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The package RDHonest implements confidence intervals for the regression discontinuity parameter considered
in Armstrong and Kolesár (2017), Armstrong and Kolesár (2016), and Kolesár and Rothe (2017). In this
vignette, we demonstrate the implementation of these confidence intervals using datasets from Lee (2008) and
Oreopoulos (2006), which are included in the package as a data frame lee08 and cghs. The datasets from
Lalive (2008) and Ludwig and Miller (2007) that are used in Armstrong and Kolesár (2016), and Kolesár and
Rothe (2017) are also included in the package as data frames rebp and headst.

Sharp RD model

In the sharp regression discontinuity model, we observe units i = 1, . . . , n, with the outcome yi for the ith
unit given by

yi = f(xi) + ui,

where f(xi) is the expectation of yi conditional on the running variable xi and ui is the regression error. A
unit is treated if and only if the running variable xi lies above a known cutoff c0. The parameter of interest
is given by the jump of f at the cutoff,

β = lim
x↓c0

f(x)− lim
x↑c0

f(x).

Let σ2(xi) denote the conditional variance of ui.

In the Lee dataset, the running variable corresponds to the margin of victory of a Democratic candidate in a
US House election, and the treatment corresponds to winning the election. Therefore, the cutoff is zero. The
outcome of interest is the Democratic vote share in the following election.

The Oreopoulos dataset consists of a subsample of British workers, and it exploits a change in minimum
school leaving age in the UK from 14 to 15, which occurred in 1947. The running variable is the year in
which the individual turned 14, with the cutoff equal to 1947 so that the “treatment” is being subject to a
higher minimum school-leaving age. The outcome is log earnings in 1998.

Some of the functions in the package require the data to be transformed into a custom RDData format. This
can be accomplished with the RDData function:
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library("RDHonest")
## Assumes first column in the data frame corresponds to
## outcome, and second to running variable
dl <- RDData(lee08, cutoff = 0)
## Transform earnings to log earnings
do <- RDData(data.frame(logearn = log(cghs$earnings), year14 = cghs$yearat14),

cutoff = 1947)

Plots

The package provides a function plot_RDscatter to plot the raw data. To remove some noise, the function
plots averages over avg number of observations. The function takes an RDData object as an argument
## plot 25-bin averages in for observations 50 at most
## points away from the cutoff. See Figure 1
plot_RDscatter(dl, avg = 25, window = 50, xlab = "Margin of victory",

ylab = "Vote share in next election")
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Figure 1: Lee (2008) data

The running variable in the Oreopoulos dataset is discrete. It is therefore natural to plot the average
outcome by each value of the running variable, which is achieved using by setting avg=Inf. The option
dotsize="count" makes the size of the points proportional to the number of observations that the point
averages over.
## see Figure 2
f2 <- plot_RDscatter(do, avg = Inf, xlab = "Year aged 14",

ylab = "Log earnings", propdotsize = TRUE)
## Adjust size of dots if they are too big
f2 + ggplot2::scale_size_area(max_size = 4)
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Figure 2: Oreopoulos (2006) data

Inference based on local polynomial estimates

The function RDHonest constructs one- and two-sided confidence intervals (CIs) around local linear and local
quadratic estimators using either a user-supplied bandwidth (which is allowed to differ on either side of the
cutoff), or bandwidth that is optimized for a given performance criterion. The sense of honesty is that, if the
regression errors are normally distributed with known variance, the CIs are guaranteed to achieve correct
coverage in finite samples, and achieve correct coverage asymptotically uniformly over the parameter space
otherwise. Furthermore, because the CIs explicitly take into account the possible bias of the estimators, the
asymptotic approximation doesn’t rely on the bandwidth to shrink to zero at a particular rate.

To describe the form of the CIs, let β̂h+,h− denote a a local polynomial estimator with bandwidth equal to h+
above the cutoff and equal to h− below the cutoff. Let βh+,h−(f) denote its expectation conditional on the
covariates when the regression function equals f . Then the bias of the estimator is given by βh+,h−(f)− β.
Let

B(β̂h+,h−) = sup
f∈F
|βh+,h−(f)− β|

denote the worst-case bias over the parameter space F . Then the lower limit of a one-sided CI is given by

β̂h+,h− −B(β̂h+,h−)− z1−αŝe(β̂h+,h−),

where z1−α is the 1− α quantile of a standard normal distribution, and ŝe(β̂h+,h−) is the standard error (an
estimate of the standard deviation of the estimator). Subtracting the worst-case bias in addition to the usual
critical value times standard error ensures correct coverage at all points in the parameter space.

A two-sided CI is given by

β̂h+,h− ± cv1−α(B(β̂h+,h−)/ŝe(β̂h+,h−))× ŝe(β̂h+,h−),

where the critical value function cv1−α(b) corresponds to the 1− α quantile of the |N(b, 1)| distribution. To
see why using this critical value ensures honesty, decompose the t-statistic as

β̂h+,h− − β
ŝe(β̂h+,h−)

=
β̂h+,h− − βh+,h−(f)

ŝe(β̂h+,h−)
+
βh+,h−(f)− β
ŝe(β̂h+,h−)
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By a central limit theorem, the first term on the right-hand side will by distributed standard normal,
irrespective of the bias. The second term is bounded in absolute value by B(β̂h+,h−)/ŝe(β̂h+,h−), so
that, in large samples, the 1 − α quantile of the absolute value of the t-statistic will be bounded by
cv1−α(B(β̂h+,h−)/ŝe(β̂h+,h−)). This approach gives tigher CIs than simply adding and subtracting B(β̂h+,h−)
from the point estimate, in addition to adding and subtracting z1−αŝe(β̂h+,h−)

The function CVb gives these critical values:
## Usual critical value
CVb(0, alpha = 0.05) # returns a list
#> bias alpha cv TeXDescription
#> 1 0 0.05 1.95996 $\\alpha=0.05$
CVb(1/2, alpha = 0.05)$cv # extract critical value
#> [1] 2.18148
## Tabulate critical values for different significance
## levels when bias-sd ratio equals 1/4
knitr::kable(CVb(1/4, alpha = c(0.01, 0.05, 0.1)), caption = "Critical values")

Table 1: Critical values

bias alpha cv TeXDescription
0.25 0.01 2.65224 α = 0.01
0.25 0.05 2.01971 α = 0.05
0.25 0.10 1.69558 α = 0.1

The field TeXDescription is useful for plotting, or for exporting to LATEX, as in the table above.

Parameter space

To implement the honest CIs, one needs to specify the parameter space F . The function RDHonest computes
honest CIs when the parameter space F corresponds to a second-order Taylor or second-order Hölder
smoothness class, which capture two different types of smoothness restrictions. The second-order Taylor class
assumes that f lies in the the class of functions

FTaylor(M) = {f+ − f− : f+ ∈ FT (M ; [c0,∞)), f− ∈ FT (M ; (−∞, c0))} ,

where FT (M ;X ) consists of functions f such that the approximation error from second-order Taylor expansion
of f(x) about c0 is bounded by M |x|2/2, uniformly over X :

FT (M ;X ) =
{
f : |f(x)− f(c0)− f ′(c0)x| ≤M |x|2/2 all x ∈ X

}
.

The class FT (M ;X ) formalizes the idea that the second derivative of f at zero should be bounded by
M . See Section 2 in Armstrong and Kolesár (2017) (note the constant C in that paper equals C = M/2
here). This class is doesn’t impose smoothness away from boundary, which may be undesirable in some
empirical applications. The Hölder class addresses this problem by bounding the second derivative globally.
In particular, it assumes that f lies in the class of functions

FHölder(M) = {f+ − f− : f+ ∈ FH(M ; [c0f− ∈ FH(M ; (−∞, c0))} ,

where
FH(M ;X ) = {f : |f ′(x)− f ′(y)| ≤M |x− y| x, y ∈ X}.
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The smoothness class is specified using the option sclass. CIs around a local linear estimator with bandwidth
that equals to 10 on either side of the cutoff when the parameter space is given by a Taylor and Hölder
smoothness class, respectively, with M = 0.1:
RDHonest(voteshare ~ margin, data = lee08, kern = "uniform",

M = 0.1, hp = 10, sclass = "T")
#> Call:
#> RDHonest(formula = voteshare ~ margin, data = lee08, M = 0.1,
#> kern = "uniform", hp = 10, sclass = "T")
#>
#>
#> Inference by se.method:
#> Estimate Maximum Bias Std. Error
#> nn 6.05677 3.78224 1.19053
#>
#> Confidence intervals:
#> nn (0.316293, 11.7973), (0.316293, Inf), (-Inf, 11.7973)
#>
#> Bandwidth below cutoff: 10
#> Bandwidth above cutoff: 10 (Bandwidths are the same)
#> Number of effective observations: 292.325
RDHonest(voteshare ~ margin, data = lee08, kern = "uniform",

M = 0.1, hp = 10, sclass = "H")
#> Call:
#> RDHonest(formula = voteshare ~ margin, data = lee08, M = 0.1,
#> kern = "uniform", hp = 10, sclass = "H")
#>
#>
#> Inference by se.method:
#> Estimate Maximum Bias Std. Error
#> nn 6.05677 1.72377 1.19053
#>
#> Confidence intervals:
#> nn (2.37473, 9.73882), (2.37476, Inf), (-Inf, 9.73878)
#>
#> Bandwidth below cutoff: 10
#> Bandwidth above cutoff: 10 (Bandwidths are the same)
#> Number of effective observations: 292.325

The confidence intervals use the nearest-neighbor method to estimate the standard error by default (this can
be changed using the option se.method, see help file). The package reports two-sided as well one-sided CIs
(with lower as well as upper limit) by default.

Instead of specifing a bandwidth, one can just specify the smoothness class and smoothness constant M , and
the bandwidth will be chosen optimally for a given optimality criterion:
RDHonest(voteshare ~ margin, data = lee08, kern = "triangular",

M = 0.1, opt.criterion = "MSE", sclass = "H")
#> Call:
#> RDHonest(formula = voteshare ~ margin, data = lee08, M = 0.1,
#> kern = "triangular", opt.criterion = "MSE", sclass = "H")
#>
#>
#> Inference by se.method:
#> Estimate Maximum Bias Std. Error
#> nn 5.93665 0.832259 1.29442
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#>
#> Confidence intervals:
#> nn (2.95483, 8.91847), (2.97526, Inf), (-Inf, 8.89804)
#>
#> Bandwidth below cutoff: 8.84851
#> Bandwidth above cutoff: 8.84851 (Bandwidths are the same)
#> Number of effective observations: 213.463
## Choose bws optimal for length of CI, allowing for
## different bws on either side of cutoff
RDHonest(voteshare ~ margin, data = lee08, kern = "triangular",

M = 0.1, opt.criterion = "FLCI", sclass = "H", bw.equal = FALSE)
#> Call:
#> RDHonest(formula = voteshare ~ margin, data = lee08, M = 0.1,
#> kern = "triangular", opt.criterion = "FLCI", bw.equal = FALSE,
#> sclass = "H")
#>
#>
#> Inference by se.method:
#> Estimate Maximum Bias Std. Error
#> nn 5.96024 0.880966 1.27649
#>
#> Confidence intervals:
#> nn ( 2.9647, 8.95578), (2.97964, Inf), (-Inf, 8.94084)
#>
#> Bandwidth below cutoff: 8.80412
#> Bandwidth above cutoff: 9.38041 (Bandwidths are different)
#> Number of effective observations: 220.335

It is also possible to compute the optimal bandwidths directly using the function RDOptBW
RDOptBW(voteshare ~ margin, data = lee08, kern = "triangular",

M = 0.1, opt.criterion = "MSE", sclass = "H")
#> Call:
#> RDOptBW(formula = voteshare ~ margin, data = lee08, M = 0.1,
#> kern = "triangular", opt.criterion = "MSE", sclass = "H")
#>
#>
#> Bandwidth below cutoff: 8.84851
#> Bandwidth above cutoff: 8.84851 (Bandwidths are the same)

Inference when running variable is discrete

The confidence intervals described above can also be used when the running variable is discrete, with G
support points: their construction makes no assumptions on the nature of the running variable (see Section
5.1 in Kolesár and Rothe (2017) for more detailed discussion).

As an example, consider the Oreopoulos (2006) data, in which the running variable is age in years:
## Replicate Table 2, column (10)
RDHonest(log(earnings) ~ yearat14, cutoff = 1947, data = cghs,

kern = "uniform", M = 0.04, opt.criterion = "FLCI",
sclass = "H")

#> Call:
#>

6



#> RDHonest(formula = log(earnings) ~ yearat14, data = cghs, cutoff = 1947,
#> M = 0.04, kern = "uniform", opt.criterion = "FLCI", sclass = "H")
#>
#>
#> Inference by se.method:
#> Estimate Maximum Bias Std. Error
#> nn 0.0790946 0.0473659 0.0678409
#>
#> Confidence intervals:
#> nn (-0.0806132, 0.238802), (-0.0798596, Inf), (-Inf, 0.238049)
#>
#> Bandwidth below cutoff: 2
#> Bandwidth above cutoff: 2 (Bandwidths are the same)
#> Number of effective observations: 2017.08
## Triangular kernel generally gives tigher CIs
RDHonest(log(earnings) ~ yearat14, cutoff = 1947, data = cghs,

kern = "triangular", M = 0.04, opt.criterion = "FLCI",
sclass = "H")

#> Call:
#>
#> RDHonest(formula = log(earnings) ~ yearat14, data = cghs, cutoff = 1947,
#> M = 0.04, kern = "triangular", opt.criterion = "FLCI", sclass = "H")
#>
#>
#> Inference by se.method:
#> Estimate Maximum Bias Std. Error
#> nn 0.0732707 0.0594767 0.0563895
#>
#> Confidence intervals:
#> nn (-0.0790059, 0.225547), (-0.0789585, Inf), (-Inf, 0.2255)
#>
#> Bandwidth below cutoff: 3.20207
#> Bandwidth above cutoff: 3.20207 (Bandwidths are the same)
#> Number of effective observations: 2265.83

In addition, the package provides function RDHonestBME that calculates honest confidence intervals under
the assumption that the specification bias at zero is no worse at the cutoff than away from the cutoff as in
Section 5.2 in Kolesár and Rothe (2017).
## Replicate Table 2, column (6), run local linear
## regression (order=1) with a uniform kernel (other
## kernels are not yet implemented)
RDHonestBME(log(earnings) ~ yearat14, cutoff = 1947, data = cghs,

hp = 3, order = 1)
#> Call:
#> RDHonestBME(formula = log(earnings) ~ yearat14, data = cghs,
#> cutoff = 1947, hp = 3, order = 1)
#>
#>
#> Confidence intervals:
#> (-0.0696559, 0.201989)

Let us describe the implementation of the variance estimator V̂ (W ) used to construct the CI as described
in in Section 5.2 in Kolesár and Rothe (2017). Suppose the point estimate is given by the first element of
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the regression of the outcome yi on m(xi). For instance, local linear regression with uniform kernel and
bandwidth h corresponds to m(x) = I(|x| ≤ h) · (I(x > c0), 1, x, x · I(x > c0))′. Let θ = Q−1E[m(xi)yi],
where Q = E[m(xi)m(xi)′], denote the estimand for this regression (treating the bandwidth as fixed), and let
δ(x) = f(x)−m(x)′θ denote the specification error at x. The RD estimate is given by first element of the
least squares estimator θ̂ = Q̂−1∑

im(xi)yi, where Q̂ =
∑
im(xi)m(xi)′.

Let w(xi) denote a vector of indicator (dummy) variables for all support points of xi within distance h of the
cutoff, so that µ(xg), where xg is the gth support point of xi, is given by the gth element of the regression
estimand S−1E[w(xi)yi], where S = E[w(xi)w(xi)′]. Let µ̂ = Ŝ−1∑

i w(xi)yi, where Ŝ =
∑
i w(xi)w(xi)′

denote the least squares estimator. Then an estimate of (δ(x1), . . . , δ(xG))′ is given by δ̂, the vector with
elements µ̂g − xg θ̂.

By standard regression results, the asymptotic distribution of θ̂ and µ̂ is given by

√
n

(
θ̂ − θ
µ̂− µ

)
d→ N (0,Ω) ,

where

Ω =
(
Q−1E[(ε2i + δ(xi)2)m(xi)m(xi)′]Q−1 Q−1E[ε2im(xi)w(xi)′]S−1

S−1E[ε2iw(xi)m(xi)′]Q−1 S−1E[ε2iw(xi)w(xi)′]S−1

)
.

Let ûi denote the regression residual from the regression of yi on m(xi), and let ε̂i denote the regression
residuals from the regression of yi on w(xi). Then a consistent estimator of the asymptotic variance Ω is
given by

Ω̂ = n
∑
i

TiT
′
i , T ′i =

(
ûim(xi)′Q̂−1 ε̂iw(xi)′Ŝ−1

)
.

Note that the upper left block and lower right block correspond simply to the Eicker-Huber-White estimators
of the asymptotic variance of θ̂ and µ̂. By the delta method, a consistent estimator of the asymptotic variance
of (δ̂, θ̂1) is given by

Σ̂ =
(
−X I
e′1 0

)
Ω̂
(
−X I
e′1 0

)′
,

where X is a matrix with gth row equal to x′g, and e1 is the first unit vector.

Recall that in the notation of Kolesár and Rothe (2017), W = (g−, g+, s−, s+), and g+ and g− are such that
xg− < c0 ≤ xg+ , and s+, s− ∈ {−1, 1}. An upper limit for a right-sided CI for θ1 + b(W ) is then given by

θ̂1 + s+δ̂(xg+) + s−δ̂(xg−) + z1−αV̂ (W ),

where V̂ (W ) = a(W )′Σ̂a(W ), and a(W ) ∈ RGh+1 denotes a vector with the g−th element equal to s−,
(G−h + g+)th element equal to s+, the last element equal to one, and the remaining elements equal to zero.
The rest of the construction then follows the description in Section 5.2 in Kolesár and Rothe (2017).

Optimal inference

For the second-order Taylor smoothness class, the function RDHonest, with kernel="optimal", computes
finite-sample optimal estimators and confidence intervals, as described in Section 2.2 in Armstrong and
Kolesár (2017). This typically yields tighter CIs. Comparing the lenghts of two-sided CIs with optimally
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chosen bandwidths, using Silverman’s rule of thumb to estimate the preliminary variance estimate used to
compute optimal bandwidths:
2 * RDHonest(voteshare ~ margin, data = lee08, kern = "optimal",

M = 0.1, opt.criterion = "FLCI", se.initial = "Silverman",
se.method = "nn")$hl

#> nn
#> 6.29408
2 * RDHonest(voteshare ~ margin, data = lee08, kern = "triangular",

M = 0.1, opt.criterion = "FLCI", se.initial = "Silverman",
se.method = "nn", sclass = "T")$hl

#> nn
#> 6.64827

Specification testing

The package also implements lower-bound estimates for the smoothness constant M for the Taylor and Hölder
smoothess class, as described in the supplements to Kolesár and Rothe (2017) and Armstrong and Kolesár
(2017)
## Add variance estimate to the lee data so that the
## RDSmoothnessBound function doesn't have to compute
## them each time
dl <- RDHonest::RDPrelimVar(dl, se.initial = "NN")
### Only use three point-average for averages of a 100
### points closest to cutoff, and report results
### separately for points above and below cutoff
RDSmoothnessBound(dl, s = 100, separate = TRUE, multiple = FALSE,

sclass = "T")
#>
#> Smoothness bound estimate using observations above cutoff:
#> Estimate: 0.172723, Lower CI: [0, Inf)
#>
#> Delta: 0.183302, sd=0.179281
#> E_n[f(x_1)]: 53.1291, I1=[0.0112861, 1.74936]
#> E_n[f(x_2)]: 53.1468, I2=[1.75187, 3.43698]
#> E_n[f(x_3)]: 56.1762, I3=[3.44594, 4.89676]
#>
#> Smoothness bound estimate using observations below cutoff:
#> Estimate: 0.333754, Lower CI: [0.138838, Inf)
#>
#> Delta: -0.333754, sd=0.118477
#> E_n[f(x_1)]: 44.9589, I1=[0.0308186, 1.95308]
#> E_n[f(x_2)]: 46.6076, I2=[2.00265, 3.75439]
#> E_n[f(x_3)]: 41.7689, I3=[3.78509, 5.49484]
### Pool estimates based on observations below and above
### cutoff, and use three-point averages over the entire
### support of the running variable
RDSmoothnessBound(dl, s = 100, separate = FALSE, multiple = TRUE,

sclass = "H")
#>
#> Smoothness bound estimate:
#> Estimate: 0.229375, Lower CI: [0.0250072, Inf)
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#>
#> Delta: -2.15055, sd=0.763411
#> E_n[f(x_1)]: 44.9589, I1=[0.0308186, 1.95308]
#> E_n[f(x_2)]: 46.6076, I2=[2.00265, 3.75439]
#> E_n[f(x_3)]: 41.7689, I3=[3.78509, 5.49484]
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