectors has no impact on the
value of the single state and only affects the value in marriage through its influence on the
Pareto weight λij . That is, such variation serves as a distribution factor (see Bourguignon,

5In practice, the Food Stamp Program also has a gross-earnings and net-earnings income test. These require
that earnings are below some threshold related to the federal poverty level for eligibility (see, e.g., Chan, 2013).
For some families, these rules would mean that there may be a discontinuous fall in entitlement (to zero) as
earnings increase. We also assume a zero excess shelter deduction in our calculations and do not consider asset
tests. Incorporating asset tests (even in a dynamic model) is challenging as the definition of countable assets
does not correspond to the usual assets measure in life-cycle models.

6We obtain TANF parameters from 2006 from the Urban Institute’s Welfare Rules Data Book; see Rowe
and Murphy (2006).

7As in the case of Food Stamps, we do not consider the similar gross and net income eligibility rules that
exist for TANF, as well as the corresponding asset tests. We also do not consider eligibility time limits.
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Browning, and Chiappori, 2009). From a marginal perturbation in, for example, the male
population vector we obtain

∑
i′

∂
[
lnμij(T�λ)− lnμi0

(
T�λi

)]
∂mi′

dmi′ = 1
σθ

∂Ui
ij(T�λij)

∂λij

∑
i′

∂λij

∂mi′
dmi′� (6a)

∑
i′

∂
[
lnμij(T�λ)− lnμ0j

(
T�λj

)]
∂mi′

dmi′ = 1
σθ

∂U
j
ij(T�λij)

∂λij

∑
i′

∂λij

∂mi′
dmi′ � (6b)

Taking the ratio of the partial derivatives in equations (6a) and (6b), we define

πij =
∂Ui

ij(T�λij)/∂λij

∂U
j
ij(T�λij)/∂λij

�

We proceed by combining the definition of zij with equation (3) from the main text which
requires that (1 −λij) · ∂Ui

ij(T�λij)/∂λij +λij · ∂Uj
ij(T�λij)/∂λij = 0. It immediately follows

that λij = πij/(πij − 1), which establishes identification.

D.2. Proof of Proposition 3

The identification proof will proceed in two steps. First, we demonstrate identification
of the time allocation problem for single individuals. Second, we show how we use the
household time allocation patterns to identify the home production technology for mar-
ried couples. The following assumptions are used in the proof of identification in this
section. While some of them are easily relaxed, for reasons of clarity and ease of exposi-
tion, and because they relate directly to the empirical and optimal design analysis, these
assumptions are maintained here. We also only consider identification of the model with-
out the fixed cost of labor force participation, as it adds nothing to the analysis.

ASSUMPTION ID-1: The state-specific errors, εai are distributed Type-I extreme value with
location parameter zero and an unknown scale parameter, σε.

ASSUMPTION ID-2: The systematic utility function is additively separable in leisure, �i,
private consumption, qi, and home goods, Qi. That is,

ui
(
�i� qi�Qi�Xi

) = uiq
(
qi�Xi

) + ui�
(
�i�Xi

) + uiQ
(
Qi�Xi

)
�

ASSUMPTION ID-3: There is a known private consumption level q̂ such that ∂uiq(q̂�Xi)/
∂q= 1.

ASSUMPTION ID-4: uiQ(Q
i�Xi) is monotonically increasing in Q, that is, ∂uiQ(Q

i�Xi)/
∂Q > 0.

ASSUMPTION ID-5: There exist an element of Xi, Xi
r , such that Xi

r affects ζi0(Xi) but not
uiQ(Q

i�X). Also there exists an Xi
∗ such that ζi0(Xi

∗)= 1.

ASSUMPTION ID-6: The support of Q is the same for both single individuals and married
couples.
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ASSUMPTION ID-7: Conditional on work hours hiw, the tax schedule T is differentiable in
earnings, with ∂T(wihiw� y

i;Xi)/∂whw �= 1.

ASSUMPTION ID-8: The utility of function of the private good, uiq(q
i�Xi), is monotonically

increasing and quasi-concave in qi.

D.2.1. Step 1: The Identification Using the Singles Problem

Consider the problem of a single type-i male. Let Ai = {1� � � � �Ai} be an index repre-
sentation set of time allocation alternatives, with ûi(a) denoting the systematic part of
utility associated with alternative a ∈ Ai (where the dependence on conditioning vari-
ables is suppressed for notational compactness). Without loss of generality, let a = 1 be
the choice where the individual does not work and has the lowest level of home hours.
Under Assumption ID-1, well-known results imply that the following holds:

log
[
P(a)

P(1)

]
= ûi(a)− ûi(1)

σε
� (7)

where the conditional choice probabilities P(·) should be understood as being conditional
on [yi�wi�Xi� T ]. Taking the partial derivative of equation (7) with respect to wi and using
Assumption ID-2 yields

∂ log
[
P(a)/P(1)

]
∂w

= 1
σε

· ∂u
i
q

(
qi(a);Xi

)
∂q

·
[

1 − ∂T
(
wihiw(a)� y

i;Xi
)

∂whw

]
· hiw(a)� (8)

where qi(a) and hiw(a) are the respective private consumption and market work hours
associated with the allocation a. The conditional choice probabilities and the marginal
tax rates are known, and hence, given Assumptions ID-3 and ID-7, the scale coefficient
for the state-specific errors σε is identified. Hence, the marginal utility of private con-
sumption is identified. Integrating equation (8) and combining with equation (7) implies
that the sum ui�(�

i;Xi)+ uiQ(Q
i;Xi) is identified up to a normalizing constant. Then for

each level of feasible home hours, both ui�(�
i;Xi) and uiQ(Q

i;Xi) are identified by varying
the level of market hours and fixing either home time or leisure. Under Assumption ID-
5, the home efficiency parameter ζi0(Xi) is identified by comparing uiQ(Q

i(a);Xi) across
different values of Xi.

D.2.2. Step 2: Identification of Marriage Home Production Function

In Step 1, we show that the subutilities are identified up to a normalizing constant.
Without loss of generality, we set the location normalization to be zero in what follows.
Consider a 〈i� j〉 household with the time allocation set Aij = {1� � � � �A}, A =A

i ×A
j
,

and let ûij(a) = (1 − λij) × ûi(a) + λij × ûj(a) denote the systematic part of household
utility associated with a ∈Aij . Let εija = (1 −λij)× εia +λij × εja, and define Gaij(·) to be the
joint cumulative distribution function of [εija − εij1 � � � � � εija − εija−1� ε

ij
a+1 − εija � � � � � εija − εijA].

For each a ∈ {1� � � � �A− 1}, define

P(a)=Qj

(̂
uij

) ≡ Gaij
(
ûija − ûij1 � � � � � ûija − ûija−1� û

ij
a − ûija+1� � � � � û

ij
a − ûijA

)
�

with ûij = [ûij1 − ûij
A
� � � � � û

ij

A−1
− ûij

A
]ᵀ defining the (A− 1) vector of utility differences, and

let Q(̂uij)= [Q1(̂uij)� � � � �QA−1(̂uij)]ᵀ define a (A−1) dimensional vector function. Then,
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by Proposition 1 of Hotz and Miller (1993), the inverse of Q(̂uij) exists.8 Given that the
distribution of ε is known and λij is identified, the inverse of Q(̂uij) is known. Hence, the
vector ûij =Q−1(P(1)� � � � �P(A− 1)) is identified. Define

�ij(a)= ûij[a] − (1 − λij)× [
ui�

(
�i

(
ai

);Xi
) + uiq

((
1 − sij(a;λij)

) · q(a);Xi
)]

− λij ×
[
u
j
�

(
�j

(
aj

);Xj
) + uiq

(
sij(a;λij) · q(a);Xj

)]
�

The arguments from Step 1 imply that uiq(q
i;Xi) and ujq(q

j;Xj) are known. From Propo-
sition 2, we have that λij are identified. These, together with Assumption ID-2 and As-
sumption ID-4, imply that sij(a;λij) is also known. Thus, identification of �ij(a) follows.
Finally, the definition of ûij(a) and Assumption ID-2 imply

�ij(a)= (1 − λij)× uiQ
(
Q̃ij

(
hiQ(a)�h

j
Q(a);X

)
�Xi

) + λij × ujQ
(
Q̃ij

(
hiQ(a)�h

j
Q(a);X

)
�Xj

)
�

The subutility function of the public good does not depend on w. Therefore, once we
observe different values of these two variables, both ujQ(Q̃ij(h

i
Q(a)�h

j
Q(a);X)�Xj) and

uiQ(Q̃ij(h
i
Q(a)�h

j
Q(a);X)�Xi) are identified. Finally, under Assumption ID-4 the inverse

of uiQ and ujQ exist, and hence Q̃ij(h
i
Q(a

i)�h
j
Q(a

j);X) is identified.

APPENDIX E: ESTIMATION MOMENTS

In this Appendix, we describe the set of targeted estimation moments. Recall that there
are nine markets (K = 9) and three education groups/types for both men (I = 3) and
women (J = 3) in our empirical application. The first set of moments (denoted G1) relate
to the marriage market. Within each market, we describe the number of single men and
women by own education, and married households by joint education (K×[I+J+ I× J]
moments). The second set of moments (G2) describe labor supply patterns. By market,
gender, marital status, and own education, we describe mean conditional work hours and
employment rates (K × 4 × [I + J] moments); aggregating over markets, we describe
the fraction of individuals in nonemployment/part-time/full-time status by gender, mar-
ital status, the presence of children, and own/joint education level (for singles/couples,
resp.) (6 ×[I+ J]+ 12 × I× J moments); the mean and standard deviation of conditional
work hours is described by gender, marital status, and own education, while mean con-
ditional hours for married men and women are also described by joint education levels
(8×[I+J]+2×I×J moments). The third set of moments (G3) describe accepted wages.
The mean and standard deviation of accepted log-wages are described by gender, marital
status, and own education (4×[I+J] moments). The fourth set of moments (G4) describe
earnings, with the mean and standard deviation calculated using the same set of condi-
tioning variables as for wages (again, 4 × [I + J] moments). The fifth set of moments
(G5) relate to home time. Similar to labor supply, we describe the fraction of individu-
als with low/medium/high unconditional home hours by gender, marital status, children,
and own/joint education level (for singles/couples respectively) (6 × [I + J] + 12 × I × J
moments); the mean and standard deviation of unconditional home hours is described
by gender, marital status, and own education, while mean unconditional home hours for
married men and women are also described by joint education levels (8×[I+J]+2×I×J
moments). In total, we have 765 moments.

8Notice that εija is not i.i.d. However, independence is not required for the Hotz and Miller (1993) proposi-
tion.
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APPENDIX F: PROOF OF PROPOSITION 4

In this Appendix, we derive the contribution of the marital shocks within each match to
the social-welfare function. We proceed in two steps. First, we characterize the distribu-
tion of martial preference shocks within a particular match, recognizing the nonrandom
selection into a given pairing. Second, given this distribution, we obtain the adjustment
term using our specification of the utility transformation function.

Consider the first step. For brevity of notation, here we letUj denote the expected utility
of a given individual from choice/spousal type j. Associated with each alternative j is an
extreme value error θj that has scale parameter σθ. We now characterize the distribution
of θj conditional on j being chosen. Letting pj = (

∑
k exp[(Uk − Uj)/σθ])−1 denote the

associated conditional choice probability. It follows that

Pr[θj < x|j = arg max
k

Uk + θk] = 1
σθpj

∫ x

−∞

∏
k �=j

exp
(−e− θj+Uj−Uk

σθ

)
exp

(−e− θj
σθ

)
e− θj

σθ dθj

= 1
σθpj

∫ x

−∞
exp

(
−e− θj

σθ

∑
k

e−Uj−Uk
σθ

)
e− θj

σθ dθj

= 1
σθpj

∫ x

−∞
exp

(−e− θj
σθ p−1

j

)
e− θj

σθ dθj

= exp
(−e− θj+σθ logpj

σθ

)
�

Hence, the distribution of the idiosyncratic payoff conditional on j being optimal is ex-
treme value with the scale parameter σθ and the shifted location parameter −σθ logpj .

Marital payoff adjustment term: δ < 0. Using the utility transformation function (equa-
tion (13)) and letting Zj denote the entire vector of post-marriage realizations in alterna-
tive j (wages, preference shocks, demographics), it follows that the contribution to social-
welfare of an individual in this marital pairing may be written in the form∫

θj

∫
Zj

Υ
[
vj(Zj)+ θj

]
dGj(Zj)dHj(θj)

=
∫
θj

exp(δθj)dHj(θj)

∫
Zj

exp
[
δv(Zj)

]
δ

dGj(Zj)− 1
δ
�

where we have suppressed the dependence on the tax system T .
We now complete our proof in the δ < 0 case by providing an analytic characteri-

zation of the integral term over the idiosyncratic marital payoff. Using the result that
θj|j=arg maxk Uk+θk ∼EV (−σθ logpj�σθ) from above, we have∫

θj

exp(δθj)dHj(θj)= 1
σθ

∫
θj

exp(δθj)exp
(−[θj + σθ logpj]/σθ

)
e−exp(−[θj+σθ logpj ]/σθ) dθj

= exp(−δσθ logpj)
∫ ∞

0
t−δσθ exp(−t)dt

= p−δσθ
j �(1 − δσθ)�
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The second equality performs the change of variable t = exp(−[θj + σθ logpj]/σθ), and
the third equality uses the definition of the Gamma function. Since we are considering
cases where δ < 0, this integral will converge.

Marital payoff adjustment term: δ = 0. Here, the contribution to social-welfare of a
given individual in a given marital pairing is simply given by∫

θj

∫
Zj

Υ
[
vj(Zj)+ θj

]
dGj(Zj)dHj(θj)=

∫
θj

θj dHj(θj)+
∫

Zj

v(Zj)dGj(Zj)

= σθγ− σθ logpj +
∫

Zj

v(Zj)dGj(Zj)�

with the second equality using the above result for the distribution of marital shocks within
a match and then just applying the well-known result for the expected value of the extreme
value distribution with a nonzero location parameter.

APPENDIX G: PROOF OF PROPOSITION 5

In Proposition 4, we present an expression for the contribution to social welfare in
alternative marriage market positions. Note that in the δ = 0 case we may write W i

ij(T )
in the familiar log-sum form

W i
ij

(
T�λi

) = σθγ+ σθ log

(
exp

[
Ui
i0(T)/σθ

] +
J∑
h=1

exp
[
Ui
ih(T�λih)/σθ

]) =W i
(
T�λi

)
�

which is independent of the match pairing j. Letting W j(T�λj) be defined similarly, it
then follows that the overall social-welfare function may be written as∑

i

mi ·W i
(
T�λi

) +
∑
j

fj ·W j
(
T�λj

)
�

Thus, relative to the form of the social-welfare function when marriage positions are fixed,
we have the type specific expected values appearing rather than the match specific ex-
pected values. Differentiating with respect to τ, we obtain

∂SW F(T)

∂τ
=

∑
i

mi

[
pii0

(
T�λi

)∂Ui
i0(T)

∂τ
+

∑
j

piij
(
T�λi

)∂Ui
ij(T�λij)

∂τ

]

+
∑
j

mj

[
p
j
0j

(
T�λj

)∂Uj
0j(T )

∂τ
+

∑
i

p
j
ij

(
T�λj

)∂Uj
ij(T�λij)

∂τ

]

+
∑
i

mi

∑
j

piij
(
T�λi

)∂Ui
ij(T�λij)

∂λij

∂λij

∂τ

+
∑
j

mj

∑
i

p
j
ij

(
T�λj

)∂Uj
ij(T�λij)

∂λij

∂λij

∂τ
�

Finally, collecting terms and using equations (3), (5), (6), and (7), completes the proof.
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APPENDIX H: ADDITIONAL TABLES AND RESULTS

H.1. Parameter Estimates

In Table H.1, we present our model estimates, together with the accompanying standard
errors, and the sets of moments that have an important influence on each parameter. We
obtain these sets following the approach of Andrews, Gentzkow, and Shapiro (2017).
This defines the local sensitivity of the parameter estimates with respect to the moment
vector as the B ×M matrix Sm = [Dᵀ

mWDm]−1Dᵀ
mW. Given the scale of our moments are

not always comparable, we multiply each element [Sm]bm by the standard deviation of

TABLE H.1

PARAMETER ESTIMATESa

Estimate Standard error Sensitivity moments

Log-wage offers:
Male, high school and below: mean 2�635 0�003 G2, G3, G4, G5
Male, high school and below: s.d. 0�407 0�002 G3, G4
Male, some college: mean 2�890 0�003 G3, G4, G5
Male, some college: s.d. 0�404 0�002 G3, G4
Male, college: mean 3�400 0�003 G3, G4
Male, college: s.d. 0�528 0�003 G3, G4
Female, high school and below: mean 2�070 0�007 G2, G3, G4, G5
Female, high school and below: s.d. 0�523 0�003 G3, G4
Female, some college: mean 2�484 0�003 G3, G4, G5
Female, some college: s.d. 0�457 0�002 G3, G4
Female, college: mean 2�944 0�002 G3, G4, G5
Female, college: s.d. 0�501 0�002 G3, G4

Preference parameters:
Leisure scale 0�253 0�028 G2, G5
Home good scale 0�495 0�028 G2, G5
Leisure curvature, σ� 1�826 0�097 G2, G5
Home good curvature, σQ 0�079 0�024 G5
Fixed costs (kids) 99�778 1�431 G2, G5
Marital shock, s.d. 0�123 0�004 G1, G2, G5
State specific error, s.d. 0�284 0�004 G2, G5

Home production technology:
Male production share 0�168 0�005 G2, G5
Single prod. (no children), high school and below 1�970 0�106 G2, G5
Single prod. (no children), some college 1�946 0�092 G2, G5
Single prod. (no children), college 2�608 0�127 G2, G5
Male prod. (children) 3�319 0�210 G2, G5
Female prod. (children), high school and below 3�686 0�243 G2, G5
Female prod. (children), some college 4�079 0�278 G2, G5
Female prod. (children), college 5�123 0�372 G2, G5
HH prod. (children) female, high school and below 1�926 0�091 G2, G5
HH prod. (children) female, some college 2�715 0�147 G2, G5
HH prod. (children) female, college 2�421 0�126 G2, G5
HH prod. (children) educ. homogamy, high school and below 1�831 0�042 G2, G5
HH prod. (children) educ. homogamy, some college 1�176 0�009 G1, G2, G5
HH prod. (children) educ. homogamy, college 1�694 0�042 G1, G2, G5

aAll parameters estimated simultaneously using a moment-based estimation procedure as detailed in Section 4 from the main text.
See Online Appendix E for a definition of the moment groups, and Footnote 30 for a description of the method used to calculate
standard errors. All incomes are expressed in dollars per-week in average 2006 prices.



12 G.-L. GAYLE AND A. SHEPHARD

FIGURE H.1.—Empirical and optimal marginal tax rates. In panel (a), we show the optimal marginal rate
schedule calculated with δ = 0. In panel (b), we show the empirical marginal tax rate schedule, which is ob-
tained by calculating the average marginal tax rate in each of the earnings brackets from our tax simulations.
Empirical tax rates are calculated using the 2006 ACS and the NBER TAXSIM calculator, and comprise com-
bined federal and state taxes, and both employer and employee FICA rates. All incomes are in thousands of
dollars per year, expressed in average 2006 prices. See Footnote 9 for a definition of low, medium, and high
spousal earnings.

the mth moment,
√[Σ]mm. For each parameter, we calculate the moment with maximum

(absolute) sensitivity, and consider any moment whose sensitivity is at least 20% of the
maximal as being important. As we consider sets of moments, we describe a set as being
important if at least one moment from that set is important according to this criterion.

H.2. Comparison With U.S. Tax System

In Figure H.1, we contrast the unrestricted tax schedules from our optimal tax sim-
ulations with the actual 2006 U.S. tax system (corresponding to our estimation sample
period). Since the marginal tax rates in the actual system depend on more characteristics
than marital status and earnings, we present the average marginal tax rate as faced by
the population within a specified range of earnings. To ease comparison with the results
from our simulation exercise, we calculate the averages using the tax brackets from our
simulation exercise, and similarly define low, medium, and high, spousal earnings levels.9
Clearly, there are very important differences between the tax schedules. In particular,
since the U.S. taxes married couples on their total household income, then with a broadly
progressive schedule applied to household earnings, there exists positive tax jointness.

H.3. Social-Welfare Weights

The redistributive preference of the government is reflected by the parameter δ, which
enters the utility transformation presented in equation (13). In Table H.2, we present the
underlying average social-welfare weights for alternative values δ ∈ {−1�0}. Given the
maintained symmetry of the tax schedule, we present these welfare weights as a function
of the lowest and highest earnings of a couple. For example, at the optimum, the table

9Recall that low is the arithmetic average of the marginal tax rate for spousal earnings {z2|z2 ∈ Z� z2 ≤
$25,000}. Similarly, medium and high, respectively, correspond to spousal earnings {z2|z2 ∈ Z�$25�000< z2 ≤
$85�000} and {z2|z2 ∈ Z�$85�000< z2 < $250�000}.
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TABLE H.2

SOCIAL-WELFARE WEIGHTS UNDER OPTIMAL SYSTEMa

Lowest earnings range ($000s)

0–12.5 12.5–25 25–37.5 37.5–60 60–85 85–110 110–150 150–190 190+

δ= 0: 0–12.5 2.735 – – – – – – – –
[0.563]

Highest
earnings
range
($000s)

12.5–25 1.964 1.461 – – – – – – –
[5.090] [4.361]

25–37.5 1.543 1.183 0.985 – – – – – –
[7.968] [8.751] [3.927]

37.5–60 1.221 0.974 0.827 0.707 – – – – –
[10.134] [8.579] [7.104] [3.114]

60–85 0.948 0.786 0.681 0.591 0.501 – – – –
[7.114] [5.268] [4.321] [3.848] [1.267]

85–110 0.772 0.657 0.578 0.507 0.435 0.381 – – –
[2.280] [1.551] [1.255] [1.118] [0.770] [0.120]

110–150 0.638 0.555 0.495 0.441 0.383 0.338 0.301 – –
[2.501] [1.568] [1.207] [1.046] [0.711] [0.222] [0.103]

150–190 0.496 0.442 0.401 0.362 0.320 0.285 0.257 0.223 –
[1.159] [0.643] [0.464] [0.376] [0.237] [0.071] [0.064] [0.009]

190+ 0.388 0.354 0.326 0.298 0.268 0.242 0.220 0.193 0.170
[0.485] [0.233] [0.155] [0.123] [0.074] [0.021] [0.019] [0.005] [0.001]

δ= −1: 0–12.5 2.938 – – – – – – – –
[1.780]

Highest
earnings
range
($000s)

12.5–25 2.117 1.523 – – – – – – –
[8.074] [4.791]

25–37.5 1.574 1.171 0.913 – – – – – –
[8.967] [8.659] [3.704]

37.5–60 1.181 0.904 0.719 0.574 – – – – –
[9.451] [7.791] [6.513] [2.865]

60–85 0.813 0.646 0.525 0.427 0.325 – – – –
[6.155] [4.920] [4.074] [3.656] [1.237]

85–110 0.588 0.481 0.400 0.331 0.257 0.206 – – –
[1.846] [1.458] [1.209] [1.088] [0.770] [0.122]

110–150 0.425 0.359 0.306 0.258 0.205 0.167 0.137 – –
[2.070] [1.481] [1.174] [1.041] [0.728] [0.228] [0.106]

150–190 0.281 0.247 0.218 0.188 0.153 0.127 0.106 0.085 –
[1.036] [0.622] [0.470] [0.391] [0.251] [0.076] [0.068] [0.010]

190+ 0.181 0.165 0.150 0.132 0.110 0.093 0.078 0.064 0.051
[0.449] [0.236] [0.166] [0.134] [0.082] [0.024] [0.021] [0.006] [0.001]

aThe table presents average social-welfare weights and joint probability mass under the optimal system for alternative δ values. The
probability mass is presented in brackets. Earnings are in dollars per week in 2006 prices. Welfare weights are obtained by increasing
consumption in the respective joint earnings bracket (with fraction sij (λij ) of this increase in an 〈i� j〉 match accruing to the female)
and calculating a derivative of the social-welfare function; weights are normalized so that the probability-mass-weighted sum under
the optimal tax system is equal to unity.

shows that when δ = 0 the government would value a dollar transfer to a single earner
couple with annual earnings $37,500–$60,000 approximately 1.9 (≈1�221/0�638) times as
much as would if annual earnings were $110,000–$150,000. When δ= −1, these weights
decline much more rapidly, implying a much stronger redistributive motive (in the context
of the preceding example, the relative value is now 2.8).
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TABLE H.3

MARRIAGE MATCHING FUNCTIONSa

Women

High school and below Some college College and above

(a) Unrestricted
– 0.117 0.090 0.077

Men High school and below 0.136 0.156 0.061 0.039
Some college 0.094 0.036 0.106 0.044
College and above 0.055 0.028 0.059 0.187

(b) Independent
– 0.095 0.092 0.105

Men High school and below 0.119 0.176 0.061 0.036
Some college 0.099 0.038 0.104 0.038
College and above 0.073 0.030 0.058 0.168

(c) Income splitting
– 0.104 0.102 0.115

Men High school and below 0.137 0.167 0.055 0.032
Some college 0.109 0.036 0.099 0.035
College and above 0.074 0.031 0.059 0.165

(d) Income aggregation
– 0.165 0.135 0.136

Men High school and below 0.198 0.118 0.046 0.029
Some college 0.139 0.028 0.081 0.032
College and above 0.099 0.027 0.053 0.150

aThe table shows marriage matching function under alternative tax schedule specifications. Unrestricted corresponds to the sched-
ule described in Section 5.1. Independent, Income splitting, and Income aggregation, respectively, refer to independent individual taxa-
tion, and joint taxation with income splitting and aggregation; see Section 5.3 for details.

H.4. Marriage Matching Patterns With Restricted Tax Schedules

We describe marriage matching patterns when the form of jointness in the tax schedule
is restricted. As described in the Section 5.3 from the main text, we consider (i) individual
taxation; (ii) joint taxation with income splitting; (iii) joint taxation with income aggre-
gation. Table H.3 presents the marriage matching functions. Relative to the unrestricted
schedule, the greatest differences emerge when the tax schedule exhibits a strong non-
neutrality with respect to marriage. Under joint taxation with income aggregation, there
is a 15-percentage point lower marriage rate, and reduced assortative mating.

H.5. Gender-Based Taxation

In Section 5.4, we discussed results when we allowed the tax schedule for both single
individuals and married couples to vary by gender. In Figure H.2, we present the marginal
tax rate schedules for the husband (when we fix the value of his wife’s earnings) and the
marginal tax rate schedules for the wife (when we fix the value of her husband’s earnings).
Except at low earnings, married women typically have lower marginal tax rates than do
men. For single individuals, we present the net-income schedule (rather than marginal tax
rates) as there are important differences in out-of-work income; see Figure H.3. Here, we
show the net-income schedule for single men and single women, together with the optimal
schedule when the tax schedule for single individuals is gender neutral. At the optimum,
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FIGURE H.2.—Optimal tax schedule with gender-based taxation with δ= 0. In panel (a), we show marginal
tax rates for married men conditional on alternative values of female earnings. Panel (b) shows marginal tax
rates for married women conditional on alternative values of female earnings. All incomes are in thousands
of dollars per year, expressed in average 2006 prices. See Footnote 9 for a definition of low, medium, and high
spousal earnings levels.

single women have both higher out-of-work income and lower marginal tax rates than do
single men.

H.6. Sensitivity to Node Choice

Our main simulation results consider the choice of a tax schedule where the number of
earnings nodes for each individual is exogenously set at N = 10 values. Here, we repeat
our analysis from Section 5.2 when δ = 0, but with N = 18 and Z = {0�12,500�18,750�
25,000�31,250�37,500�48,750�60,000�72,500�85,000�98,000�110,000�135,000�150,000�
170,000�190,000�220,000�250,000}.10 This permits a considerably more detailed char-

FIGURE H.3.—Net income schedule for single individual’s with δ = 0 under alternative tax specifications.
The solid line shows the gender neutral net income schedule for single individuals when only taxes for married
couples may be gender specific. The two broken lines are obtained when we allow a gendered tax schedule for
both married couples and singles. The dashed (dash-dot) line shows the net income schedules for single men
(women). All incomes are in thousands of dollars per year, expressed in average 2006 prices.

10Increasing the number of earnings nodes in the tax system requires a simultaneous increase in the number
of wage integration nodes. If the distance between the earnings nodes becomes too narrow, the joint density
in a triangle may become zero, in which case the welfare function and constraints will become locally flat as
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FIGURE H.4.—Optimal tax schedule with δ= 0 under alternative node specifications. In panel (a), we show
net income as a function of labor earnings for single individuals (solid line) and couples (three-dimensional
surface), with N = 10 earnings nodes (65 tax parameters). In panel (b), the same net income functions that are
obtained with N = 18 earnings nodes (189 tax parameters) are shown. All incomes are in thousands of dollars
per year, expressed in average 2006 prices.

acterization of the tax schedule, now being represented by a total of 189 tax parame-
ters (compared to 65 tax parameters in the N = 10 parametrization). In Figure H.4, we
present the net-income schedules for singles and couples under this parametrization. For
comparison, the original schedule from Figure 5 is reproduced alongside. The structure
of taxes, including the implied degree of tax jointness, is clearly seen to be very similar
in the two cases, with the surface in the N = 18 case essentially an interpolating polygon
subdivision of the N = 10 case.

H.7. Perturbation Experiments

In Section 5.6, we described the design implications of increasing the gender wage gap.
Here, we present results from this experiment, and also presents additional perturbation
comparative static exercises. In what follows, we define �T ′(z)≡ T ′(z�Low)−T ′(z�High)
to be the difference in average marginal tax rates at earnings z, as the spousal earnings
level is changed from Low to High. In our baseline model from Section 5.2 when δ = 0,
we have �T ′(30,000)= 24�1% and �T ′(70,000)= 25�8%. The baseline marginal tax rate
schedule is reproduced as Figure H.5(a).

Gender wage gap. We consider an exogenous increase in the gender wage gap by re-
ducing the mean of the offered log wage distribution for women. Intuitively, the more
dissimilar are spouses, the greater scope is there to achieve welfare gains from introduc-
ing some degree of jointness in the tax system. In Figure H.5(b), we consider a change in
mean offered log wages of �E[lnwj] = −0�5 for all female types j = 1� � � � � J. This pertur-
bation results in increased negative tax jointness, and we now obtain�T ′(30,000)= 25�8%
and �T ′(70,000)= 34�6%. There are also important changes in the tax schedule for sin-
gle individuals (not shown), with marginal tax rates increasing by around 10-percentage
points on average. This change partially offsets the impact that changes in the wage dis-
tribution have on within household inequality, but still, in the new equilibrium the wife’s
Pareto weight is everywhere lower. Relative to a system of independent taxation, the unre-
stricted schedule represents a welfare gain that is equivalent to almost 4% of tax revenue.

elements of βT are varied. This is also why we do not attempt to endogenously determine the node positions
together with the tax level parameter vector tN×1 and matrix TN×N .
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FIGURE H.5.—Perturbations of optimal tax schedule with δ= 0. The figure shows marginal tax rates under:
(a) the baseline model; and perturbations where: (b) the gender wage gap is increased; (c) assortative mating
is reduced through inclusion of an additive utility cost for educationally homogamous marriages; (d) the home
time efficiency parameter is reduced to zero everywhere. Marginal tax rates are shown conditional on spousal
earnings, z2. See Footnote 9 for a definition of low, medium, and high spousal earnings.

When the income differences are increased further, there are even larger increases in tax
jointness, and even larger welfare gains. For example, when �E[lnwj] = −1 we obtain a
welfare gain equivalent to around 6.5%.

Assortative mating. Related to the above, we consider how the degree of assortative
mating influences the design problem. Frankel (2014) considered a simple binary model
to analyse taxation design when couples have correlated types. In the context of uncor-
related types (as in KKS (2009)) negative jointness is obtained, although this result is
shown to be attenuated when the degree of exogenous assortative mating is increased. In
our environment, we endogenously change the degree of assortative mating by augment-
ing the individual utility function to include the additive payoff θij . In what follows, we
set θij = −�× 1[i = j] so that a value � > 0 reduces the utility in educationally homog-
amous marriages but does not have a direct impact on the time allocation problem. In
Figure H.5(c), we show the impact that this modification has on the structure of marginal
rates when δ = 0. In the illustrations here, we set � = σθ so the reduction in expected
utility is equal in value to a one-standard-deviation idiosyncratic marital payoff. This re-
duction in correlation among types increases the degree of negative tax jointness, with
�T ′(30,000)= 28�0% and �T ′(70,000)= 29�0%. There are only very small changes in the
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tax schedule for single individuals. Under this parametrization, we obtain larger welfare
gains from jointness: individual taxation implies a welfare loss that is equivalent to 2.6%
of tax revenue.

Home production. It has long been recognized that home production activities provide
an important economic benefit associated with marriage. The design problem faced by the
social planner is also different in a model with home production versus a model without
home production. First, it affects the degree of inequality both across and within house-
holds. Those households with low wages are able to substitute away from market work
toward home activities (reducing between household inequality). Yet, the differences in
home productivity across households may increase the extent of inequality. Second, as
men and women differ in their home productivity, a model without home production has
consequences for the economic value both within and outside marriage and therefore
within-household inequality. Third, if time spent in home production is not taxed while
the time spent in market activities is taxed, then the planner must consider how taxes
distort relative factor input prices. Fourth, a model without home production implies dif-
ferent own-wage and cross-wage labor supply elasticities. Fifth, complementarity in the
home production technology is a crucial determinant of the degree of assortative mating,
and a model without home production would imply very different marital patterns.

Given the wide ranging and complex effects that home production has upon the design
problem, we consider a quantitative exploration that involves changing the home time
efficiency parameter vector ζ = {ζi0� ζ0j� ζij}i≤I�j≤J . In Figure H.5(d), we present results
setting ζ = 0. Conditional on spousal earnings, the marginal tax rate structure is more
progressive, and the degree of tax jointness is decreased. We now have �T ′(30,000) =
14�5% and �T ′(70,000)= 17�6%. The same pattern is true for single individuals. Namely,
marginal tax rates decrease at low earnings, but otherwise increase.
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