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This appendix presents proofs of Theorems 2, 3, and 4. It also summarizes the results
of a series of Monte Carlo experiments designed to evaluate the finite sample proper-
ties of the tetrad logit and joint maximum likelihood estimates of β0. All notation is
as defined in the main test unless stated otherwise. Equation numbering continues in
sequence with that established in the main text.

APPENDIX B: PRELIMINARY LEMMAS

THIS APPENDIX STATES, and where required, proves, several preliminary lemmas used
in the proofs of Theorems 2, 3, and 4. The proofs of these three theorems appear in
Appendix C below. The abbreviation TI refers to the Triangle Inequality, LLN to Law of
Large Numbers, and CLT to Central Limit Theorem. A zero subscript on a parameter
denotes its population value. This subscript may be omitted when doing so causes no
confusion. I begin with two useful matrix analysis results.

LEMMA 1: Let the matrix A belong to the class LN(δ) if ‖A‖∞ ≤ 1 and, for all 1 ≤ i �=
j ≤N and for some δ > 0,

aii ≥ δ and aij ≤ − δ

N − 1
�

If A�B ∈LN(δ), then

‖AB‖∞ ≤ 1 − 2(N − 2)δ2

N − 1
�

PROOF: See Lemma 2.1 of Chatterjee, Diaconis, and Sly (2011). Q.E.D.

LEMMA 2: For all N ×N symmetric diagonally dominant matrices J with J ≥ SN(δ) for
SN(δ)= δ{(N − 2)IN + ιNι′N} and δ > 0, we have

∥∥J−1
∥∥

∞ ≤ ∥∥S−1
N (δ)

∥∥
∞ = 3N − 4

2δ(N − 2)(N − 1)
=O

(
1
N

)
�

PROOF: See Theorem 1.1 of Hillar, Lin, and Wibisono (2013). Q.E.D.

LEMMA 3: Under Assumptions 1, 2, 3 and 5,

sup
1≤i≤N

∣∣∣∣ 1
N − 1

∑
j �=i
(Dij −pij)

∣∣∣∣<
√

3
2

lnN
N

�
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with probability 1 −O(N−2).

PROOF: Hoeffding’s (1963) inequality gives

Pr
(∣∣∣∣ 1
N − 1

∑
j �=i
(Dij −pij)

∣∣∣∣≥ ε
)

≤ 2 exp
(

−2(N − 1)ε2

(1 − 2κ)2

)

for κ as defined by (19). Setting ε=
√

3
2

lnN
N

gives the probability bound

Pr
(∣∣∣∣ 1
N − 1

∑
j �=i
(Dij −pij)

∣∣∣∣≥
√

3
2

lnN
N

)

≤ 2 exp
(

− 2(N − 1)
(1 − 2κ)2

3
2

lnN
N

)

= 2 exp
(

ln
(

1
N3

)
N − 1

(1 − 2κ)2N

)

= 2
N3 exp

(
(N − 1)
(1 − 2κ)2N

)

=O(N−3
)
�

Applying Boole’s inequality then yields

Pr
(

max
1≤i≤N

∣∣∣∣ 1
N − 1

∑
j �=i
(Dij −pij)

∣∣∣∣≥
√

3
2

lnN
N

)

≤ 2
N2 exp

(
− 2(N − 1)
(1 − 2κ)2N

)

=O(N−2
)
�

from which the result follows. Q.E.D.

The next lemma formalizes the fixed point characterization of Â(β) discussed in Sec-
tion 1 of the main text. Lemma 4 is a straightforward extension of Theorem 1.5 of
Chatterjee, Diaconis, and Sly (2011) to accommodate dyad-level covariates in the link
formation model. Since it is constructive, a proof is provided here.

LEMMA 4: Suppose the concentrated MLE Â(β) lies in the interior of A× · · · ×A = A
N ;

then for some δ such that 0< δ≤ κ2

1−κ and Ak+1(β)= ϕ(Ak(β)) with ϕ(A) as defined by (18)
of the main text, (i)

∥∥Ak+1(β)− Â(β)
∥∥

∞ ≤
(

1 − 2(N − 2)
N − 1

δ2

)∥∥Ak−1(β)− Â(β)
∥∥

∞
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and (ii)

∥∥Ak+2(β)− Ak+1(β)
∥∥

∞ ≤
(

1 − 2(N − 2)
N − 1

δ2

)∥∥Ak(β)− Ak−1(β)
∥∥

∞�

PROOF: I suppress the dependence of Â(β), Ak(β), and other objects on β in what
follows (note that the lemma holds for any β in its parameter space). Tedious calculation
gives a N ×N Jacobian matrix of

∇Aϕ(A)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j �=1

p2
1j

∑
j �=1

p1j

−p12(1 −p12)∑
j �=1

p1j

· · · −p1N(1 −p1N)∑
j �=1

p1j

−p21(1 −p12)∑
j �=2

p2j

∑
j �=2

p2
2j

∑
j �=2

p2j

· · · −p2N(1 −p2N)∑
j �=2

p2j

���
� � �

���

−pN1(1 −p1N)∑
j �=N

pNj
−p2N(1 −p2N)∑

j �=N
pNj

· · ·

∑
j �=N

p2
Nj

∑
j �=N

pNj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (42)

Observe that ‖∇Aϕ(A)‖∞ = 1 (i.e., the Jacobian is “diagonally balanced”); further note
that

inf
1≤i≤N

∑
j �=i
p2
ij

∑
j �=i
pij

≥ (N − 1)κ2

(N − 1)(1 − κ) = κ2

1 − κ

as well as

sup
1≤i�j≤N�i �=j

−pij(1 −pij)∑
k �=i
pik

≤ − κ(1 − κ)
(N − 1)(1 − κ) = − κ

N − 1
�

Therefore, ∇Aϕ(A) ∈LN(δ) with 0< δ≤ κ2

1−κ with LN(δ) as defined in Lemma 1.
Assume that the MLE Â = ϕ(Â) exists. A mean value expansion of ϕ(Ak) about Â,

followed by a second mean value expansion of Ak = ϕ(Ak−1), also about Â, yields

Ak+1 − Â = ϕ(Ak)−ϕ(Â)
= ϕ(Â)+ ∇Aϕ(Ā)(Ak − Â)− Â

= ∇Aϕ(Ā)
(
ϕ(Ak−1)− Â

)
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= ∇Aϕ(Ā)
(
ϕ(Â)+ ∇Aϕ(Ā)(Ak−1 − Â)− Â

)
= ∇Aϕ(Ā)∇Aϕ(Ā)(Ak−1 − Â)�

where Ā is a “mean value” between Â and Ak (or Â and Ak−1) which may vary from row to
row (as well as across the two Jacobian matrices in the last expression above). Taking the
absolute row sum norm of both sides of the last equality gives

‖Ak+1 − Â‖∞ ≤ ∥∥∇Aϕ(Ā)∇Aϕ(Ā)(Ak−1 − Â)
∥∥

∞

≤ ∥∥∇Aϕ(Ā)∇Aϕ(Ā)
∥∥

∞
∥∥(Ak−1 − Â)

∥∥
∞

≤
(

1 − 2(N − 2)
N − 1

δ2

)∥∥(Ak−1 − Â)
∥∥

∞

for some δ such that 0 < δ ≤ κ2

1−κ . The last inequality follows from an application of
Lemma 1. Similar arguments give the second result in the lemma. Q.E.D.

The next two lemmas require some additional notation. The Hessian matrix of the joint
log-likelihood is given by

HN =
(
HN�ββ HN�βA

H ′
N�βA HN�AA

)
� (43)

with

HN�ββ = −
N∑
i=1

∑
j<i

pij(1 −pij)WijW
′
ij�

H ′
N�βA = −

⎛
⎜⎜⎜⎜⎜⎝

∑
j �=1

p1j(1 −p1j)W
′

1j

���∑
j �=N

pNj(1 −pNj)W ′
Nj

⎞
⎟⎟⎟⎟⎟⎠ �

HN�AA = −

⎛
⎜⎜⎜⎜⎜⎝

∑
j �=1

p1j(1 −p1j) · · · p1N(1 −p1N)

���
� � �

���

p1N(1 −p1N) · · ·
∑
j �=N

pNj(1 −pNj)

⎞
⎟⎟⎟⎟⎟⎠ �

We also define the matrices

VN = diag{−HN�AA} (44)

and

QN = V −1
N − 1

2

[∑
i<j

pij(1 −pij)
]−1

ιNι
′
N� (45)

The next lemma, which is due to Yan and Xu (2013), shows that −H−1
N�AA is well-

approximated by QN (see also Simons and Yao (1998)).
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LEMMA 5: Under Assumptions 1, 2, 3, and 5,

∥∥−H−1
N�AA −QN

∥∥
max

=O
(

1
N2

)
�

for HN�AA and QN as defined in (43) and (45), respectively.

PROOF: See Proposition A.1 of Yan and Xu (2013). Q.E.D.

Let sβij(β�A) and sAij(β�A) denote the (i� j)th dyad’s contributions to the score of the
JML estimator associated with, respectively, the K × 1 vector β, and the N × 1 vector A.

LEMMA 6: Under Assumptions 1, 2, 3, and 5,
√
N[Â(β0)− A(β0)] has the asymptotically

linear representation
√
N
[
Â(β0)− A(β0)

]
= −

[
HN�AA

N

]−1

× 1√
N

N∑
i=1

∑
j<i

sAij

(
β0�A(β0)

)+ op(1)� (46)

as well as, for a fixed L, a limiting distribution of
√
N
[
Â(β0)− A(β0)

]
1:L

D→N
(

0�diag
(

1
E
[
p1j(1 −p1j)

] � � � � � 1
E
[
pLj(1 −pLj)

]))� (47)

PROOF: A second-order Taylor series expansion gives∑
i<j

sAij

(
β0� Â(β0)

)

=
∑
i<j

sAij

(
β0�A(β0)

)

+
[∑
i<j

∂

∂A′ sAij

(
β0�A(β0)

)](
Â(β0)− A(β0)

)

+ 1
2

[
N∑
p=1

(
Âp(β0)−Ap(β0)

)∑
i<j

∂

∂Ap∂A′ sAij

(
β0� Ā(β0)

)]

× (Â(β0)− A(β0)
)
�

(48)

with Ā(β0) a mean value between Â(β0) and A(β0). It is convenient to evaluate the last
term in (48) row by row. Its pth row is, for p= 1� � � � �N ,

Rp = 1
2
(
Â(β0)− A(β0)

)′[∑
i<j

∂

∂A∂A′ s
(p)
Aij

(
β0� Ā(β0)

)](
Â(β0)− A(β0)

)
�
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with
∂

∂A∂A′ s
(p)
Aij

(
β̄� Ā(β0)

)= −p̄ij(1 − p̄ij)(1 − 2p̄ij)TijT ′
ijTp�ij

and p̄ij = pij(β̄� Āi(β0)� Āj(β0)). Here Tp�ij denotes the pth element of Tij .
Lemma 3, the form of ∂

∂A∂A′ s
(p)
Aij (β̄� Ā(β0)), and the fact that |p̄ij(1 − p̄ij)(1 − 2p̄ij)|< 1,

give the bound

|Rp| ≤ λ2
N

N∑
i=1

∑
j �=i

∣∣p̄ij(1 − p̄ij)(1 − 2p̄ij)
∣∣Tp�ij

≤ 2λ2
N(N − 1)�

where λN = sup1≤i≤N |Âi − Ai0|. Observe that, for VN as defined in (44), −V −1
N HN�AA/2

is a row stochastic matrix (i.e., a nonnegative matrix with all rows summing to 1
(e.g., Horn and Johnson (2013, p. 547))); therefore, (V −1

N HN�AA)
−1ιN = −(V −1

N HN�AA)
−1 ×

(V −1
N HN�AA/2)ιN = ιN . Furthermore, we have that (V −1

N HN�AA)
−1 and V −1

N are simultane-
ously diagonalizable and hence commute. We therefore have that

−(V −1
N HN�AA

)−1
V −1
N ιN2λ2

N(N − 1) ≤ −(V −1
N HN�AA

)−1
ιN

2λ2
N(N − 1)

(N − 1)κ(1 − κ)

= ιN
λ2
N

κ(1 − κ)�

with κ as defined in (19). From Lemma 3, and the proof to Theorem 3 below, λ2
N =

O( lnN
N
), which, combined with the bound given above, yields, after rearranging (48),

√
N
(
Â(β0)− A(β0)

)
= −

[
HN�AA

N

]−1

× 1√
N

N∑
i=1

∑
j<i

sAij

(
β0�A(β0)

)+O( lnN√
N

)
�

(49)

This proves the first part of the lemma.
To show the second result, I use Lemma 5 to get

√
N
(
Â(β0)− A(β0)

)
=NQN × 1√

N

N∑
i=1

∑
j<i

sAij

(
β0�A(β0)

)+O( 1
N

)
op(

√
N)+O

(
lnN√
N

)
�

where theO( 1
N
)op(

√
N) andO( lnN√

N
) terms respectively capture approximation error from

replacing −H−1
N�AA with QN and from the remainder term in the Taylor series expan-

sion. The overall remainder term is op(1). Now observe that 1
2 [
∑

i<j pij(1 − pij)]−1 ≤
1

N(N−1)κ(1−κ) = O( 1
N2 ) and hence that the probability limit of the upper-left-hand L × L

block of NQN coincides with that of the corresponding sub-matrix of (VN/N)−1 or
diag( 1

E[p1j (1−p1j )] � � � � �
1

E[pLj(1−pLj)]).
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The ith element of
∑N

i=1

∑
j<i sAij(β0�A(β0)) equals

∑
j �=i(Dij − pij). This is a sum of

independent, but not identically distributed, Bernoulli random variables. Asymptotic nor-
mality of 1√

N

∑
j �=i(Dij −pij) follows from the fact that |Dij −pij| ≤ 1 − κ and hence

∑
j �=i

E
[|Dij −pij|3

]
(∑

j �=i
pij(1 −pij)

)3/2 ≤
∑
j �=i

(1 − κ)E[|Dij −pij|2
]

(∑
j �=i
pij(1 −pij)

)3/2 = (1 − κ)(∑
j �=i
pij(1 −pij)

)1/2 → 0

asN → ∞. This is Lyapunov’s condition and hence result (47) follows from an application
of Lyapunov’s central limit theorem for triangular arrays (e.g., Billingsley (1995, p. 362))
and Slutsky’s theorem. Q.E.D.

APPENDIX C: LARGE SAMPLE PROPERTIES OF JMLE

Proof of Theorem 2

Rearranging the log-likelihood (15) gives

lN(β�A) =
∑
i<j

(Dij −pij) ln
(

pij(β�Ai�Aj)

1 −pij(β�Ai�Aj)

)
−
∑
i<j

DKL

(
pij|pij(β�Ai�Aj)

)

−
∑
i<j

S(pij)

=
∑
i<j

(Dij −pij) ln
(

pij(β�Ai�Aj)

1 −pij(β�Ai�Aj)

)
+E

[
lN(β�A)|X�A0

]
�

for DKL(pij||pij(β�Ai�Aj)) the Kullback–Leibler divergence of pij(β�Ai�Aj) from pij
and S(pij) the binary entropy function. The Triangle Inequality (TI) gives, for all β ∈ B,
A ∈A

N , and X ∈ X
N ,

∣∣∣∣∣
(
N

2

)−1 N∑
i=1

∑
j<i

(Dij −pij) ln
(

pij(β�Ai�Aj)

1 −pij(β�Ai�Aj)

)∣∣∣∣∣
≤ 2
N

N∑
i=1

∣∣∣∣ 1
N − 1

∑
j �=i
(Dij −pij)× ln

(
pij(β�Ai�Aj)

1 −pij(β�Ai�Aj)

)∣∣∣∣�
We can apply a Hoeffding inequality to the terms in the outer summand to the right
of the inequality above. Let ψij(β�Ai�Aj)= ln( pij(β�Ai�Aj)

1−pij(β�Ai�Aj) ) and ψ̄= ln( 1−κ
κ
). Condition

(19) implies that −ψ̄≤ψij(β�Ai�Aj)≤ ψ̄ so that Dijψij(β�Ai�Aj) is a bounded random
variable with mean pijψij(β�Ai�Aj). Hoeffding’s inequality therefore gives

Pr
(∣∣∣∣ 1
N − 1

∑
j �=i
(Dij −pij)ψij(β�Ai�Aj)

∣∣∣∣≥ ε
)

≤ 2 exp
(

− (N − 1)ε2

2(1 − κ)2ψ̄2

)
�
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A direct application of the argument used to establish Lemma 3 then implies that, with
probability equal to 1 −O(N−2), and for any β ∈ B, A ∈A

N ,

∣∣∣∣∣
(
N

2

)−1 N∑
i=1

∑
j<i

(Dij −pij) ln
(

pij(β�Ai�Aj)

1 −pij(β�Ai�Aj)

)∣∣∣∣∣<O
(√

lnN
N

)
�

and hence that

sup
β∈B�A∈AN

∣∣∣∣∣
(
N

2

)−1 N∑
i=1

∑
j<i

(Dij −pij) ln
(

pij(β�Ai�Aj)

1 −pij(β�Ai�Aj)

)∣∣∣∣∣<O
(√

lnN
N

)
� (50)

Equations (20) and (50) therefore give, again with probability equal to 1 − O(N−2), the
uniform convergence result

sup
β∈B�A∈AN

∣∣∣∣∣
(
N

2

)−1{
lN(β�A)−E

[
lN(β�A)|X�A0

]}∣∣∣∣∣<O
(√

lnN
N

)
� (51)

Let B0 be an open neighborhood in B which contains β0. Let B̄0 be its complement in B.
Define

εN = max
A∈AN

(
N

2

)−1

E
[
lN(β0�A)|X�A0

]− max
β∈B̄0�A∈AN

(
N

2

)−1

E
[
lN(β�A)|X�A0

]
� (52)

As long as E[lN(β�A)|X�A0] is uniquely maximized at β0 and A0, then εN will be strictly
greater than zero (Assumption 5). Let CN be the event

∣∣∣∣∣max
A∈AN

(
N

2

)−1

lN(β�A)− max
A∈AN

(
N

2

)−1

E
[
lN(β�A)|X�A0

]∣∣∣∣∣< εN/2
for all β ∈ B. Under event CN , we get the inequalities

max
A∈AN

(
N

2

)−1

E
[
lN(β̂�A)|X�A0

]
>

(
N

2

)−1

lN(β̂� Â)− εN

2
(53)

and

max
A∈AN

(
N

2

)−1

lN(β0�A) >max
A∈AN

(
N

2

)−1

E
[
lN(β0�A)|X�A0

]− εN

2
� (54)

By definition of the MLE, we have that
(
N

2

)−1
lN(β̂� Â) ≥ maxA∈AN

(
N

2

)−1
lN(β0�A) and

hence, making use of (53),

max
A∈AN

(
N

2

)−1

E
[
lN(β̂�A)|X�A0

]
>max

A∈AN

(
N

2

)−1

lN(β0�A)− εN

2
� (55)
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Adding both sides of (54) and (55) gives

max
A∈AN

(
N

2

)−1

E
[
lN(β̂�A)|X�A0

]
>max

A∈AN

(
N

2

)−1

E
[
lN(β0�A)|X�A0

]− εN
= max

β∈B̄0�A∈AN

(
N

2

)−1

E
[
lN(β�A)|X�A0

]
�

(56)

where the second line follows from the definition of εN (i.e., from equation (52)).
From (56), we have that CN ⇒ β̂ ∈ B0. Therefore, Pr(CN) ≤ Pr(β̂ ∈ B0). But (51) im-

plies that limN→∞ Pr(CN)= 1 and hence β̂
p→ β0 as claimed.

Proof of Theorem 3

Let A0 denote the population vector of heterogeneity terms and A1 = ϕ(A0). From (18),
we can show that the ith element of A1 − A0 is

A1i −A0i = lnDi+ − ln
{
exp(A0i)ri(β̂�A0�Wi)

}
= lnDi+ − ln

∑
j �=i

exp(A0i)exp
(
W ′
ijβ̂
)

exp(−A0j)+ exp
(
W ′
ijβ̂+Ai0

)

= lnDi+ − ln
∑
j �=i

exp
(
W ′
ijβ̂+A0i +A0j

)
1 + exp

(
W ′
ijβ̂+A0i +A0j

) �
A mean value expansion in β about β0 gives

ln
∑
j �=i

exp
(
W ′
ijβ̂+A0i +A0j

)
1 + exp

(
W ′
ijβ̂+A0i +A0j

)

= ln
∑
j �=i
pij +

∑
j �=i
p̄ij(1 − p̄ij)Wij

∑
j �=i
p̄ij

(β̂−β0)�

where p̄ij = exp(W ′
ijβ+A0i+A0j )

1+exp(W ′
ijβ+A0i+A0j )

(with β a mean value between β̂ and β0). Using (19), the

compact support assumption on Wij , and Theorem 2 yields∣∣∣∣∣∣∣∣

∑
j �=i
p̄ij(1 − p̄ij)Wij

∑
j �=i
p̄ij

(β̂−β0)

∣∣∣∣∣∣∣∣
≤
∑
j �=i

∣∣∣∣∣∣∣∣
p̄ij(1 − p̄ij)Wij∑

j �=i
p̄ij

∣∣∣∣∣∣∣∣
∣∣(β̂−β0)

∣∣

≤
sup
w∈W

|w|
4κ

∣∣(β̂−β0)
∣∣

= Op(1) · op(1)
= op(1)�
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We can conclude that

A1i −A0i = ln

⎡
⎢⎢⎣
∑
j �=i
Dij

∑
j �=i
pij

⎤
⎥⎥⎦+ op(1)�

A second mean value expansion, this time of ln[∑j �=i Dij] in
∑

j �=i Dij about the point∑
j �=i pij , gives

ln
[∑
j �=i
Dij

]
= ln

[∑
j �=i
pij

]
+ 1[

λ

(∑
j �=i
Dij

)
+ (1 − λ)

(∑
j �=i
pij

)]∑
j �=i
(Dij −pij)�

for some λ ∈ (0�1). Using condition (19) gives∣∣∣∣∣∣∣∣∣∣
1[

λ

(∑
j �=i
Dij

)
+ (1 − λ)

(∑
j �=i
pij

)]∑
j �=i
(Dij −pij)

∣∣∣∣∣∣∣∣∣∣
≤ 1
(1 − λ)κ

∣∣∣∣ 1
N − 1

∑
j �=i
(Dij −pij)

∣∣∣∣�
Lemma 3 then gives, with probability 1 −O(N−2), the uniform bound

sup
1≤i≤N

∣∣∣∣∣∣∣∣
ln

⎡
⎢⎢⎣
∑
j �=i
Dij

∑
j �=i
pij

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
<O

(√
lnN
N

)
� (57)

To complete the proof, observe that, using the second inequality given in Lemma 4, we
have the geometric series

‖A0 − Â‖∞

= ‖A0 − A1 + A1 − A2 + A2 − A3 + A3 − · · · − A∞‖∞

≤
∞∑
k=0

‖Ak − Ak+1‖∞

≤
∞∑
k=0

(
1 − 2(N − 2)

N − 1
δ2

)k(‖A0 − A1‖∞ + ‖A1 − A2‖∞
)

= N − 1
2(N − 2)δ2

(‖A0 − A1‖∞ + ‖A1 − A2‖∞
)

≤ N − 1
(N − 2)δ2 ‖A0 − A1‖∞

(58)
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for some δ as defined in Lemmas 1 and 4. Inequality (58), together with (57), gives the
result.

Proof of Theorem 4

Step 1: Characterization of the Probability Limit of the Hessian of the Concentrated
log-Likelihood

Following, for example, Amemiya (1985, pp. 125–127), the Hessian of the concentrated
log-likelihood is given by HN�ββ −HN�βAH

−1
N�AAH

′
N�βA, which, using the definitions of VN

and QN given above, can be decomposed as(
HN�ββ −HN�βAH

−1
N�AAH

′
N�βA

)=HN�ββ +HN�βAV
−1
N H ′

N�βA +HN�βA

(
QN − V −1

N

)
H ′
N�βA

+HN�βA

(−H−1
N�AA −QN

)
H ′
N�βA�

Under condition (19), we have −HN�AA ≥ SN(δ) holding entry-wise for δ= κ(1 − κ) and
SN(δ) as defined in Lemma 2;HN�AA is also diagonally balanced. Lemma 2 therefore gives
the bound ‖H−1

N�AA‖∞ ≤ 3N−4
2κ(1−κ)(N−2)(N−1) = O( 1

N
). We also have the bounds ‖HN�βA‖∞ ≤

N−1
4 supw∈W |w| =O(N) and ‖QN‖∞ ≤ 1

(N−1)κ(1−κ) + (N−1)
N(N−1)κ(1−κ) =O( 1

N
). These bounds and

the TI give∥∥HN�βA

(−H−1
N�AA −QN

)
HN�βA

∥∥
∞ ≤ ∥∥HN�βAH

−1
N�AAHN�βA

∥∥
∞ + ‖HN�βAQNHN�βA‖∞

≤ ‖HN�βA‖2
∞
∥∥H−1

N�AA

∥∥
∞ + ‖HN�βA‖2

∞‖QN‖∞

= O(N)+O(N)�
Observing that QN − V −1

N = − 1
2 [
∑

i<j pij(1 − pij)]−1ιι′ gives the bound ‖QN − V −1
N ‖∞ ≤

N−1
N(N−1)κ(1−κ) = O( 1

N
). This bound, as well as the results immediately above, then give the

bound ‖HN�βA(QN − V −1
N )H ′

N�βA‖∞ ≤ O(N). Therefore, after dividing the Hessian of the
concentrated log-likelihood by n= 1

2N(N − 1), I get

n−1
(
HN�ββ −HN�βAH

−1
N�AAH

′
N�βA

)= n−1
(
HN�ββ +HN�βAV

−1
N H ′

N�βA

)+ o(1)�
Tedious calculation then gives n−1(HN�ββ +HN�βAV

−1
N HN�βA) equal to

−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
N(N − 1)

N∑
i=1

∑
j<i

pij(1 −pij)WijW
′
ij

− 2
N

N∑
i=1

(
1

N − 1

∑
j �=i
pij(1 −pij)Wij

)(
1

N − 1

∑
j �=i
pij(1 −pij)Wij

)′

1
N − 1

∑
j �=i
pij(1 −pij)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
�

(59)

which converges in probability to −I0(β) as defined by (21).
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Step 2: Asymptotically Linear Representation

Now consider the first-order condition associated with the concentrated log-likelihood;
a mean value expansion gives

√
n(β̂−β0)= −

[
1
n

N∑
i=1

∑
j<i

∂

∂β′ sβij
(
β̄� Â(β̄)

)]−1

×
[

1√
n

N∑
i=1

∑
j<i

sβij
(
β0� Â(β0)

)]
�

which, after applying the result for the Hessian of the concentrated log-likelihood derived
immediately above, gives

√
n(β̂−β0)= I−1

0 (β)×
[

1√
n

N∑
i=1

∑
j<i

sβij
(
β0� Â(β0)

)]+ op(1)� (60)

since 1
n

∑N

i=1

∑
j<i

∂
∂β′ sβij(β̄� Â(β̄))

p→ −I0(β). We cannot apply a CLT directly to the sum-
mation in brackets in (60). Instead, I replace it with an approximation. Specifically, a
third-order Taylor expansion of 1√

n

∑N

i=1

∑
j<i sβij(β0� Â(β0)) gives

1√
n

N∑
i=1

∑
j<i

sβij
(
β0� Â(β0)

)

= 1√
n

N∑
i=1

∑
j<i

sβij
(
β0�A(β0)

)

+
[

1√
n

N∑
i=1

∑
j<i

∂

∂A′ sβij
(
β0�A(β0)

)](
Â(β0)− A(β0)

)

+ 1
2

[
1√
n

N∑
k=1

(
Âk(β0)−Ak(β0)

) N∑
i=1

∑
j<i

∂2

∂Ak∂A′ sβij
(
β0�A(β0)

)

× (Â(β0)− A(β0)
)]

+ 1
6

1√
n

N∑
k=1

N∑
l=1

[(
Âk(β0)−Ak(β0)

)(
Âl(β0)−Al(β0)

)

×
[

N∑
i=1

∑
j<i

∂3

∂Ak∂Al∂A′ sβij
(
β0� Ā(β0)

)]](
Â(β0)− A(β0)

)
�

(61)

The main result follows by showing that (i) a CLT may be applied to the first two terms in
(61), that (ii) the third, bias, term has a well-defined nonzero probability limit, and that
(iii) the last (fourth) term in (61) is an asymptotically negligible remainder term.
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I work with each of these three groups of terms in reverse order. Beginning with the
last term in (61), it is possible to show, after tedious manipulation, that it coincides with1

−1
3

1√
n

N∑
i=1

∑
j �=i
(Âi −Ai)

2(Âj −Aj)(1 −pij)
(
1 − 6pij(1 −pij)

)
Wij� (62)

Condition (19) and the compact support assumption for Wij imply that the absolute value
of (62) is bounded above by, for λN = sup1≤i≤N |Âi −Ai0|,

1
3
N(N − 1)√

n

∣∣∣∣λ3
N

1
4
(
1 − 6κ(1 − κ))∣∣∣∣× sup

w∈W
|w|

= N(N − 1)
3
√
n

×
∣∣∣∣C3(lnN)3/2

N3/2

N − 1
4

(
1 − 6κ(1 − κ))∣∣∣∣× sup

w∈W
|w|

=O
(
(lnN)3/2

√
N

)
= o(1)�

Now consider parts (i) and (ii) of (61). Let soβij(β0�A0) = sβij(β0�A0) − HN�βAH
−1
N�AA ×

sAij(β0�A0) and

B0 = lim
N→∞

1
2
√
n

N∑
i=1

1
N − 1

∑
j �=i
pij(1 −pij)(1 − 2pij)Wij

1
N − 1

∑
j �=i
pij(1 −pij)

� (63)

Tedious calculations, along with the calculations immediately above, give (61) equal to

1√
n

N∑
i=1

∑
j<i

sβij
(
β0� Â(β0)

)= 1√
n

N∑
i=1

∑
j<i

soβij(β0�A0)+B0 + op(1)� (64)

with 1√
n

∑N

i=1

∑
j<i s

o
βij(β0�A0) equivalent to the first two terms in (61) and B0 the proba-

bility limit of the third term in (61).
Substituting (64) into (60) then gives

√
n(β̂−β0)= I−1

0 (β)B0 + I−1
0 (β)

1√
n

N∑
i=1

∑
j<i

soβij(β0�A0)+ op(1)� (65)

1A document with step-by-step documentation of some of the calculations reported here and elsewhere is
available upon request from the author.
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Step 3: Demonstration of Asymptotic Normality of 1√
n

∑N

i=1

∑
j<i s

o
βij(β0�A0)

Recall that, as in the proof to Theorem 1 given above, the boldface indices i = 1�2� � � �
index the n = (

N

2

)
dyads in arbitrary order. Similarly to the argument given in the

proof of Theorem 1, an implication of independent link formation (across dyads)—
conditional of X and A—is that the elements of {soβi(β0�A0)}∞

i=1 are conditionally inde-
pendent. Using an argument analogous to the one used in the Proof of Theorem 4

then gives
√
nc′(β̂−β0)−c′I−1

0 (β)B0

(c′I−1
0 (β)IN(β)I−1

0 (β)c)1/2

D→ N (0�1) for any K × 1 vector of real constants c,

IN(β)= 1
n

∑n

i=1 Ii(β), and Ii(β)= E[soβi(s
o
βi)

′|Xi1�Xi2�Ai1�Ai2]<∞ .

APPENDIX D: MONTE CARLO EXPERIMENTS

In this appendix, I explore the finite sample properties of β̂TL, β̂JML, and the iterated
bias-corrected JML estimate β̂BC via Monte Carlo.2

The Monte Carlo designs are calibrated to assess the approximation accuracy of the
large sample results presented in Theorems 1 and 4 of the main paper in finite samples,
to assess the ability of the estimators to “correct for” correlated degree heterogeneity
bias, and to explore the sensitivity of each estimator to the level of link sparseness in the
network. I simulate networks using the family of rules

Dij = 1(XiXjβ0 +Ai +Aj −Uij ≥ 0)�

where Xi ∈ {−1�1} and β0 = 1. This link rule implies that agents have a strong taste for
homophilic matching since XiXj = 1 when Xi =Xj and XiXj = −1 when Xi �=Xj .

Individual-level degree heterogeneity is generated according to

Ai = αL1(Xi = −1)+ αH1(Xi = 1)+ Vi� (66)

with αL ≤ αH and Vi a centered Beta random variable:

Vi|Xi ∼
{

Beta(λ0�λ1)− λ0

λ0 + λ1

}
� (67)

so thatAi ∈ [αL− λ0
λ0+λ1

�αH+ λ1
λ0+λ1

] with E[Ai|Xi = −1] = αL and E[Ai|Xi = 1] = αH . The
relative magnitudes of αL and αH calibrate the extent to which the degree heterogeneity
is correlated with the observed agent attribute. The goal is to recover the homophily co-
efficient, β0. The frequency of each type of agent is set to one-half: Pr(Xi = 1) = 1/2.
The homophily parameter is kept fixed across all designs, while αL, αH , λ0, and λ1 are
varied to calibrate the density of the graph and/or induce right-skewness in the degree
distribution. I consider six different designs, each of which is summarized in Table D.1.
I consider two different network sizes: (i) N = 100, corresponding to

(100
2

)= 4�950 dyads
and

(100
4

)= 3�921�225 tetrads and (ii) N = 200, corresponding to
(200

2

)= 19�990 dyads and(200
4

) = 64�684�950 tetrads. For each design and network size, I complete 1,000 Monte
Carlo replications. The first three designs, A.1 to A.3, incorporate degree heterogeneity
that is (i) uncorrelated with Xi and (ii) symmetrically distributed. This leads to graphs

2In an earlier working paper version, I reported results for the commonly used dyadic logit estimator, β̂DL.
This estimator is inconsistent across all designs considered here, with extraordinarily poor finite sample prop-
erties. To economize on space, these results are not reported here.
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TABLE D.1

MONTE CARLO DESIGNSa

Symmetric Right-Skewed
Uncorrelated Heterogeneity Correlated Heterogeneity

A.1 A.2 A.3 B.1 B.2 B.3

Panel A
αL −1/2 −1 −2 −2/3 −7/6 −13/6
αH −1/2 −1 −2 −1/6 −2/3 −5/3
λ0 1 1 1 1/4 1/4 1/4
λ1 1 1 1 3/4 3/4 3/4

Panel B
Density 0.31 0.16 0.03 0.34 0.19 0.04
Avg. Degree 30.9 16.2 2.9 33.8 18.8 3.7
Std. of Degree 6.7 4.9 1.8 9.0 7.4 2.6
Transitivity 0.40 0.23 0.05 0.45 0.31 0.08
Frac. Giant 1.00 1.00 0.91 1.00 1.00 0.92

aNotes: Panel A lists the parameter values used to simulate the individual-specific degree heterogeneity as specified in equations
(66) and (67) of the text. Panel B gives average network summary statistics across the 1,000 Monte Carlo repetitions for each design.
Across all designs Xi ∈ {−1�1} with Pr(Xi = −1)= Pr(Xi = 1) = 1/2 and β0 = 1. Summary network statistics are presented only for
the N = 100 case. Those for the N = 200 case, appropriately re-scaled, are nearly identical.

with bell-shaped degree heterogeneity distributions. These three designs cover a range of
link densities (see Panel B of the table), with anywhere from one-half to as little as 0.03
of all possible links being present on average. The next three designs, B.1 to B.3, involve
degree heterogeneity distributions that are (i) correlated with Xi and (ii) right-skewed.
This latter feature generates degree distributions closer to those observed in real world
networks.

All networks are fairly transitive, particularly those in designs B.2 and B.3. Most simu-
lated networks consist of a single giant component. Even in the two sparsest designs, A.3
and B.3, most agents are part of a single giant component.

Formally, each of the six Monte Carlo designs satisfy the regularity conditions required
for consistency and asymptotic normality of both β̂TL and β̂JML. However, in practice, the
designs involve varying levels of link density. In particular, designs A.3 and B.3 generate
rather sparse networks; consequently, the expectation is that the joint maximum likeli-
hood estimator, as well as its bias-corrected version, may perform poorly in those designs.
In fact, in designs A.3 and B.3, the JMLE rarely even exists, rendering it unusable in prac-
tice when the network is too sparse. In contrast, β̂TL is well-defined across all Monte Carlo
replications, with reliable computation possible even in sparse networks. Designs B.2 and
B.3 are challenging tests for the proposed estimators, since these designs are relatively
sparse and individual degrees vary substantially about the average in them.

Table D.2 presents the Monte Carlo results when N = 100. The first panel reports the
median estimate of β0 across the 1,000 simulated networks for each estimator and design.
The tetrad logit estimate is essentially median unbiased across all six designs. In contrast,
the JML estimate exhibits median bias comparable in magnitude to its sampling stan-
dard deviation (consistent with Theorem 4). The bias-corrected JML estimator is approx-
imately median unbiased across the densest designs, namely A.1 and B.1. In the sparser
designs for which computation is still feasible (i.e., A.2 and B.2), bias-correction works
rather poorly, with β̂BC’s median bias actually exceeding that of its non-bias-corrected



16 BRYAN S. GRAHAM

TABLE D.2

MONTE CARLO RESULTS , N = 100a

Symmetric Right-Skewed
Uncorrelated Heterogeneity Correlated Heterogeneity

A.1 A.2 A.3 B.1 B.2 B.3

Panel A
med[β̂TL] 0.999 1.003 1.036 0.993 1.020 1.074

(0.043) (0.057) (0.167) (0.045) (0.062) (0.177)
med[β̂JML] 1.026 1.021 n.a 1.025 1.024 n.a

(0.038) (0.053) (0.037) (0.050)
med[β̂BC] 1.010 1.042 n.a 1.008 1.032 n.a

(0.038) (0.055) (0.036) (0.051)

Panel B
1 − α= 0�95

TL 0.968 0.977 0.979 0.946 0.956 0.959
JML 0.901 0.941 n.a 0.894 0.923 n.a
BC 0.945 0.873 n.a 0.951 0.891 n.a

Panel C
1 − α= 0�90

TL 0.923 0.942 0.949 0.898 0.897 0.915
JML 0.831 0.889 n.a 0.815 0.854 n.a
BC 0.894 0.785 n.a 0.917 0.807 n.a

# of TL 1000 1000 1000 1000 1000 1000
# of JML 1000 1000 4 1000 1000 1
% Tetrads 13.2 5.4 0.2 13.7 6.4 0.4

aNotes: Panel A gives the median estimate of β0 for each estimator and design across the 1,000 Monte Carlo estimates (mean
values, not reported, are very similar). The standard deviation of the Monte Carlo estimates is reported below the median value of the
point estimates in parentheses (this is a quantile based estimate which uses the 0.05 and 0.95 quantiles of the Monte Carlo distribution
of point estimates and the assumption of Normality). Panels B and C report the actual coverage of, respectively, a 1 − α asymptotic
confidence interval for α= 0�05 and α= 0�10. The Monte Carlo standard error on these estimates is

√
α(1 − α)/100 or about 0.007 for

α = 0�05 and 0.009 for α= 0�1. The final three rows of the table respectively report the number of times the TL and JML estimates
were successfully computed across the 1,000 Monte Carlo replications for each design and, last, the percentage of all tetrads which
contributed to the tetrad logit criterion function (i.e., the percentage of identifying tetrads).

counterpart β̂JML. These results suggest that the density of the network is an important
consideration when deciding whether to utilize the joint maximum likelihood procedure.
In contrast, the bias properties of the tetrad logit estimator are insensitive to the range of
network densities considered here.

Panels B and C of Table D.2 report the actual coverage of 95 and 90 percent Wald-
type confidence intervals. The coverage of the tetrad logit intervals is close to nominal
levels across all designs, tending to be slightly conservative on average. Intervals based on
the joint maximum likelihood estimate undercover, consistent with the bias in the limit
distribution of this estimate. For the dense designs (Columns A.1 and B.1), centering
the intervals at the biased-corrected estimate improves coverage. However, this interval
under-covers in sparser designs, consistent with the failure of bias-correction in those
settings (Columns A.2 and B.2).

Table D.3 presents a parallel set of results for the case where N = 200. Although the
order of the network is just twice as large in this design, the number of tetrads increases by
a factor of about 16 (as does the computational burden). The results are similar to those
for the smaller network size, but the coverage properties for the TL confidence intervals
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TABLE D.3

MONTE CARLO RESULTS , N = 200a

Symmetric Right-Skewed
Uncorrelated Heterogeneity Correlated Heterogeneity

A.1 A.2 A.3 B.1 B.2 B.3

Panel A
med[β̂TL] 0.997 1.004 1.018 0.990 1.018 1.073

(0.021) (0.027) (0.076) (0.024) (0.033) (0.079)
med[β̂JML] 1.011 1.012 n.a 1.011 1.012 n.a

(0.019) (0.026) (0.018) (0.025)
med[β̂BC] 1.003 1.022 n.a 1.003 1.016 n.a

(0.019) (0.027) (0.018) (0.025)

Panel B
1 − α= 0�95

TL 0.958 0.965 0.973 0.897 0.875 0.888
JML 0.907 0.921 n.a 0.905 0.912 n.a
BC 0.943 0.860 n.a 0.947 0.896 n.a

Panel C
1 − α= 0�90

TL 0.900 0.915 0.935 0.819 0.809 0.801
JML 0.831 0.864 n.a 0.828 0.860 n.a
BC 0.896 0.770 n.a 0.898 0.818 n.a

# of TL 982 998 999 986 999 999
# of JML 1000 1000 241 1000 1000 1
% Tetrads 13.2 5.4 0.2 13.7 6.3 0.4

aNotes: See notes to Table D.2.

are not as good across designs B1 to B3 in this case. It is possible this is a peculiarity of the
particular simulation runs.3 It is also possible that it reflects the quality of the asymptotic
approximation. The leading term in the variance of β̂TL is O(1/NλN); the next largest
term is of order O(1/N2λN). While this second term is asymptotically negligible, it may
be large enough to affect coverage properties in finite samples. This may be especially
true in designs with lots of link clustering, where the configuration shown in Figure 6
may occur relatively often. It would be interesting to explore the properties of alternative
variance estimators in future work.
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