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APPENDIX B: PROOF OF THEOREM 1

THE PROOF FOLLOWS AND GENERALIZES that of Diamond (1965), and is based on the
following lemmas.

LEMMA 18—Debreu (1954): Let C be a completely ordered set and Z = (z0� z1� � � �) be a
countable subset of C. If for every c� c′ ∈ C such that c ≺ c′, there is z ∈Z such that c � z � c′,
then there exists on C a real, order-preserving function, continuous in any natural topology.45

LEMMA 19: For any c ∈ C, there exists x ∈ X such that c ∼ (c0�x�x� � � �).

PROOF: Given c, let Dc = {(c0� y� y� � � �) : y ∈ X}, A = {d ∈ Dc : d � c}, and B = {d ∈
Dc : d � c}. By Axiom 1, A ∪ B = Dc; by Axiom 2, A and B are closed; by Axiom 3,
A and B are nonempty. Moreover, Dc is connected. Indeed, for any continuous function
φ : Dc → {0�1}, the function φ̄ : X → {0�1} defined by φ̄(x) = φ(c0�x�x� � � �) is also
continuous. Connectedness of X implies that φ̄ is constant and, hence, that φ is constant,
showing connectedness of Dc . This implies that A∩B 	= ∅. Q.E.D.

To conclude the proof of Theorem 1, let Z0 be a countable dense subset of X , which
exists since X is separable, and let Z be the subset of C consisting of streams (x� y� y� � � �)
with x� y ∈ Z0. Lemma 19 implies that Z satisfies the hypothesis of Lemma 18, which
yields the result. Indeed, by Lemma 19 there are x� y ∈ X such that (c0�x�x� � � �) ∼ c ≺
c′ ∼ (c′

0� y� y� � � �). Consider the set E ⊂ X2 consisting of (z�w) such that (c0�x�x� � � �) ≺
(z�w�w� � � �)≺ (c′

0� y� y� � � �). E is nonempty by connectedness of X and open by Axiom 2.
Since Z is dense in X2, E must contain an element of Z.

APPENDIX C: PROOF OF COROLLARY 1

By Theorem 3, � can be represented by

U(c) = u(c0)+
∞∑
t=1

αtG
(
U(tc)

)
�
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Since (x� c)� (y� c), u(x) = u(y)+u for some u > 0. Hence, for any t ≥ 1, U(cx)−U(cy)
equals u− ∑t

s=1 α
s�Gs, where �Gs is defined recursively as follows: for s = t,

�Gt = G
(
U

(
tc

y
)) −G

(
U

(
tc

y
) − u

)
�

otherwise

�Gs =G
(
Us

(
sc

y
)) −G

(
Us

(
sc

y
) −

t−s∑
k=1

αk�Gs+k

)
�

By Proposition 1, �Gt <
1−α
α
u and

�Gt−1 =G
(
Ut−1

(
t−1c

y
)) −G

(
Ut−1

(
t−1c

y
) − α�Gt

)
< (1 − α)�Gt

<
(1 − α)2

α
u�

Now, suppose that, for all k such that s < k ≤ t − 1, �Gk <
(1−α)2

α
u. It follows that

�Gs <
1 − α

α

[
t−s∑
τ=1

ατ�Gs+τ

]

<
1 − α

α

[
t−s−1∑
τ=1

ατ (1 − α)2

α
+ αt−s (1 − α)

α

]
u

= (1 − α)2

α

[
t−s−2∑
τ=0

ατ(1 − α)+ αt−s−1

]
u

= (1 − α)2

α
u�

Therefore,

t∑
s=1

αs�Gs < u

[
αt 1 − α

α
+

t−1∑
s=1

αs (1 − α)2

α

]
= u(1 − α)�

We conclude that U(cx)−U(cy) > αu > 0.

APPENDIX D: PROOF OF COROLLARY 2

By representation (5), U clearly depends on c0 only through u0 = u(c0). This implies
that U(1c)—and hence also U(c) (from (5))—depends on c1 only through u1 = u(c1).
By induction, U(c) depends on (c0� � � � � ct) only through (u0� � � � � ut), for each t. There
remains to establish the result at infinity: If c and c̃ are two streams such that u(ct)= u(c̃t)
for all t, we need to show that U(c)= U(c̃). From the previous step, assume without loss
of generality that ct = c̃t for all t ≤ T , where T is any large, finite constant. Since U is
H-continuous, we can choose T so that |U(c′) − U(c̃′)| < ε for all c′� c̃′ that coincide up
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to T . Since c and c̃ satisfy this property, |U(c) − U(c̃)| < ε, and since ε was arbitrary,
U(c)= U(c̃). This shows that the sequence {ut = u(ct)}∞

t=0 of period-utility levels entirely
determines the value of U(c), proving the result.

APPENDIX E: PROOF OF PROPOSITION 4

Consider representation (5) in Theorem 3. For every c ∈ C , we have sequences {us}∞
s=0

and {Us}∞
s=0, where us = u(cs) and Us = Û(us�us+1� � � �). Since u is continuous and X is

connected, the range of u is a connected interval Iu ⊂ R. Recall that the range of U is
also a connected interval U ⊂ R. Using the notation,

d(t� c)= ∂U0/∂ut

∂U0/∂u0
�

Note that ∂Us

∂us
= 1 for all s ≥ 0. Since G is differentiable, we have

∂U0

∂ut

=
t−1∑
τ=0

αt−τG′(Ut−τ)
∂Ut−τ

∂ut

�

More generally, for 1 ≤ τ ≤ t,

∂Ut−τ

∂ut

=
τ−1∑
s=0

ατ−sG′(Ut−s)
∂Ut−s

∂ut

�

So, for τ = 1, ∂Ut−1
∂ut

= αG′(Ut). More generally, for 2 ≤ τ ≤ t,

∂Ut−τ

∂ut

= α

(τ−1)−1∑
s=0

α(τ−1)−sG′(Ut−s)
∂Ut−s

∂ut

+ αG′(Ut−(τ−1))
∂Ut−(τ−1)

∂ut

= ∂Ut−(τ−1)

∂ut

α
(
1 +G′(Ut−(τ−1))

)
�

So,

∂Ut−τ

∂ut

= ατG′(Ut)

τ−1∏
s=1

(
1 +G′(Ut−s)

)
�

Let
∏τ−1

s=1(1 +G′(Ut−s))= 1 if τ = 1. Then,

∂U0

∂ut

= αtG′(Ut)+G′(Ut)

t−1∑
τ=1

αtG′(Ut−τ)

τ−1∏
s=1

(
1 +G′(Ut−s)

)

= αtG′(Ut)

[
1 +

t−1∑
τ=1

G′(Ut−τ)

τ−1∏
s=1

(
1 +G′(Ut−s)

)]
�
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APPENDIX F: PROOF OF PROPOSITION 4

Recall that by assumption �t =�0 for all t ≥ 0 and each �t is represented by the func-
tion U(tc)= V (ct�U(t+1c)�U(t+2c)� � � �).

Suppose that V depends only on its first two arguments and is strictly increasing in its
second argument. Since V is a function, we have recursively that

U(tc)= U
(
tc

′) ⇔ U(ĉt−s� � � � � ĉt−1� tc)=U
(
ĉt−s� � � � � ĉt−1� tc

′) for s ≥ 1�

And by the monotonicity property of V we have, again recursively, that

U(tc) > U
(
tc

′) ⇔ U(ĉt−s� � � � � ĉt−1� tc) > U
(
ĉt−s� � � � � ĉt−1� tc

′) for s ≥ 1�

Therefore, {�t}∞
t=0 exhibits time consistency.

Now suppose that {�t}∞
t=0 exhibits times consistency. In particular, this means that 1c ∼1

1c
′ if and only if (c0� 1c) ∼0 (c0� 1c

′). Therefore, for every (U(1c), U(2c)� � � �) and (U(1c
′),

U(2c
′)� � � �) that satisfy U(1c)=U(1c

′),

V
(
c0�U(1c)�U(2c)� � � �

) = V
(
c0�U

(
1c

′)�U(
2c

′)� � � �)�
So V can depend only on its first two arguments. Similarly, 1c �1

1c
′ if and only if

(c0� 1c) �0 (c0� 1c
′). Therefore, U(1c) > U(1c

′) implies that V (c0�U(1c)) > V (c0�U(1c
′));

that is, V must be strictly increasing in its second argument.

APPENDIX G: PROOF OF LEMMA 17

Recall that for any ν′ > ν in U ,

G
(
ν′) −G(ν) <

1 − α

α

(
ν′ − ν

)
�

We will show that, for any ε > 0 small enough, there exists a constant K < 1−α
α

such that

G
(
ν′) −G(ν)≤ max

{
K

(
ν′ − ν

)
� ε

}
(G.1)

for all ν′ > ν in U .
Case (i): Suppose first that U is bounded and let U = cl(U). If necessary, extend G to

U by continuity. Since U is compact and G is continuous, it is also uniformly continuous.
Hence, for any ε > 0, there exists η(ε) > 0 such that |ν − ν′| < η(ε) implies |G(ν) −
G(ν′)| < ε. Let �(ε) = {(ν� ν′) ∈ U 2 | ν ≥ ν′ + η(ε)}. The function F(ν� ν′) = G(ν)−G(ν′)

ν−ν′ is
continuous and strictly less46 than 1−α

α
on the compact set �(ε) and thus has a strictly

positive upper bound K < 1−α
α

. By construction, (G.1) holds for any (ν� ν′) ∈ �(ε) and any
(ν� ν′) ∈ U 2 \�(ε).

Case (ii): Suppose that U is unbounded both above and below—the intermediate cases
follow by combining the two cases shown here. Let G= infν∈U G(ν) and G= supν∈U G(ν),

46This is true by assumption if ν and ν′ belong to U , and it is easy to show that it is still true if either ν or
ν′ belongs to U \ U . For example, if ν′ is the infimum of U , one can take any point ν̃ ∈ (ν′� ν). By assumption,
G(ν)−G(ν̃) < (1 − α)/α(ν − ν̃) and, by continuity of G, G(ν̃)−G(ν′)≤ (1 − α)/α(ν̃ − ν′). Combining these
inequalities yields the result, as is easily seen. (One way of showing this is to use the fact that a/b < c/d ⇒
(a+ b)/(c + d) < c/d for a�b� c�d strictly positive—see the argument at the end of this proof.)
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which are finite and distinct because G is bounded and strictly increasing. Fix any
ε < G − G. Let ν(ε) = G−1(G + ε) and ν(ε) = G−1(G − ε). If either ν ≤ ν(ε) and
ν′ ≤ ν(ε), or ν ≥ ν(ε) and ν′ ≥ ν(ε), then (G.1) holds by construction. Now take any
ν� ν ∈ U with ν > ν(ε)+ 2( αε

1−α
+ 1) and ν < ν(ε)− 2( αε

1−α
+ 1). On the compact set [ν� ν],

the continuous function G is uniformly continuous, so there exist η > 0 and η(ε) =
min{η� 1

2(v − ν(ε))� 1
2(ν(ε) − ν)} such that |ν − ν′| < η(ε) implies |G(ν) − G(ν′)| < ε.

Let �′(ε) = {(ν� ν′) ∈ [ν� ν]2 | ν ≥ ν′ + η(ε)}. By the same argument as before, the func-
tion F(ν� ν′)= G(ν)−G(ν′)

ν−ν′ has a strictly positive upper bound K1 <
1−α
α

on the set �′(ε).
Define νm = 1

2(ν + ν(ε)) and νm = 1
2(v + ν(ε)). The only difficulty is to show the claim

when ν′ < ν(ε) ≤ ν < ν or ν′ < v ≤ ν(ε) < ν. We focus on the first case. If ν′ < v(ε), by
construction νm − ν′ ≥ η(ε) and hence

G(νm)−G
(
ν′)

νm − ν′ <K1� (G.2)

Now note that

ν − νm > ν − νm = 1
2
(
ν − ν(ε)

)
>

αε

1 − α
+ 1�

Hence, there exists a strictly positive K2 <
1−α
α

such that, for all ν > ν, we have ν − νm >
ε/K2. Since ν > ν(ε) and νm > ν(ε), it follows that

G(ν)−G(νm)

ν − νm
≤ ε

ν − νm
<K2� (G.3)

For any strictly positive a, b, c, d, (a + c)/(b + d) ≤ max{a/b� c/d}. Combining this in-
equality to (G.2) and (G.3), we conclude that

G(ν)−G
(
ν′)

ν − ν′ ≤ max{K1�K2}�

By a similar argument, for all ν′ < v ≤ ν(ε) < ν,

G(ν)−G
(
ν′)

ν − ν′ ≤ max{K1�K3}

for some strictly positive K3 <
1−α
α

. Letting K = max{K1�K2�K3} then proves the claim of
the lemma.
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