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APPENDIX A: PROOFS AND FURTHER DETAILS OF INFERENTIAL PROCEDURES

PROOF OF THEOREM 3.1: THE PROOF USES nonstochastic demand systems, which can
be identified with vectors (d1� � � � � dJ) ∈ B1 × · · · × BJ . Such a system is rationalizable if
dj ∈ arg maxy∈Bj

u(y), j = 1� � � � � J, for some utility function u.
Rationalizability of nonstochastic demand systems is well understood. In particular,

and irrespective of whether we define rationalizability by GARP or SARP, it is decidable
from knowing the preferences directly revealed by choices, hence from knowing patches
containing (d1� � � � � dJ). It follows that for all nonstochastic demand systems that select
from the same patches, either all or none are rationalizable.

Fix (P1� � � � �PJ). Let the set Y∗ collect one “representative” element (e.g., the geomet-
ric center point) of each patch. Let (P∗

1 � � � � �P
∗
J ) be the unique stochastic demand sys-

tem concentrated on Y∗ and having the same vector representation as (P1� � � � �PJ). The
previous paragraph established that demand systems can be arbitrarily perturbed within
patches, so (P1� � � � �PJ) is rationalizable iff (P∗

1 � � � � �P
∗
J ) is. It follows that rationalizabil-

ity of (P1� � � � �PJ) can be decided from its vector representation π, and that it suffices to
analyze stochastic demand systems supported on Y∗.

Now, any stochastic demand system is rationalizable iff it is a mixture of rationalizable
nonstochastic systems. Since Y∗ is finite, there are finitely many nonstochastic demand
systems supported on it; of these, a subset will be rationalizable. Noting that these demand
systems are characterized by binary vector representations corresponding to columns of
A, the statement of the theorem is immediate for the restricted class of stochastic demand
systems supported on Y∗. Q.E.D.

PROOF OF THEOREM 3.2: We begin with some preliminary observations. Throughout
this proof, c(Bi) denotes the object actually chosen from budget Bi.

(i) If there is a choice cycle of any finite length, then there is a cycle of length 2 or 3
(where a cycle of length 2 is a WARP violation). To see this, assume there exists a length
N choice cycle c(Bi)� c(Bj)� c(Bk)� · · · � c(Bi). If c(Bk)� c(Bi), then a length 3 cycle
has been discovered. Else, there exists a length N − 1 choice cycle c(Bi) � c(Bk) � · · · �
c(Bi). The argument can be iterated until N = 4.

(ii) Call a length 3 choice cycle irreducible if it does not contain a length 2 cycle. Then
a choice pattern is rationalizable iff it contains no length 2 cycles and also no irreducible
length 3 cycles. (In particular, one can ignore reducible length 3 cycles.) This follows
trivially from (i).
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(iii) Let J = 3 and M = 1, that is, assume there are three budgets but two of them
fail to intersect. Then any length 3 cycle is reducible. To see this, assume w.l.o.g. that B1

is below B3; thus c(B3) � c(B1) by monotonicity. If there is a choice cycle, we must have
c(B1)� c(B2)� c(B3). Cycle c(B1)� c(B2) implies that c(B2) is below B1; thus it is below
B3. Cycle c(B2)� c(B3) implies that c(B3) is below B2. Thus, choice from (B2�B3) violates
WARP.

We are now ready to prove the main result. The nontrivial direction is “only if”: thus
it suffices to show that if choice from (B1� � � � �BJ−1) is rationalizable but choice from
(B1� � � � �BJ) is not, then choice from (BM+1� � � � �BJ) cannot be rationalizable. By obser-
vation (ii), if (B1� � � � �BJ) is not rationalizable, it contains either a 2-cycle or an irre-
ducible 3-cycle. Because choice from all triplets within (B1� � � � �BJ−1) is rationalizable
by assumption, it is either the case that some (Bi�BJ) constitute a 2-cycle or that some
triplet (Bi�Bk�BJ), where i < k w.l.o.g., reveals an irreducible choice cycle. In the former
case, Bi must intersect BJ ; hence, i > M and, hence, the conclusion. In the latter case,
if k ≤ M , the choice cycle must be a 2-cycle in (Bi�Bk), contradicting rationalizability of
(B1� � � � �BJ−1). If i ≤ M , the choice cycle is reducible by (iii). Thus, i > M ; hence, the
conclusion. Q.E.D.

PROOF OF LEMMA 4.1: Letting ντ = ν − (τ/H)1H in Cτ = {Aν|ν ≥ (τ/H)1H}, we have

Cτ = {A[ντ + (τ/H)1H

]|ντ ≥ 0
}

= C ⊕ (τ/H)A1H

= {t : t − (τ/H)A1H ∈ C
}
�

where ⊕ signifies Minkowski sum. Define

φ = −BA1H/H�

Using the H representation of C,

Cτ = {t : B(t − (τ/H)A1H

)≤ 0
}

= {t : Bt ≤ −τφ}�
Note that the above definition of φ implies φ ∈ col(B). Also define

� := −BA

= −
⎡⎢⎣b

′
1
���
b′
m

⎤⎥⎦ [a1� � � � � aH]

= {�kh}�
where �kh = b′

kah, 1 ≤ k ≤ m, 1 ≤ h ≤ H, and let eh be the hth standard unit vector in
RH . Since eh ≥ 0, the V representation of C implies that Aeh ∈ C and, thus,

BAeh ≤ 0

by its H representation. Therefore,

�kh = −e′
kBAeh ≥ 0� 1 ≤ k≤ m�1 ≤ h ≤H� (S.1)
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But if k ≤ m̄, it cannot be that

aj ∈ {x : b′
kx= 0
}

for all j�

whereas

b′
kah = 0

holds for m̄+ 1 ≤ k ≤ m, 1 ≤ h ≤ H. Therefore, if k ≤ m̄, �kh = b′
kah is nonzero at least

for one h, 1 ≤ h ≤ H, whereas if k > m̄, �kh = 0 for every h. Since (S.1) implies that all
of {�kh}Hh=1 are nonnegative, we conclude that

φk = 1
H

H∑
h=1

�kh > 0

for every k ≤ m̄ and φk = 0 for every k> m̄. We now have

Cτ = {t : Bt ≤ −τφ}�
where φ satisfies the stated properties (i) and (ii). Q.E.D.

Before we present the proof of Theorem 4.2, it is necessary to specify a class of distribu-
tions, to which we impose a mild condition that guarantees stable behavior of the statistic
JN . To this end, we further specify the nature of each row of B. Recall that w.l.o.g., the
first m̄ rows of B correspond to inequality constraints, whereas the rest of the rows rep-
resent equalities. Note that the m̄ inequalities include nonnegativity constraints πi|j ≥ 0,
1 ≤ i ≤ Ij , 1 ≤ j ≤ J, represented by the row of B consisting of a negative constant for
the corresponding element and zeros otherwise. Likewise, the identities that

∑Ij
i=1 πi|j is

constant across 1 ≤ j ≤ J are included in the set of equality constraints.1 We show in the
proof that the presence of these “definitional” equalities/inequalities, which always hold
by construction of π̂, do not affect the asymptotic theory even when they are (close to)
binding. Define K = {1� � � � �m}, and let KD be the set of indices for the rows of B cor-
responding to the above nonnegativity constraints and the constant-sum constraints. Let
KR = K \ KD, so that b′

kπ ≤ 0 represents an economic restriction if k ∈ KR.2 Recalling
that the choice vectors (dj|1� � � � � dj|Nj

) are independent and identically distributed (IID)
within each time period j, 1 ≤ j ≤ J, let dj denote the choice vector of a consumer fac-
ing budget j (therefore w.l.o.g we can let dj = dj|1). Define d = [d′

1� � � � � d
′
J]′, a random I

vector of binary variables. Note E[d] = π. Let

g = Bd

= [g1� � � � � gm]′�
With these definitions, consider the following requirement.

CONDITION S.1: For each k ∈ KR, var(gk) > 0 and E[|gk/
√

var(gk)|2+c1] < c2 hold,
where c1 and c2 are positive constants.

1If we impose the (redundant) restriction 1′
Hν = 1 in the definition of C, then the corresponding equality

restrictions would be
∑Ij

i=1 πi|j = 1 for every j.
2In (4.6), KR contains only the last row of the matrix.
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This type of condition is standard in the literature; see, for example, Andrews and
Soares (2010).

PROOF OF THEOREM 4.2: By applying the Minkowski–Weyl theorem and Lemma 4.1
to JN and J̃N(τN), we see that our procedure is equivalent to comparing

JN = min
t∈RI :Bt≤0

N[π̂ − t]′Ω[π̂ − t]

to the 1 − α quantile of the distribution of

J̃N = min
t∈RI :Bt≤−τNφ

N[η̃τN − t]′Ω[η̃τN − t]

with φ = [φ̄′� (0� � � � �0)′]′, φ̄ ∈ Rm̄
++, where

η̃τN = η̂τN + 1√
N
N(0� Ŝ)�

η̂τN = argmin
t∈RI :Bt≤−τNφ

N[π̂ − t]′Ω[π̂ − t]�

Suppose B has m rows and rank(B) = �. Define an � × m matrix K such that KB is a
matrix whose rows consist of a basis of the row space row(B). Also let M be an (I − �)× I
matrix whose rows form an orthonormal basis of kerB = ker(KB), and define P = (KB

M

)
.

Finally, let ĝ = Bπ̂ and ĥ= Mπ̂. Then

JN = min
Bt≤0

N

[(
KB

M

)
(π̂ − t)

]′
P−1′

ΩP−1

[(
KB

M

)
(π̂ − t)

]

= min
Bt≤0

N

(
K[ĝ −Bt]
ĥ−Mt

)′
P−1′

ΩP−1

(
K[ĝ −Bt]
ĥ−Mt

)
�

Let

U1 =
{(

Kγ

h

)
: γ = Bt�h =Mt�B≤t ≤ 0�B=t = 0� t ∈ RI

}
�

Then writing α= KBt and h= Mt,

JN = min
(αh)∈U1

N

(
Kĝ − α

ĥ− h

)′
P−1′

ΩP−1

(
Kĝ − α

ĥ− h

)
�

Also define

U2 =
{(

Kγ

h

)
: γ =
(
γ≤

γ=

)
�γ≤ ∈ Rm̄

+�γ
= = 0�γ ∈ col(B)�h ∈ RI−�

}
�

where col(B) denotes the column space of B. Obviously U1 ⊂ U2. Moreover, U2 ⊂ U1

holds. To see this, let
(
Kγ∗
h∗
)

be an arbitrary element of U2. We can always find t∗ ∈ RI

such that γ∗ = Bt∗. Define

t∗∗ := t∗ +M ′h∗ −M ′Mt∗�
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Then Bt∗∗ = Bt∗ = γ∗; therefore, B≤t∗∗ ≤ 0 and B=t∗∗ = 0. Also, Mt∗∗ = Mt∗ +MM ′h∗ −
MM ′Mt∗ = h∗: therefore,

(
Kγ∗
h∗
)

is an element of U1 as well. Consequently,

U1 = U2�

We now have

JN = min
(αh)∈U2

N

(
Kĝ − α

ĥ− h

)′
P−1′

ΩP−1

(
Kĝ − α

ĥ− h

)

= N min
(αy)∈U2

(
Kĝ − α

y

)′
P−1′

ΩP−1

(
Kĝ − α

y

)
�

Define

T(x� y)=
(
x

y

)′
P−1′

ΩP−1

(
x

y

)
� x ∈ R�� y ∈ RI−��

and

t(x) := min
y∈RI−�

T (x� y)� s(g) := min
γ=[γ≤′�γ=′]′�γ≤≤0�γ==0�γ∈col(B)

t
(
K[g − γ])�

It is easy to see that t : R� → R+ is a positive definite quadratic form. We can write

JN = N min
γ=[γ≤′�γ=′]′�γ≤≤0�γ==0�γ∈col(B)

t
(
K[ĝ − γ])

= Ns(ĝ)

= s(
√
Nĝ)�

We now show that tightening can turn nonbinding inequality constraints into binding
ones, but not vice versa. Note that, as will be seen below, this observation uses diag-
onality of Ω and the specific geometry of the cone C. Let γ̂k

τN
, ĝk, and φk denote the

kth elements of γ̂τN = Bη̂τN , ĝ, and φ. Moreover, define γτ(g) = [γ1(g)� � � � � γm(g)]′ =
argminγ=[γ≤′�γ=′]′�γ≤≤−τφ̄�γ==0�γ∈col(B) t(K[g − γ]) for g ∈ col(B), and let γk

τ (g) be its kth el-
ement. Then γ̂τN = γτN (ĝ). Finally, define βτ(g) = γτ(g) + τφ for τ > 0 and let βk

τ(g)
denote its kth element. Note γk

τ (g) = φk = βk
τ(g) = 0 for every k > m̄ and g. Now we

show that for each k≤ m̄ and for some δ > 0,

βk
τ(g)= 0

if |gk| ≤ τδ and gj ≤ τδ, 1 ≤ j ≤ m̄. In what follows we first show this for the case with
Ω = II , where II denotes the I-dimensional identity matrix; then we generalize the result
to the case where Ω can have arbitrary positive diagonal elements.

For τ > 0 and δ > 0, define hyperplanes

Hτ
k = {x : b′

kx= −τφk
}
�

Hk = {x : b′
kx= 0
}
�

half-spaces

Hτ
∠k(δ)= {x : b′

kx ≤ τδ
}
�
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and also

Sk(δ)= {x ∈ C : ∣∣b′
kx
∣∣≤ τδ
}

for 1 ≤ k≤m. Define

L =
m⋂

k=m̄+1

Hk�

a linear subspace of RI . In what follows we show that for small enough δ > 0, every ele-
ment x∗ ∈ RI such that

x∗ ∈ S1(δ)∩ · · · ∩ Sq(δ)∩Hτ
∠q+1(δ)∩ · · · ∩Hτ

∠m(δ) for some q ∈ {1� � � � � m̄} (S.2)

satisfies

x∗|Cτ ∈Hτ
1 ∩ · · · ∩Hτ

q ∩L� (S.3)

where x∗|Cτ denotes the orthogonal projection of x∗ on Cτ. Let g∗k = b′
kx

∗, k = 1� � � � �m.
Note that an element x∗ fulfills (S.2) iff |g∗k| ≤ τδ, 1 ≤ k≤ q, and g∗j ≤ τδ, q+ 1 ≤ j ≤ m̄.
Likewise, (S.3) holds iff βτ

k(g
∗)= 0, 1 ≤ k≤ q (recall that βτ

k(g
∗)= 0 always holds for k >

m̄). Thus, so as to establish the desired property of the function βτ(·), we show that (S.2)
implies (S.3). Suppose it does not hold; then without loss of generality, for an element x∗

that satisfies (S.2) for an arbitrary small δ > 0, we have

x∗|Cτ ∈ Hτ
1 ∩ · · · ∩Hτ

r ∩L and x∗|Cτ /∈ Hτ
j � r + 1 ≤ j ≤ q (S.4)

for some 1 ≤ r ≤ q− 1. Define half-spaces

Hτ
∠k = {x : b′

kx≤ −τφk
}
�

H∠k = {x : b′
kx≤ 0
}

for 1 ≤ k≤m, τ > 0, and also let

F =H1 ∩ · · · ∩Hr ∩ C�

Then for (S.4) to hold for some x∗ ∈ RI satisfying (S.2) for an arbitrary small δ > 0, we
must have

F |(Hτ
1 ∩ · · · ∩Hτ

r ∩L
)⊂ int
(
Hτ

∠r+1 ∩ · · · ∩Hτ
∠q

)
�

(Recall that the notation | signifies orthogonal projection. Also note that if dim(F) = 1,
then (S.4) does not occur under (S.2).) Therefore, if we let

�(J)= {x ∈ RI : 1′
Ix = J�x≥ 0

}
�

that is, the simplex with vertices (J�0� � � � �0)� � � � � (0� � � � �0� J), we have(
F ∩�(J)

)|(Hτ
1 ∩ · · · ∩Hτ

r ∩L
)⊂ int
(
Hτ

∠r+1 ∩ · · · ∩Hτ
∠q

)
� (S.5)

Let {a1� � � � � aH} =A denote the collection of the column vectors of A. Then {the vertices
of F ∩ �(J)} ∈ A. Let ā� ¯̄a ∈ F ∩ �(J). Let B(ε�x) denote the ε (-open) ball with center
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x ∈ RI . By (S.5),

B

(
ε�

(
ā
∣∣∣ r⋂
j=1

Hτ
j ∩L

))
⊂ int
(
Hτ

∠r+1 ∩ · · · ∩Hτ
∠q

)∩H∠1 ∩ · · · ∩H∠r

holds for small enough ε > 0. Let āτ := ā+ τ
H
A1H and ¯̄aτ := ¯̄a+ τ

H
A1H . Then((

ā
∣∣∣( r⋂

j=1

Hτ
j

)
∩L

)
− ā

)′

( ¯̄a− ā) =
((

ā|
(

r⋂
j=1

Hτ
j

)
∩L

)
− ā

)′( ¯̄aτ − āτ
)

= 0

since āτ� ¯̄aτ ∈ (
⋂r

j=1 H
τ
j ) ∩ L. We can then take z ∈ B(ε� (ā|(⋂r

j=1 H
τ
j ) ∩ L)) such that

(z− ā)′( ¯̄a− ā) < 0. By construction z ∈ C, which implies the existence of a triplet (a� ā� ¯̄a)
of distinct elements in A such that (a− ā)′( ¯̄a− ā) < 0. In what follows we show that this
cannot happen; then the desired property of βτ is established.

So let us now show that

(a1 − a0)
′(a2 − a0)≥ 0 for every triplet (a0� a1� a2) of distinct elements in A� (S.6)

Noting that a′
iaj just counts the number of budgets on which i and j agree, define

φ(ai� aj)= J − a′
iaj�

the number of disagreements. Importantly, note that φ(ai� aj)=φ(aj� ai) and that φ is a
distance (it is the taxicab distance between elements in A, which are all 0-1 vectors). Now

(a1 − a0)
′(a2 − a0)

= a′
1a2 − a′

0a2 − a′
1a0 + a′

0a0

= J −φ(a1� a2)− (J −φ(a0� a2)
)− (J −φ(a0� a1)

)+ J

= φ(a0� a2)+φ(a0� a1)−φ(a1� a2)≥ 0

by the triangle inequality.
Next we treat the case where Ω is not necessarily II . Write

Ω =

⎡⎢⎢⎢⎣
ω2

1 0 � � � 0
0 ω2

2 � � � 0
� � �

0 � � � 0 ω2
I

⎤⎥⎥⎥⎦ �
The statistic JN in (4.1) can be rewritten, using the square-root matrix Ω1/2,

JN = min
η∗=Ω1/2η:η∈C

[
π̂∗ −η∗]′[π̂∗ −η∗]

or

JN = min
η∗∈C∗

[
π̂∗ −η∗]′[π̂∗ −η∗]�
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where

C∗ = {Ω1/2Aν|ν ≥ 0
}

= {A∗ν|ν ≥ 0
}

with

A∗ = [a∗
1� � � � � a

∗
H

]
� a∗

h = Ω1/2ah� 1 ≤ h≤ H�

Then we can follow our previous argument, replacing a’s with a∗’s, and using

�∗(J) = conv
([0� � � � �ωi� � � � �0]′ ∈ RI� i = 1� � � � � I

)
instead of the simplex �(J). Finally, we need to verify that the acuteness condition (S.6)
holds for A∗ = {a∗

1� � � � � a
∗
H}.

For two I vectors a and b, define a weighted taxicab metric

φΩ(a�b) :=
I∑

i=1

ωi|ai − bi|�

Then the standard taxicab metric φ used above is φΩ with Ω = II . Moreover, letting
a∗ = Ω1/2a and b∗ =Ω1/2b, where each of a and b is an I-dimensional 0-1 vector, we have

a∗′b∗ =
I∑

i=1

ωi

[
1 − |ai − bi|

]= ω̄−φΩ(a�b)

with ω̄ =∑I

i=1 ωi. Then for every triplet (a∗
0� a

∗
1� a

∗
2) of distinct elements in A∗,(

a∗
1 − a∗

0

)′(
a∗

2 − a∗
0

)= ω̄−φΩ(a1� a2)− ω̄+φΩ(a0� a2)

− ω̄+φΩ(a0� a1)+ ω̄−φΩ(a0� a0)

= φΩ(a1� a2)−φΩ(a0� a2)−φΩ(a0� a1)

≥ 0�

which is the desired acuteness condition. Since JN can be written as the minimum of the
quadratic form with identity-matrix weighting subject to the cone generated by a∗s, all the
previous arguments developed for the case with Ω = II remain valid.

Defining ξ ∼ N(0� Ŝ) and ζ = Bξ,

J̃N ∼ min
Bt≤−τNφ

N

[(
KB

M

)(
η̂τN +N−1/2ξ − t

)]′
P−1′

ΩP−1

[(
KB

M

)(
η̂τN +N−1/2ξ − t

)]
= N min

γ=[γ≤′�γ=′]′�γ≤≤−τN φ̄�γ==0�γ∈col(B)
t
(
K
[
γ̂τN +N−1/2ζ − γ

])
conditional on data {{di|j�n}Iji=1}Nj

n=1, j = 1�2� � � � � J. Moreover, defining γτ = γ+ τNφ in the
above, and using the definitions of βτ(·) and s(·),

J̃N ∼ N min
γτ=[γτ≤′�γτ=′]′�γτ≤≤0�γτ==0�γτ∈col(B)

t
(
K
[
γ̂τN + τNφ+N−1/2ζ − γτ

])
= N min

γτ=[γτ≤′�γτ=′]′�γτ≤≤0�γτ==0�γτ∈col(B)
t
(
K
[
γτN (ĝ)+ τNφ+N−1/2ζ − γτ

])
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= N min
γτ=[γτ≤′�γτ=′]′�γτ≤≤0�γτ==0�γτ∈col(B)

t
(
K
[
βτN (ĝ)+N−1/2ζ − γτ

])
= s
(
N1/2βτN (ĝ)+ ζ

)
�

Let ϕN(ξ) := N1/2βτN (τNξ) for ξ = (ξ1� � � � � ξm)
′ ∈ col(B). Then from the property of βτ

shown above, its kth element ϕk
N for k ≤ m̄ satisfies

ϕk
N(ξ)= 0

if |ξk| ≤ δ and ξj ≤ δ, 1 ≤ j ≤m for large enough N . Note that ϕk
N(ξ)= N1/2βk

N(τNξ)= 0
for k> m̄. Define ξ̂ := ĝ/τN . Using the definition of ϕN , we write

J̃N ∼ s
(
ϕN(ξ̂)+ ζ

)
� (S.7)

Now we invoke Theorem 1 of Andrews and Soares (2010; AS henceforth). As noted be-
fore, the function t is a positive definite quadratic form on R� and so is its restriction
on col(B). Then their Assumptions 1–3 hold for the function s defined above if signs
are adjusted appropriately, as our formulae deal with negativity constraints, whereas AS
work with positivity constraints. (Note that Assumption 1(b) does not apply here since we
use a fixed weighting matrix.) The function ϕN in (S.7) satisfies the properties of ϕ that
AS used in their proof of Theorem 1. AS impose a set of restrictions on the parameter
space (see their Equation (2.2) on page 124). Their condition (2.2)(vii) is a Lyapounov
condition for a triangular array CLT. Following AS, consider a sequence of distributions
πN = [π ′

1N� � � � �π
′
JN]′, N = 1�2� � � � , in P ∩ C such that (a)

√
NBπN → h for a nonposi-

tive h as N → ∞ and (b) CovπN
(
√
NBπ̂) → Σ as N → ∞, where Σ is positive semidef-

inite. The Lyapounov condition holds for b′
kπ̂ under πN for k ∈ KR, as Condition S.1

is imposed for πN ∈ P . We do not impose Condition S.1 for k ∈ KD. Note, however,
that (i) the equality b′

kπ̂ ≤ 0 holds by construction for every k ∈ KD and, therefore, its
behavior does not affect JN ; (ii) if varπN

(gk) converges to zero for some k ∈ KD, then√
Nb′

k[η̃τN − η̂τN ] = op(1) and, therefore, its contribution to J̃N is asymptotically negligi-
ble in the size calculation. The other conditions in AS, namely (2.2)(i)–(vi), hold trivially.
Finally, Assumptions GMS2 and GMS4 of AS are concerned with their thresholding pa-
rameter κN for the kth moment inequality, and by letting κN = N1/2τNφk; the former
holds by the condition

√
NτN ↑ ∞ and the latter holds by τN ↓ 0. Therefore, we conclude

lim inf
N→∞

inf
π∈P∩C

Pr{JN ≤ ĉ1−α} = 1 − α� Q.E.D.

Further Details of the Procedure in Section 5

The setting in this section is as follows. Let p̃j ∈ RK
++ denote the unnormalized price

vector, fixed for each period j. Let (S�S�P) denote the underlying probability space.
Since we have repeated cross sections over J periods, write P =⊗J

j=1 P
(j), a J-fold product

measure.
We first develop a smoothing procedure based on a series estimator (see, for example,

Newey (1997)) for π to deal with a situation where total expenditure W is continuously
distributed, yet exogenous. We need some notation and definitions to formally state the
asymptotic theory behind our procedure with smoothing. With exogeneity, we have

pi|j(wj) = Pr
{
D(p̃j/wn(j)� u) ∈ xi|j|wn(j) =wj

}
= Pr
{
D(p̃j/wj�u) ∈ xi|j� u∼ Pu

}
�
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where the second equality follows from the exogeneity assumption. Then πi|j = pi|j(wj),
which is the estimand in what follows. Define qK(w) = (q1K(w)� � � � � qKK(w))′, where
qjK(w), j = 1� � � � �K, are basis functions (e.g., power series or splines) of w. Instead of
sample frequency estimators, for each j, 1 ≤ j ≤ J, we use

π̂i|j = qK(j)(wj)
′Q̂−(j)

Nj∑
n(j)=1

qK(j)(wn(j))di|j�n(j)/Nj�

Q̂(j) =
Nj∑

n(j)=1

qK(j)(wn(j))q
K(j)(wn(j))

′/Nj�

π̂j = (π̂1|j� � � � � π̂Ij |j)
′�

π̂ = (π̂ ′
1� � � � � π̂

′
J

)′
to estimate πi|j , where A− denotes a symmetric generalized inverse of A and K(j) is
the number of basis functions applied to budget Bj . The estimators π̂i|j may not take
their values in [0�1]. This does not seem to cause a problem asymptotically, though as in
Imbens and Newey (2009), we may (and do, in the application) instead use

π̂i|j =G

(
qK(j)(wj)

′Q̂−(j)
Nj∑

n(j)=1

qK(j)(wn(j))di|j�n(j)/Nj

)
�

where G denotes the cumulative distribution function (CDF) of Unif(0�1). Then an ap-

propriate choice of τN is τN =
√

logn
n

with

n = min
j

NjIj/trace
(
v
(j)
N

)
�

where v
(j)
N is defined below. Strictly speaking, asymptotics with nonparametric smoothing

involve bias, and the bootstrap does not solve the problem. A standard procedure is to
claim that one used undersmoothing and can hence ignore the bias, and we follow this
convention. The bootstrapped test statistic J̃N is obtained by applying the same replace-
ments to the formula (4.5), although generating η̃τN requires a slight modification. Let

η̂τN (j) be the jth block of the vector η̂τN , and ket v̂(j)N satisfy v̂
(j)
N v

(j)
N

−1 →p IIj , where

v
(j)
N = [IIj ⊗ qK(j)(wj)

′QN(j)
−1
]
Λ

(j)
N

[
IIj ⊗Q−1

N (j)qK(j)(wj)
]

with QN(j) := E[qK(j)(wn(j))q
K(j)(wn(j))

′], Λ(j)
N := E[Σ(j)(wn(j)) ⊗ qK(j)(wn(j))q

K(j)(wn(j))
′],

and Σ(j)(w) := Cov[dj�n(j)|wn(j) =w]. Note that Σ(j)(w) = diag(p(j)(w))−p(j)(w)p(j)(w)′,
where p(j)(w) = [p1|j(w)� � � � �pIj |j(w)]′. For example, one may use

v̂
(j)
N = [IIj ⊗ qK(j)(wj)

′Q̂−(j)
]
Λ̂(j)
[
IIj ⊗ Q̂−(j)qK(j)(wj)

]
with Λ̂(j) = 1

Nj

∑Nj

n(j)=1[Σ̂(j)(wn(j)) ⊗ qK(j)(wn(j))q
K(j)(wn(j))

′], Σ̂(j)(w) = diag(p̂(j)(w)) −
p̂(j)(w)p̂(j)(w)′, p̂(j)(w) = [p̂1|j(w)� � � � � p̂Ij |j(w)]′, and p̂i|j(w) = qK(j)(w)′Q̂−(j) ×



NONPARAMETRIC ANALYSIS OF RANDOM UTILITY MODELS 11∑Nj

n(j)=1 q
K(j)(wn(j))di|j�n(j)/Nj . We use η̃τN = (η̃τN (1)

′� � � � � η̃τN (J)
′)′ for the smoothed ver-

sion of J̃N , where η̃τN (j) := η̂τN (j)+ 1√
Nj
N(0� v̂(j)N ), j = 1� � � � � J.

Noting that {{di|j�n(j)}Iji=1�wn(j)}Nj

n(j)=1 are IID distributed within each time period j, 1 ≤
j ≤ J, let (dj�wj) denote the choice–log-expenditure pair of a consumer facing budget j.
Let d = [d′

1� � � � � d
′
J]′ and w = [w1� � � � �wJ]′, and define g = Bd = [g1� � � � � gm]′ as before.

Let Wj denote the support of wn(j). For a symmetric matrix A, λmin signifies its smallest
eigenvalue.

CONDITION S.2: There exist positive constants c1, c2, δ, and ζ(K), K ∈ N, such that the
following statements hold:

(i) We have π ∈ C.
(ii) For each k ∈ KR, var(gk|w = (w1� � � � �wJ)

′) ≥ s2(F1� � � � �FJ) and E[(gk/s(F1� � � � �

FJ))
4|w = (w1� � � � �wJ)

′] < c1 hold for every (w1� � � � �wJ) ∈W1 × · · ·WJ .
(iii) The inequality supw∈Wj

|pi|j(w) − qK(w)′β(j)
K | ≤ c1K

−δ holds with some K vector

β
(j)
K for every K ∈ N, 1 ≤ i ≤ Ij , 1 ≤ j ≤ J.
(iv) Letting q̃K := CK�jq

K , λminE[̃qK(wn(j))q̃
K(wn(j))

′] ≥ c2 holds for every K and j,
where CK�j , K ∈ N, 1 ≤ j ≤ J, are constant nonsingular matrices.

(v) For every K ∈ N, maxj supw∈Wj
‖q̃K(w)‖ ≤ c2ζ(K).

Condition S.2(ii) is a version of Condition S.1 that accommodates the conditioning by
w and series estimation. Conditions S.2(iii)–(v) are standard regularity conditions com-
monly used in the series regression literature: (iii) imposes a uniform approximation error
bound, (iv) avoids singular design (note the existence of the matrices CK�j suffices), and
(v) controls the lengths of the series terms used.

The next condition imposes restrictions on tuning parameters.

CONDITION S.3: The terms τN and K(j), j = 1� � � � � J, satisfy
√
NjK

−δ(j) ↓ 0,
ζ(K(j))2K(j)/Nj ↓ 0, j = 1� � � � � J, τN ↓ 0, and

√
nτN ↑ ∞.

PROOF OF THEOREM 5.1: We begin by introducing some notation.

NOTATION: Let bk�i, k = 1� � � � �m, i = 1� � � � � I, denote the (k� i) element of B. Then
define

bk(j)= [bk�N1+···Nj−1+1� bk�N1+···Nj−1+2� � � � � bk�N1+···Nj
]′

for 1 ≤ j ≤ J and 1 ≤ k ≤m. Let B(j) := [b1(j)� � � � � bm(j)]′ ∈ Rm×Ij . For F ∈F and 1 ≤ j ≤
J, define

p
(j)
F (w) :=EF [dj�n(j)|wn(j) =w]� π

(j)
F = p

(j)
F (wj)� πF = [π(1)

F

′
� � � � �π(J)

F

′]′
�

and

Σ
(j)
F (w) := CovF [dj�n(j)|wn(j) = w]�

Note that Σ(j)
F (w) = diag(p(j)

F (w))−p
(j)
F (w)p

(j)
F (w)′.

The proof mimics the proof of Theorem 4.2, except for the treatment of π̂. Instead
of the sequence πN , N = 1�2� � � �, in P ∩ C, consider a sequence of distributions FN =
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[F1N� � � � �FJN], N = 1�2� � � � , in F such that
√
Nj/K(j)B(j)π

(j)
FN

→ hj , hj ≤ 0, 1 ≤ j ≤ J as
N → ∞. Define Q

(j)
FN

= EFN [qK(j)(wn(j))q
K(j)(wn(j))

′] and Ξ
(j)
FN

= EFN [B(j)Σ
(j)
FN
(wn(j))B

(j)′ ⊗
qK(j)(wn(j))q

K(j)(wn(j))
′], and let

V
(j)
FN

:= [Im ⊗ qK(j)(wj)
′Q(j)

FN

−1]
Ξ

(j)
FN

[
Im ⊗Q

(j)
FN

−1
qK(j)(wj)

]
and

VFN :=
J∑

j=1

V
(j)
FN

�

Then by adapting the proof of Theorem 2 in Newey (1997) to the triangle array for the
repeated cross section setting, we obtain

√
NVFN

− 1
2 B[π̂ −πFN ] FN�N(0� Im)�

The rest is the same as the proof of Theorem 4.2. Q.E.D.

Next we turn to the definition of our endogeneity-corrected estimator π̂EC, propose a
bootstrap algorithm for it, and show its validity. Exogeneity of budget sets is a standard
assumption in classical demand analysis based on random utility models; for example, it is
assumed, at least implicitly, in McFadden and Richter (1991). Nonetheless, the assump-
tion can be a concern in applying our testing procedure to a data set such as ours. Recall
that the budget sets {Bj}Jj=1 are based on prices and total expenditure. The latter is likely
to be endogenous, which should be a concern to the econometrician.

As independence between utility and budgets is fundamental to McFadden–Richter
theory, addressing it in our testing procedure might seem difficult. Fortunately, recent ad-
vances in nonparametric identification and estimation of models with endogeneity inform
a solution. To see this, it is useful to rewrite the model so that we can cast it into a frame-
work of nonseparable models with endogenous covariates. Writing pj = p̃j/W , where p̃j

is the unnormalized price vector, the essence of the problem is as follows. Stochastic ratio-
nalizability imposes restrictions on the distributions of y =D(p�u) for different p when u
is distributed according to its population marginal distribution Pu, but the observed con-
ditional distribution of y given p does not estimate this when w and u are interrelated.
In particular, if we define JEC = minν∈Rh+[πEC − Aν]′Ω[πEC − Aν], with the definition of
πEC provided in Section 5, then JEC = 0 iff stochastic rationalizability holds. Note that the
new definition πEC recovers the previous definition of π when w is exogenous.

Our estimator uses the control function approach. For example, given a reduced form
w = hj(z�ε) with hj monotone in ε and z is an instrument, one may use

ε = F
(j)
w|z(w|z)� (S.8)

where F
(j)
w|z denotes the conditional CDF of w given z under P(j) when the random vector

(w�z) obeys the probability law P(j); see Imbens and Newey (2009) for this type of control
variable in the context of cross-sectional data. Note that ε ∼ Uni(0�1) under every P(j),
1 ≤ j ≤ J, by construction. Let P

(j)
y|w�ε denote the conditional probability measure for y

given (w�ε) corresponding to P(j). Adapting the argument in Imbens and Newey (2009)
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and Blundell and Powell (2003), under the assumption that supp(w) = supp(w|ε) under
P(j), 1 ≤ j ≤ J, we have

π(pj�xi|j) =
∫ 1

0

∫
u

1
{
Dj(wj�u) ∈ xi|j

}
dP(j)

u|ε dε

=
∫ 1

0
P

(j)
y|w�ε{y ∈ xi|j|w = wj�ε}dε� 1 ≤ j ≤ J�

This means that πEC can be estimated nonparametrically.
To estimate π̂EC, we can proceed in two steps as follows. The first step is to ob-

tain control variable estimates ε̂n(j), n(j) = 1� � � � �Nj , for each j. For example, let F̂
(j)
w|z

be a nonparametric estimator for Fw|z for a given instrumental variable z in period j.
For concreteness, we consider a series estimator as in Imbens and Newey (2002). Let
rL(z) = (r1L(z)� � � � � rLL(z)), where r�L(z), �= 1� � � � �L are basis functions. Then define

F̂
(j)
w|z(w|z)= rL(z)′R̂−(j)

Nj∑
n(j)=1

rL(j)(zn(j))1{wn(j) ≤ w}/Nj�

where

R̂(j)=
Nj∑

n(j)=1

rL(j)(zn(j))r
L(j)(zn(j))

′/Nj�

Let

ε̃n(j) = F̂
(j)
w|z(wn(j)|zn(j))� n(j)= 1� � � � �Nj�

Choose a sequence υN → 0, υN > 0, and define ιN(ε)= (ε+ υN)
2/4υN . Then let

γN(ε)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1� if ε > 1 + υN�

1 − ιN(1 − ε)� if 1 − υN < ε ≤ 1 + υN�

ε� if υN ≤ ε ≤ 1 − υN�

ιN(ε)� if − υN ≤ ε ≤ υN�

0� if ε < −υN�

Then our control variable is ε̂n(j) = γN(̃εn(j)), n(j)= 1� � � � �Nj .
The second step is nonparametric estimation of P(j)

y|w�ε{y ∈ xi|j|w = wj�ε}. Let χ̂n(j) =
(wn(j)� ε̂n(j))

′, n(j) = 1� � � � �Nj , for each j. Write sM(j)(χ) = (s1M(j)(χ)� � � � � sM(j)M(j)(χ))
′,

where smM(j)(χ), χ ∈ RK+1, and m = 1� � � � �M(j) are basis functions. Then our estimator
for P(j)

y|w�ε{y ∈ xi|j|w = ·� ε = ·} evaluated at χ= (w�ε) is

̂P
(j)
y|w�ε{y ∈ xi|j|w�ε} = sM(j)(χ)′Ŝ−(j)

Nj∑
n(j)=1

sM(j)(χ̂n(j))di|j�n(j)/Nj

= sM(j)(χ)′α̂M(j)
i �
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where

Ŝ(j)=
Nj∑

n(j)=1

sM(j)(χ̂n(j))s
M(j)(χ̂n(j))

′/Nj� α̂
M(j)
i := Ŝ−(j)

Nj∑
n(j)=1

sM(j)(χ̂n(j))di|j�n(j)/Nj�

Our endogeneity-corrected conditional probability π(pj�xi|j) is a linear functional of

P
(j)
y|w�ε{y ∈ xi|j|w = wj�ε}. Thus, plugging ̂P

(j)
y|w�ε{y ∈ xi|j|w = wj�ε} into the functional, we

define

̂π(pj�xi|j) :=
∫ 1

0

̂P
(j)
y|w�ε{y ∈ xi|j|w = wj�ε}dε

= D(j)′α̂M(j)
i �

where

D(j) :=
∫ 1

0
sM(j)(

[
wj

ε

]
)dε� i = 1� � � � � Ij� j = 1� � � � � J�

and

π̂EC = [ ̂π(p1�x1|1)� � � � � ̂π(p1�xI1|1)� ̂π(p2�x1|2)� � � � � ̂π(p2�xI2|2)� � � � �

̂π(pJ�x1|J)� � � � � ̂π(pJ�xIJ |J)
]′
�

The final form of the test statistic is

JECN
=N min

ν∈Rh+
[π̂EC −Aν]′Λ[π̂EC −Aν]�

The calculation of critical values can be carried out in the same way as the testing proce-
dure with the series estimator π̂ for the exogenous case, though the covariance matrix v(j)N

needs modification. With the nonparametric endogeneity correction, the modified version
of v(j)N is

v̄
(j)
N = [IIj ⊗D(j)′SN(j)

−1
]
Λ̄

(j)
N

[
IIj ⊗ SN(j)

−1D(j)
]
�

where

SN(j) = E
[
sM(j)(χn(j))s

M(j)(χn(j))
′]
� Λ̄

(j)
N = Λ̄

(j)
1N

+ Λ̄
(j)
2N
�

Λ̄
(j)
1N

= E
[
Σ̄(j)(χn(j))⊗ sM(j)(χn(j))s

M(j)(χn(j))
′]� Λ̄

(j)
2N

= E
[
mn(j)m

′
n(j)

]
with

Σ̄(j)(χ) := Cov[dj�n(j)|χn(j) = χ]�
mn(j) := [m′

1�n(j)�m
′
2�n(j)� � � � �m

′
Ij �n(j)

]′
�

mi�n(j) := E
[
γ̇N(εm(j))

∂

∂ε
P

(j)
y|w�ε{y ∈ xi|j|wm(j)� εm(j)}

× sM(j)(χm(j))r
L(j)(zm(j))

′RN(j)
−1rL(j)(zn(j))umn(j)

∣∣∣di|j�n(j)�wn(j)� zn(j)

]
�
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RN(j) := E
[
rL(j)(zn(j))r

L(j)(zn(j))
′]�

umn(j) := 1{wn(j) ≤wm(j)} − F
(j)
w|z(wm(j)|zn(j))�

Define

nEC = min
j

NjIj/ trace
(
v̄
(j)
N

)
�

Then a possible choice for τN is τN =
√

lognEC
nEC

. Proceed as for J̃N earlier in this section,

replacing v̂
(j)
N with a consistent estimator for v̄(j)N , for j = 1� � � � � J, to define the bootstrap

version J̃EC.
We impose some conditions to show the validity of the endogeneity-corrected test.

Let εn(j) be the value of the control variable ε for the n(j)th consumer facing budget j.
Noting that {{di|j�n(j)}Iji=1�wn(j)� εn(j)}Nj

n(j)=1 are IID distributed within each time period j,
1 ≤ j ≤ J, let (dj�wj� εj) denote the choice–log-expenditure–control variable triplet of a
consumer facing budget j. Let d = [d′

1� � � � � d
′
J]′, w = [w1� � � � �wJ]′, and e = [ε1� � � � � εJ]′,

and define g = Bd = [g1� � � � � gm]′ as before. Let Xj = supp(χn(j)), Zj = supp(zn(j)), and
Ej = supp(εn(j)), 1 ≤ j ≤ J. Following the above discussion, define an RI-valued functional

π
(
P(1)
y|w�ε� � � � �P

(J)
y|w�ε

)= [π1|1
(
P(1)
y|w�ε

)
� � � � �πI1|1

(
P(1)
y|w�ε

)
�π1|2
(
P(2)
y|w�ε

)
� � � � �πI2|2

(
P(2)
y|w�ε

)
� � � � �

π1|J
(
P(J)
y|w�ε

)
� � � � �πIJ |J

(
P(J)
y|w�ε

)]′
�

where

πi|j
(
P

(j)
y|w�ε

) := ∫ 1

0
P

(j)
y|w�ε{y ∈ xi|j|w = wj�ε}dε

and εn(j) := F
(j)
w|z(wn(j)|zn(j)) for every j.

CONDITION S.4: There exist positive constants c1, c2, δ1, δ, ζr(L), ζs(M), and ζ1(M),
L ∈ N, M ∈ N such that the following statements hold:

(i) The distribution of wn(j) conditional on zn(j) = z is continuous for every z ∈ Zj ,
1 ≤ j ≤ J.

(ii) We have supp(wn(j)|εn(j) = ε)= supp(wn(j)) for every ε ∈ [0�1], 1 ≤ j ≤ J.
(iii) We have π(P(1)

y|w�ε� � � � �P
(J)
y|w�ε) ∈ C.

(iv) For each k ∈KR, var(gk|w = (w1� � � � �wJ)
′� e = (ε1� � � � � εJ))

′ ≥ s2(F1� � � � �FJ) and
E[(gk/s(F1� � � � �FJ))

4|w = (w1� � � � �wJ)
′� e = (ε1� � � � � εJ)

′] < c1 hold for every (w1� � � � �
wJ� ε1� � � � � εJ) ∈W1 × · · · ×WJ × E1 × · · · × EJ .

(v) Letting r̃L := CL�jr
L, λminE[̃rL(zn(j))̃rL(zn(j))] ≥ c2 holds for every L and j, where

CL�j , L ∈ N, 1 ≤ j ≤ J, are constant nonsingular matrices.
(vi) We have maxj supz∈Zj

‖̃rL(z)‖ ≤ c1ζr(L) for every L ∈ N.

(vii) We have that supw∈Wj �z∈Zj
|F(j)

w|z(w�z) − rL(z)′α(j)
L (w)| ≤ c1L

−δ1 , 1 ≤ j ≤ J holds

with some L vector α(j)
L (·) for every L ∈ N, 1 ≤ j ≤ J.

(viii) Letting s̃M := C̄M�js
M , λminE[̃sM(χn(j))̃s

M(χn(j))] ≥ c2 holds for every M and j,
where C̄M�j , M ∈ N, 1 ≤ j ≤ J, are constant nonsingular matrices.

(ix) We have maxj supχ∈Xj
‖̃sM(χ)‖ ≤ Cζs(M) and maxj supχ∈Xj

‖∂̃sM(χ)/∂ε‖ ≤
c1ζ1(M), and ζs(M)≤ Cζ1(M) for every M ∈ N.
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(x) We have that supχ∈Xj
|P(j)

y|w�ε{y ∈ xi|j|w�ε} − sM(χ)′g(i�j)
M | ≤ c1M

−δ holds with some

M vector g(i�j)
M for every M ∈ N, 1 ≤ i ≤ Ij , 1 ≤ j ≤ J.

(xi) The P
(j)
y|w�ε{y ∈ xi|j|w�ε}, 1 ≤ i ≤ Ij , 1 ≤ j ≤ J, are twice continuously differen-

tiable in χ= (w�ε). Moreover, max1≤j≤J max1≤i≤Ij supχ∈χj
‖ ∂
∂χ
P

(j)
y|w�ε{y ∈ xi|j|w�ε}‖ ≤ c1 and

max1≤j≤J max1≤i≤Ij supχ∈χj
‖ ∂2

∂χ∂χ′P
(j)
y|w�ε{y ∈ xi|j|w�ε}‖ ≤ c1.

Since we use the control function approach to deal with potential endogeneity in w
(income), Condition S.4(i) and (ii) are essential. See Blundell and Powell (2003) and
Imbens and Newey (2009) for further discussion on these types of restrictions. Just like
Condition S.2(ii), Condition S.4(iv) is a version of Condition S.1 that accommodates
the two-step series estimation. Conditions S.4(iv)–(xi) correspond to standard regular-
ity conditions stated in the context of the two-step approach adopted in this section: (iv)
and (x) imposes uniform approximation error bounds; (v) and (viii) avoid singular de-
signs (note the existence of the matrices CL�j and C̄M�j suffices); (vi) and (ix) control the
lengths of (the derivatives of) the series terms used. Condition S.4(xi) imposes reasonable
smoothness restrictions on the (observable) conditional probabilities P(j)

y|w�ε{y ∈ xi|j|w�ε},
1 ≤ i ≤ Ij , 1 ≤ j ≤ J.

The next condition impose restrictions on tuning parameters.

CONDITION S.5: Let τN , M(j), and L(j), j = 1� � � � � J, satisfy τN ↓ 0, √
nECτN ↑ ∞,

NjL(j)
1−2δ1 ↓ 0, NjM(j)−2δ ↓ 0, M(j)ζ1(M(j))2L2(j)/Nj ↓ 0, ζs(M(j))6L4(j)/Nj ↓ 0,

and ζ1(M(j))4ζr(L(j))
4/Nj ↓ 0, and also C(L(j)/Nj + L(j)1−2δ1) ≤ υ3

N ≤ C(L(j)/Nj +
L(j)1−2δ1), for some 0 <C <C .

PROOF OF THEOREM 5.2: The proof follows the same steps as those in the proof
of Theorem 4.2, except for the treatment of the estimator for π. Therefore, instead
of the sequence πN , N = 1�2� � � �, in P ∩ C, consider a sequence of distributions
FN = [F1N� � � � �FJN], N = 1�2� � � � , in FEC and the corresponding conditional distri-
butions P

(j)
y|w�ε;FN {y ∈ xi|j|w�ε} and F

(j)
w|zN , 1 ≤ i ≤ Ij , 1 ≤ j ≤ J, N = 1�2� � � � , such

that
√
Nj/(M(j)∨L(j)))B(j)π

(j)
FN

→ hj , hj ≤ 0, 1 ≤ j ≤ J as N → ∞, where πFN =
π(P(1)

y|w�εN
� � � � �P(J)

y|w�εN
), whereas the definitions of V

(j)

FN
, 1 ≤ j ≤ J, are given shortly. De-

fine S
(j)
FN

= EFN [sM(j)(χn(j))s
M(j)(χn(j))

′] as well as

Ξ̄
(j)
1FN

= EFN

[
B(j)Σ̄

(j)
FN
(χn(j))B

(j)′ ⊗ sM(j)(χn(j))s
M(j)(χn(j))

′]
and

Ξ̄
(j)
2FN

= [B(j) ⊗ IM(j)

]
EFN

[
mn(j);FNm

′
n(j);FN
][
B(j)′ ⊗ IM(j)

]
�

where

Σ
(j)
FN
(χ) := CovFN [dj�n(j)|χn(j) = χ]�

mn(j);FN := [m′
1�n(j);FN �m

′
2�n(j);FN � � � � �m

′
Ij �n(j);FN

]′
�

mi�n(j);FN := EFN

[
γ̇N(εm(j))

∂

∂ε
P

(j)
y|w�ε;FN {y ∈ xi|j|wm(j)� εm(j)}
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× sM(j)(χm(j))r
L(j)(zm(j))

′RFN (j)
−1rL(j)(zn(j))umn(j);FN

∣∣∣di|j�n(j)�wn(j)� zn(j)

]
�

RFN (j) := EFN

[
rL(j)(zn(j))r

L(j)(zn(j))
′]�

umn(j);FN := 1{wn(j) ≤wm(j)} − F
(j)
w|zN (wm(j)|zn(j))�

With these definitions, let

V
(j)

FN
:= [Im ⊗D(j)′S(j)

FN

−1]
Ξ̄

(j)
FN

[
Im ⊗ S

(j)
FN

−1
D(j)
]

with Ξ̄
(j)
FN

= Ξ̄
(j)
1FN

+ Ξ̄
(j)
2FN

. Define

V FN :=
J∑

j=1

V
(j)

FN
�

Then by adapting the proof of Theorem 7 in Imbens and Newey (2002) to the triangular
array for the repeated cross section setting, for the js that satisfy Condition (iv), we obtain

√
NV FN

− 1
2 B[π̂ −πFN ] FN�N(0� Im)�

The rest is the same as the proof of Theorem 4.2. Q.E.D.

APPENDIX B: ALGORITHMS FOR COMPUTING A

This appendix details algorithms for computation of A. The first algorithm is the depth-
first search that we in fact implemented. The second algorithm is a further refinement
using Theorem 3.2. Algorithms use notation introduced in the proof of Theorem 3.2.

Computing A as in Theorem 3.1

1. Initialize m1 = · · · = mJ = 1.
2. Initialize l = 2.
3. Set c(B1) = xm1|1� � � � � c(Bl) = xml |l. Check for revealed preference

cycles.
4. If a cycle is detected, move to step 7. Else:
5. If l < J, set l = l + 1, ml = 1, and return to step 3. Else:
6. Extend A by the column [m1� � � � �mJ]′.
7a. If ml < Il, set ml =ml + 1 and return to step 3.
7b. If ml = Il and ml−1 < Il−1, set ml = 1, ml−1 =ml−1 + 1, l = l − 1, and

return to step 3.
7c. If ml = Il, ml−1 = Il−1, and ml−2 < Il−2, set ml = ml−1 = 1, ml−2 =

ml−2 + 1, l = l − 2, and return to step 3.
(...)
7z. Terminate.

Refinement Using Theorem 3.2

Let budgets be arranged such that (B1� � � � �BM) do not intersect BJ ; for exposition of
the algorithm, assume BJ is above these budgets.
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1. Use preceding algorithm to compute a matrix AM+1→J−1 corre-
sponding to budgets (BM+1� � � � �BJ), though using the full X
corresponding to budgets (B1� � � � �BJ).3

2. For each column aM+1→J−1 of AM+1→J−1, go through the follow-
ing steps:
2.1 Compute (using preceding algorithm) all vectors a1→M s.t.

(a1→M�aM+1→J−1) is rationalizable.
2.2 Compute (using preceding algorithm) all vectors aJ s.t.

(aM+1→J−1� aJ) is rationalizable.
2.3 All stacked vectors (a′

1→M�a
′
M+1→J−1� a

′
J)

′ are valid columns
of A.

APPENDIX C: JUSTIFICATION OF TABLE I

This appendix derives the upper bound on nodes visited by a tree search as described in
Section 3.4.2. We only count nodes corresponding to j ≥ 2, as rationalizability of implied
choice behavior is checked only at those.

Consider the number of nodes visited in generation j+1, that is, corresponding to bud-
get Bj . Since Ij ≤ 2J−1, this is at most 2J−1 times the number of nodes in the jth generation
at which no choice cycle was detected. These nodes, in turn, correspond to the at most
H̄j−1 direct revealed preference orderings that can occur on (j − 1) budgets. However,
since we look at patches corresponding to the entire set of J budgets, each of those order-
ings has multiple representations. Specifically, each patch in an A matrix corresponding
to the first (j − 1) budgets corresponds to at most 2J−(j−1) patches in the problem un-
der consideration (because the patches are generated by intersecting the original patch
with (J − (j − 1)) budgets). These refined patches can be arbitrarily combined across the
first (j − 1) budgets, so that each direct revealed preference ordering on the first (j − 1)
budgets has at most 2(J−j+1)(j−1) representations. Thus, the number of nodes visited in gen-
eration j+ 1, j� � � � � J, is at most H̄j−12(J−j+1)(j−1)+J−1 = H̄j−12j(J+2−j)−2. This bound must be
summed over j = 2� � � � � J.
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