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APPENDIX B: MORE RESULTS ON NUMERICAL STUDIES

B.1. Supplementary to Section 4.1

IN THIS SUBSECTION, WE REPORT RESULTS ABOUT AUTOCOVARIANCES; those about au-
tocorrelations are given in the main article. Figure 14 compares the estimates of scaled
autocovariances based on Theorem 3.1 with the infeasible estimates based on the noise
process and the theoretical values. The estimates are based on one simulated path. More
specifically, we use red dashed curve to report the estimates of the scaled autocovariances
based on Theorem 3.1, namely,

R̂(j)nt :=U(j)nt /Nn
t for j = (0� j)� j = 0�1� � � � � (B.1)

as in (3.9) with t = 1; blue dotted curve to report the infeasible estimates based on the
noise process εni = γT(n�i)χi, namely, the autocovariances estimated from (εni ) (which
are not observed in practice); black solid curve to report the theoretical values, that is,
R(j)1 := R(j)1 as in (3.4). The theoretical valuesR(j)1 are, withψ0 = 1 andψj� j = 1�2� � � �
as in (4.39),

R(j)1 = σ2
M−j∑
i=0

ψiψi+j

∫ 1

0
γ2
s αs ds� for j = 0�1 � � � �M� (B.2)

Figure 14 shows that for autocovariances, our estimates are also comparable to the in-
feasible estimates based on the noise process, both of which are close to the theoretical
values.

To examine the CLT in Theorem 3.8, we plot the normal quantile-quantile plots of√
Nn

1√
Ẑ ′(j� j)n1

(
R̂(j)n1 −R(j)1

)
(B.3)
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FIGURE 14.—Estimates of scaled autocovariances. The feasible estimates based on the observed prices are
compared with the infeasible estimates based on unobservable noise process, and with the theoretical values.

with Ẑ ′(j� j)n1 given by the second formula (3.32), since here α ≡ 1 (with k′
n chosen to

be 3). Analogously to Figure 2, we show the plots for lags 1, 4, and 7 in Figure 15. The
normality is again supported.

B.2. Supplementary to Section 4.2

B.2.1. Colored Noise With Rounding

The setting considered is the same as in Section 4.1, namely, when the processes X , γ,
and χ are specified by equations (4.38)–(4.41), except that the observed prices are given
by

S̃ni = [
exp

(
XT(n�i) + εni

)
/0�01

] × 0�01� (B.4)

that is, the (contaminated) observed prices in Section 4.1 further rounded to cents. A sam-
ple path of (S̃ni ) is given in Figure 16. One can clearly see the rounding effect from Fig-
ure 16. The proportion of flat trading, namely, zero intraday (observed) returns for this

FIGURE 15.—Normal QQ-plots of (B.3) for lags 1, 4, and 7, based on 1000 replications.
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FIGURE 16.—A sample path of the rounded prices (S̃ni ) as in (B.4).

particular sample path is 75%. Different sample paths have similar proportions of flat
trading.

Under such a setting, the “noise” is

ε̃ni = log
(
S̃ni

) −XT(n�i)�

Our goal is to estimate the autocovariance and autocorrelation of the noise (̃εni ) based on
the observations S̃ni , or equivalently, based on

Ỹ n
i := log

(
S̃ni

)
�

To do so, we apply the same estimators as in Section 4.1, namely, R̂(j)n1 :=U(j)n1/Nn
1 for

j = (0� j)� j = 0�1� � � � as in (3.9) for estimating the autocovariances, and r̂(j)n1 as in (3.12)
for estimating the autocorrelations. The tuning parameter kn is chosen to be 6 based on
the heuristic criterion in Section 5.1.2. We compare these estimates with those estimated
from the noise (̃εni ). Figure 17 shows the comparison results for autocovariances based on
one random sample path; those for autocorrelations are given in the main article. We see
from Figure 17 that our estimates are close to the infeasible estimates based on the noise,
indicating that our method works well even in the presence of rounding.

B.2.2. White Noise With Rounding

For the white noise with rounding case, we let the process χ be a sequence consisting
of i.i.d. N(0�σ2

0 ) random variables. The proportion of flat trading is about 72%, slightly
lower than the proportion in Section B.2.1 where χ is colored. The estimators are also
the same as before, except that the tuning parameter kn is reduced to 3, again based on
the heuristic criterion in Section 5.1.2. This smaller choice of kn is due to the weaker
dependence in the noise; see also the discussions in Remark 3.6. Figure 18 reports the
estimation results for autocovariances. Figure 18 shows that our estimators also work
well in this case.
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FIGURE 17.—Estimates of autocovariances for the case of colored noise with rounding. The feasible esti-
mates based on the observed prices are compared with the infeasible estimates based on the noise.

B.3. Supplementary to Section 5

B.3.1. Results for Citigroup (C) on May 06, 2010

In this section, we analyze the same stock, Citigroup (C), but focus on a special day,
May 06, 2010, the day on which a flash crash occurred. The number of transactions on
that day is about 524,000.

Choosing kn. Following the heuristic criterion in Section 5.1.2, kn is chosen to be 60,
which yields the plot in Figure 19, analogous to Figure 6.

Diurnal Features in the Noise. We start with the size of noise. Figure 20 shows the
estimated sizes of noise and estimated volatility during different half-hour intervals.

We see that when the volatility is unusually high, so is the size of noise.
Next, we examine the dependence during different half-hour intervals. Figure 21 gives

the estimated autocorrelations during different half-hour intervals.

FIGURE 18.—Estimates of autocovariances for the case of white noise with rounding. The feasible estimates
based on the observed prices are compared with the infeasible estimates based on the (unobservable) noise.
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FIGURE 19.—Comparison of the two estimates of R(0)1 −R(j)1, one based on 
̂R(j)
n�adj

, the other based
on (R̂(0)n1 − R̂(j)n1), for Citigroup (C) on May 06, 2010.

FIGURE 20.—Estimated sizes of noise and volatilities for Citigroup (C) during 13 half-hour intervals on May
06, 2010.

FIGURE 21.—Estimated autocorrelations of noise up to lag 50 for Citigroup (C) during different half-hour
intervals on May 06, 2010.
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FIGURE 22.—Estimated autocorrelations of noise up to lag 100 for Citigroup (C) stock on May 06, 2010.

Estimating the Autocorrelations of Noise. Finally, we estimate the autocorrelations us-
ing the whole-day data. Figure 22 shows similar features to Figure 11, namely, the auto-
correlations are positive and slowly decay to 0.

B.3.2. Results for Intel (INTC)

In this section, we briefly report the results for Intel (INTC) during the same period of
January 2011. The average number of daily transactions is about 143,500.

Choosing kn. Analogously to Figure 6, we have the plot in Figure 23 by using
kn = 20.

Diurnal Features in the Noise. We first examine the size of noise. Figure 24 shows the
estimated sizes of noise during different half-hour intervals.

The average curve suggests that the noise tends to be larger towards the end of trading
hours. As to the volatility, we have the plots in Figure 25.

FIGURE 23.—Comparison of the two estimates of R(0)1 −R(j)1, one based on 
̂R(j)
n�adj

, the other based
on (R̂(0)n1 − R̂(j)n1), for Intel (INTC) stock, on January 3, 2011.
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FIGURE 24.—Estimated sizes of noise for Intel (INTC) stock, during 13 half-hour intervals and for different
trading days. The first five curves plot the estimates for the first five trading days in January 2011. The low-
er-right curve plots the sizes of noise during different half-hour intervals averaged over the 20 trading days in
January 2011.

FIGURE 25.—Estimated volatilities for Intel (INTC) stock, during 13 half-hour intervals and for different
trading days. The first five curves plot the estimates for the first five trading days in January 2011. The low-
er-right curve plots the estimated half-hour volatilities during different half-hour intervals averaged over the
20 trading days in January 2011.
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FIGURE 26.—Scatterplots of the estimated sizes of noise against volatilities during different half-hour inter-
vals for Intel (INTC) stock, in January 2011. The right panel is a zoomed-in version of the left panel with the
two outliers on its far right removed.

Again, we see a U-shaped pattern.
Finally, we plot the estimated size of noise against volatility during different half-hour

intervals in Figure 26.
We observe a similar pattern to Figure 9. The correlations in two plots are −0�07 and

−0�13, respectively, the former being insignificant and the latter being significant at the
5% level.

Next, we examine the dependence during different half-hour intervals. Figure 27 shows
the estimated autocorrelations during different half-hour intervals.

Estimating the Autocorrelations of Noise. Finally, the estimated autocorrelations using
the whole-day data are given in Figure 28. Again, we observe similar features to Figure 11,
namely, the autocorrelations are positive and slowly decay to 0.

FIGURE 27.—Estimated autocorrelations of noise up to lag 50 for Intel (INTC) stock, during different
half-hour intervals. Each red curve represents the estimates during one half-hour interval. Left: autocorrela-
tions on January 3, 2011; right: autocorrelations averaged over the 20 trading days in January 2011.
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FIGURE 28.—Estimated autocorrelations of noise for Intel (INTC) stock in January 2011. Each curve is for
one trading day, and plots the estimated autocorrelations of lags up to 50.

APPENDIX C: TECHNICAL DETAILS OF THE PROOFS

C.1. The Sampling Scheme and the Localization Procedure

PROOF OF LEMMA A.1: For any i≥ 0, we let (Fn�i
t ) be the smallest filtration containing

(Ft) and for which T(n�0)� � � � �T (n� i) are stopping times, so Fn�0
t = Ft and Fn�∞

t = Fn
t .

We will prove by induction on i the property (Pi): any (Ft)-martingale is an (Fn�i
t )-

martingale.
The proof is based on a “concrete” description of Fn�i+1

t in terms of Fn�i
t and 
(n� i+1).

Obviously, Fn�i+1
t contains the class Hn

t of all sets B ∈F such that B ∩ {T(n� i+ 1) > t} =
B′ ∩ {T(n� i+ 1) > t} and B ∩ {T(n� i+ 1)≤ t} = B′′ ∩ {T(n� i+ 1)≤ t} for some B′ ∈Fn�i

t

and B′′ ∈ Fn�i
t ∨ σ(
(n� i + 1)). It is easy checking that Hn

t is a σ-field containing Fn�i
t

and increasing with t and that T(n� i+ 1) is an (Hn
t )-stopping time. Thus, we indeed have

Fn�i+1
t =Hn

t .
Suppose (Pi) for some i ≥ 0, and let M be an (Ft)-martingale, hence an (Fn�i

t )-
martingale. Let s > t ≥ 0 and B ∈ Fn�i+1

t , with which we associate B′�B′′ as above, and
observe that B′′ = {ω : (ω�
(n� i+ 1)(ω)) ∈ B} for some ∈Fn�i

t ⊗R-measurable subset B
of Ω×R (R is the Borel σ-field of R). We have E((Ms −Mt)1B)= a+ a′, where

a= E
(
(Ms −Mt)1{
(n�i+1)≤t−T(n�i)}1B

(·�
(n� i+ 1)
))
�

a′ = E
(
(Ms −Mt)1B′∩{
(n�i+1)>t−T(n�i)}

)
�

Now, we apply (ii) of Assumption (O), plus the obvious fact that Fn�i
T(n�i) =Fn�i

T(n�i). By con-
ditioning on this σ-field, sinceMs−Mt is F∞-measurable, and with F denoting the Fn

T(n�i)-
conditional law of 
(n� i), we obtain

a= E

(∫ t−T(n�i)

0
E
(
(Ms −Mt)1B(·�x) |Fn�i

T(n�i)

)
F(dx)

)
�
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Since 1B(·�x) is Fn�i
t -measurable and M is an (Fn�i

t )-martingale, the inner conditional
expectation above vanishes, and a= 0. An analogous argument yields a′ = 0, and thus M
is an (Fn�i+1

t )-martingale.
Therefore, (Pi) implies (Pi+1) and, since (P0) obviously holds true, we see that in fact

(Pi) holds for all i.
Now, proving the claim is easy. First, it is enough to prove it when M is a bounded

(Ft)-martingale. From what precedes it is an (Fn�i
t )-martingale for all i, hence the stopped

processMi
t =Mt∧T(n�i) as well. Since Fn

t =Fn�i
t in restriction to the set {t ≤ T(n� i)} andMi

is constant in time after T(n� i), we deduce thatMi is an (Fn
t )-martingale. Since T(n� i)→

∞ as i → ∞, it follows that M is an (Fn
t )-local martingale, hence an (Fn

t )-martingale
because it is bounded. Q.E.D.

PROOF OF LEMMA A.2: By a classical localization procedure, it is no restriction to
assume that τ1 = ∞ in Assumption (O), and also that V is bounded.

(a) We first prove (2.4); we set

An
t = 
nNn

t � Lnt = T (
n� [t/
n]

) =
[t/
n]∑
i=1


(n� i)� Snt =
[t/
n]∑
i=1


(n� i)

αT(n�i−1)
�

We have Snt − t = ∑[t/
n]
i=1 ζni + (
n[t/
n] − t), where ζni = 
(n� i)/αT(n�i−1) − 
n, and (2.3)

implies |E(ζni |FT(n�i−1))| ≤K
3/2+κ
n and E((ζni )

2 |FT(n�i−1))≤K
2+κ
n , whereas ζni is FT(n�i)-

measurable. Therefore, we deduce Snt
P−→ t, hence Snt

u�c�p�=⇒ t as well, from

E
((
Snt − t)2) ≤ 2
2

n +Kt
1+κ
n +Kt2
1/2+3κ/2

n �

By the subsequence principle, for (2.4) it is enough to show that any infinite sequence nk
contains a subsequence n′

k such that A
n′
k
t →At for all t, for all ω outside a null set. Since

from any subsequence one can extract a further subsequence such that Snt → t holds,
outside a null set again, locally uniformly in time, it is enough to show that if Snt (ω)→ t
locally uniformly in t for some given ω, then An

t (ω)→At(ω).
So below, we assume Snt (ω)→ t locally uniformly, and omit to mention ω. The defini-

tions of Ln and Sn imply Lnt = ∫ t

0 αHns− dS
n
s . Equation (2.4) yields Lnt+s −Lnt ≤ κ1(S

n
t+s −Snt );

hence, by Ascoli’s theorem, from any subsequence we can extract a further subsequence
n′ such that Ln′ converges locally uniformly to a continuous nondecreasing limit L. Pick-
ing any ε > 0, we let t1 < t2 < · · · be the times at which t �→ αt has a jump of size bigger
than ε, and set Bt = ⋃

i≥1((ti − ε� ti + ε] ∩ [0� t]) and B′
t = [0� t] \Bt . The modulus of con-

tinuity wt(ρ) of αεs = αs − ∑
i≥1
αti1{ti≤s} on [0� t] satisfies lim supρ→0wt(ρ) ≤ ε, whereas

Ln
′
s →Ls locally uniformly, so lim supn′ sups∈B′

t
|αLn′s− − αLs | ≤ ε. Thus, for n′ large enough,

|Ln′
t − ∫ t

0 αLs dS
n′
s | ≤ 2εSn′

t +K
∫
Bt
dSn

′
s , which in turn goes to 2εt +K

∫
Bt
ds ≤Kε. Since

ε is arbitrarily small, we get Ln′
t − ∫ t

0 αLs dS
n′
s → 0. Another application of Sns → s for all

s yields
∫ t

0 αLs dS
n′
s → ∫ t

0 αLs ds. Thus Lt =
∫ t

0 αLs ds, so L is strictly increasing and its in-
verse L−1 is A, as defined by (2.4). Therefore, L is uniquely determined and the original
sequence Ln converges to L=A−1.

Now, the definitions of An
t and Lnt imply that they are right-continuous inverses one

from the other, hence An
t →L−1

t =At , and the proof of (2.4) is complete.
For (a), it remains to deduce (A.2) from (2.4), and without loss of generality we assume

d = 1. If V ∗
t = sups≤t |Vs|, we have |H ′n

t − ∫ t

0 Vs dA
n
s | ≤ un
nV

∗
t , which goes to 0 by our



STATISTICAL PROPERTIES OF MICROSTRUCTURE NOISE 11

assumptions on un. The property An
t

P−→At implies
∫ t

0 Vs dA
n
s

P−→ ∫ t

9 Vs dAs because V is
càdlàg and A is continuous. We deduce the convergence (A.2) for each t, and the local
uniform convergence easily follows, again because A is continuous.

(b) Set

H ′n
t =H(V )nt = 1√


n

Nnt∑
i=0

VT(n�i)
(
αT(n�i)
(n� i+ 1)−
n

)
� H ′′n

t =Hn
t −H ′n

t �

If un > 0, we have 
(n� i)≤K
ρn, hence |H ′′n
t | ≤Kun
ρ−1/2

n because V and α are bounded.
Then un
ρ−1/2

n → 0 yields H ′′n u�c�p�=⇒ 0. Henceforth, it is enough to show the convergence of
H ′n, or equivalently suppose that un ≡ 0.

With ζ
n�j
i = 1√


n
V
j
T(n�i)(αT(n�i)
(n� i + 1) − 
n), we have H

n�j
t = ∑Nnt

i=0 ζ
n�j
i , and ζni is

Fn
T(n�i+1)-measurable. Hence by Theorem IX-7-28 of Jacod and Shiryaev (2003), it suf-

fices to prove the following convergences in probability, for all t > 0 and all bounded
(Ft)-martingales M and with 
ni M =MT(n�i+1) −MT(n�i):

Nnt∑
i=1

∣∣E(
ζ
n�j
i |Fn

T(n�i)

)∣∣ P−→ 0�
Nnt∑
i=1

E
(
ζ
n�j
i ζ

n�m
i |Fn

T(n�i)

) P−→
∫ t

0
V j
s V

m
s αsαs ds�

Nnt∑
i=1

E
(∣∣ζn�ji ∣∣4 |Fn

T(n�i)

) P−→ 0�
Nnt∑
i=1

E
(
ζ
n�j
i 


n
i M |Fn

T(n�i)

) P−→ 0�

(C.1)

The first and third parts of (C.1) readily follow from (2.4) and An
t

P−→At . Next,∣∣E(
ζ
n�j
i ζ

n�m
i |Fn

T(n�i)

) −
nαT(n�i)V j
T(n�i)V

m
T(n�i)

∣∣ ≤K
1+κ
n �

so the second part of (C.1) follows from (A.2) applied to αV jV m. For the last part,
since 
(n� i+1) is Fn

T(n�i)-conditionally independent of F∞, whereasM is F∞-measurable
and an (Fn

t )-martingale by the previous lemma, its left side is in fact identically vanish-
ing. Q.E.D.

PROOF OF LEMMA A.3: (1) Assume for a moment the existence of a localizing se-
quence θm of stopping times and, for each m, of a semimartingale X(m), a sampling
scheme (
m(n� i) : n� i ≥ 1), and a noise process (εm�ni : n≥ 1� i ≥ 0), with which we asso-
ciate Nm�n

t and Tm(n� i) as in (2.2), αm and αm as in (O), and γm as in (2.7), such that:

(a) For each m, the family
[
Xm�

(

m(n� i)

)
�
(
εm�ni

)]
satisfies (SHON)�

(b) For each m, we have lim
n
P
(
Ωm�n

) = 1, where

Ωm�n = {
Tm(n� i)= T(n� i) for all i with T(n� i) < θm

}
�

(c) We have Xm
t =Xt if t < θm and εm�ni = εni if Tm(n� i)= T(n� i) < θm�

(C.2)

Each result of Section 3 is the convergence (in probability or stably in law) of a
sequence of statistics Zn

t toward some limit Zt , with Zn
t based on the restriction of

[X�(
(n� i))� (εni )] to some time interval [0� t], and the limit Zt or its F -conditional law
is always some function gt(α�α�γ) only depending on the restriction of α�α�γ to [0� t].
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Now, compute the same statistic, say Z(m)nt , with [Xm�(
m(n� i))� (εm�ni )]. Equation
(C.2)-(a) and the assumptions of the lemma imply that Z(m)nt converges to a limit Z(m)t
which is characterized by gt(αm�αm�γm) with the same gt as above. Equation (C.2)-(b,c)
implies thatZ(m)nt =Zn

t and also gt(αm�αm�γm)= gt(α�α�γ) on the setΩ′n
m�t =Ωn

m∩{t <
θm}, and

lim
m

lim inf
n

P
((
Ω′n
m�t

)c) ≤ lim
m

P(t ≥ θm)+ lim
m

lim sup
n

P
((
Ωn
m

)c) = 0�

We deduce first that, in restriction to {t < θm}, we have Z(m)t =Z in case of convergence
in probability, or Z(m)t and Zt have the same F -conditional laws. Second, it follows that
indeed Zn

t converges to Zt in the appropriate sense, and the claim is proved.
Therefore, it remains to show that we can find θm and [Xm�(
m(n� i))� (εm�ni )] satisfying

(C.2). This is achieved through several steps.
(2) By the classical localization procedure (see, e.g., Section 4.4.4 of Jacod and Protter

(2012)), there are a localizing sequence (θ1
m) and processesX ′m�αm�αm�γm satisfying (K)

with 1/αm bounded, such that X ′m�αm�αm�γm coincide with X ′�α�α�γ on [0� θ1
m).

Second, the process X ′′m
t = ∑m

i=1 Γi1{|Γi |≤m�0<Si≤t} coincides with X ′′ on [0� θ2
m), with the

localizing sequence θ2
m = Sm ∧ inf(Si : i≥ 1� |Γi|>m), and satisfies (ii) of (SHON).

The localizing sequence (θm in (C.2)) will be θm =m∧ τm ∧ θ1
m ∧ θ2

m, and Xm =X ′m +
X ′′m and εm�ni = γmT(n�i)χi with the same sequence χi as in (N): we have Xm

t = Xt and
λmt = αt and αmt = αt and γmt = γt for t < θm, and also εm�ni = εni if T(n� i) < θm, whereas
Xm�αm�αm�γm�εm�ni satisfy (i) and (ii) of (SHON).

(3) The construction of a sampling scheme 
m(n� i) satisfying (O) with the processes
αm�αm and 
m(n� i)≤K
qn identically and satisfying (C.2)-(ii) is more delicate.

Note that 1/αm
√
αm ≥ C for a constant C > 0. Upon enlarging the space if necessary,

we have a sequence (�i) of i.i.d. variables, independent of F∞ and of all 
(n� i)’s and
χi’s, and which are centered with variance 1 and with support in (−C/2�C ′] for another
constant C ′ > 0. Set also In = inf(i : 
(n� i) > 
ρn or T(n� i) ≥ τm). The two sequences

m(n� i)�Tm(n� i) are defined by induction on i, as follows: we start with Tm(n�0)= 0 and
set


m(n� i)=
⎧⎨⎩

(n� i) if i < In�

n

αmTm(n�i−1)

+
n�i

√
αmTm(n�i−1) if i≥ In�

Tm(n� i)= Tm(n� i− 1)+
m(n� i)�

Since −C/2 ≤�i ≤ C ′ and 1/αm and αm are bounded, we have 
n
C′′ ≤ 
m(n� i)≤ C ′′
n for

i ≥ In, so the previous induction defines a new sampling scheme with which we associate
the filtration (Fm�n

t ) as in (O). In this step, we show that this new sampling scheme satisfies
(SHON) with the associated processes αm�αm in (2.3).

Since 
(n� i) < 
ρn if i < In and 
m(n� i)≤ C ′′
n otherwise, we obviously have 
m(n� i)≤
K
ρn for some constant K. By construction, Tm(n� i)= T(n� i) when i < In, so the restric-
tions of the σ-fields Fm�n

Tm(n�i) and Fn
T(n�i) to the set {i < In} coincide, and this set is Fn

T(n�i)-
measurable. Hence, for any R ⊗ Fm�n

Tm(n�i)-measurable function f ≥ 0 on R ×Ω and any
F∞-measurable variable Z ≥ 0, the variable B = E(Zf(
m(n� i)) | Fm�n

Tm(n�i−1)) takes the
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form

B=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E
(
Zf

(

(n� i)� �

)
1{
(n�i)<
ρn} |Fn

T(n�i−1)

)
+E

(
Z1{
(n�i)≥
ρn}f

(

n

αmT(n�i−1)

+
n�i

√
αmT(n�i−1)� ·

) ∣∣∣Fn
T(n�i−1)

)
on {i− 1< In}�

E

(
Zf

(

n

αmTm(n�i−1)

+
n�i

√
αmTm(n�i−1)� ·

) ∣∣∣Fm�n
Tm(n�i−1)

)
on {i− 1 ≥ In}�

Since the original scheme satisfies (ii) of (O) and� is independent of F∞ and of Fm�n
Tm(n�i−1),

we deduce that B is the product of E(Z | Fm�n
Tm(n�i−1)) and E(f (
m(n� i)� ·) | Fm�n

Tm(n�i−1)), so

m(m� i) and F∞ are fm�nTm(n�i−1)-conditionally independent.

Since �i is bounded, centered with variance 1, the above formula with Z = 1 and
f (x�ω) = x or f (x�ω) = (xαmT(n�i−1)(ω) − 
n)

2 or f (x�ω) = |x|p shows us that (iii) of
(O) holds with αm�αm on the set {i− 1 ≥ In} (with τ1 = ∞). To see that it holds also on
the complement {i− 1 < In}, and because T(n� i− 1) < τm on this set and this property
holds by hypothesis for the original scheme, it is clearly enough to prove that, for any
r� q≥ 0,

E
(

(n� i)q1{
(n�i)≥
ρn} |Fn

T(n�i)

) ≤Kr�q

q+r
n � (C.3)

Using Markov’s inequality and the third part of (O)-(iii), we see that the left side above is
smaller than κm�q+p(1−ρ)
q+p(1−ρ)

n , and upon taking p ≥ r/(1 − ρ). Therefore, the scheme
(
m(n� i)) satisfies (SHON).

(4) It remains to show (b) of (C.2). By our definition of our new sampling scheme
and of θm, this will be implied by the property P(Bn)→ 1, where Bn = {
(n� i) < 
ρn for
i= 1� � � � �Nn

m + 1}. Applying (C.3) with q= 0 and r = 3, we get

P
(
(Bn)

c
) ≤ P

(
Nn
m > 1/
2

n

) +
[1/
2

n]∑
i=1

P
(

(n� i)≥ 
ρn

) ≤ P
(
Nn
m > 1/
2

n

) +K
n

and P(Nn
m > 1/
2

n)→ 0 as n→ ∞ by (2.4). This completes the proof. Q.E.D.

C.2. Some Facts About Stationary Sequences

The proof of Theorem A.4 is rather involved. We begin with some notation. By (A.11)
and the Cauchy–Schwarz inequality,

∑
i≥1 E(‖E(ξni | Hm)‖) <∞ for any m, whereas V is

bounded, so the following d-dimensional variables Un
m and Mn

m are well defined, compo-
nentwise, as

Un�j
m =

√

n

∞∑
i=(m−wn)+

V
j
T(n�i)E

(
ξ
n�j
i |Hm

)
�

Mn�j
m =

√

n

∞∑
i=0

V
j
T(n�i)

(
E
(
ξ
n�j
i |Hm

) −E
(
ξ
n�j
i |H0

))
(recall Hm =F 0 ⊗Gm), and we write Mn

m for the same variable asMn
m, with ξn substituted

with ξ. We also consider the F 0-measurable variables νn(t)= (Nn
t +wn − un + 1)+. Since

ξni is Gi+wn -measurable, we have E(ξni |Hνn(t))= ξni when 0 ≤ i≤Nn
t − un, hence

Gn
t =Mn

νn(t)
+Un

0 −Un
νn(t)
� (C.4)
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LEMMA C.1: Under the assumptions of Theorem A.4, for any t > 0 we have

Un
νn(t)

P−→ 0� Un
0

P−→ 0� (C.5)

and

Mn
νn(t)

−Mn
νn(t)

P−→ 0� (C.6)

PROOF: (1) We only prove the first convergence in (C.5), the second one being similar.
We have Un

νn(t)
= Bn +Cn, where

Bn =
√

n

∞∑
i=1+νn(t)

V
j
T(n�i)E

(
ξ
n�j
i |Hνn(t)

)
� Cn =

√

n

νn(t)∑
i=(νn(t)−wn)+

V
j
T(n�i)E

(
ξ
n�j
i |Hνn(t)

)
�

Since V is bounded, we deduce from (A.11), v > 1, and the Cauchy–Schwarz inequality
that

E
(‖Bn‖2 |F 0

) ≤K
n
∞∑

i�j=1+νn(t)
E
(∥∥E(

ξni |Hνn(t)

)∥∥∥∥E(
ξnj |Hνn(t)

)∥∥ |F 0
) ≤K
n�

hence Bn
P−→ 0. Next, we have E(‖ξni ‖2) ≤ K by (A.10), hence E(‖Cn‖2) is obviously

smaller than K
nw
2
n because the sum defining Cn contains at most wn terms. Since


nw
2
n → 0, we deduce Cn

P−→ 0, hence the first convergence in (C.5).
(2) Now we turn to (C.6). Setting ξ′n

i = ξni − ξi, we have Mn
νn(t)

−Mn
νn(t)

= ∑νn(t)

k=1 η
n
k,

where

η
n�j
k =

√

n

∑
i≥0

V
j
T(n�i)

(
E
(
ξ

′n�j
i |Hk

) −E
(
ξ

′n�j
i |Hk−1

))
is a martingale increment, relative to the discrete time filtration (Hk)k≥0. Therefore,

E
((
M

n�j
νn(t)

−Mn�j
νn(t)

)2 |F 0
) =

νn(t)∑
k=1

E
((
η
n�j
k

)2 |F 0
)

= 
n
νn(t)∑
k=1

E

(∑
i�l≥0

V
j
T(n�i)V

j
T(n�l)

(
E
(
ξ

′n�j
i |Hk

)
E
(
ξ

′n�j
l |Hk

)
−E

(
ξ

′n�j
i |Hk−1

)
E
(
ξ

′n�j
l |Hk−1

)) ∣∣∣F 0

)
�

The double series
∑

i�l above is absolutely convergent (almost surely), so we may permute
the summation over (i� l), the one over k, and the conditional expectation E(· | F 0), to
get

E
((
M

n�j
νn(t)

−Mn�j
νn(t)

)2 |F 0
) =Dn

νn(t)
−Dn

0� where

Dn
k = 
n

∑
i�l≥0

V
j
T(n�i)V

j
T(n�l)α

n
i�l�k�

αni�l�k = E
(
E
(
ξ

′n�j
i |Hk

)
E
(
ξ

′n�j
l |Hk

) |F 0
)
�
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If ρn = E(‖ξn −ξ‖2), an application of (A.8), (A.9) and the Cauchy–Schwarz inequality
gives us for i≤ l:

∣∣αni�l�k∣∣ ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Kρn/(i− k)v(l− k)v if k< i�
Kρn/(l− k)v if 0 ≤ i≤ k< l�
Kρn/(l− i−wn)v if i+wn < l ≤ k�
Kρn otherwise

(use the property E(ξ′n
i | Hk) = ξ′n

i when i ≤ k − wn). Thus, since αni�l�k = αnl�i�k, we get
supk≤m |Dn

k| ≤K
nρn(1 +m+wnm), hence, recalling (A.5),

E
((
M

n�j
νn(t)

−Mn�j
νn(t)

)2 |F 0
) ≤Kρn(Ct + 1)(1 +wn) on the set Ωn

t �

Since wnρn → 0 and P(Ωn
t )→ 1, we readily deduce (C.6). Q.E.D.

Next, we observe that

Mn
m =

m∑
k=1

ζnk� where

ζ
n�j
k =

√

n

∞∑
i=0

V
j
T(n�i)β

j
i�k� β

j
i�k = E

(
ξ
j
i |Hk

) −E
(
ξ
j
i |Hk−1

)
�

(C.7)

LEMMA C.2: Under the assumptions of Theorem A.4, for all t > 0 and ε > 0 we have

νn(t)∑
k=1

E
(
ζ
n�j
k ζ

n�m
k |Hk−1

) P−→ ajm
∫ t

0
V j
s V

m
s dAs�

νn(t)∑
k=1

E
(∥∥ζnk∥∥2

1{‖ζn
k
‖>ε} |Hk−1

) P−→ 0�

(C.8)

PROOF: (1) The second convergence is easy to prove. Since βi�k = βi−k�0 ◦ θk (for all
i�k ∈ Z), the variables β̃k = ∑

i∈Z ‖βi�k‖ satisfy β̃k = β̃0 ◦θk. A priori, β̃k could be infinite;
however, βi�k = 0 when i < k−w by (A.10), so (A.11) for ξ implies E((β̃k)2) <∞. The
obvious estimate ‖ζnk‖ ≤D√


nβ̃k for some D> 0 and stationarity yield

E
(
E
(∥∥ζnk∥∥2

1{‖ζn
k
‖>ε} |Hk−1

) |F 0
) ≤D2
nE

(
β̃2
k1{β̃k>ε/(D

√

n)}

) =D2
nγ(ε)n where

γ(ε)n = E
(
(β̃0)

21{β̃0>ε/(D
√

n)}

)
�

Now, γ(ε)n → 0 as n → ∞, because E(β̃2
0) < ∞, and the second part of (C.8) follows

since 
nνn(t)
P−→At by (2.4) and 
n(un +w2

n)→ 0.
(2) By virtue of the square-integrability of β̃k, the d-dimensional variables βk =∑
i≥0βi�k are well-defined, square-integrable, and also βk = βw+1 ◦θk−w−1 for all k≥w+1

(this fails when 1 ≤ k≤w). In this step, we show that∣∣E(
β
j
kβ

m
k

)∣∣ ≤K� and if k≥w+ 1� then E
(
β
j
kβ

m
k

) = ajm� (C.9)
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with ajm given by (A.12). The first estimate follows from ‖βk‖ ≤ β̃k = β̃0 ◦θk and β̃0 ∈ L2.
For the second property, by polarization it is enough to show it in the one-dimensional
case d = 1, so below we omit j�m. Then βl�k = E(ξl | Gk)− E(ξl | Gk−1) is Gk-measurable
with vanishing Gk−1-conditional mean, and ξi+1E(ξl+1 | Gk)= (ξiE(ξl | Gk−1)) ◦ θ, hence

E(βi�kβl�k)= E
(
E(ξi | Gk)βl�k −E(ξi | Gk−1)βl�k

) = E(ξiβl�k)

= E
(
E(ξi − ξi+1 | Gk)E(ξl | Gk)

) +E
(
E(ξi+1 | Gk)E(ξl − ξl+1 | Gk)

)
�

Therefore, for any L> 2k we have

L∑
i�l=0

E(βi�kβl�k)=
L∑
l=0

E
(
E(ξ0 | Gk)E(ξl + ξl+1 | Gk)

) −
L∑
l=0

E
(
E(ξL+1 | Gk)E(ξl + ξl+1 | Gk)

)
�

By (A.8), the lth summand in the last sum above is smaller in absolute value than K/Lv
always, and than K/Lvlv when l > 2k. Since v > 1, by letting L→ ∞ we obtain that

E
(
(βk)

2
) =

∞∑
l=0

E
(
E(ξ0 | Gk)E(ξl + ξl+1 | Gk)

) = E
(
ξ2

0

) + 2
∞∑
l=1

E(ξ0ξl)�

the last equality following from the fact that k≥ w+ 1, hence ξ0 is Hk-measurable. The
right side above is (A.12) in the one-dimensional case, and thus the last part of (C.9)
holds.

(3) In this step, we set a′jm
k = E(β

j
kβ

m
k | Gk−1) and prove that

Bn :=
νn(t)∑
k=1

(
E
(
ζ
n�j
k ζ

n�m
k |Hk−1

) −
nV j
T(n�k−1)V

m
T(n�k−1)a

′jm
k

) u�c�p�=⇒ 0� (C.10)

Letting ηnk be the kth summand above, we see that ηnk = 
n∑
i�l≥0η(i� l)

n
k, where

η(i� l)nk = (
V
j
T(n�i)V

m
T(n�l) − V j

T(n�k−1)V
m
T(n�k−1)

)
E
(
β
j
i�kβ

m
l�k | Gk−1

)
�

As seen before, βi�k = 0 if i < k− w and E(‖βi�k‖2) is smaller than K/(i − k)2v if i > k
and than K always. Moreover, (A.5) and (A.6) imply E(‖VT(n�u) − VT(n�v)‖2)≤K|v− u|
ρn,
whereas V is bounded; hence by (A.11) and the Cauchy–Schwarz inequality, we obtain
for i≤ l:

E
(∣∣η(i� l)nk∣∣) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i < k−w�

K
1 ∧

√

ρn

(
(l+ 1 − k)∨ (k− 1 − i))

(l− k)v if k−w≤ i≤ k< l�

K
1 ∧

√

ρn(l+ 1 − k)

(i− k)v(l− k)v if i > k�

K
ρ/2n if k−w≤ i≤ l ≤ k�
and similar estimates hold for l ≤ i. Since one can always assume v ∈ (1�3/2), in which
case

∑
i≥1(1 ∧ √

i
ρn)/iv ≤ K
ρ(v−1)
n , we get E(|ηnk|) ≤ K
1+ρ(v−1)

n . Therefore, for any
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η�C > 0,

P(Bn > η)≤ P
((
Ωn
t

)c) + K

η

[(Ct+1)/
n]+wn+1∑
k=1

E
(∣∣ηnk∣∣) ≤ P

((
Ωn
t

)c) + K

η

ρ(v−1)
n �

Since P((Ωn
t )
c)→ 0, (C.10) follows.

(4) By the previous step, in order to get the first part of (C.8), we are left to show


n

νn(t)∑
k=1

V
j
T(n�k−1)V

m
T(n�k−1)a

′jm
k

P−→ ajl
∫ t

0
V j
s V

m
s dAs� (C.11)

The left side above is the integral of the càglàd function s �→ V j
s V

m
s with respect to the

(random) measure Fn�jmt (ds) = 
n
∑νn(t)

k=1 a
′jm
k δT(n�k−1)(ds), where δx stands for the delta

measure at x, so it is enough to show that Fn�jmt converges in probability to the measure
ajm1[0�t](s)dAs, for the weak topology on the set of (signed) finite measures on R+. To
this aim, it is enough to prove the following convergence of the cumulative distribution
functions:

s ≤ t ⇒ 
n

νn(s)∑
k=1

a
′jm
k

P−→ ajmAs (C.12)

(this is obvious when m = j, in which case Fn�jmt is a positive measure; when m �= j, the
absolute value of Fn�jmt is dominated by 1

2(F
n�jj
t + Fn�mmt ), so again (C.12) is enough).

We recall that βk = βw+1 ◦ θk−w−1 when k > w, implying a′
k = a′

w+1 ◦ θk−w+1, so the
ergodic theorem and (C.9) and |a′jm

k | ≤K if k≤w imply that

1
L

L∑
k=1

a
′jm
k → ajm P(1)-a.s., as L→ ∞�

Since 
nνn(s)
P−→As, we readily deduce (C.12). Q.E.D.

PROOF OF THEOREM A.4: The proof heavily relies on Jacod and Shiryaev (2003), ab-
breviated as [JS] below.

(1) Let the pair (Gt�Ht) be as in the statement of the theorem. It can be realized as
the value at time t of a process (G�H) defined on an extension (Ω̃� F̃� P̃) of (Ω�F∞�P),
and which, conditionally on F∞, is a continuous centered Gaussian martingale, with the
covariance structure given by (A.15) (for all t).

The F∞-stable convergence (Gn
t �H

n
t )→ (Gt�Ht) amounts to having, for any bounded

F∞-measurable variable Y , any continuous bounded function f on Rd , and any u ∈ Rd:

E
(
Yf

(
Hn
t

)
eiu·G

n
t
) → Ẽ

(
Yf(Ht)e

iu·Gt )
(u · v is the scalar product on Rd). In view of (C.4) and Lemma C.1, this is implied by

E
(
Yf

(
Hn
t

)
eiu·M

n
νn(t)

) → Ẽ
(
Yf(Ht)e

iu·Gt )� (C.13)

(2) Equation (A.15) and Lemma C.2 and the fact that the ζnk ’s are martingale incre-
ments relative to the filtration (Hk) imply, with the help of Theorems VIII.3.22 and
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VIII.5.14 of [JS], that

Mn
νn(t)

converge F 0-stably in law to Gt . (C.14)

On the other hand, Lemma A.2 and our assumption on un imply

Hn
t converge F∞-stably in law to Ht . (C.15)

Equations (C.14) and (C.15) are not enough for us; we need a joint convergence. To
this end, we need to revisit the convergence (C.14). As for all special semimartingales, we
can write eiu·M

n
νn(t) uniquely as a product g(u)nt Z(u)

n
t of a predictable càdlàg process with

finite variation g(u)n (called Gn(u) in [JS]) and a martingale Z(u)n, both relative to the
filtration (Hνn(t))t≥0, both starting at 1 at time 0, and both complex-valued. Analogously,
eiu·Gt = g(u)tZ(u)t , with g(u) predictable with finite variation and Z(u) a martingale,
relative to the smallest filtration (F̃ (1)

t ) to which G is adapted and such that F 0 ⊂ F̃ (1)
0 .

We do not need to recall the explicit form of g(u)n and g(u) (although g(u) takes the
simple form g(u)t = exp(− 1

2

∑d

j�m=1 u
jumajm

∫ t

0 V
j
s V

m
s αs ds)), but only that, according to

the proof of Theorem VIII.2.4 of [JS], we do have, for all t and by Lemma C.2:

g(u)nt
P−→ g(u)t� (C.16)

Observe that 2ε≤ |g(u)t | ≤ 1
2ε for some constant ε ∈ (0� 1

2) (depending on t and u). The
(Hνn(t))-stopping times Rn = inf{s : |g(u)ns | ≤ ε or |g(u)ns | ≥ 1

ε
} satisfy P(Rn ≤ t)→ 0 by

(C.16) and are predictable, so there are (Hνn(t))-stopping times Sn < Rn such that P(Sn ≤
t)→ 0 as well, whereas ε ≤ |g(u)ns | ≤ 1

ε
and thus ε ≤ |Z(u)ns | ≤ 1

ε
for all s ≤ Sn. Then,

partly reproducing the proof of Theorem VIII.5.16 of [JS], for any uniformly bounded
sequence Yn of F 0-measurable variables, one can write∣∣Ẽ(

Yn
(
eiu·M

n
νn(t) − eiu·Gt ))∣∣ ≤KP(Sn ≤ t)+ ∣∣Ẽ(Yn(g(u)nt∧SnZ(u)nt∧Sn − g(u)tZ(u)t

)∣∣
≤KP(Sn ≤ t)+ ∣∣Ẽ(

Yn
(
g(u)nt∧Sn − g(u)t

)
Z(u)nt∧Sn

)∣∣
+ ∣∣Ẽ(

Yng(u)t
(
Z(u)nt∧Sn −Z(u)t

))∣∣�
Since E(Z(u)nt∧Sn | F 0)= Ẽ(Z(u)t | F 0)= 1 and Yng(u)t is F 0-measurable, the last term
above vanishes. We have |YnZ(u)nt∧Sn | ≤K/ε, hence∣∣Ẽ(

Yn
(
eiu·M

n
νn(t) − eiu·Gt ))∣∣ ≤KP(Sn ≤ t)+ K

ε
E
(∣∣g(u)nt∧Sn − g(u)t

∣∣)�
Using again (C.16), plus P(Sn ≤ t)→ 0, we deduce

Ẽ(Yn
(
eiu·M

n
νn(t) − eiu·Gt ) → 0� (C.17)

(3) Now, we are in a position to prove (C.13). First, the characterization of Gt gives us
Ẽ(eiu·Gt |F)= g(u)t . Next, apply (C.17) with Yn = Yf(Hn

t ) to get

E
(
Yf

(
Hn
t

)
eiu·M

n
νn(t)

) −E
(
Yf

(
Hn
t

)
eiu·Gt

) → 0�

Finally, Y ′ = Yg(u)t is bounded F∞-measurable, hence (C.15) yields

Ẽ
(
Yf

(
Hn
t

)
eiu·Gt

) = E
(
Yf

(
Hn
t

)
g(u)t

) → Ẽ
(
Yf(Ht)g(u)t

) = Ẽ
(
Yf(Ht)e

iu·Gt )�
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where the last equality comes from the independence of Ht and Gt , conditionally on F .
We then deduce (C.13), and the theorem is proved. Q.E.D.

PROOF OF LEMMA A.5: We use a unified approach, by setting

case 1: Fn =G′n�1� ξ′n
i = ξn�1i � hn =w1

n�

case 2: Fn =G′n�2� ξ′n
i = ξn�2

i+w1
n+kn� hn =w2

n�

case 3: Fn =G′′n� ξ′n
i = ξn�1i ξn�2i+w1

n+kn� hn = kn +w1
n +w2

n�

In all cases, E(|ξ′n
i |2) ≤ K, and ξ′n

i is centered in cases 1 and 2, whereas in case 3, (A.9)
yields |E(ξ′n

i )| ≤K/kvn. Then another application of (A.9) also yields

l > hn ⇒ ∣∣E(
ξ′n
i ξ

′n
i+l |F 0

)∣∣ ≤
{
K(l− hn)−v in cases 1 and 2�
Kk−2v

n +K(l− hn)−v in case 3�

Since V is bounded and Nn
t is F 0-measurable and independent of all ξ′n

i ’s, we deduce

E
(∣∣Fnt ∣∣2 |F 0

) ≤
Nnt∑
i�j=0

∣∣E(
ξ′n
i ξ

′n
j

)∣∣ ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
KhnN

n
t +Nn

t

Nnt∑
m=1

m−v in cases 1,2�

KhnN
n
t +Kk−2v

n

(
Nn
t

)2 +Nn
t

Nnt∑
m=1

m−v in case 3�

The result is now obvious. Q.E.D.

C.3. Further Auxiliary Results

PROOF OF LEMMA A.6: We set δ′n
i = E(δni | H̃n

i ) and δ′′n
i = δni − δ′n

i and, for j =
0� � � � �wn − 1,

B′n
l =

l∑
i=0

δ′n
i � B′′(j)nl =

[(l−j)/wn]∑
i=1

δ′′n
j+(i−1)wn�

so Bnl = B′n
l + ∑wn−1

j=0 B′′(j)nl . We clearly have E(supl≤k |B′n
l |) ≤ (k+ 1)an. The summands

δ′′n
j+(i−1)wn are martingale increments, relative to the filtration (H̃n

j+iwn)i≥0, hence

E

(
sup
l≤k

∣∣B′′(j)nl
∣∣2

)
≤ 4

[(k−j)/wn]∑
i=1

E
((
δ′′n
i

)2) ≤ 4
[(k−j)/wn]∑

i=1

E
((
δni

)2) ≤ Kka′
n

wn

by Doob’s inequality, so E(supl≤k |B′′(j)nl |) ≤ K
√
ka′

n/wn. The left side of (A.17) being
smaller than E(supl≤k |B′n

l |)+ ∑wn−1
j=0 E(supl≤k |B′′(j)nl |), we deduce the result. Q.E.D.
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PROOF OF LEMMA A.7: With V = Vtαt , we have

J(V )nt =Dn
t +BnNnt −un� Dn

t = 1√

n

∫ t

T (n�Nnt −un)
(Vs − VT(n�Nns ))αs ds�

Bnk =
k∑
i=0

δni � δni = 1√

n

∫ T(n�i+1)

T(n�i)

(V s − V T(n�i)) ds�

Equation (A.5) and the boundedness of V and α imply |Dn
t | ≤Kun
ρ−1/2

n , which goes to 0.
In view of (A.5), BnNnt −un

u�c�p�=⇒ 0 follows from the property E(supj≤[D/
n] |Bnj |)→ 0 for any
constant D. This in turn follows from Lemma A.6 applied to δni , the assumptions of this
lemma being fulfilled with H̃n

i =Fn
T(n�i) and wn = 1 and, by virtue of (A.7), an =K
3/2

n and
a′
n =K
2

n. This completes the proof. Q.E.D.

PROOF OF LEMMA A.8: Since |r(m)| ≤K(1 ∧m−v), we have for all j:

E
((
χnj

)2) = 1
k2
n

∑
0≤i�l<kn−1

r(i− l)≤ 2
kn

kn−1∑
m=0

∣∣r(m)∣∣ ≤ K

kn

(
1 +

kn−1∑
m=1

1
mv

)
≤Kfv(kn)� (C.18)

with fv(kn) as in the statement of the lemma. This yields the first claim. Since all moments
of χnj are bounded in j and n, by Hölder’s inequality we also get, for p> 2 and ε > 0:

E
(∣∣χnj ∣∣p) ≤Kp�εfv(kn)

1−ε� (C.19)

Next, we denote by Q the set of all non-empty subsets Q of {1� � � � � q}, the complement
of Q being denoted as Qc , and its cardinal is |Q|. We have

Un :=
q∏

m=1

(
χjm −χnμ+(2m−1)kn

) −
q∏

m=1

χjm =
∑
Q∈Q
(−1)|Q|Vn(Q)�

where

Vn(Q)=
∏
�∈Qc

χj�
∏
�∈Q
χnμ+(2�−1)kn �

We fix Q ∈Q and let r0 = maxQ and Q′ =Q \ {r0}. We have

Vn(Q)= V ′
n(Q)χ

n
μ+(2r0−1)kn� where V ′

n(Q)=
∏
�∈Qc

χj�
∏
�∈Q′

χnμ+(2�−1)kn �

The variable V ′
n(Q) is Gμ+(2r0−2)kn -measurable, with all moments bounded in n, whereas

χnμ+2(r0−1)kn is Gμ+(2r0−1)kn -measurable, centered, and satisfies (C.19). Then (C.18), (C.19),
(A.9), and the property that k−v

n fv(kn)
1/2−ε ≤Kfv(kn) for ε ∈ (0�1/2] yield∣∣E(

Vn(Q)
)∣∣ ≤Kk−v

n

√
fv(kn)� E

(∣∣Vn(Q)∣∣2) ≤Kp�εfv(kn)�

Since (3.1) and (3.26) yield r(kn; j)− r(j) = E(Un), by summing up the estimates above
over all Q ∈Q, we readily get (A.19). Q.E.D.
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PROOF OF LEMMA A.9: (1) We will focus on the second part of (A.21), the first part
being analogous, and in fact slightly simpler. We take j� j′ as above, and set for any inte-
ger k:

Un
k =

k∑
i=1

(
Ŷ (j)ni Ŷ

(
j′
)n
i+μ+(2q+1)kn

− γq′′
T(n�i)χ̂(j)

n
i χ̂

(
j′
)n
i+μ+(2q+1)kn

)
� (C.20)

Suppose for a moment that we have

E

(
sup
k≤j

∣∣Un
k

∣∣) ≤Kr�q�q′
(
j
(
kn


ρ
n

)1/r + j1/2k(1+r)/2r
n 
ρ/2rn

)
� (C.21)

Observe that, with ζni = |χ̂(j)ni χ̂(j′)ni+μ+(2q+1)kn | and u′
n = un ∨ (μ′′ + (2q′′ + 1)kn)), we have

∣∣U4
(
j� j′

)n
t
−U ′4(j� j′

)n
t

∣∣ ≤KRnt + sup
k≤Nnt

∣∣Un
k

∣∣� Rnt =
Nnt∑

i=Nnt −u′
n

ζni �

Since the variables ζni have a finite moment (not depending on i) and are independent of
F 0, by conditioning first on this σ-field we see that E(Rnt )≤Kq′′kn. On the other hand, on
the set Ωn

t we have Nn
t ≤ (1 + Ct)/
n, so the left side of (A.21) is smaller than Kkn plus

the bound in (C.21) evaluated at j = [(1 +Ct)/
n]. Since both kn and k(1+r)/2r
n 
(ρ−r)/2rn are

smaller than Kk1/r
n 


ρ/r−1
n by (A.4), we deduce the second part of (A.21).

(2) The proof of (C.21) goes through several steps, the first one being devoted to some
estimates. Set for u� l�w ∈ N:

ζ(m)ni�u�l =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
XT(n�i+u) −Xn

i+l + (γT(n�i+u) − γT(n�i))χi+u
− 1
kn

kn−1∑
j=0

(γT(n�i+l+j) − γT(n�i))χi+l+j if m= 1�

γT(n�i)
(
χi+u −χni+l

)
if m= 2�

Upon using (A.5) and (A.6) with V = X ′ (since here X = X0 +X ′) or with V = γ, the
independence of F 0 and G, and the fact that χi has moments of all orders, we get for
p≥ 2:

E
(∣∣ζ(1)ni�u�l∣∣p) ≤Kp


ρ
n(u+ l+ kn)� E

(∣∣ζ(2)ni�u�l∣∣p) ≤Kp� (C.22)

Moreover, (A.6) and the independence of F 0 and G yield

∣∣E(
ζ(1)ni�u�l |Fn

T(n�i) ⊗ G
)∣∣ ≤K
ρn(u+ l+ kn)

(
1 + |χi+u| + 1

kn

kn−1∑
m=0

|χi+l+m|
)
� (C.23)

(3) Since Yn
i+u −Yn

i+l =
∑4

m=1 ζ(m)
n
i�u�l, and with the notation

1 ≤ �≤ q ⇒ un� = j�� ln� = μ+ (2�− 1)kn�

q < �≤ q′′ ⇒ un� = μ+ (2q+ 1)kn + j′�−q� ln� = μ′′ + 2(�+ q)kn�
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a simple calculation shows us that Un
k = ∑k

i=0 ξ
n
i , where

ξni =
q′′∏
�=1

(
2∑

m=1

ζ(m)ni+2+2kn�un� �l
n
�

)
−

q′′∏
�=1

ζ(2)ni+2+2kn�un� �l
n
�
�

So, if Q is the set of all partitions Q= (Q1�Q2) of {1� � � � � q′′} such that Q1 �= ∅, we have

ξni =
∑
Q∈Q

η(Q)ni � where

η(Q)ni = η(Q1�1)ni η(Q2�2)ni and η(Qm�m)
n
i =

∏
�∈Qj

ζ(m)ni+2+2kn�un� �l
n
�
�

It remains to prove that, for each Q ∈Q, the sequence Mn
k = ∑k

i=0η(Q)
n
i satisfies (C.21).

(4) We start with the case where Q1 is a singleton, say Q1 = {�} for some � ∈ {1� � � � � q′′},
so η(Q)ni = ζ(1)ni�un� �ln� η(Q2�2)ni . By (C.22), (C.23), successive conditioning, Hölder’s in-
equality, and the facts that η(Q2�2)ni is G-measurable with bounded moments of all or-
ders and un� + ln� ≤ Kq′′kn, the assumptions of Lemma A.6 are satisfied by the variables
δni = η(Q)ni , with wn = μ′′ + (2q′′ + 1)kn and H̃n

i =Hn
i and, for any r > 1,

an ≤Kq�q′kn

ρ
n� a′

n ≤Kr�q�q′
(
kn


ρ
n

)1/r
�

Then, since kn
ρn → 0, (A.17) implies that M(Q)n satisfies (C.21).
In all other cases of Q ∈ Q, there are at least two distinct integers � and �′ in Q1.

Then η(Q)ni = ζ(1)ni+2+2kn�un� �l
n
�
ζ(1)ni+2+2kn�un�′ �l

n
�′
ζ ′n
i , where ζ ′n

i has finite moments of all order

by (C.22). Then (C.24), (C.22), and Hölder’s inequality yield E(|η(Q)ni |) ≤ Kr(kn

ρ
n)

1/r .
Thus (C.21) holds again. This completes the proof. Q.E.D.

PROOF OF LEMMA A.10: (1) We begin by proving that∣∣E(

̂ni |Fn

T(n�i)

) − αT(n�i)
∣∣ ≤Kφ′

n� E
((

̂ni

)2 |Fn
T(n�i)

) ≤K� (C.24)

Set

λ1�n
i = 
(n� i+ 1)


n
− 1
αT(n�i)

� λ2�n
i = T(n� i+ kn)− T(n� i)

kn
n
− 1
αT(n�i)

�

λ3�n
i = T(n� i+ 1 + kn)− T(n� i+ 1)

kn
n
− 1
αT(n�i)

� λ4�n
i = (

λ1�n
i − λ3�n

i

)2
�

λ5�n
i = kn
n(

T(n� i+ kn)− T(n� i)) ∨φn
�

First, (2.3) with τ1 = ∞ yields∣∣E(
λ1�n
i |Fn

T(n�i)

)∣∣ ≤K
1/2+κ
n � E

((
λ1�n
i

)4 |Fn
T(n�i)

) ≤K�∣∣∣∣E((
λ1�n
i

)2 |Fn
T(n�i)

) − αT(n�i)

α2
T(n�i)

∣∣∣∣ ≤K
κn�
(C.25)
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Next, we have

λ1�n
i =

3∑
m=1

1
kn

kn−1∑
j=0

ζ
m�j�n
i � ζ

m�j�n
i =

⎧⎪⎪⎨⎪⎪⎩
E
(
λ1�n
i+j |Fn

T(n�i+j)
)

if m= 1�

λ1�n
i+j −E

(
λ1�n
i+j |Fn

T(n�i+j)
)

if m= 2�

1/αT(n�i+j) − 1/αT(n�i) if m= 1�

The process 1/α satisfies (K), hence (A.6), (C.25), and (3.5) yield for r = 1�2:∣∣E(
λr�ni |Fn

T(n�i)

)∣∣ ≤K(

1/2+κ
n + kn
n

)
� E

((
λr�ni

)4 |Fn
T(n�i)

) ≤K�

E
((
λr�ni

)2 |Fn
T(n�i)

) ≤K
(

1+2κ
n + 1

kn
+ kn
n

)
≤ K

kn
�

(C.26)

Upon expanding the square in the definition of λ4�n
i , this for r = 2 and (C.25) and also

(A.6) for the process α/α2 yield∣∣∣∣E(
λ4�n
i+kn |Fn

T(n�i)

) − αT(n�i)

α2
T(n�i)

∣∣∣∣ ≤K
(

κn + 1√

kn

)
� E

((
λ4�n
i+kn

)2 |Fn
T(n�i)

) ≤K� (C.27)

Observe that λ5�n
i = αT(n�i)/(1 + αT(n�i)λ

2�n
i ) ∨ bn, where bn = φnαT(n�i)/kn
n. Let D be a

constant such that αt ≤D, and p= 2�4. Expanding x �→ 1
(1+x)p around 0 for |x| ≤ 1

2 , and
using (C.26) with r = 2, we get (since φn/kn
n → 0 by (3.14), we can assume bn < 1

2 ):∣∣E((
λ5�n
i

)p |Fn
T(n�i)

) − αpT(n�i)
∣∣

≤ α
p
T(n�i)

bpn
P
(∣∣λ2�n

i

∣∣> 1/2D |Fn
T(n�i)

) +Kαp+1
T(n�i)E

((
λ4�n
i

)p |Fn
T(n�i)

)

≤ (2D)2(kn
n)
p

φpn
E
((
λ4�n
i

)2 |Fn
T(n�i)

) +KE
((
λ4�n
i

)p |Fn
T(n�i)

) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K
kn


2
n

φ2
n

if p= 2�

K
k3
n


4
n

φ4
n

+K if p= 4�

Since 
̂ni = (λ4�n
i+kn)

2(λ5�n
i )

2 and k3
n


4
n/φ

4
n → 0, the above estimate and (C.27) yield (C.24).

(2) Now we turn to our claim. The assumptions of Lemma A.6, for the sequence δni =

nVT(n�i)(
̂

n
i − αnT(n�i)), are satisfied with H̃n

i = Fn
T(n�i) and wn = 2 + 2kn and an =Kφ′

n and
a′
n =K, by (C.24). Hence (A.22) readily follows from (A.17). Q.E.D.

PROOF OF LEMMA A.11: (1) We prove (3.19) only, the other two claims being proved
analogously (in a slightly simpler way). The second part of (3.19) is an obvious conse-
quence of the first part and of (2.4), so we focus on the first part, and we let j� j′ ∈J + with
μ = μ(j) and μ′ = μ(j′) and q′′ = q+ q′ and μ′′ = μ+ μ′. By virtue of (A.2), (A.4), and
Lemma A.8, it is enough to show that

Bnt := 
nU3
(
j� j′

)n
t
−
nr(kn; j)r

(
kn; j′

)Nnt −1−μ′′−(2q′′+3)kn∑
i=0

αT(n�i)γ
q′′
T(n�i)

P−→ 0�
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With the same notation χ̂(j)ni as in (A.20), we set

Un
k =

k∑
i=0

δni � Un
k =

k∑
i=0

δni � U ′n
k =

k∑
i=0

δ′n
i � where

δni = 
̂ni
(
Ŷ (j)ni+2+2knŶ

(
j′
)n
i+2+μ+(2q+3)kn

− γq′′
T(n�i)χ̂(j)

n
i+2+2knχ̂

(
j′
)n
i+2+μ+(2q+3)kn

)
�

δni = 
̂ni γq
′′
T(n�i)

(
χ̂(j)ni+2+2knχ̂

(
j′
)n
i+2+μ+(2q+3)kn

− r(kn; j)r
(
kn; j′

))
�

δ′n
i = r(kn; j)r

(
kn; j′

)
γ
q′′
T(n�i)

(

̂ni − αT(n�i)

)
�

We will prove that, for any r > 1,

E

(
sup
k≤j

∣∣Un
k

∣∣) ≤Kr

(
j
(
kn


ρ
n

)1/r + j1/2k(1+r)/2r
n 
ρ/2rn

)
�

E

(
sup
k≤j

∣∣Un
k

∣∣) ≤K(
jk−v

n + √
jkn

)
�

E

(
sup
k≤j

∣∣U ′n
k

∣∣) ≤K(
jφ′

n + √
jkn

)
�

(C.28)

Suppose indeed that (C.28) holds. We have |Bnt | ≤ 
n supk≤[(1+Ct)/
n](|Un
k | + |U ′n

k |) in re-
striction to the set Ωn

t , whose probability goes to 1. Substituting j with [(1 + Ct)/
n] in

(C.28), and since φ′
n → 0 and under our assumptions, we readily deduce Bnt

P−→ 0.
(2) We are thus left to proving (C.28). The third estimate is (A.22) with V = γq

′′ . The
first one is proved exactly as (C.21), once noticed that Un

k here has the same structure
as in (C.20), with, in each summand, a shift by 2 + 2kn of the indices and the additional
multiplicative term 
̂ni which satisfies (C.24).

Finally, with the notation χ̂′(j)ni = χ̂((j)ni − r(kn; j), we have

δni = 
̂ni γq
′′
T(n�i)

(
χ̂(j)ni+2+2knχ̂

′(j′
)n
i+2+μ+(2q+2)kn

+ r
(
kn; j′

)
χ̂′(j)ni+2+2kn

)
�

Since the variables χ̂′(j)ni are centered by definition of r(kn; j′), we deduce from
(A.8) and the facts that χ̂(j)ni+2+2kn is Gi+2+μ+(2q+1)kn -measurable and χ̂′(j′)ni+2+μ+(2q+2)kn

is G i+2+μ+(2q+2)kn -measurable that E(|E(δni | Hn
i )|) ≤ K/kvn. Then δni satisfies the assump-

tions of Lemma A.6, with H̃n
i = Fn

T(n�i) and wn = 1 + μ′′ + (2q′′ + 3)kn and a′
n = K and

an =K/kvn, and the second part of (C.28) follows from (A.17). Q.E.D.
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