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This supplement contains proofs as well as auxiliary and Monte Carlo results. Sec-
tion A contains proofs of results in the main text. Section B discusses large market
asymptotics in some additional settings. Section C gives the details of the Monte Carlo
study, and presents additional Monte Carlo results for designs not reported in the main
text.

A. PROOFS

THIS SECTION PRESENTS PROOFS of the results in the main text. Section A.1
states and proves equivalence results used in the rest of the section, including
the proof of Theorem 1 from the main text. The rest of the section contains
proofs of the remaining results in the main text.

A.1. Equivalence Results for IV Estimators

Many of the results in the paper are based on the IV equivalence results.
The results follow from characterizations of the asymptotic behavior of IV
estimators under possible lack of identification (this step follows known re-
sults in the literature; see, for example, Staiger and Stock (1997)) along with
bounds on the difference between sample moments involving different co-
variates. The following theorems are stated for a general linear IV estimator
B=1GY zx)Wi(3 Y X)) (3 Y0, zix) Wi(3 Y1, z;y)), where z; s
a vector of instruments, x; is a vector of covariates, and y; = x}B8 + §; (in the
notation of the rest of the paper, this theorem is used with (x;, p;) taking the
place of x; and («a, B')’ taking the place of 8). In what follows, the behavior of
B under a sequence x; and y; with y7 = x7'B + §; is compared to the behavior
of B under the original sequences.

ASSUMPTION 1: (i) For some sequence of k x d matrices {M, ;}3°,, an invert-
ible d x d matrix H, and nonnegative integers d, and d, with d, + d, = d, the

first dy columns of M., ;H are 0 for all J, and «/7(} ij.:l Zjx; — M.y p) 4 Z,
and M, ; — M, for some matrix M, and a k x d random matrix Z,, such that
the last d, columns of M, H have rank d,. (ii) For a limiting multivariate normal

random vector Z.; with nonsingular variance, % Z}J.:I z;€; = Z.¢ jointly with the
convergence in distribution in part (i). (iii) We have W; 5 W for some positive
definite weighting matrix W.
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ASSUMPTION 2: We have ﬁmaxj X7 —x,ll = 0 and } Zj:1 Izl = Op(1).

THEOREM 5: Under Assumption 1, the following holds.

(i) Define T; = H7'( B — B) with Ty the first d, elements and T, the last d,
elements. Then

(7)
VITy
< < ((ZecH1Y QoW Quwa ZeiHh) (ZeiH) Qi W QunZe )
(

(M. Hy) Qpy W Qi M. Hy) ™ (ML HyY Oy W Q1 Zog

where H = (H,, H,) with H, forming the first d, columns and H, forming the
remaining columns, Qy 1 is the W inner product projection matrix for the orthog-
onal complement of the column span of Z,, H,, and Qy , is the W inner product
projection matrix for the orthogonal complement of the column span of M, H,.
(ii) If Assumption 2 holds as well, then letting B* be the estimator with xj and

y; replacing x; and y;, 1B — B = 0.

PROOF: Part (i) essentially follows from applying results for partially identi-
fied IV (see, for example, Stock and Wright (2000)) to a version of the model
that is reparameterized so that the parameter of interest is H~'3. We have,
letting A; be the d x d diagonal matrix with the first d; diagonal entries equal

to 1 and the last d, equal to VI,

J ! J !

j=1 j=1
7 ! J

[0 w[Sa0-m)
j=1 j=1
= argmyin||EJZ§ — EJZX,YHW,’
where E]Zf = } Z]J‘:I ijj and E]ZX/ = % Z;:l ij;. Thus,
) = AN B By = argmin|[Ejz€ - B,z H AT
JIT, v o
= argmin||VJE, z¢ — ﬁEJZX/HA;W”WJ
Y

= argmin“x/jE]zf - (ﬁEJZX/Hly EJZX/Hz)YHWJ-
Y
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By the continuous mapping theorem, this converges to

argmyin” Zz§ - (szHla szHz)YH W

The result follows from applying the partitioned least squares formula to this
expression.
For part (ii), note that, under Assumptions 1 and 2, Assumption 1 will

also hold with x7 and y7. In fact, we will have (VT ( ZLI zixy — M..)),
VT (} Z]j':l zjx; — M. p)) 4 (Z.x, Z,:). The result follows by applying the
above results to 8*, where we modify the above argument by applying the con-
tinuous mapping theorem to (77, VT T;,) — (T}, VT T;;)' to show that this

quantity converges in distribution (and in probability) to a limiting distribution
that can be seen to be identically zero. Q.E.D.

Theorem 1 follows by verifying the conditions of Theorem 5.

PROOF OF THEOREM 1: The result follows from Theorem 5 with (x;, p;)
in place of xj. The first part of Assumption 2 follows from condition (i) in

Theorem 1, with the boundedness of % Z]].:] | z;|| following from condition (ii),
since x; contains a constant. Assumption 1 follows from condition (ii), with

1 J
sz)] = jZEZj(x/,MC,-i-b*)

j=1
1< x
=-SE(, Y5 ) MC+b
> (hj(x,-))(f 1+
J

_ ]. Z( Eij;- EX]‘MC]' 4+ b*Ex]‘ )

_Fj:1 Ehj(x_))Ex, [Eh(x_)|(EMC; + b)

17 1 0 0
=72( 0 ) 0)

j=1 Ehj(x_]-) 0 0

1 Ew) EMC;+ b
X (Eu)_,- Ew;w; ijMC,+b*ij> )
0 0 1

where x; = (1, w;), and with d; =1 and

1 Ew, EMCi+b* \7'/0 0 1
0 0 1 1 0 0
(which does not depend on j by the i.i.d. assumption). Q.E.D.
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The next theorem deals with the case where M., is full rank, leading to con-
sistent estimators. The theorem uses a slightly weaker version of the assump-
tions used for Theorem 5 (with M,, full rank).

ASSUMPTION 3: Assumption 1 holds with part (i) replaced by the condition
that 3377 zpx' 5 M., with M., full rank.

j=1

ASSUMPTION 4: We have max; ||x* — x,]| > 0 and + Y"1_, ||z;ll = Op(1).

THEOREM 6: Under Assumptions 3 and 4, VI( [3’ - B) Y (M, WM,)™" x
M. W Z.., and the same holds for ﬁ(ﬁ* - B).

PROOF: Under these assumptions, Assumption 3 holds for both the original
.- 1 J * 1 J 1 J *

and the starred quantities (note. that ;) =1 ZxX =5 2%+ 5 ) 2 (% -

x;); the first term converges in probability to M., and the second term is

bounded by } Z;zl 1zl - [lx7 — x;lI, which converges in probability to zero un-

der these assumptions). The result then follows since

R 1 J ’ 1 J -1
VIB-B) = ({7 > :z}xj:| W,[F > :z;.ij
j=1 j=1

1< T
x | = Zx; | Wy | —
R

S (MLWM.) ML W Z.,

4m—am}

j=1

. . . 1 J ’ )4
by the continuous mapping theorem since 7}, zjx; — M, and

% Z]].:l zi(y —x;B) = % Z}]-:1 z;§ 4 Z.¢, and, for the starred quantities,

A 1 7 / 1 J —1
VI - ) = ([;Zz}xi} W{y Zz}x;‘fD
j=1 j=1
1< T
— x| W, | — (v — x*
S EE R

S (MLWM.) ML WZ.,

. 1 J x P 1 J * s/ 1 J d
since i Zix; = Mocand =3 Z;(y; —x'B) = £ X0, 2€ = L.
Q.E.D.
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Note that the conditions for Theorem 5 require Vi max; [|x} —x;]| KX 0, while
Theorem 6 requires only the weaker condition that max; || x; — x;|| £ 0. This is

because the asymptotic distribution of B in Theorem 5 depends on the asymp-
totic distribution of ~/J (} ij.zl Zjx; — M., ;), while the asymptotic distribution

of ~/J(B — B) in Theorem 6 only uses the fact that }Z;zl Zjx} L4 M,,, and
does not depend on its asymptotic distribution. To get the same results with

the starred quantities, weaker conditions suffice in the case of Theorem 6.

A.2. Proof of Theorem 2

We prove a slightly more general version of Theorem 2 with the boundedness
condition on M C;, x;, and §; generalized to an exponential tail condition. In
particular, we replace the condition that (x;, ;, M C;) is bounded with the fol-
lowing condition: for some constants C and & > 0, P(|¢;] > t) < Cexp(—et'*®),
P(IMCj| > t) < Cexp(—&t'™), and P(||x;|| > t) < Cexp(—et***).

Before proceeding to the proof, note that, formally, the theorem applies to
the triangular array of prices p;; arising from any sequence of Nash-Bertrand
equilibria (defined for any realization of the primitives {x;, MC;, ¢ j}le), de-
fined for each J. This can be made explicit by writing prices as a function of
{x;, MCj, & jj.:l, and an additional random variable w; that determines equilib-
rium selection in the case of multiple equilibria (wWhich may be arbitrarily corre-
lated with the remaining variables): p; = p; ;({x;, MC;, ¢ j}le, wy). We assume
that an equilibrium exists on a probability 1 set of {x;, MC;, & ,-}f:1 for each J.

The proof of the theorem uses only the first order condition for each firm’s
best response, which holds regardless of how w; determines the equilibrium in
the case of multiple equilibria (since the strategy space for prices is (—o0, 00),
the best response problem must be maximized at an interior solution in equi-
librium). Thus, to simplify notation, we leave the dependence of prices on w,
implicit and write p; instead of p;,;({x;, MC;, & ,}jf.zl, wy) in the remainder of
the proof. To further simplify notation in the proof of this theorem, we also
define g,({) = x/(B + {) + &;.

At several places in the proof, we use the fact that, for some constant K,
[exp(all{ll)dP({) < Kexp(Ka*) for any a and [ exp(t'{)dP({) < [exp(||] -
1) dP(¢) < Kexp(K]||t||?) for any ¢. This follows since the tails of ¢ are
bounded by the tails of the normal random variable (for Z ~ N(u, ),
Eexp(a||Z|) is bounded by K exp(Ka?) for a constant K that depends on u
and o?).

Rearranging the markup formula for firm j gives

pi—MC— ==

a / 5,8, (1= 58, 0)) dP.(0)
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[s6.0ar@

L [se0dn@

/ (5, ) dP,(0)
1 _

/51(5, {)dP({)

[825,00dP;(0)
56,0 dP(0)
1/+/7 uniformly over 1 < j <J. To this end, we prove the following lemma.

Thus, it suffices to show that converges to zero more quickly than

LEMMA 1: Suppose that, for some constants By and Ay, || < A;, |pjl < A,
and ||x;|| < By, forall j, and that the tails of { are bounded by the tails of a normal
variable. Then, for some constant C,

[s6.0ar@

< %Cexp(C - A;+ C-Bj).

/51(8, {)dP,({)

PROOF: Under these conditions,

exp(BJIIB-i- §|| +OZA]+A])

J

> exp(—BylIB+ LIl — A4))

k=1

51(8,0) =

1
= 7exp(2B,||B + I+ (e +2)A4,).

Similarly,

exp(—BylIB+ Il — A))

Ej(B’ {) = 7
> exp(BilIB + LIl +ad; + Ay)

k=1

1
=5 exp(—2B; 1B+ ¢l — (a+2)A)).
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Thus,

[ 56, 0dp0

/5/(5, ) dP({)

1
/ 7 exp(2-2B;11B + ¢l +2(a+2)A;) dP,({)

= (1
/ 7 exp(=2B;1B+ ¢l — (a+2)- A;)dP,({)

f exp(4B, 1B + £ dP;({)

= %exp(3(oz+2)AJ) :
/ exp(=2B, 11 + {1) dP,(0)

The result follows since the integral in the denominator is bounded from below
by exp(—2-B;-K) - P.(||{]l <K) > exp(—2- B, -K) - (1/2) for large enough K,
and the numerator is bounded from above by a constant times K exp(K B?) for
large enough K. Q.E.D.

The bound in Lemma 1 will decrease more quickly than 1/+/J as long as
Aj;/logJ — 0 and B3/logJ — 0. For the bounds on the primitives x;, £;, and
M C;, this follows easily from the bounds on tail probabilities, as shown in the
next lemma. For the bound on prices, a more involved argument is needed,
which constitutes the remainder of the proof.

LEMMA 2: Let {u;}]_, be a sequence of random variables such that P(u; > t) <
Cexp(—1?/C) for some vy and C that do not depend on j. Then, for any & > 0,

P(max u;>(C+ a)“’(log])“’) - 0.
1<j=J
PROOF: We have

J

P(gjgg u; > (C+ a)l/y(logf)l”) < Z;P(uj > (C+¢)"(log))'"”)
-

<J-Cexp(—(C+ &)(logJ)/C)
—J.C.J 21’20 QE.D.

It follows from Lemma 2 that all of the conditions of Lemma 1, except for
the bound on price, hold with probability 1 for 4; = C(logJ)'"* and B; =
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C(logJ)'?=# for C large enough and & small enough. To prove the theorem,
it suffices to show that max, ;- | p;| is also bounded by A, for C large enough

and & small enough. This follows from the next two lemmas.

LEMMA 3: Suppose that, for some Kj,

/eXp(gj(é’))ﬁ,-(é, O dP({)

<K;.

/51(5, O dP(0)

Then
2 1
p; <maxyMC; + o a[logZ-ﬁ-logK,] .
. - _ exp(gi(D—ap)) ey N
PROOF: Note that §;(8, {) = S T —— <exp(g;({) — ap;), since one

of the terms in the denominator is the outside good, with utility 0. Thus,

[ 56.0dPi0) < expt-ap)) [ w055, O dPu(&).

Suppose that exp(—ap;)K; <1/2. Then

f 25, 0)dP,(0)

T / 5,(8, O dP,(0)

e e f§§<6, 0 dP(0)
1_
/ 5,08, ) dP,({)
< l eXp(—apj)KJ < l
T al—exp(—ap)K; ~ o’

where the inequalities follow since ¢/(1 — ¢) is increasing in ¢ for 0 < ¢ < 1.
Thus, either p; —MC; — 1 << or

exp(—ap)K;>1/2 = —ap;+logK, >log(1/2)
= —ap;>log(1/2) —logK,
= p;<—[log(1/2)]/a+ [logK,]/e,
giving the desired bound. Q.E.D.
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LEMMA 4: For some constant C,

/ exp(g;(0))5,(8, ) dP,()

< Cexp(C max lxell + Clrgflzi I|§kl|>.
/ 5,08, ) dP,({) - -

PROOF: We have

/ exp(g;(0))5,(8, ) dP,()

/ 5,5, ) dP.(0)

f exp(g,(0)) DO =P) p )
ZeXp(gk(z) — apy)

/ exp g/<§> ap))
Zexp gu(0) — apy)

dP:({)

/ exp(2g;({))
ZakeXp gr(0))

/ exp(g,() dP,(0)
ZakeXp (D)

dP{(()

where a, = exp(—api)/ >, exp(—ap,) so that 22:1 a, = 1. By Jensen’s in-
equality, this is bounded by

> " arexp(gi())
exp(2g;(0)) k
6 dP dP:({)
©) |:/ E axexp(gk(0)) g(é’)i| |:/ exp(g;({)) ‘ §j|

< |:/ exp(2g/(§))zak exp(—gx()) dPg(f)]
%

> arexp(gi(0))
d dP ,
) [/ exp(g;({)) g(g)}
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where the last inequality follows from Jensen’s inequality applied to
> arexp(gr({)). We have, for each j and k,

[ ew(2si0) exp(-gu o) apsco)
= [ exp(28(0) - 8u(0) dP:(0

_ / exp(2x)(B + {) +2&, — X, (B+{) — &) dP:(0)
= exp((2xj —xi)'B+2& — fk)

X /exp((ij —x1)'{) dP({).

Since the tails of { are bounded by the tails of a normal variable, this is
bounded, for some constant C, by

exp((2x; — x) B+ 2&; — &) - Cexp(ClI2x; — x4 ]1%).
By making C larger, this can be bounded by Cexp(C max{|x;|?, x¢|*} +
Cmax{||&l, 1€1}).  Similarly, [ exp(gi({))/exp(gi({))dP,({) can also

be bounded by Cexp(Cmax{|x;|?, [xc]I*} + Cmax{|&ll, ||&l}) for large
enough C. Thus, (6) can be bounded by

J 2
c? |:Z a, C exp(C max{|lx;|%, llxel*} + Cmax{lI &I, [ €l })}

j=1

< exp(zc max ||x; |* + 2C max || & ||).
1<k<J 1<k=<J
The result follows by redefining C. Q.E.D.
Putting these lemmas together, it follows that, for some constant C;,
max || p;|| < C; + Cy max [|MC;|| + C,K max ||£;]| + C; max [|x;]|*.
1=j=J 1<j=<J 1<j=<J 1=j=<J

From this and Lemma 2, it follows that, for C, large enough and & > 0
small enough, the conditions of Lemma 1 hold with 4; = C,(logJ)'~* and
B; = (logJ)"?>~ with probability approaching 1, giving the desired result.
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A.3. Proof of Theorem 3

The result follows by verifying the conditions of Theorem 6. First, note that
> zi(x), pl) — M.,
Jj=1

|]:| 1 , . ) .
—Z f Z (xj,MC,-—be)—Ezj(xj,MC,-—be)]

/e]—'f

~I| =

1y .
+7ZEzj(xj,pj)—sz,

Jj=1

which converges in probability to zero by the assumption that } Z]].:l Ez;j(x},
p;j) — M., and the law of large numbers applied to the i.i.d. sum within each
firm f. This verifies the first part of Assumption 3. To verify part (ii) of this
assumption, note that

1< VI

— Y z¢ = — Y 'z
ﬁ; 127 szl: \/.7 ,—|]:f|]§;—; J15]
FJIF 1 Z( X;
= VA /|]:f| jery TEMn, f

where R; is a vector with the first d, rows equal to zero, and the remaining
. F ~ .
dy rows given by == 3" \[] Y ker, M) — Tpn g1 e, €1 (Where d, is the
dimension of x; and d,, is the dimension of A(xy)). The first term in the dis-
. . . F
play converges to a normal variable with mean zero and variance } ;_, ¢V by

>§j+Rla

the central limit theorem, and R, -5 0 by the law of large numbers applied to

> ke 7 h(x;) and the central limit theorem applied to % > 7 €0

To verify Assumption 4, it suffices to show max;|p; — pjl % 0. Arguing
as in Konovalov and Sandor (2010), it can be seen that equation (5) has a
unique solution, and defines b as a R¥-valued function that is continuous at
(770/\Lr,0, TIMrls oo 7TF/J/r,F) (Where 7 — lim,,_m %0 = limn_,oo 1/.] = O) The dif-
ference between p; and p7 can then be written as, for f the firm producing
product j, by (mophro, Tiphy1s -« > Trfhrp) — by (T0To, 71, . .., 7rTF), Which con-
verges in probability to zero by the law of large numbers and the continuous
mapping theorem. Since max; | p; — pjl = max; 1D p(TTofr05 T1IMA1s « v s TEMyF) —
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by(rory, i1y, ..., wprr)| and the number of firms does not increase with J, the
result follows.

A.4. Proof of Theorem 4

The following notation is used throughout this section. Let d, =
d. + d, (where d, and d, are the dimensions of x;; and h(x;;),
respectively). Define m, = + vazl (/)32 my = + ZL J.(J; — 1))J? =
m; — 1/-]_, msz = %Zﬁi](-[i/j)% my e = limy_, % Zﬁ\;(]i/j)z, and ms . =
liII'lN_)OC % Zfil(‘]l/j)S Let r,‘,/' = eXp(x;.’jB — OZMC,‘,]‘ -1 + g,‘,/'). Let w,-,j be
the nonconstant part of x;; so that x,; = (1, w; ;) and let u;, = Efz(x,»,j)
My = E(r[’j), Moy = E(xi,jri’j), and Mor = E(U)i’jri’j). For an n x m matrix M
with i, jth entry M, ;, vec(M) is the vectorization of M given by the ij x 1 vec-
tor (Ml,la M2,17 ey Mn,17 M1,25 M2,27 ey Mn,Za sy Ml,m’ MZ,I’VH ceey Mn,m)/' For
a 1 x k row vector a, diag(a) is the k x k matrix with all off diagonal elements
equal to zero and j x jth entry given by the jth element of a. The notation 0,,,
and 1,,, is used to denote an a x b matrix of 0’s and 1’s, respectively, with the
subscript being dropped in cases where the dimension of the matrix of 0’s or
1’s is clear from the context.

It will be useful to define some additional quantities to describe the asymp-
totic distribution. Let

i (X — ) + (h(xi;) — P«h)P«;
Xi,j(MCi,]""l/Ol) —~Ex,-,]-(MCl-,j—|-1/a) )
Mo (Mci,j - (EMCi,j)) + (h(xi,j) - Mh)(EMCi,j +1/a)

and let Uij = &ij(x;;, my)" Let 3w, be the variance matrix of (vec(W;)’, u; ;)

and let 3y, be defined by starting with 3y, and multiplying diagonal elements
d,+1through d,, d, +d, + 1 through 2d,, 2d, + d, + 1 through 3d,, . .. (those
corresponding to the last d, rows of W, ; and u; ;) by m3 ., and multiplying off
diagonal elements in these rows and columns by m, ... Define

Id Od x1
M — X X ,
! (ledx 01><1
E(x-~x’~) Elx;; MC-—f—l
H= Bt b it ’

ledx 11><1

ly 0 0
K,;,zz( 0 I 0)

oy 0 1d,,><1

and
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and let K,,,, .. be defined in the same way, but with m, ., replacing 71,. Let

1/a I 0
M2 = <0dz><dx /*Lwr/(/J“ra)) ) Aq = ( dx(;dx q>
o/ a

for any positive real number g. Let
1 E(w;;) EMC; )+ %
M =| E(w;) E(wyw,) Ew;MCy)) + %E(w,-, )
Wty i E(wg ;) |:E(MC,-,]-) + §i|

Note that A4 . ' = A,,, and, with the above notation, M, = KM\ H.
To describe the asymptotic distribution, let Z.,; be a random vector on R%*
and let Z,, be a random d, x (d, + 1) matrix, defined on the same probability

space such that (vec(Z.,)', Z.,) ~ N(0, Zy,). Let Q = K, oM, + M, and let

Owo.c = Koy oMy + Z,.H ' diag(0, ...,0,1) + M, A s (note that Q is full rank
if and only if (iff) m, o # 1, so that this matrix is full rank under the conditions
of the theorem). In the case where N /J — oo, we will show that

diag(VIN,...,VIN,\N/DH[(B,-&) — (B, —a)]
L (QwQ) oW Z.,.
In the case where N /J — ¢ for some finite constant ¢, we will show that
diag(V'IN, ..., VIN, DH[(B,-&) — (8, —a) ]

d ~ A =15
- (QOQ,CWQOO,C) 1Q0015WZ2§-
We first prove the following lemma.

LEMMA 5: Under the conditions of Theorem 4,

is bounded uniformly over i as N and the J;’s increase.
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PROOF: First, note that

a\l—=3Sij

1 1 1
(7 Pi,j—MCi,j—;=—<1 —1>
1 exp(x;B—apii+ &)

o« Zexp(x;,kﬁ —api;+ fi,k) .

ki

From this formula and the fact that one of the terms in the denominator is
the outside good with mean utility zero, it follows that 0 < p;,; — MC;; — 1 <
exp(x;, j,8 —ap;;+§&i;) < exp(x; j B+ &), so that prices are bounded uniformly
over i and j. From this and the boundedness of x;; and &, it follows that
0<pi;—MC;; —1/a < C/(J;a) for C large enough.

Substituting this bound back into (7), we see that (7) is bounded from above
by

l exp(x;’jB — CYMC,')]‘ -1 + fi,j)
a Zexp(x;,kﬁ —aMCi—1—C/Ji+ &y)
k]
1 eXp(x;-’j,B—OlMCi’j—l'i‘gi,j)

=5 exp(—C/J) Y exp(x; B —aMCix — 1+ &i1)
k#j

and from below by
1 exp(x;.’jB — aMC,-,j —1- C/J, + f,"j)
o Zexp(x;kﬁ—aMCi,j—1+§,»’k) .

ki

Thus,

r,-j 1
— =< pij—MGC; - <CXP(C/J)
aZr,-,k ! ! aZrzk

k#j k#j

exp(=C/J)

Using the fact that, for a constant C; that depends only on C, exp(C/J;) <
14 Cy/J; and exp(—C/J;) > 1 — C,/J;, we have

-G/

r,-] 1

- sz MCL__<(1+C1/J)
aZr;,k ! ! azrlk
k#j k#j
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Thus,
1 r; C r
pii—MCi; — —— ] < — < —
g T azrlk ‘azrk J(J—l)a
k#j k#j

where 7 and r are positive upper and lower bounds for r;; (which exist by
boundedness of x; ;, &; ;, and M C; ;). The result now follows by using the trian-
gle inequality and noting that

2

Tij Ty | Tij
Ji - Ji
a) Tk
aZr,;k oy a Zri,k Zri,k
k=1 k=1 k#j
< ’72
~artt(Ji -1’ Q.E.D.

This result is used in the following lemmas, which concern the sample means
involved in the I'V estimator.

LEMMA 6: Under the conditions of Theorem 4,

ZZ[ Zh(x,k)}(p,, MC,; — %)=%—<%+01)(1)>.

i=1 j=1 k#j

PROOF: The term that is claimed to be op(1) is given by

(8) J_{NLJ_XN:Z[;- Zil(xi,k):| (pi,j —-MC;— %) - }%}

i=1 j=1 kj

1 » 1 Mh 5
:N_J_ Z Zh(x’k) (pl/ MCl] a)_;1\]‘]

The last term goes to zero, since it is bounded by % Zfil Z;;l |}~z(x,-,j)| -C/J;,
where C/J; is a bound for |p;; — MC;; — 1| (where the existence of such a
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bound follows from Lemma 5). Using Lemma 5, the first term in (8) is equal
to

i=1 j=1 L k=1 11, - i
k=1 ’
1 N [ ] 1/1 i R . N T »
=71 22| 2 h) (—+ )22
NJ{ i=1 L j=1 . a k=1 Jl i=1 j=1 «
1 [ l:l(xij)_/-’vh Al /A i R
= — | + h X " R
NJ{E:JX_; Y ; ; (i) ; J?

where R;; is the remainder term in Lemma 5. This converges to zero since

R;; is bounded and ﬁZL Z]]."Zlfz(xi’,) 5w by the law of large num-
bers. O.E.D.

LEMMA 7: Under the conditions of Theorem 4,

: ii MGy~ ) =12 4 op)
— X ii— ii——)=-= o .
NJ L\ Pij T 7\an P

i=1 j=1 r

PROOF: We have

1 N J; 1
J_—_Zin,j(pi,j—MC,-,]—— )
NI = j=1
1 A ri’j Rw‘
R 2
i=1 j=1 CZZV[,/(

1 N j=1 'x,-,le-,j
=Nt |
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where R, 18 the quantity in Lemma 5. The last term is bounded by a constant

times Z < —L— which goes to zero under the conditions of Theo-
i=1 J minj<;<n J;’

rem 4. For the first term, we have

ap, Py ap,
Ji
2>
v | T i1
1 b=l M,
+=> -1
N i=1 Ay
7 Z i
Ji k=1
1 N 1
The second term has mean zero and variance 7 > .-, 5 var(x,;ri;/(au,)),

which goes to zero as N — oo, and the last term is equal td

’k1

By boundedness of x;; and r; ;, this is bounded by a constant times ~ Zfil |y —
1 S r:xl, which converges in probability to zero since, by Holder’s inequal-

ity,

Ji 2
<—Z E(,u,,—Jlin,-,k)
=1 k=1

N
:%Zméo.
i=1

Q.E.D.



18 TIMOTHY B. ARMSTRONG

LEMMA 8: Under the conditions of Theorem 4, for any random variables v;
that are i.i.d. over both i and j with mean ., and a finite fourth moment,

o LBl

N i

Jz
= My pn ey + NJZZJ“’“(U” o) + po(A(x) — ma)]

i=1 j=1

+o0p(1/VNJ).

PROOF: We have

1 S n [l
(10) N_f 4 [;Zh(xi,k)]vi,j

sz ZZZ Mth+Mh(U,] ll«v)—i-,LLv(h(x,k)—Mh)

i=1 j=1 k#j

+ (v — Mu)(/’l(xi,k) — )]

1 N
- D% Jl'.[l'—l
Pk Nﬁ; Ji=1

1 .
R ZZ(Ji - 1)[1“11(”1}/‘ — M) + Mu(h(xi,j) - Mh)]
NI™3 j=1
sz ZZZ(UU /J/v h(xtk)_Mh)
i=1 j=1 k#j

The first term is equal to (m, — 1 /f )by = Py . The second term is equal
to the second term in (9) minus %Zf\il Z;;l %[#h(vi’j — ) + o (h(xi;) —

#)], which is Op(l/(]_\/ NJ)) = op(1/v NJ) by the central limit theorem. The
last term in (10) has mean zero and variance given by

2
7 [ZZZ(% ) h<x1k>—uh)}

i=1 j=1 k#j

2
N2]4Z [ZZ(UU M) h(xzk)—Mh):|

j=1 k#j
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N

N2J4 ZZZZZE(U,, o) (R — )

i=1 j=1 k#j =1 m#L
X (Vi — Mv)(h(xi,m) - Mh)-

For each i, all of the terms in the above summand are zero except for those
where either j = ¢ and k = m or j = m and k = £. The number of such terms
is bounded by a constant times J7, so that the above display is bounded by

a constant times 37 SN T = ~=m,. Thus, the last term in (10) con-

verges to zero at a 1/v/ NJ? rate, which is strictly faster than 1/v/NJ, as
claimed. QO.E.D.

LEMMA 9: Under the conditions of Theorem 4,

1 N i ,"
N—ZZ Zh(xlk) (x;‘,j MCi;+— ) My +Vin /YN,

k#}

where M, is defined at the beginning of this section and (vec(VJN),
\/_ Zl 12 i1 2ij€i)") converges to a normal distribution with variance ZW,,

(where ZWM is defined at the beginning of this section).

PRrROOF: It follows from Lemma 8 that (vec(Viy)', (ﬁi Zil Z;":l zi;&))

is, up to op(1), equal to

N U

vec(W, ;
=Y taen (4N),
i=1 j=1 i

where W,; and u;; are defined at the beginning of this section and, for any
scalar r, B, is defined to be the d, x d, diagonal matrix with 1’s in the first d,
diagonal entries and r in the remaining diagonal entries. By a central limit the-
orem for triangular arrays of independent nonidentically distributed variables,
this converges to a normal distribution with variance

N Ui

1
— Z Y U2 ® By Swuli2 ® By7) s

ll]l

which can be seen to be equal to SWH by_inspection. (To verify Lindeberg’s
condition for the terms of the form (J;/J)v;; for a random variable v, , it
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max; i<y Ui/D)? maxy < Ui/

vy e 7 — =

- ST Gih? T DL Ui
<i<n;i/J

maxi<icv Ui/D” 1 —0.) O.E.D.

T; - —
maxy <jen 5L, (Jif])? max<j<n Ji

suffices to show that — 0, which follows since

Putting the above lemmas together and using the fact that M, = KnMH,
we have

) | N
M., =— (X5 P
NJ;;ZJ(X] p])

=K, MiH + Vi /V jN+M2(A1/i+0P(1/J_)),

where V;y is given in Lemma 9. Since the last column of M, is all 0’s, M| Aj =
M;. Also, since the first d, columns of M, A, ; are zero, M, A, ,jH = M, A, ;,
so that M, A, ;H™' = M, A, ,; as well. Thus,

Ov=M..H A}, = K;,M; + V;yH ' A;/VIN + M, + 0p(1).

17
Let Z,; = ﬁ S Yz
It follows that, in the case where N/J — oo,
diag(V'JN, ..., VIN,\/N/DH[ (B, -&) — (B, —a)]
= VIN AyH[(B,~8) ~ (B, ~e)]
= (QWWON)  OWW Z.e > (QWQ) ' QW Zee,

where Q is the deterministic matrix and Z,; is tlze random vector defined at
the beginning of the proof. In the case where N /J — c for a finite constant c,

Ov=M, H'A™"
QN 1/\/N_f

=K,,M, + IGNH*lAJN—j/VfN +MoA g+ op(D).

This converges in distribution to K, . M; + Z..H 'diag(0,...,0,1) +
M,A ;= Qoo,c jointly with Zzg. (Here, (vec(Z,,), Z,) is normal with mean
zero and variance matrix 3, as defined at the beginning of the proof. Note

that ZZ§ and V}y converge in distribution jointly to Z,; and Z,, by Lemma 9.)
Thus,

diag(VIN, ..., VIN, DH[(B,-&) — (8, —a)]
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=VINA, roH[(B.~a) - (B, ~a)]
— (O WON) O W Ze 5 (0L W Out) Ol W Zoy.

For c=0, QOO,C =K, oM + Z,,H ' diag(0,...,0, 1), and this limiting distri-
bution is the same as if the markup were equal to 1/« (by the same arguments,
but with M, a matrix of zeros).

B. ADDITIONAL LARGE MARKET ASYMPTOTIC RESULTS

This section gives the formal results described in Section 3.2 for the nested
logit model, and discusses large market asymptotics for the vertical model, and
for some of the cases considered in the main text under multi-product firms.

B.1. Nested Logit

In the nested logit model, the J products are split into G mutually exclu-
sive groups. Here, the number of groups G will increase, while the number
of products per group stays fixed. As in Section 3.1, this section considers sin-
gle product firms, although the results will be similar for multi-product firms
as long as the number of firms increases rather than the number of products
per firm. The set of products in a given group g € {1, ..., G} is denoted by
J; €{1,...,J}. The share of product j as a fraction of its group g is denoted
by 5;,,(x, p, €), and the share of group g as a fraction of all products is given
by 5,(x, p, £). Consumer /’s utility for good j is

uj=x;B—apj+§&+ L+ (1 —0)e; =38+ {i + (1 — o)y,

where {;, is a random coefficient on a dummy variable for group g and ¢;
is still extreme value. The distribution of ;, depends on o and is such that

{ie + (1 — 0)¢gy; is extreme value. This leads to the formulas s;,, = %ﬁ:*”))
1-o
and 5, = Zl:gT}_U for shares where D, =3 ; exp(8;/(1 — 0)). These can be

inverted to get
(11)  logs; —logsy=x;B — ap; + ologs;, + §;

(here, the outside good, product 0, has mean utility normalized to zero and is
the only product in its nest). The derivative of j’s share with respect to j’s price

is ;% = 7=5;(1 — 05, — (1 — 0)s;), which gives a markup of

1-0

(12) pi—MC;j=

/(1 — O'Ej/g — (1 — O')S]').

a
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If the number of nests increases with the number of products per nest fixed,
s; will go to zero. Thus, we might expect that prices converge to the solution
to a limiting system of equations where s; is removed from the right hand side
of (12). Since 5;,, depends only on products in group g, this would mean that
asymptotic markups are determined by a pricing game involving only firms with
products in the same group. To formalize this, let p; for j in group j be defined
as the unique solution to the system of equations

_1-
(13) pi— = Usf/g X, p, f))

1 _

(Z exp((XiB — pia+6)/(1 = o)))
keJg
/([Z exp((x;B — pra+&)/(1 - a))}
keJg

- Uexp((x;.,B —pja+ fj)/(l — 0'))>

and let 57, = 5;,(x, p*, é). That is, p7 is defined as the solution to a system

of equations given by the markup formula (12), but with s; set to its limit-
ing value of 0. The following theorem states that IV estimates in this model
are asymptotically equivalent to the estimates that would be obtained if prices
were replaced with pj. Since prices in the limiting model depend on charac-
teristics of products in the same nest but not on characteristics of products in
other nests, this means that characteristics of products in the same nest will
potentially have identifying power, while products in other nests will not.

THEOREM 7: In the nested logit model single product firms and many
nests, suppose that (x;,&;, MC;) is bounded and i.i.d. across j. Let z; =
(xj, h({xk}kgjg Lreees {xk}k65g+M))f0rj € J, for some function h with finite vari-
ance. Let p; and s sj/g be defined in (13). Let (&, B, &) be the IV estimates deﬁned
in (4), and let (&, B* 0*) be defined in the same way, but with p; and s 55 T
placing p; and s;,,. Then ||(a, B, o) — (a* ,B*, )|l 20 and, if (a*, ,8*, o) is
consistent and asymptotically normal, (&, B, &) will also be consistent and asymp-
totically normal, with the same asymptotic distribution.

Note that if we had taken the number of nests fixed with the number of
products per nest increasing, both 5;, and s; would converge to zero in the
markup formula (12), and the markup would converge to a constant as with
the results in Section 3.1. Thus, if the dimension of ¢ is fixed, we obtain the
same results as in Section 3.1 (with the stronger result for the nested logit
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model that ||& — 6*|| 2 0, where both estimates are inconsistent). The proof
of Theorem 7 is given below.

PROOF OF THEOREM 7: As before, it suffices to show that p; and, in this

case, s, converge uniformly to the starred versions at a faster than 1/+/J rate.
Define the function f by

fj(p:x7§7MC7r)
=p;— MG

<Xk: exp((x;, B — pra+ &) /(1 — o-)))

1-0

o

/([Xk: exp((x,B — pra+ &) /(1 — a))}

_ o-exp((x;.B —pja+&)/(1— o-))) + 7.

Then pj satisfies f(py, x,, &, MC,,0) = 0 and any solution p to the Nash
pricing equations satisfies f( Dy Xg> € MGy, 7) =0 for

~}_1_0- (1_0')S1(p:x)
T (1= 08,(p, 1) (1= 05),(p, x) — (1 — 0)s;(p, X))

where the functions s; and 5;, take prices and product characteristics to the
expressions for nested logit shares defined earlier in the section.

The proof proceeds by first showing that +/J max;-, 7; converges to zero, and
then using the implicit function theorem and the mean value theorem to get a
linear approximation to the p that solves f(p, x, &, MC,r) =0 as a function
of r. The first statement follows since

-0 5;(p, x)
« 1—(7—(1—0')sj(p,x)’

|7l <

so that +/J max;., 7, will converge to zero as long as ~/J max;.; s; converges
to zero. Inspection of the formula for s; shows that this will hold as long as
equilibrium prices are bounded.

For r small, the equation f(p, x, £, MC, r) =0 has a unique solution for p.
To see that a solution exists, note that this equation is equivalent to the first
order condition for setting prices in the Bertrand pricing game with demand
given by g;(p) = exp((x; — ap;)/(1 — 0))/Dg and marginal cost equal to
MC; + r;. An equilibrium exists in this game, since it is log supermodular (see
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pp. 151-152 of Vives (2001)):
d*logm; 3’ logg;(p)

Ip; 9P« 9p; 9P«
&2
{logexp((x;,B —ap;)/(1-0))

- Ipj Pk
— olog )" exp((x,B — ap) /(1 - a>)}
14

—

g T—=exp((xiB—api)/(1-0))

_ 1-—o

=——0
Ipi Y exp((x,B —ap))/(1- )
L

_aoexp((x,B—api)/(1 - 0))
B 1-0

exp((x/B — ap;)/(1 —a))

o

1—-0o

X <XZ: exp((x;8 — ap.)/(1 - ff)))2

> 0.

Uniqueness follows from verifying a dominant diagonal condition for f (see
p. 47 of Vives (2001)). We have

af; 1-0 1 J _
di_q1_ o - 5 ——Si1e(P)
p; a (1= 05,,(p)) 9P
1—0 1 —a
=1- o - 5i6(P) (1= 5;5(p))
ey 1
14 0_§j/g(1?)(1 —5j5(p))
- _ 2
(1—054(p))
and, for k # j,
f; 1—-0 1 Jd _
N
1-0 1

o
5i/¢(D)Sksg(P)

_ g Se(P)Sus(P)
(1 - ‘ng/g(p))2
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Thus,

Ria
Pk

Z_5

Pi i

4 05j/,(p) i (
(1 - Ugj/g(p))
=1>0.

L —sj,(p) — Zsk/g(l?)>

k]

Since a unique p solves f(p, x, &, MC, r) = 0 for the elements of (x, £, MC)
in the given bounded set and r close to zero, this defines p as a function
& (x, €, MC, r) of the remaining variables. By the implicit function theorem,
the derivative matrix D¢ (x, &, MC, r) of ¢ is given by

(Dpf($(x, £ MC,r),x, £, MC,r)) !
X Dx,§,MC,rf(¢(x7 ga MC: r), X, faMC, r)7

where subscripts denote blocks of the derivative matrix corresponding to
derivatives with respect to given variables (the derivative matrix of f with re-
spect to p is invertible since it is diagonally dominant). Since p =
é(x, €, MC,7) and p* = ¢(x, &, MC,0), by the mean value theorem, for ev-
ery index j, there is a 7 between 0 and 7 such the difference between p; and pj
is given by the jth row of

(D, f(¢(x, & MC,F), x, & MC, 7))
X Drf(d)(-xa §7 MC) ’7)7x7 57 MC7 ’7);'

Since the elements of (D,f(¢(x,é MC,r),x,E, MC,r))"'D,f(d(x, &,
MC,r),x,& MC,r) are continuous functions of x, £, MC, and r, the func-
tion that maps ¢ to the maximum of the absolute values of the elements of this
matrix times ¢ takes a maximum M as x, £, M C, and r range over the compact
set that contains them and ¢ ranges over the unit sphere in R'Vs!. This gives

VI max|p; — p;| < VT max M7 — 0.
J=< J=

The rate of uniform convergence for 5;,, follows since §;,, is equal to 57,
with pj replaced by p, in the definition, and the formula in the definition has
a derivative with respect to the vector of prices in group g that is bounded
in an open set containing all values of (x, £, MC, p) that can be taken under
the assumptions of the theorem. Thus, by the mean value theorem, for some

finite B, +/J max;-; |5}, — 5| <~ JBmax,; |p; — p;| = 0. Q.E.D.

B.2. Vertical Model

In contrast to the other models in which consumers have an idiosyncratic
preference term g;; for each item, consider a model in which consumers agree
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on the ranking of goods, but differ in their willingness to pay for product qual-
ity, as in Bresnahan (1987). As with the random coefficients logit results in
Section 3.1, the identifying power of characteristics of other products as in-
struments for price goes to zero at a faster than 1/+/J rate."

Utility of an individual consumer is given by

u;=x;B—Lppi+&=956—"Lipp;

where {;, represents consumer i’s preference for product quality. A small value
of {;, means that consumer i has a high value for the quality of the inside
goods relative to the numeraire good. The outsize good 0 has p, = 0 and §,
normalized to 0.

Arrange the goods in order of product quality so that §; < --- < §,. If all
products have positive market share, this will imply that prices satisfy p; <
--- < py as well. Consumer i will prefer good j to j — 1 if

8 —§;

j — Oj-1
J J > gip‘

6._§i p>67 _é'i p; <:> AE
J pF] j—1 pFj-1 ] Pi— Dja

Combining this with the expression for j + 1, consumer i will prefer j to its
neighbors if A4; > {;, > A;,,. For all products to have positive market share,
this must hold for some ;, for all j, so we must have 4, > --- > A,. If this is
the case, consumers who prefer j to its neighbors will also prefer j to all other
products, so, letting F be the cumulative distribution function (c.d.f.) of ¢,
market shares will be given by

If we define Ay = oo and A,,; = —oo, this will hold for good J and the outside
good 0 as well.
This can be inverted to give

J
(15) F1<25k>(17j_Pj—1)=(xj—xj—1),3+§j—fj—l-
k=i

If F is known, this equation can be estimated using OLS (indeed, Bresnahan
(1987), treats F as known and fixes F when estimating a version of this model).
If F is allowed to depend on an unknown parameter (as in, e.g., Berry and
Pakes (2007)), more instruments will be needed, so it will be useful to study
the identifying power of moment conditions based on characteristics of other

BNote, however, that the version of this model used by Bresnahan (1987) places enough struc-
ture on the distribution of random coefficients that the model is identified through other means
(see the discussion surrounding equation (15) below).
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products (note, however, that, unless the parameter enters linearly into (15),
the inconsistency results in this paper will not apply, and additional arguments
will be needed).

Differentiating the formula for shares with respect to p; gives, letting f be
the probability density function (p.d.f.) of ¢;,,

ds;
—=—f(A ) (Aj1)———
dp] f ! pjfl f e p1+1 - p]

This gives markups in an interior Bertrand equilibrium as

F(A) = F(Aj41)
A;
f(A ) — p; +f(Aj+l)

j—1 p}+1_p]

(16) pi—MC;=

Suppose that, for some { > 0, { < ¢, for all consumers. That is, willingness
to pay for product quality is bounded from above. In this case, if all products
have positive market share, we will have A; > { for all j. Thus, the denominator
in (16) will be bounded from below as J increases, so if market shares all con-
verge to zero, markups will converge to zero at the same rate or faster. If firms
have approximately equal market shares asymptotically, they will converge to
zero at a 1/J rate, fast enough for Theorem 5 to hold.

One set of primitive conditions under which markups will converge to zero
at a fast rate is the following. In addition to assuming that /;, is bounded from
below, suppose that the density f of the random coefficient is bounded from
above by f and from below by f. Suppose that product characteristics are
added in such a way that +/J max,.; §, — 8;_; — 0 (e.g., this holds with prob-
ability 1 by results in Devroye (1981), for the case where the §,’s are order
statistics of the uniform distribution or, by a quantile transformation, any dis-
tribution with finite support and continuous density bounded from above and
below) and that all products have positive market share in equilibrium. Then

F(A) = F(Ap)

pJ_MCj= A
f(Aj)i + f(4;1)
i~ Pj-1 p/+l_p1
f A=A
< = < = L — .
R TR TR

Pj—Pj-1  Pjr1—Pj
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(the last inequality follows by bounding the denominator from below by

f %). For product j to have positive market share, we must have
L pipi-

0j— 6 0j—0;_
£<]_7]1 : pj_pj_1<]7]1.
Pj— Pj- {

Thus,
ﬁnjls%x(p,- —MCj) < ﬁ% I?S%X(Sj —68,.1)— 0.

We note that, while the above conditions lead to markups quickly decreasing,
the results may be different if the support of product characteristics or the
distribution of the random coefficient changes with J. We leave these questions
for future research.

B.3. Multi-Product Firms

This section considers the case with many small multi-product firms. If the
number of products sold by each firm is fixed and the number of firms grows
large, the results are similar to the single product case, although, due to the
difficulty of proving existence and uniqueness of equilibrium for these mod-
els with multi-product firms, these results place some conditions directly on
equilibrium prices. In particular, these results require prices to be bounded
as the number of products increases, and the nested logit model requires the
existence of an equilibrium in a limiting form of the game in which price is a
differentiable function of costs and characteristics.

For the logit model, we have j%f! = —as;(1 —s;) and, for k # j, (% = oS;S.
Substituting this into the first order conditions for p; (equation (1)) and divid-
ing by —as; gives

1
(A7) (p=MCY(1=s;(x, p, &) = 3, (px—MCosi(x, p, §) — —

ke]—'f,k;éj

=0.

Assuming that prices and product characteristics are bounded as J increases,
shares will go to zero at a faster than 1/+/J rate. In this case, markups will
converge to 1/« at a faster than 1/+/J rate, as in the single product case.

For the nested logit model, it can be checked that, for £ # j and k and j in
the same nest, dsi/dp; = *=s(05;;, + (1 — 0)s;). For k in some other nest £,
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we have ds,/dp; = as;s;. Plugging these into the first order conditions for firm
f setting p; gives

a -
0=—1——(p; —MCp)si(1 - 05, — (1 - 0)s))

+ Y (= MCO——s5i (05 + (1= 0)s))

1—-0o
keFNTg.k#j

=+ Z (pk — Mck)aSij +Sj.

keF\Tg
Rearranging gives

1-0

0:T—(pj—MC])(l—O'EJ/g—(l—O')S])

See -
+ ) (pk—Mck)?g(asj/gqt(l—cr)sj)

keF;NTg,k#j

+ Y (pe—MCH( - o)si.

ke]:f\.jg

This can be written—for 7; a term that converges to zero at faster than
a 1/+/7 rate as long as prices and product characteristics are bounded as J
increases—as

l1-0o

(18)  0=———(p;=MC)( - o5y,

=+ Z (pk—MCk)UEk/g+;j.

kE]“fI"IJg,k;ﬁj

If this system of equations has a unique solution, and the function that takes
marginal costs and product characteristics of nest g and the remainder term
to the vector of prices for nest g that solves this system of equations for nest
g has an invertible derivative for marginal costs and product characteristics in
a compact set that contains them by assumption, then an argument similar to
that used for Theorem 7 will show that prices in the nested logit game con-
verge uniformly at a faster than 1/+/J rate to those that solve these equations.
As with the single product firm case, equilibrium prices do not depend on char-
acteristics of goods in other nests asymptotically. This holds even for products
in other nests owned by the same firm.
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In the full random coefficients model with multi-product firms, the first order
conditions for product j are

—a(p; — MC) / 5(8, (1 =5,(8, ) dPy({)

ta Y (- MG [[56. 0500, 0 AP +5,=0.

keFj,k#]

This can be rearranged to give

/ 5,05, (1= 5,5, 1)) dP.({)

(pj—MC))
/ 5,06, ) dP,(0)
[se.on0.0aP@
= > (p—MCy) +-.
e / 5, 0dP(0)  ©

If prices are bounded and the assumptions of Theorem 2 hold, the left hand

side will converge to (p; — MC;) at faster than a 1/ /7 rate. Assuming prices

are bounded, the first term on the right hand side is bounded by a constant
[318,08(8,0) dP(£)

times TG0 D This term goes to zero at the required rate using the
T\ [4
same argument as for [§00dr®
g 75,60 P, (D) "

C. MONTE CARLO

This section reports additional details and summary statistics for the Monte
Carlos, as well as results for designs not reported in the main text. These re-
sults include a comparison to the case where markups are taken to be constant,
which gives an idea of how well the conclusion of Theorem 1 regarding large J
asymptotics describes the given combinations of N and J for these data gener-
ating processes (see Section C.3).

C.1. Details for the Monte Carlo Designs

For the Monte Carlos with more than one market, the BLP instruments are
formed by taking the excluded instruments for product j in market i, pro-

duced by firm f, to be ), 7 Xik and Zi’; , X; . For the Monte Carlos with

BLP instruments in a single market, Zi’: | Xi«x 1s constant, so the excluded in-
struments are formed as ) ,_ 7 Xik and (), 7 xix)*. For the Monte Carlos
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with cost shifter instruments, the excluded instruments are z; ; and zi i For the
Monte Carlos where prices are generated from constant markups, the form of
the instruments is the same (in particular, one of the BLP instruments is still
D ie 7, Xik even though the ownership structure that defines F; does not affect

prices). Note that, in all cases, the number of moment conditions is equal to
the number of parameters, so the estimator does not depend on the form of
the weighting matrix . All of the Monte Carlo results use 1000 Monte Carlo
replications. For a small number of Monte Carlo draws, the equation solver
did not converge to a solution for equilibrium prices or the estimator did not
converge, and these were discarded.

The share function and inverse share function were computed by Monte
Carlo integration with 10 draws of the random coefficients, with the same
draws used to generate shares and to compute the inverse share function. Since
the same Monte Carlo draws are used in both cases, there is no simulation er-
ror from Monte Carlo integration if we consider the random coefficients to be
drawn from a discrete distribution with 10 points.

The last two columns report rejection probabilities for a two-sided test for
the price coefficient « at its true value and for testing « = 0. Note that the sec-
ond to last column, which gives the rejection probability at the true value of «,
is a lower bound for the size of the test, since the size of the test is the supre-
mum of this rejection probability over all possible values of other parameters
(correlation between cost shocks and demand shocks, etc.).

C.2. Additional Summary Statistics and Monte Carlo Designs

In addition to the Monte Carlos with 10 products per firm, I perform Monte
Carlos with 2 products per firm, and with firm size varying between 2 prod-
ucts in approximately 1/3 of the markets, 5 products in 1/3 of the markets,
and 10 products per firm in the remaining markets. More precisely, the num-
ber of products per firm and the number of products per market for the cases
where one or both of these is varied is given as follows. For the cases with 3
markets and the number of products per market varied, the vector of market
sizes is (20, 60, 100). For the cases with 20 markets and the number of prod-
ucts per market varied, 7 markets have 20 products, another 7 markets have 60
products, and the remaining 6 markets have 100 products. For the case with 3
markets where the number of products per firm varies, the vector of firm sizes
is (2,5, 10). For the case with 20 markets and firm size varied, 7 markets have
2 products per firm, another 7 have 5 products per firm, and the remaining 6
have 10 products per firm. For the case with 3 markets where both products per
market and products per firm vary, one market has 20 products with 5 prod-
ucts per firm, the second market has 60 products with 10 products per firm,
and the remaining market has 100 products and 2 products per firm. For the
case with 20 markets where both products per market and products per firm
vary, 4 markets have 20 products with 2 products per firm, 3 markets have 20
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products with 5 products per firm, 4 markets have 60 products with 5 products
per firm, 3 markets have 60 products with 10 products per firm, 3 markets have
100 products with 10 products per firm, and the remaining 3 markets have 100
products with 2 products per firm.

These results are reported in Tables IV and V. These tables contain the re-
sults from the designs in the main text as well. In addition to the statistics
reported in the main text, I also report mean bias and mean absolute deviation
from the true value (as opposed to median bias and median absolute devia-
tion, which are reported here as well). Since these estimators are known not to
have first moments in similar settings, it may be the case that these quantities
are undefined for some of these designs. This may explain some of the erratic

TABLE IV
MONTE CARLO RESULTS FOR BLP INSTRUMENTS

Products Median Mean Rejection Power

Firm per Median Abs. Dev. Mean Abs. Dev. Prob. at of Test

Markets Size Market Bias From o Bias From o True ofa=0
1 2 20 —0.3385  0.6081 —0.1710 1.0412  0.1439  0.2052
1 2 60 —0.3613  0.6660 —0.2992 1.3802  0.0631  0.0731
1 2 100 —0.3491  0.6825 —0.3345 1.4174  0.1266  0.1628
1 10 20 —0.2147 19530 —57.5606 182.1044  0.2729  0.2729
1 10 60 —0.3698  0.6691 —0.1955 1.2607  0.0783  0.1004
1 10 100 —0.3648  0.7177 —0.0373 1.4195  0.1211  0.1381
3 Varied 20 —0.0229  0.1665 0.0392 0.2642  0.0450  0.7390
3 Varied  Varied —0.0890  0.2786 0.0033 0.4777  0.0520  0.4700
3 Varied 60 —0.0804  0.3922 0.0218 0.7237  0.1002  0.2956
3 Varied 100 —0.1586  0.4504 —0.1198 0.8946  0.0160  0.1590
3 2 20 —0.2893  0.6742 —0.2255 1.6845  0.0280  0.0750
3 2 Varied —0.3313  0.6753 —0.1899 1.2031  0.0250  0.0600
3 2 60 —0.3697  0.7407 —0.3989 1.4161  0.0090  0.0530
3 2 100 —0.3154  0.7171 —0.2893 1.6900  0.0140  0.0600
3 10 20 —0.1053  0.3358 —0.0006 0.7356  0.0390  0.3980
3 10 Varied —0.0494  0.2966 0.0890 0.4682  0.1523  0.4649
3 10 60 —0.2186  0.5827 0.1410 1.5941  0.0200  0.1040
3 10 100 —0.2525  0.6383 —0.1924 1.4761  0.1351  0.1762
20 Varied 20 —0.0044  0.0504 —0.0006 0.0614  0.0510  1.0000
20 Varied  Varied —0.0211  0.1537 0.0031 0.2073  0.0480  0.9170
20 Varied 60 —0.0061  0.1158 0.0066 0.1451  0.0400  0.9990
20 Varied 100 —0.0190  0.1659 0.0136 0.2172  0.0410  0.9450
20 2 20 —0.0393  0.3504 0.0042 1.0057  0.1552  0.4535
20 2 Varied —0.1578  0.4697 0.0671 1.0065  0.0851  0.2543
20 2 60 —0.1689  0.6458 —0.0580 1.8815  0.0090  0.1080
20 2 100 —0.2191  0.6897 —0.1581 1.7837  0.1061  0.1632
20 10 20 0.0039  0.1140 0.0298 0.1510  0.0390  0.9880
20 10 Varied —0.0014  0.1001 0.0123 0.1266  0.0400  0.9960
20 10 60 0.0130  0.2345 0.1111 0.4021  0.0230  0.7710

20 10 100 —0.0379  0.3154 0.1358 0.9300  0.0200  0.4560
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TABLE V

MONTE CARLO RESULTS FOR COST INSTRUMENTS
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Products Median Mean Rejection Power

Firm per Median Abs. Dev. Mean Abs. Dev. Prob. at of Test

Markets Size Market Bias From o Bias From o True ofa=0
1 2 20 —0.0795 0.3155 0.0105  0.5596 0.1510  0.4387
1 2 60 —0.0202 0.1580  —0.0070 0.2706 0.0893 0.7222
1 2 100 —0.0194  0.1250 —0.0063  0.1916 0.0836  0.7462
1 10 20 —0.0854 0.3049  —0.0639 0.5184 0.0794 0.2487
1 10 60 —0.0247 01749  —0.0085  0.3047 0.1130  0.6710
1 10 100 —0.0196 0.1358  —0.0067 0.1980 0.0762 0.7623
3 Varied 20 —0.0241 0.1819 0.0087  0.2797 0.0801 0.6286
3 Varied  Varied —0.0047 0.0932 0.0059 0.1435 0.0441 0.7854
3 Varied 60 —0.0090  0.0960 0.0077  0.1450 0.0513  0.7678
3 Varied 100 —0.0027 0.0760 0.0123 0.1050 0.0562 0.8193
3 2 20 —0.0238  0.1766 0.0049  0.2978 0.0843  0.6128
3 2 Varied  —0.0097 0.0999 0.0092 0.1513 0.0592 0.7653
3 2 60 0.0011 0.0930 0.0017  0.1343 0.0501 0.7898
3 2 100 0.0003 0.0736 0.0038 0.1353 0.0340 0.8338
3 10 20 —0.0262  0.1837 0.0030  0.2861 0.1002  0.6092
3 10 Varied —0.0122 0.1000  —0.0036 0.1486 0.0852 0.7916
3 10 60 —0.0102  0.1007  —0.0063  0.1441 0.0661 0.7768
3 10 100 —0.0054 0.0767 0.0019 0.1155 0.0662 0.8175
20 Varied 20 0.0036  0.0703 0.0226  0.1045 0.0190  0.7850
20 Varied  Varied 0.0006 0.0390 0.0080 0.0576 0.0593 0.8593
20 Varied 60 —0.0004  0.0369 0.0094  0.0555 0.0561 0.8509
20 Varied 100 —0.0003 0.0287 0.0050 0.0402 0.0210 0.9000
20 2 20 —0.0013 0.0685 0.0266 0.1039 0.0633 0.7801
20 2 Varied 0.0021 0.0402 0.0004 0.0568 0.0411 0.8537
20 2 60 0.0035 0.0385 0.0102 0.0520 0.0644 0.8632
20 2 100 —0.0003 0.0286 0.0049 0.0421 0.0483 0.8813
20 10 20 0.0065 0.0663 0.0350 0.1035 0.0220 0.7840
20 10 Varied  —0.0008 0.0385 0.0062 0.0617 0.0522 0.8554
20 10 60 —0.0023 0.0365 0.0072 0.0554 0.0641 0.8707
20 10 100 —0.0027 0.0298 0.0060 0.0476 0.0481 0.8826

behavior of the mean bias and mean absolute deviation as estimated by the
Monte Carlos (for example, in the fourth row of Table IV). Given the possi-
ble lack of moments of the estimators for these designs, care must be taken
in interpreting the columns corresponding to mean bias and mean absolute
deviation. On the other hand, poor performance in terms of median bias and
median absolute deviation can be interpreted as evidence that the estimators

perform poorly.

C.3. When Is the Single Large Market Limiting Model a Good Approximation?

The results of Section 3.1 show that, under asymptotics where the number of
products increases with firm size and the number of markets fixed, IV estima-
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tors do no better than they would with constant markups. To address how well
this limiting model approximates Bertrand equilibrium with the Monte Carlo
data generating processes used in this section, I simulate from the same data
generating process for x, &, and M C used in Tables IV and V (which subsume
Tables I and III in the main text, but contain results for additional data gen-
erating processes as described above), but set markups to 1/« for all products
and compare estimates based on these data sets to the previously reported es-
timates computed from data sets with Bertrand prices. Table VI reports the
results of applying the same BLP instrument-based estimators to the Monte
Carlo data sets with constant markups, while Table VII reports the results for
cost instruments.

TABLE VI
MONTE CARLO RESULTS FOR BLP INSTRUMENTS WITH CONSTANT MARKUPS

Products Median Mean Rejection Power

Firm per Median Abs. Dev. Mean Abs. Dev. Prob. at of Test

Markets Size Market Bias From o Bias From «( True ofa=0
1 2 20 —0.3318 0.6416 —0.2259 1.1425  0.1054  0.1486
1 2 60  —0.3589 0.6896 —0.5748 1.5334  0.0842  0.1032
1 2 100 —0.3272 0.6853 —0.6563 1.7149  0.0874  0.1206
1 10 20 1.4864  28.2989 —303.2969 1704.8748  0.3064  0.3064
1 10 60 —0.3112 0.6440 —0.3565 1.4920  0.0521  0.0922
1 10 100 —0.3156 0.6748 —0.5056 1.7151  0.1117  0.1368
3 Varied 20 —0.2828 0.6433 —0.3962 1.3015  0.0130  0.0560
3 Varied  Varied —0.3300 0.7105 —0.3652 1.5209  0.0110  0.0460
3 Varied 60 —0.3228 0.7043 —0.2699 1.3547  0.0090  0.0590
3 Varied 100  —0.3146 0.6614 —0.3707 1.3190  0.0060  0.0470
3 2 20 —0.3583 0.7749 —0.5273 1.4379  0.0912  0.1082
3 2 Varied —0.3333 0.6597 —0.3441 1.4748  0.0160  0.0551
3 2 60 —0.3485 0.7714 —0.3107 1.4713  0.0110  0.0591
3 2 100 —0.3118 0.7599 —0.1014 1.7674  0.0340  0.0791
3 10 20 —0.3069 0.7160 —0.3308 1.5446  0.0150  0.0520
3 10 Varied —0.3049 0.7559 —0.2353 1.4444  0.0090  0.0560
3 10 60 —0.3540 0.7290 —0.3361 1.3365  0.0120  0.0460
3 10 100 —0.3341 0.7353 —0.1354 1.8455  0.0250  0.0581
20 Varied 20 —0.3111 0.7932 —0.6371 2.3960  0.0100  0.0620
20 Varied  Varied —0.2830 0.7370 —0.1486 1.6991  0.0090  0.0580
20 Varied 60 —0.3471 0.8158 —0.3022 1.9232  0.0080  0.0450
20 Varied 100 —0.3545 0.7563 —0.4122 1.9241  0.0060  0.0530
20 2 20 —0.3432 0.8074 —0.1088 2.1540  0.0150  0.0600
20 2 Varied —0.3514 0.7758 —0.4193 1.6797  0.0130  0.0570
20 2 60 —0.3504 0.8160 —0.5682 2.2721  0.0060  0.0460
20 2 100 —0.3279 0.8166 —0.2851 1.8619  0.0080  0.0580
20 10 20 —-0.3292  0.7525 —0.4875 1.9865  0.0100  0.0430
20 10 Varied —0.3570 0.8237 —0.4159 1.6799  0.0090  0.0500
20 10 60  —0.3387 0.8265 0.1271 23312 0.1533  0.1814

20 10 100 —0.3454 0.7592 —0.2575 2.1509  0.0090  0.0470
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TABLE VII
MONTE CARLO RESULTS FOR COST INSTRUMENTS WITH CONSTANT MARKUPS

Products Median Mean Rejection Power

per Median Abs. Dev. Mean Abs. Dev. Prob. at of Test

Markets Market Bias From o Bias From o True ofa=0
1 20 —0.0614 0.3010 0.0221 0.4937 0.1470 0.4673
1 60 —0.0148 0.1538 —0.0067 0.2716 0.0843 0.7329
1 100 —0.0185 0.1233 0.0034 0.1942 0.0604 0.7613
3 20 —0.0100 0.1694 0.0092 0.2583 0.0582 0.6790
3 Varied —0.0085 0.0934 0.0119 0.1454 0.0654 0.7827
3 60 —0.0099 0.0969 0.0053 0.1378 0.0350 0.7778
3 100 —0.0025 0.0736 0.0143 0.1051 0.0431 0.8317
20 20 0.0039 0.0693 0.0250 0.1027 0.0731 0.7675
20 Varied —0.0002 0.0371 0.0058 0.0530 0.0581 0.8768
20 60 0.0004 0.0363 0.0142 0.0564 0.0320 0.8639
20 100 —0.0002 0.0282 0.0054 0.0410 0.0230 0.8979

The results show that, while the limiting model gives a pessimistic descrip-
tion of the behavior of BLP instrument-based estimates for some of the cases
considered, in other cases it is accurate enough that one would worry about
applying the BLP instruments. With a single market, BLP instruments do not
appear to perform noticeably better under Bertrand pricing than in the limit-
ing model in any of the Monte Carlo designs. With 3 markets, 10 products per
firm, and 100 products, the median bias and median absolute deviation of the
estimate of « are only slightly better in the true model than they are with a
constant markup, and the size distortion in the two-sided test for « is actually
worse. As seen in Table II, the results can be equally bad with 20 markets and
100 products, depending on the ownership structure and coefficient of x in the
demand specification.
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