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APPENDIX A: PROOF OF THEOREM 1

FOR ANY h ∈ L1[0�1], let ‖h‖1 := ∫ 1
0 |h(x)|dx, ‖h‖1�t := ∫ 1−δ2

δ2
|h(x)|dx and define the

operator norm by ‖T‖2 := suph∈L2[0�1]:‖h‖2>0 ‖Th‖2/‖h‖2. Note that ‖T‖2
2 ≤ ∫ 1

0

∫ 1
0 f 2

X�W (x�

w)dxdw, and so under Assumption 2, ‖T‖2 ≤ √
CT . Also, let M denote the set of all

monotone functions in L2[0�1]. To prove Theorem 1 from the main text, we first establish
some auxiliary results.

LEMMA A.1—Lower Bound on T : Let Assumptions 1 and 2 be satisfied. Then there exists
a finite constant C̄ such that

‖h‖2�t ≤ C̄‖Th‖2 (19)

for any function h ∈ M. Here C̄ depends only on the constants appearing in Assumptions 1
and 2, and on x1, x2.

PROOF: We first show that for any h ∈M,

‖h‖2�t ≤ C1‖h‖1�t (20)

for C1 := (x2 − x1)
1/2/min{x1 − δ2�1 − δ2 − x2}. Indeed, by monotonicity of h,

‖h‖2�t =
(∫ x2

x1

h(x)2 dx

)1/2

≤ √
x2 − x1 max

{∣∣h(x1)
∣∣� ∣∣h(x2)

∣∣}

≤ √
x2 − x1

∫ 1−δ2

δ2

∣∣h(x)∣∣dx
min{x1 − δ2�1 − δ2 − x2} �

so that (20) follows. Therefore, for any increasing continuously differentiable h ∈M,

‖h‖2�t ≤ C1‖h‖1�t ≤ C1C2‖Th‖1 ≤ C1C2‖Th‖2�
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2 D. CHETVERIKOV AND D. WILHELM

where the first inequality follows from (20), the second from Lemma A.2 below (which
is the main step in the proof of Theorem 1), and the third by Jensen’s inequality. Hence,
conclusion (19) of Lemma A.1 holds for increasing continuously differentiable h ∈ M
with C̄ := C1C2 and C2 as defined in Lemma A.2.

Next, for any increasing function h ∈ M, it follows from Lemma I.5 that one can find
a sequence of increasing continuously differentiable functions hk ∈ M, k ≥ 1, such that
‖hk − h‖2 → 0 as k → ∞. Therefore, by the triangle inequality,

‖h‖2�t ≤ ‖hk‖2�t + ‖hk − h‖2�t

≤ C̄‖Thk‖2 + ‖hk − h‖2�t

≤ C̄‖Th‖2 + C̄
∥∥T(hk − h)

∥∥
2
+ ‖hk − h‖2�t

≤ C̄‖Th‖2 + C̄‖T‖2‖hk − h‖2 + ‖hk − h‖2�t

≤ C̄‖Th‖2 + (
C̄‖T‖2 + 1

)∥∥(hk − h)
∥∥

2

≤ C̄‖Th‖2 + (C̄
√
CT + 1)‖hk − h‖2�

where the third line follows from the Cauchy–Schwarz inequality, the fourth from ‖hk −
h‖2�t ≤ ‖hk − h‖2, and the fifth from Assumption 2(i). Taking the limit as k → ∞ of both
the left-hand and the right-hand sides of this chain of inequalities yields conclusion (19)
of Lemma A.1 for all increasing h ∈M.

Finally, since for any decreasing h ∈M, we have that −h ∈M is increasing, ‖−h‖2�t =
‖h‖2�t , and ‖Th‖2 = ‖T(−h)‖2, conclusion (19) of Lemma A.1 also holds for all decreas-
ing h ∈M, and thus for all h ∈M. This completes the proof of the lemma. Q.E.D.

LEMMA A.2: Let Assumptions 1 and 2 hold. Then for any increasing continuously differ-
entiable h ∈ L1[0�1],

‖h‖1�t =
∫ 1−δ2

δ2

∣∣h(x)∣∣dx≤ C2‖Th‖1�

where C2 := ((cW cf /4)min{1 −w2�w1}min{(CF − 1)/2�1})−1.

PROOF: Take any increasing continuously differentiable function h ∈ L1[0�1] such that
‖h‖1�t = 1. Define M(w) := E[h(X)|W =w] for all w ∈ [0�1] and note that

‖Th‖1 =
∫ 1

0

∣∣M(w)fW (w)
∣∣dw

≥ cW

∫ 1

0

∣∣M(w)
∣∣dw�

where the inequality follows from Assumption 2(iii). Therefore, the asserted claim follows
if we can show that

∫ 1
0 |M(w)|dw ≥ (cW C2)

−1.
To do so, first note that M(w) is increasing. This is because, by integration by parts,

M(w)=
∫ 1

0
h(x)fX|W (x|w)dx= h(1)−

∫ 1

0
Dh(x)FX|W (x|w)dx�



NONPARAMETRIC INSTRUMENTAL VARIABLE ESTIMATION 3

so that condition (7) of Assumption 1 and Dh(x) ≥ 0 for all x imply that the function
M(w) is increasing.

Next, consider the case in which h(x) ≥ 0 for all x ∈ [0�1]. Then M(w) ≥ 0 for all
w ∈ [0�1]. Therefore,∫ 1

0

∣∣M(w)
∣∣dw ≥

∫ 1

w2

∣∣M(w)
∣∣dw

≥ (1 −w2)M(w2)

= (1 −w2)

∫ 1

0
h(x)fX|W (x|w2)dx

≥ (1 −w2)

∫ 1−δ2

δ2

h(x)fX|W (x|w2)dx

≥ (1 −w2)cf

∫ 1−δ2

δ2

h(x)dx

= (1 −w2)cf‖h‖1�t

= (1 −w2)cf

≥ (cW C2)
−1

by Assumption 2(ii). Similarly,∫ 1

0

∣∣M(w)
∣∣dw ≥ w1cf ≥ (cW C2)

−1

when h(x) ≤ 0 for all x ∈ [0�1]. Therefore, it remains to consider the case in which there
exists x∗ ∈ (0�1) such that h(x) ≤ 0 for x ≤ x∗ and h(x) ≥ 0 for x > x∗. Since h(x) is
continuous, h(x∗)= 0, and so integration by parts yields

M(w) =
∫ x∗

0
h(x)fX|W (x|w)dx+

∫ 1

x∗
h(x)fX|W (x|w)dx

(21)

= −
∫ x∗

0
Dh(x)FX|W (x|w)dx+

∫ 1

x∗
Dh(x)

(
1 − FX|W (x|w)

)
dx�

For k= 1�2, let Ak := ∫ 1
x∗ Dh(x)(1−FX|W (x|wk))dx and Bk := ∫ x∗

0 Dh(x)FX|W (x|wk)dx,
so that

M(wk)= Ak −Bk� k= 1�2�

Consider the following five cases separately, depending on where x∗ lies relative to δ2,
δ1, 1 − δ1, and 1 − δ2 (note that we have 0 ≤ δ2 ≤ δ1 < 1 − δ1 ≤ 1 − δ2 ≤ 1).

Case I (δ1 < x∗ < 1 − δ1): First, we have

A1 +B2 =
∫ 1

x∗
Dh(x)

(
1 − FX|W (x|w1)

)
dx+

∫ x∗

0
Dh(x)FX|W (x|w2)dx

=
∫ 1

x∗
h(x)fX|W (x|w1)dx−

∫ x∗

0
h(x)fX|W (x|w2)dx
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≥
∫ 1−δ2

x∗
h(x)fX|W (x|w1)dx−

∫ x∗

δ2

h(x)fX|W (x|w2)dx

≥ cf

∫ 1−δ2

x∗
h(x)dx+ cf

∫ x∗

δ2

∣∣h(x)∣∣dx (22)

= cf

∫ 1−δ2

δ2

∣∣h(x)∣∣dx
= cf‖h‖1�t

= cf �

where the fourth line follows from Assumption 2(ii). Second, by (7) and (8) of Assump-
tion 1,

M(w1)=
∫ 1

x∗
Dh(x)

(
1 − FX|W (x|w1)

)
dx−

∫ x∗

0
Dh(x)FX|W (x|w1)dx

≤
∫ 1

x∗
Dh(x)

(
1 − FX|W (x|w2)

)
dx−CF

∫ x∗

0
Dh(x)FX|W (x|w2)dx

=A2 −CFB2�

so that, together with M(w2)=A2 −B2, we obtain

M(w2)−M(w1)≥ (CF − 1)B2� (23)

Similarly, by (7) and (9) of Assumption 1,

M(w2)=
∫ 1

x∗
Dh(x)

(
1 − FX|W (x|w2)

)
dx−

∫ x∗

0
Dh(x)FX|W (x|w2)dx

≥ CF

∫ 1

x∗
Dh(x)

(
1 − FX|W (x|w1)

)
dx−

∫ x∗

0
Dh(x)FX|W (x|w1)dx

= CFA1 −B1�

so that, together with M(w1)=A1 −B1, we obtain

M(w2)−M(w1)≥ (CF − 1)A1� (24)

In conclusion, equations (22), (23), and (24) yield

M(w2)−M(w1) ≥ (CF − 1)(A1 +B2)/2 ≥ (CF − 1)cf /2� (25)

Consider the case M(w1)≥ 0 and M(w2)≥ 0. Then M(w2)≥M(w2)−M(w1) and thus∫ 1

0

∣∣M(w)
∣∣dw ≥

∫ 1

w2

∣∣M(w)
∣∣dw

≥ (1 −w2)M(w2)
(26)

≥ (1 −w2)(CF − 1)cf /2

≥ (cW C2)
−1�
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Similarly, ∫ 1

0

∣∣M(w)
∣∣dw ≥

∫ w1

0

∣∣M(w)
∣∣dw

≥ w1

∣∣M(w1)
∣∣

(27)
≥ w1(CF − 1)cf /2

≥ (cW C2)
−1

when M(w1)≤ 0 and M(w2)≤ 0.
Finally, consider the case M(w1) ≤ 0 and M(w2) ≥ 0. If M(w2) ≥ |M(w1)|, then

M(w2)≥ (M(w2)−M(w1))/2 and the same argument as in (26) shows that

∫ 1

0

∣∣M(w)
∣∣dw ≥ (1 −w2)(CF − 1)cf /4 ≥ (cW C2)

−1�

If |M(w1)| ≥ M(w2), then |M(w1)| ≥ (M(w2)−M(w1))/2 and we obtain∫ 1

0

∣∣M(w)
∣∣dw ≥

∫ w1

0

∣∣M(w)
∣∣dw ≥ w1(CF − 1)cf /4 ≥ (cW C2)

−1�

This completes the proof of Case I.
Case II (1 − δ1 ≤ x∗ ≤ 1 − δ2): Note that since

‖h‖1�t =
∫ x∗

δ2

∣∣h(x)∣∣dx+
∫ 1−δ2

x∗
h(x)dx= 1�

it follows that either
∫ x∗
δ2

|h(x)|dx ≥ 1/2 or
∫ 1−δ2
x∗ h(x)dx ≥ 1/2. We first consider the

case
∫ x∗
δ2

|h(x)|dx ≥ 1/2. Suppose that M(w1) ≥ −cf /4. As in Case I, we have M(w2) ≥
CFA1 −B1. Together with M(w1)=A1 −B1, this inequality yields

M(w2)−M(w1)= M(w2)−CFM(w1)+CFM(w1)−M(w1)

≥ (CF − 1)B1 + (CF − 1)M(w1)

= (CF − 1)
(∫ x∗

0
Dh(x)FX|W (x|w1)dx+M(w1)

)

= (CF − 1)
(∫ x∗

0

∣∣h(x)∣∣fX|W (x|w1)dx+M(w1)

)

≥ (CF − 1)
(∫ x∗

δ2

∣∣h(x)∣∣fX|W (x|w1)dx− cf

4

)

≥ (CF − 1)
(
cf

∫ x∗

δ2

∣∣h(x)∣∣dx− cf

4

)

≥ (CF − 1)cf
4

�
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We then proceed as in Case I using this inequality to replace (25) to show that∫ 1
0 |M(w)|dw ≥ (cW C2)

−1. On the other hand, when M(w1) < −cf /4 we bound∫ 1
0 |M(w)|dw as in (27), and the proof of Case II with

∫ x∗
δ2

|h(x)|dx ≥ 1/2 is com-
plete.

Next, we consider the case
∫ 1−δ2
x∗ h(x)dx≥ 1/2. As above, we have M(w2)≥ CFA1 −B1

and M(w1)= A1 −B1. Hence,

M(w2)−M(w1)≥ (CF − 1)A1

= (CF − 1)
∫ 1

x∗
Dh(x)

(
1 − FX|W (x|w1)

)
dx

= (CF − 1)
∫ 1

x∗
h(x)fX|W (x|w1)dx

≥ (CF − 1)
∫ 1−δ2

x∗
h(x)fX|W (x|w1)dx

≥ (CF − 1)cf
∫ 1−δ2

x∗
h(x)dx

≥ (CF − 1)cf
2

�

We then again proceed as in Case I to show that
∫ 1

0 |M(w)|dw ≥ (cW C2)
−1. The proof of

Case II with
∫ 1−δ2
x∗ h(x)dx≥ 1/2 is complete.

Case III (1 − δ2 < x∗): Suppose M(w1) ≥ −cf /2. As in Case I, we have M(w2) ≥
CFA1 −B1. Together with M(w1)=A1 −B1, this inequality yields

M(w2)−M(w1)=M(w2)−CFM(w1)+CFM(w1)−M(w1)

≥ (CF − 1)B1 + (CF − 1)M(w1)

= (CF − 1)
(∫ x∗

0
Dh(x)FX|W (x|w1)dx+M(w1)

)

= (CF − 1)
(∫ x∗

0

∣∣h(x)∣∣fX|W (x|w1)dx+M(w1)

)

≥ (CF − 1)
(∫ 1−δ2

δ2

∣∣h(x)∣∣fX|W (x|w1)dx− cf

2

)

≥ (CF − 1)
(
cf

∫ 1−δ2

δ2

∣∣h(x)∣∣dx− cf

2

)

= (CF − 1)cf
2

�

We then proceed as in Case I to show that
∫ 1

0 |M(w)|dw ≥ (cW C2)
−1. On the other hand,

when M(w1) < −cf /2 we bound
∫ 1

0 |M(w)|dw as in (27), and the proof of Case III is
complete.
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Case IV (δ2 ≤ x∗ ≤ δ1): Similarly to Case II, we first consider the case
∫ 1−δ2
x∗ h(x)dx ≥

1/2. Suppose first that M(w2) ≤ cf /4. As in Case I, we have M(w1) ≤ A2 −CFB2, so that
together with M(w2)=A2 −B2,

M(w2)−M(w1)= M(w2)−CFM(w2)+CFM(w2)−M(w1)

≥ (1 −CF)M(w2)+ (CF − 1)A2

= (CF − 1)
(∫ 1

x∗
Dh(x)

(
1 − FX|W (x|w2)

)
dx−M(w2)

)

= (CF − 1)
(∫ 1

x∗
h(x)fX|W (x|w2)dx−M(w2)

)

≥ (CF − 1)
(∫ 1−δ2

x∗
h(x)fX|W (x|w2)dx−M(w2)

)

≥ (CF − 1)
(
cf

∫ 1−δ2

x∗
h(x)dx− cf

4

)

≥ (CF − 1)cf
4

�

and we proceed as in Case I to show that
∫ 1

0 |M(w)|dw ≥ (cW C2)
−1. On the other hand,

when M(w2) > cf /4, we bound
∫ 1

0 |M(w)|dw as in (26), and the proof of Case IV with∫ 1−δ2
x∗ h(x)dx≥ 1/2 is complete.
Next, consider the case

∫ x∗
δ2

|h(x)|dx ≥ 1/2. As above, we have M(w1)≤A2 −CFB2 and
M(w2)= A2 −B2. Hence,

M(w2)−M(w1)≥ (CF − 1)B2

= (CF − 1)
∫ x∗

0
Dh(x)FX|W (x|w2)dx

= (CF − 1)
∫ x∗

0

∣∣h(x)∣∣fX|W (x|w2)dx

≥ (CF − 1)
∫ x∗

δ2

∣∣h(x)∣∣fX|W (x|w2)dx

≥ (CF − 1)cf
∫ x∗

δ2

∣∣h(x)∣∣dx≥ (CF − 1)cf
2

�

We then again proceed as in Case I to show that
∫ 1

0 |M(w)|dw ≥ (cW C2)
−1. The proof of

Case IV with
∫ x∗
δ2

|h(x)|dx ≥ 1/2 is complete.
Case V (x∗ < δ2): Similarly to Case III, suppose first that M(w2) ≤ cf /2. As in Case I,

we have M(w1)≤A2 −CFB2, so that together with M(w2)= A2 −B2,

M(w2)−M(w1)= M(w2)−CFM(w2)+CFM(w2)−M(w1)

≥ (1 −CF)M(w2)+ (CF − 1)A2
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= (CF − 1)
(∫ 1

x∗
Dh(x)

(
1 − FX|W (x|w2)

)
dx−M(w2)

)

= (CF − 1)
(∫ 1

x∗
h(x)fX|W (x|w2)dx−M(w2)

)

≥ (CF − 1)
(∫ 1−δ2

δ2

h(x)fX|W (x|w2)dx−M(w2)

)

≥ (CF − 1)
(
cf

∫ 1−δ2

δ2

h(x)dx− cf

2

)
= (CF − 1)cf

2
�

and we proceed as in Case I to show that
∫ 1

0 |M(w)|dw ≥ (cW C2)
−1. On the other hand,

when M(w2) > cf /2, we bound
∫ 1

0 |M(w)|dw as in (26), and the proof of Case V is com-
plete. The lemma is proven. Q.E.D.

LEMMA A.3: Let Assumptions 1 and 2 be satisfied. Consider any function h ∈ L2[0�1].
If there exist h′ ∈ L2[0�1] and α ∈ (0�1) such that h+ h′ ∈ M and ‖h′‖2�t + C̄‖T‖2‖h′‖2 ≤
α‖h‖2�t , then

‖h‖2�t ≤ C̄

1 − α
‖Th‖2 (28)

for the constant C̄ defined in Lemma A.1.

PROOF: Define

h̃(x) := h(x)+ h′(x)

‖h‖2�t −
∥∥h′∥∥

2�t

� x ∈ [0�1]�

By assumption, ‖h′‖2�t < ‖h‖2�t , and so the triangle inequality yields

‖h̃‖2�t ≥
‖h‖2�t −

∥∥h′∥∥
2�t

‖h‖2�t −
∥∥h′∥∥

2�t

= 1�

Therefore, since h̃ ∈M, Lemma A.1 gives

‖T h̃‖2 ≥ ‖h̃‖2�t/C̄ ≥ 1/C̄�

Hence, applying the triangle inequality once again yields

‖Th‖2 ≥ (‖h‖2�t −
∥∥h′∥∥

2�t

)‖T h̃‖2 − ∥∥Th′∥∥
2

≥ (‖h‖2�t −
∥∥h′∥∥

2�t

)‖T h̃‖2 − ‖T‖2

∥∥h′∥∥
2

≥ ‖h‖2�t −
∥∥h′∥∥

2�t

C̄
− ‖T‖2

∥∥h′∥∥
2

= ‖h‖2�t

C̄

(
1 −

∥∥h′∥∥
2�t

+ C̄‖T‖2

∥∥h′∥∥
2

‖h‖2�t

)
�
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Since the expression in the last parentheses is bounded from below by 1 − α by assump-
tion, we obtain the inequality

‖Th‖2 ≥ 1 − α

C̄
‖h‖2�t �

which is equivalent to (28). Q.E.D.

PROOF OF THEOREM 1: Note that since τ(a′) ≤ τ(a′′) whenever a′ ≤ a′′ the claim for
a ≤ 0, follows from τ(a) ≤ τ(0) ≤ C̄ , where the second inequality holds by Lemma A.1.
Therefore, assume that a > 0. Fix any α ∈ (0�1). Take any function h ∈ H(a) such that
‖h‖2�t = 1. Set h′(x) = ax for all x ∈ [0�1]. Note that the function x �→ h(x) + ax is in-
creasing and so belongs to the class M. Also, ‖h′‖2�t ≤ ‖h′‖2 ≤ a/

√
3. Thus, the bound

(28) in Lemma A.3 applies whenever (1 + C̄‖T‖2)a/
√

3 ≤ α. Therefore, for all a satisfy-
ing the inequality

a≤
√

3α

1 + C̄‖T‖2

�

we have τ(a)≤ C̄/(1 − α). This completes the proof of the theorem. Q.E.D.

APPENDIX B: PROOF OF THEOREM 2

In this section, we use C to denote a strictly positive constant, whose value may change
from place to place. Also, we use En[·] to denote the average over index i = 1� � � � � n; for
example, En[Xi] = n−1

∑n

i=1 Xi. Before proving Theorem 2, we prove the following two
lemmas.

LEMMA B.1—Asymptotic Equivalence of Constrained and Unconstrained Estimators:
Let Assumptions 2 and 4–8 be satisfied. In addition, assume that g is continuously differen-
tiable and Dg(x) ≥ cg for all x ∈ [0�1] and some constant cg > 0. If we have τ2

nξ
2
n logn/n→

0, supx∈[0�1] ‖Dp(x)‖(τn(K/n)1/2 + K−s) → 0, and supx∈[0�1] |Dg(x) − Dgn(x)| → 0 as
n→ ∞, then

P
(
ĝc(x) = ĝu(x) for all x ∈ [0�1]) → 1 as n → ∞� (29)

PROOF: Observe that if Dĝu(x) ≥ 0 for all x ∈ [0�1], then ĝc coincides with ĝu, so that
to prove (29), it suffices to show that

P
(
Dĝu(x)≥ 0 for all x ∈ [0�1]) → 1 as n → ∞� (30)

In turn, (30) follows if

sup
x∈[0�1]

∣∣Dĝu(x)−Dg(x)
∣∣ = op(1) (31)

since Dg(x) ≥ cg for all x ∈ [0�1] and some cg > 0.
To prove (31), define a function m̂ ∈L2[0�1] by

m̂(w)= q(w)′En

[
q(Wi)Yi

]
� w ∈ [0�1]� (32)
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and an operator T̂ :L2[0�1] → L2[0�1] by

(T̂h)(w) = q(w)′En

[
q(Wi)p(Xi)

′]E[
p(U)h(U)

]
� w ∈ [0�1]�h ∈L2[0�1]�

Throughout the proof, we assume that the events∥∥En

[
q(Wi)p(Xi)

′] − E
[
q(W )p(X)′]∥∥ ≤ C

(
ξ2
n logn/n

)1/2
� (33)∥∥En

[
q(Wi)q(Wi)

′] − E
[
q(W )q(W )′]∥∥ ≤ C

(
ξ2
n logn/n

)1/2
� (34)∥∥En

[
q(Wi)gn(Xi)

] − E
[
q(W )gn(X)

]∥∥ ≤ C
(
J/(αn)

)1/2
� (35)

‖m̂−m‖2 ≤ C
((
J/(αn)

)1/2 + τ−1
n J−s

)
(36)

hold for some sufficiently large constant 0 <C < ∞. It follows from Markov’s inequality
and Lemmas B.2 and I.6 that all four events hold jointly with probability at least 1 − α−
n−1 since the constant C is large enough.

Next, we derive a bound on ‖ĝu − gn‖2. By the definition of τn,∥∥ĝu − gn

∥∥
2
≤ τn

∥∥T (
ĝu − gn

)∥∥
2

≤ τn
∥∥T (

ĝu − g
)∥∥

2
+ τn

∥∥T(g − gn)
∥∥

2

≤ τn
∥∥T (

ĝu − g
)∥∥

2
+CgK

−s�

where the second inequality follows from the triangle inequality, and the third inequality
from Assumption 6(iii). Next, since m = Tg,∥∥T (

ĝu − g
)∥∥

2
≤ ∥∥(T − Tn)ĝ

u
∥∥

2
+ ∥∥(Tn − T̂ )ĝu

∥∥
2
+ ∥∥T̂ ĝu − m̂

∥∥
2
+ ‖m̂−m‖2 (37)

by the triangle inequality. The bound on ‖m̂−m‖2 is given in (36). Also, since ‖ĝu‖2 ≤ Cb

by construction, ∥∥(T − Tn)ĝ
u
∥∥

2
≤ CbCaτ

−1
n K−s

by Assumption 8(ii). In addition, by the triangle inequality,∥∥(Tn − T̂ )ĝu
∥∥

2
≤ ∥∥(Tn − T̂ )

(
ĝu − gn

)∥∥
2
+ ∥∥(Tn − T̂ )gn

∥∥
2

≤ ‖Tn − T̂‖2

∥∥ĝu − gn

∥∥
2
+ ∥∥(Tn − T̂ )gn

∥∥
2
�

Moreover,

‖Tn − T̂‖2 = ∥∥En

[
q(Wi)p(Xi)

′] − E
[
q(W )p(X)′]∥∥ ≤ C

(
ξ2
n logn/n

)1/2

by (33), and

∥∥(Tn − T̂ )gn

∥∥
2
= ∥∥En

[
q(Wi)gn(Xi)

] − E
[
q(W )gn(X)

]∥∥ ≤ C
(
J/(αn)

)1/2

by (35).
Further, by Assumption 2(iii), all eigenvalues of E[q(W )q(W )′] are bounded from be-

low by cw and from above by Cw, and so it follows from (34) that for large n, all eigenvalues
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of Qn := En[q(Wi)q(Wi)
′] are bounded below from zero and from above. Therefore,∥∥T̂ ĝu − m̂

∥∥
2
= ∥∥En

[
q(Wi)

(
p(Xi)

′β̂u −Yi

)]∥∥
≤ C

∥∥En

[(
Yi −p(Xi)

′β̂u
)
q(Wi)

′]Q−1
n En

[
q(Wi)

(
Yi −p(Xi)

′β̂u
)]∥∥1/2

≤ C
∥∥En

[(
Yi −p(Xi)

′βn

)
q(Wi)

′]Q−1
n En

[
q(Wi)

(
Yi −p(Xi)

′βn

)]∥∥1/2

≤ C
∥∥En

[
q(Wi)

(
p(Xi)

′βn −Yi

)]∥∥
by optimality of β̂u (note that βn is feasible in the optimization problem (13) for n large
enough since ‖g‖2 <Cb and gn(·)= p(·)′βn satisfies ‖g−gn‖2 → 0 as n → ∞). Moreover,∥∥En

[
q(Wi)

(
p(Xi)

′βn −Yi

)]∥∥ ≤ ∥∥(T̂ − Tn)gn

∥∥
2
+ ∥∥(Tn − T)gn

∥∥
2

+ ∥∥T(gn − g)
∥∥

2
+ ‖m− m̂‖2

by the triangle inequality. The terms ‖(T̂ − Tn)gn‖2 and ‖m − m̂‖2 have been bounded
above. Also, by Assumptions 8(ii) and 6(iii),∥∥(Tn − T)gn

∥∥
2
≤ Cτ−1

n K−s�
∥∥T(g − gn)

∥∥
2
≤ Cgτ

−1
n K−s�

Combining the inequalities above shows that the inequality∥∥ĝu − gn

∥∥
2
≤ C

(
τn

(
J/(αn)

)1/2 +K−s + τn
(
ξ2
n logn/n

)1/2∥∥ĝu − gn

∥∥
2

)
(38)

holds with probability at least 1 − α− n−c . Since τ2
nξ

2
n logn/n→ 0, it follows that with the

same probability, ∥∥β̂u −βn

∥∥ = ∥∥ĝu − gn

∥∥
2
≤ C

(
τn

(
J/(αn)

)1/2 +K−s
)
�

and so by the triangle inequality,∣∣Dĝu(x)−Dg(x)
∣∣ ≤ ∣∣Dĝu(x)−Dgn(x)

∣∣ + ∣∣Dgn(x)−Dg(x)
∣∣

≤ C sup
x∈[0�1]

∥∥Dp(x)∥∥(
τn

(
K/(αn)

)1/2 +K−s
) + o(1)

uniformly over x ∈ [0�1] since J ≤ CJK by Assumption 5. Since by the conditions of
the lemma, supx∈[0�1] ‖Dp(x)‖(τn(K/n)1/2 +K−s) → 0, (31) follows by taking α = αn → 0
slowly enough. This completes the proof of the lemma. Q.E.D.

LEMMA B.2: Suppose that Assumptions 2, 4, and 7 hold. Then ‖m̂ − m‖2 ≤ C((J/
(αn))1/2 + τ−1

n J−s) with probability at least 1 − α where m̂ is defined in (32).

PROOF: Using the triangle inequality and an elementary inequality (a+b)2 ≤ 2a2 +2b2

for all a�b≥ 0,∥∥En

[
q(Wi)Yi

] −E
[
q(W )g(X)

]∥∥2

≤ 2
∥∥En

[
q(Wi)εi

]∥∥2 + 2
∥∥En

[
q(Wi)g(Xi)

] − E
[
q(W )g(X)

]∥∥2
�
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To bound the first term on the right-hand side of this inequality, we have

E
[∥∥En

[
q(Wi)εi

]∥∥2] = n−1E
[∥∥q(W )ε

∥∥2] ≤ (CB/n)E
[∥∥q(W )

∥∥2] ≤ CJ/n�

where the first and the second inequalities follow from Assumptions 4 and 2, respectively.
Similarly,

E
[∥∥En

[
q(Wi)g(Xi)

] − E
[
q(W )g(X)

]∥∥2] ≤ n−1E
[∥∥q(W )g(X)

∥∥2]
≤ (CB/n)E

[∥∥q(W )
∥∥2]

≤ CJ/n

by Assumption 4. Therefore, denoting m̄n(w) := q(w)′E[q(W )g(X)] for all w ∈ [0�1], we
obtain

E
[‖m̂− m̄n‖2

2

] ≤ CJ/n�

and so by Markov’s inequality, ‖m̂− m̄n‖2 ≤ C(J/(αn))1/2 with probability at least 1 − α.
Further, using γn ∈R

J from Assumption 7, so that mn(w) = q(w)′γn for all w ∈ [0�1], and
denoting rn(w) :=m(w)−mn(w) for all w ∈ [0�1], we obtain

m̄n(w) = q(w)′
∫ 1

0

∫ 1

0
q(t)g(x)fX�W (x� t)dxdt

= q(w)′
∫ 1

0
q(t)m(t)dt

= q(w)′
∫ 1

0
q(t)

(
q(t)′γn + rn(t)

)
dt

= q(w)′γn + q(w)′
∫ 1

0
q(t)rn(t)dt

=m(w)− rn(w)+ q(w)′
∫ 1

0
q(t)rn(t)dt�

Hence, by the triangle inequality,

‖m̄n −m‖2 ≤ ‖rn‖2 +
∥∥∥∥
∫ 1

0
q(t)rn(t)dt

∥∥∥∥ ≤ 2‖rn‖2 ≤ 2Cmτ
−1
n J−s

by Bessel’s inequality and Assumption 7. Applying the triangle inequality one more time,
we obtain

‖m̂−m‖2 ≤ ‖m̂− m̄n‖ + ‖m̄n −m‖2 ≤ C
((
J/(αn)

)1/2 + τ−1
n J−s

)
with probability at least 1 − α. This completes the proof of the lemma. Q.E.D.

PROOF OF THEOREM 2: Consider the event that inequalities (33)–(36) hold for some
sufficiently large constant C. As in the proof of Lemma B.1, this event occurs with prob-
ability at least 1 − α − n−1. Also, applying the same arguments as those in the proof of
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Lemma B.1, starting from (37), with ĝc replacing ĝu and using the bound∥∥(Tn − T̂ )ĝc
∥∥

2
≤ ‖Tn − T̂‖2

∥∥ĝc
∥∥

2
≤ Cb‖Tn − T̂‖2

instead of the bound for ‖(Tn − T̂ )ĝu‖2 used in the proof of Lemma B.1, it follows that on
this event, ∥∥T (

ĝc − g
)∥∥

2
≤ C

((
K/(αn)

)1/2 + (
ξ2
n logn/n

)1/2 + τ−1
n K−s

)
�

and so, by Assumption 6(iii),∥∥T (
ĝc − gn

)∥∥
2
≤ C

((
K/(αn)

)1/2 + (
ξ2
n logn/n

)1/2 + τ−1
n K−s

)
� (39)

Further, ∥∥ĝc − gn

∥∥
2�t

≤ δ+ τn�t

(‖Dgn‖∞
δ

)∥∥T (
ĝc − gn

)∥∥
2

since ĝc is increasing (indeed, if ‖ĝc − gn‖2�t ≤ δ, the bound is trivial; otherwise, ap-
ply the definition of τn�t to the function (ĝc − gn)/‖ĝc − gn‖2�t and use the inequality
τn�t(‖Dgn‖∞/‖ĝc − gn‖2�t)≤ τn�t(‖Dgn‖∞/δ)). Finally, by the triangle inequality,∥∥ĝc − g

∥∥
2�t

≤ ∥∥ĝc − gn

∥∥
2�t

+ ‖gn − g‖2�t ≤
∥∥ĝc − gn

∥∥
2�t

+CgK
−s�

Combining these inequalities gives the asserted claim (15).
To prove (16), observe that combining (39) and Assumption 6(iii) and applying the

triangle inequality shows that with probability at least 1 − α− n−1,∥∥T (
ĝc − g

)∥∥
2
≤ C

((
K/(αn)

)1/2 + (
ξ2
n logn/n

)1/2 + τ−1
n K−s

)
�

which, by the same argument as that used to prove (15), gives

∥∥ĝc − g
∥∥

2�t
≤ C

{
δ+ τn�t

(‖Dg‖∞
δ

)(
K

αn
+ ξ2

n logn
n

)1/2

+K−s

}
� (40)

The asserted claim (16) now follows by applying (15) with δ = 0 and (40) with δ =
‖Dg‖∞/cτ and using Theorem 1 to bound τ(cτ). This completes the proof of the theo-
rem. Q.E.D.
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