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APPENDIX A: THE ROLE OF WAGE INERTIA IN THE RESULTS

IN THE MAIN TEXT we emphasize the role of wage inertia in helping our model
account for labor market dynamics. The role of wage inertia in labor market
dynamics is the subject of some controversy in the literature. For example, Hall
(2005), Shimer (2005), and Hall and Milgrom (2008) argue that wage inertia
is important. In contrast, Hagedorn and Manovskii (2008) and Ljungqvist and
Sargent (2015) challenge that view. In this appendix we clarify the relationship
between our findings and the literature.

In the first two subsections we focus on the steady state response of labor
market tightness to a change in steady state labor productivity, ηΓ�ϑ. We de-
velop a decomposition of ηΓ�ϑ that isolates the role of wage inertia. In the
first subsection we compare a model with extreme wage inertia (i.e., a constant
wage) with a Nash bargaining model. In the second subsection we assess the
role of wage inertia in the Nash and AOB models. We find that the value of
ηΓ�ϑ is lower in the Nash model than it is in the AOB and constant wage mod-
els. Our decomposition indicates that this finding reflects the effects of wage
inertia.

The third section considers the relationship between steady state and dy-
namic analyses. There we show that steady state analysis can be very misleading
for the dynamics of models like ours. There is no good substitute for analyzing
dynamic impulse response functions in such models.

A.1. The Potential for Wage Inertia to Resolve the Volatility Puzzle

To understand the role of wage inertia it is useful to consider the steady
state of our model. The latter is characterized by a particular recursive struc-
ture. The capital–labor ratio and ϑ are determined by equations of the model
that do not involve the labor market. Given ϑ, the steady state value of l is
determined by the equations describing the labor market.

The free entry condition and the bargaining equation, play a central role
in the equilibrium conditions of the model. Making use of the relationship
between the vacancy filling probability, Q, and market tightness, Γ , given by

Q= σmΓ −σ�
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the steady state version of the free entry condition is

s

σm
Γ σ + κ= ϑ−w

1 − ρβ
(A.1)

Here, s denotes the cost of posting a vacancy, κ denotes the fixed cost of bar-
gaining with a worker, w denotes the wage rate, ρ denotes the match survival
rate, and β denotes the representative household’s discount factor. Also, σm
and σ denote the parameters of the matching function. The standard case in
the literature is κ= 0. We also consider that case in our numerical experiments,
for robustness.1

We denote the elasticity of market tightness with respect to ϑ by

ηΓ�ϑ = d logΓ
d logϑ

�

where the derivative holds all model parameters fixed. As in the literature, we
use ηΓ�ϑ as our measure of labor market volatility. It is easy to see that (A.1)
implies

ηΓ�ϑ = 1
σ

ϑ

ϑ−w− κ(1 − ρβ)
[

1 − dw

dϑ

]

(A.2)

Here, we define

profit rate = ϑ−w− κ(1 − ρβ)
ϑ


(A.3)

Expression (A.2) decomposes labor market volatility into a component that
reflects the profit rate and a component that is a function of wage inertia,
dw/dϑ. The greater is wage inertia, that is, the smaller is dw/dϑ, the big-
ger is ηΓ�ϑ. The intuition is simple. When the wage rate is more inertial, then
firms receive a greater share of the rent associated with vacancies after a rise
in technology, ϑ. As a result, the more inertial is the wage, the greater is the
incentive of the firm to post vacancies in the wake of an increase in ϑ. This
increased incentive leads to a greater increase in market tightness.

The degree of wage inertia is determined by the bargaining relationship be-
tween firms and workers. We consider three models of that relationship. In the
constant wage model, w is simply a constant, w̃. We require

D≤ w̃≤ϑ�
1The free entry condition that holds on a steady state growth path, after scaling by Φt (defined

in the main text). The values of s and κ in (A.1) actually correspond to the steady state values
of sΩt/Φt and κΩt/Φt , respectively. Similarly, γ and D below actually correspond to the steady
state values of γΩt/Φt and DΩt/Φt , respectively. Here, Ωt is defined in the main text
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so that the firm and worker each have an incentive to produce. Let ηconstant w
Γ�ϑ de-

note labor market volatility in the constant wage model. In this case, ηconstant w
Γ�ϑ

is (A.2) with dw/dϑ= 0 and with w replaced by the constant wage rate, w̃:

ηconstant w
Γ�ϑ = 1

σ

ϑ

ϑ− w̃− κ(1 − ρβ)
(A.4)

The other two models are the Nash and AOB models, respectively. The bar-
gaining relationship in those models is characterized by the sharing rule. Recall
that S, J, and f denote the surplus of an employed worker, the value of an em-
ployed worker to a firm, and the job finding rate, respectively. Substituting

S = w−D
1 −βρ(1 − f )� J = ϑ−w

1 − ρβ� f = σmΓ 1−σ�(A.5)

into the sharing rule we obtain an expression that only involves w and Γ . To-
tally differentiating that expression and using (A.2), we solve for ηΓ�ϑ to obtain

ηΓ�ϑ = Υ ϑ

ϑ−D− τκκ− τγγ 
(A.6)

Here Υ , τκ, and τγ are functions of ρ, β, σ , f , and the bargaining parameters:

ψ≡ ρβf + σ(1 − ρβ)(1 +β1)

ρβf + (1 − ρβ)(1 +β1)
�

Υ = β1 +β3

(
1 − ρβ(1 − f ))
ψa

�

τκ ≡
(1 +β1)(1 − ρβ)+βρf + ρβf(σ − 1)

ψ

a
�

τγ ≡

[
1 −βρ(1 − f )+ ρβf(σ − 1)

ψ

]
β2

a
�

a= β1 +
(

1 −βρ(1 − f )+ ρβf(σ − 1)
ψ

)
β3


In the case of AOB, βi = αi+1/α1, for i= 1�2�3 and

α1 = 1 − δ+ (1 − δ)M�
α2 = 1 − (1 − δ)M�
α3 = α2

1 − δ
δ

− α1�
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α4 = 1 − δ
2 − δ

α2

M
+ 1 − α2


Following Ljungqvist and Sargent (2015) (LS), we define

fundamental surplus fraction = ϑ−D− τκκ− τγγ
ϑ




To evaluate (A.6), we need a value for the endogenous variable, f . So when we
use (A.6) to evaluate ηΓ�ϑ for alternative values of a parameter like D or η,
then we implicitly adjust the values of other parameters (σm and s) to keep f
unchanged.

In the case of Nash bargaining, (A.6) reduces to

ηNash
Γ�ϑ = Υ ϑ

ϑ−D− τκκ�(A.7)

Υ = ηρβf + (1 − ρβ)
ηρβf + σ(1 − ρβ)�

τκ =
1 − ρβ+ ηβρf

ηρβf + σ(1 − ρβ)
[
ησρβf + (2σ − 1)(1 − ρβ)]

1 −η �

τγ = 0


Below we show that ηconstant w
Γ�ϑ can be orders of magnitude larger than ηNash

Γ�ϑ . It
is easy to see this in the case, κ= 0. Observe that

1 ≤ Υ ≤ 1
σ
� Υ strictly decreasing in η
(A.8)

Comparing (A.4) with (A.7) and taking into account (A.8) we conclude:

PROPOSITION 1: If κ= 0, then ηconstant w
Γ�ϑ ≥ ηNash

Γ�ϑ with the inequality strict when
η> 0.

The intuition behind the proposition is straightforward. In the Nash model,
w rises in response to an increase in ϑ, diverting some of the rents associated
with vacancies away from the firm. As a result, the firm has less incentive to
post vacancies and this prevents a substantial rise in labor market tightness. As
discussed above, this diversion of resources does not happen in the constant
wage model


To assess the quantitative difference between ηconstant w
Γ�ϑ and ηNash

Γ�ϑ , we con-
sider the version of the Nash model that we estimated subjected to the restric-
tion D/w = 0
39. We refer to this model as the restricted Nash model. At the
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posterior mode, the relevant model parameter values are

σm = 0
6544� σ = 0
6598� β= 0
9968� ρ= 0
9� η= 0
9028�

D= 0
3315� κ= 0
0831� s = 1
763 × 10−4� ϑ= 0
8585


These values imply

f = 0
6321� q= 0
7�
κ

s

q
+ κ

= 0
997� w= 0
8499

and

profit rate = 3
018 × 10−5 (0
00998)� Υ = 1
060 (1
060)


Numbers in parentheses correspond to the case κ = 0. In this case, we hold
constant the values of ρ, β, ϑ, σ , and η, and adjust σm, D, and c to keep the
values of q, f , and D/w unchanged.

Evaluating (A.6) for the restricted Nash model, we obtain

ηNash
Γ�ϑ = 5
710 (1
73)


In sharp contrast, when we evaluate (A.2) for the constant wage model and set
w̃ to the steady state value of w in the restricted Nash model just discussed
(i.e., w̃= 0
8499), we obtain

ηconstant w
Γ�ϑ = 50�215
1 (151
79)


Clearly, wage inertia has the potential to increase labor market volatility by
orders of magnitude.

Our results may appear to contradict existing claims in the literature, which
argue that wage inertia has at best only a marginal impact on labor market
volatility. See, for example, Hagedorn and Manovskii (2008) and LS. The for-
mer reach this conclusion by using the restricted Nash model and implement-
ing wage inertia by reducing the bargaining power of labor, η. For intuition
about why a reduction in η leads to an increase in wage inertia, note that as
the bargaining power of the worker goes to zero, the wage converges to the
worker’s outside option, D. In that case, dw/dϑ = 0. When wage inertia is
increased in this way, the impact on labor market volatility is relatively small.
To see why, consider equation (A.7). The consensus in the literature is that σ
is roughly 1/2, so that the upper bound on Υ is roughly 2. When κ = 0 the
surplus fraction is not a function of η. So in this case a reduction in η can at
most double ηΓ�ϑ. That is, raising wage inertia can at most raise volatility from
1.73 to roughly 3.4, a value that is much smaller than what authors in this lit-
erature consider to be empirically relevant (see Shimer (2005)). If κ > 0 and
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σ ≥ 1/2, then τκ is increasing in η (see (A.7)). So in the empirically relevant
case of κ > 0, an increase in wage inertia due to a reduction in η leads to an
even smaller rise in ηΓ�ϑ.

The previous experiment does not establish that wage inertia is irrelevant.
The reason is that the experiment changes two things at once: wage inertia and
the level of the wage rate. According to (A.2), the first effect increases ηΓ�ϑ
and the second effect decreases ηΓ�ϑ. So the experiment convolves two forces
and does not reveal what the effects of wage inertia per se are. The exper-
iment that we conduct with the constant wage model focuses exclusively on
wage inertia. Our results indicate that the impact of wage inertia is potentially
enormous.

A.2. The Role of Wage Inertia in the Transition From the Restricted
Nash to the AOB Model

We now investigate the role of wage inertia in the AOB model. Again, we
focus only on steady states. At the posterior mode of our parameter estimates,
the bargaining parameters are

M = 60� δ= 0
00219� γ = 0
0074538


The other model parameters relevant for the steady state calculations are

σm = 0
6623� σ = 0
542� β= 0
9968� ρ= 0
9� η= 0
9028�

D= 0
3654� κ= 0
0605� s = 0
0040� ϑ= 0
8646


These values imply

f = 0
6321� q= 0
7�
κ

s

q
+ κ

= 0
9137� w= 0
8578

and

profit rate = 6
7993 × 10−4 (0
00788)� Υ = 1
652 (1
060)


Then

ηAOB
Γ�ϑ = 22
400 (8
906)


Evidently, going from the restricted Nash model to the AOB model raises ηΓ�ϑ
by roughly factor 4, from 5.7 to 22.4. When κ= 0, ηΓ�ϑ rises by a factor of 5.

We now decompose the rise in ηΓ�ϑ into the profit rate and wage inertia
components. Taking the ratio of (A.2) for the AOB restricted Nash model, we



UNEMPLOYMENT AND BUSINESS CYCLES 7

obtain

3
923 = ηAOB
Γ�ϑ

ηrestricted Nash
Γ�ϑ

=
1

σAOB

1
σ restricted Nash

×

profit rate component︷ ︸︸ ︷(
ϑ

ϑ−w− κ(1 − ρβ)
)AOB

(
ϑ

ϑ−w− κ(1 − ρβ)
)restricted Nash

×

wage inertia component︷ ︸︸ ︷[
1 − dw

dϑ

]AOB

[
1 − dw

dϑ

]restricted Nash

= 1
217 × 0
044 × 72
593


Here, the superscript refers to the relevant model.2 Notice that the wage inertia
channel alone would have resulted in an increase in ηΓ�ϑ by a factor of roughly
73. We conclude that wage inertia plays by far the biggest role in accounting
for the high value of ηAOB

Γ�ϑ relative to ηrestricted Nash
Γ�ϑ .

A.3. The Role of Wage Inertia in the Transition From the Restricted
Nash to the Simple Wage Rule Model

We now investigate the role of wage inertia in the simple wage rule model.
At the posterior mode of our parameter estimates, the bargaining parameters
are

M = 60� δ= 0
00219� γ = 0
0074538


The other model parameters relevant for the steady state calculations are

σ = 0
523� κ= 0
05832� ϑ= 0
8927� w̃= 0
8860�

profit rate = 7
8401 × 10−4


Then

η
simple wage
Γ�ϑ = 2437


2To compute dw/dϑ we first compute ηΓ�ϑ using (A.6) and then we back out dw/dϑ using
(A.2).
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Evidently, going from the restricted Nash model to the simple wage rule model
raises ηΓ�ϑ by a very large amount. A key question is whether this reflects the
profit rate component or the wage inertia component. Using the same decom-
position as in the previous subsection, we obtain

426
854 = η
simple wage
Γ�ϑ

ηestimated Nash
Γ�ϑ

=
1

σ simple wage

1
σestimated Nash

×

profits channel︷ ︸︸ ︷(
ϑ

ϑ−w− κ(1 − ρβ)
)simple wage

(
ϑ

ϑ−w− κ(1 − ρβ)
)estimated Nash

×

wage inertia︷ ︸︸ ︷
1simple wage[

1 − dw

dϑ

]estimated Nash

= 1
261 × 0
038 × 8794
051


Clearly, the wage inertia plays an overwhelmingly important role.

A.4. Steady State versus Dynamic Considerations

In this section we show that steady calculations of the sort described above
can be deeply misleading about the dynamic response of a model to a persistent
shock. This phenomenon occurs in models that include features like invest-
ment adjustment costs, the cost of capital utilization, and the degree of stick-
iness in prices.3 The parameters that govern these features have a important
impact on dynamics. But those parameters do not appear in the equilibrium
conditions that characterize steady state. No steady state elasticity calculation
can uncover the effects of these features. Other features that can cause steady
state calculations to be misleading are those that lead to the presence of state
variables. Examples of state variables that occur in many models include lagged
consumption, lagged investment, and capital. Real business cycle models have
capital as a state variable. When such a model satisfies balanced growth, then
steady state employment is not a function of steady state technology. But it is
well known that employment does respond along the dynamic adjustment path
in the wake of a persistent technology shock.

3Price stickiness literally has no impact on steady state when there is price indexation. Without
price indexation we have found that the steady state effects of price stickiness are very small.



UNEMPLOYMENT AND BUSINESS CYCLES 9

A simple modification of our model can be used to demonstrate the limita-
tions of steady state analyses. Suppose that the equilibrium wage rate is given
by

wt =φϑt − γ(ϑt −ϑ)� φ > 0�0< γ <φ
(A.9)

The dynamics of wt depend on γ. But that parameter has no impact on the
steady state value of wt . Our dynamic model consists of a version of (A.1) in
which Γ , w, and ϑ have time subscripts. For simplicity, we assume κ = 0. In
addition, we assume

ϑt = (1 − ν)ϑ+ νϑt−1 + εt
(A.10)

Here εt is uncorrelated over time and with ϑt−s, s > 0. The value of a worker
to a firm, Jt , is

Jt =ϑt −φϑt − γ(ϑt −ϑ)+βρEtJt+1
(A.11)

Here, we have substituted out for wt using (A.9).
We find the equilibrium of this model as follows. First, we identify a stochas-

tic process for Jt that satisfies (A.10) and (A.11). Consider the process

Jt = δ0 + δ1ϑt�(A.12)

where δ0 and δ1 are undetermined coefficients. To satisfy (A.10) and (A.11),
δ0 and δ1 must satisfy

δ1 = 1 −φ+ γ
1 −βρν � δ0 = βρ(1 − ν)δ1 − γ

1 −βρ ϑ


Second, we substitute out for Jt from (A.12) into (A.1), to obtain

c

σm
Γ σ
t = δ0 + δ1ϑt


The period t impact of an innovation to technology, εt , on logΓt is (after log
linearization)

η̄Γ�ϑ = 1
σ

1 −φ+ γ
1 −φ
1 − ρβ(1 −βρν)

� 1
σ

1 −φ+ γ
1 −φ

for ν close to unity.
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Now consider the comparative steady state analysis. Using (A.2), we obtain,

ηΓ�ϑ = 1
σ



It follows that

η̄Γ�ϑ = ηΓ�ϑ
[

1 + γ

1 −φ
]



Note that η̄Γ�ϑ > ηΓ�ϑ, since γ > 0. Indeed, by making φ sufficiently close to
unity, η̄Γ�ϑ can be made arbitrarily large, even though ηΓ�ϑ is always simply
1/σ .

In the previous example, the more inertia there is in wages, that is, the larger
is γ, the higher is the contemporaneous impact of a technology shock on labor
market tightness. Clearly, in this example comparative steady state analysis is
very misleading about the dynamic effects of a persistent shock to technol-
ogy.

APPENDIX B: SOLUTION TO THE AOB BARGAINING PROBLEM

We develop an analytic expression relating the equilibrium wage rate to
economy-wide variables taken as given by firms and workers when bargain-
ing.

It is useful to re-state the indifference conditions for the worker and the firm
given in the main text:

wj�t + w̃p
t +At

= δ
[
M − j + 1

M
D+ Ũt

]
+ (1 − δ)

[
D

M
+wj+1�t + w̃p

t +At

]
for j = 1�3� 
 
 
 �M − 1�

M − j + 1
M

ϑt + ϑ̃p
t − (

wj�t + w̃p
t

)
= (1 − δ)

[
−γ+ M − j

M
ϑt + ϑ̃p

t − (
wj+1�t + w̃p

t

)]
for j = 2�4� 
 
 
 �M − 2�

ϑt

M
+ ϑ̃p

t − (
wj�t + w̃p

t

) = 0 for j =M
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Rewrite the previous expressions and abbreviate variables taken as given
during the wage bargaining:

wj�t + w̃p
t = D

M
+ δ(Ut −At)︸ ︷︷ ︸

a

− δD

M
j︸︷︷︸

cj

+ (1 − δ)(wj+1�t + w̃p
t

)

for j = 1�3�5� 
 
 
 �M − 1�

wj�t + w̃p
t = ϑt

M
+ δϑp

t + (1 − δ)γ︸ ︷︷ ︸
b

− δϑt

M
j︸ ︷︷ ︸

dj

+ (1 − δ)(wj+1�t + w̃p
t

)

for j = 2�4�5� 
 
 
 �M − 2�

wj�t + w̃p
t =

(
1 −M
M

)
ϑt +ϑp

t for j =M�

or, in short,

wj�t + w̃p
t = a− cj + (1 − δ)(wj+1�t + w̃p

t

)
for j = 1�3�5� 
 
 
 �M − 1�

wj�t + w̃p
t = b− dj + (1 − δ)(wj+1�t + w̃p

t

)
for j = 2�4�5� 
 
 
 �M − 2


Write out

w
p
t =w1�t + w̃p

t = a− c1 + (1 − δ)(w2�t + w̃p
t

)
�

w2�t + w̃p
t = b− d2 + (1 − δ)(w3�t + w̃p

t

)
�

w3�t + w̃p
t = a− c3 + (1 − δ)(w4�t + w̃p

t

)
�

w4�t + w̃p
t = b− d4 + (1 − δ)(w5�t + w̃p

t

)
�

· · ·
wM−1�t + w̃p

t = a− cM−1 + (1 − δ)(wM�t + w̃p
t

)



Substituting several times results in the pattern

w
p
t = a+ (1 − δ)2a+ (1 − δ)4a+ (1 − δ)6a

+ (1 − δ)b+ (1 − δ)3b+ (1 − δ)5b

− c1 − (1 − δ)2c3 − (1 − δ)4c5 − (1 − δ)6c7

− (1 − δ)d2 − (1 − δ)3d4 − (1 − δ)5d6

+ (1 − δ)7
(
w8�t + w̃p

t

)
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Rearranging yields

w
p
t = a+ (1 − δ)2a+ (1 − δ)4a+ (1 − δ)6a+ · · · + (1 − δ)M−2a

+ (1 − δ)b+ (1 − δ)3b+ (1 − δ)5b+ · · · + (1 − δ)M−3b

− c1 − (1 − δ)2c3 − (1 − δ)4c5

− (1 − δ)6c7 − · · · − (1 − δ)M−2cM−1

− (1 − δ)d2 − (1 − δ)3d4

− (1 − δ)5d6 − · · · − (1 − δ)M−3dM−2

+ (1 − δ)M−1
(
wM�t + w̃p

t

)
or, equivalently,

w
p
t = a

[
1 + (1 − δ)2 + (1 − δ)4 + (1 − δ)6 + · · · + (1 − δ)M−2

]
(A.13)

+ b(1 − δ)[1 + (1 − δ)2 + (1 − δ)4 + (1 − δ)6 + · · ·
+ (1 − δ)M−4

]
− c1 − (1 − δ)2c3 − (1 − δ)4c5

− (1 − δ)6c7 − · · · − (1 − δ)M−2cM−1

− (1 − δ)d2 − (1 − δ)3d4

− (1 − δ)5d6 − · · · − (1 − δ)M−3dM−2

+ (1 − δ)M−1

[(
1 −M
M

)
ϑt +ϑp

t

]



Note that

S = 1 + x+ x2 + x3 + · · · + xn�
xS = x+ x2 + x3 + · · · + xn + xn+1


Substracting and rearranging yields

S = 1 − xn+1

1 − x �

so that

1 + x+ x2 + x3 + · · · + xn = 1 − xn+1

1 − x 
(A.14)
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Using (A.14), we can write the square brackets multiplying a and b in (A.13)
as [

1 + (1 − δ)2︸ ︷︷ ︸
x

+ (1 − δ)4︸ ︷︷ ︸
x2

+ (1 − δ)6︸ ︷︷ ︸
x3

+· · · + (1 − δ)M−2︸ ︷︷ ︸
x(M−2)/2

]

= 1 − (1 − δ)M
1 − (1 − δ)2

and [
1 + (1 − δ)2︸ ︷︷ ︸

x

+ (1 − δ)4︸ ︷︷ ︸
x2

+ (1 − δ)6︸ ︷︷ ︸
x3

+· · · + (1 − δ)M−4︸ ︷︷ ︸
x(M−4)/2

]

= 1 − (1 − δ)M−2

1 − (1 − δ)2 


Hence,

w
p
t = 1 − (1 − δ)M

1 − (1 − δ)2 a+ b(1 − δ)1 − (1 − δ)M−2

1 − (1 − δ)2(A.15)

− [
c1 + (1 − δ)2c3 + (1 − δ)4c5 + · · · + (1 − δ)M−2cM−1

]
− (1 − δ)[d2 + (1 − δ)2d4

+ (1 − δ)4d6 + · · · + (1 − δ)M−4dM−2

]
+ (1 − δ)M−1

[(
1 −M
M

)
ϑt +ϑp

t

]



The square bracket in the last line in (A.15) can be written as[
d2 + (1 − δ)2d4 + (1 − δ)4d6 + · · · + (1 − δ)M−4dM−2

]
= 2

δϑt

M

[
1 + (1 − δ)22 + (1 − δ)43 + · · · + (1 − δ)M−4 (M − 2)

2

]



Note that differentiating both sides of

1 + x+ x2 + x3 + · · · + xn = 1 − xn+1

1 − x
yields

1 + 2x+ 3x2 + · · · + nxn−1 = −(n+ 1)xn(1 − x)+ (
1 − xn+1

)
(1 − x)2 
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Hence, the square bracket in the last line in (A.15) can be expressed more
compactly as

[
1 + (1 − δ)2︸ ︷︷ ︸

x

2 + (1 − δ)4︸ ︷︷ ︸
x2

3 + (1 − δ)6︸ ︷︷ ︸
x3

4 + · · · + (1 − δ)M−4︸ ︷︷ ︸
x(M−4)/2

(M − 2)
2︸ ︷︷ ︸
n

]

=
(
1 − (1 − δ)M) − M

2
(1 − δ)(M−2)

(
1 − (1 − δ)2

)
(
1 − (1 − δ)2

)2 


Finally, the terms involving c in (A.15) can be rewritten as

[
c1 + (1 − δ)2c3 + (1 − δ)4c5 + (1 − δ)6c7 + · · · + (1 − δ)M−2cM−1

]
= δD

M

[
1 + (1 − δ)23 + (1 − δ)45

+ (1 − δ)67 + · · · + (1 − δ)M−2(M − 1)
]

= δD

M
2
[
1/2 + (1 − δ)22 + (1 − δ)43

+ (1 − δ)64 + · · · + (1 − δ)M−2M/2
]

− δD

M

[
1 + (1 − δ)2 + (1 − δ)4

+ (1 − δ)6 + · · · + (1 − δ)M−2
] + δD

M

= 2
δD

M

(
1 − (1 − δ)M+2

) −
(

1 + M

2

)
(1 − δ)M(

1 − (1 − δ)2
)

(
1 − (1 − δ)2

)2

− δD

M

1 − (1 − δ)M
1 − (1 − δ)2 


Pulling everything together, we can write (A.15) as

w
p
t = 1 − (1 − δ)M

1 − (1 − δ)2

[
D

M
+ δ(Ut −At)

]

+ (1 − δ)1 − (1 − δ)M−2

1 − (1 − δ)2

[
ϑt

M
+ δϑp

t + (1 − δ)γ
]
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− 2
δD

M

(
1 − (1 − δ)M+2

) −
(

1 + M

2

)
(1 − δ)M(

1 − (1 − δ)2
)

(
1 − (1 − δ)2

)2

+ δD

M

1 − (1 − δ)M
1 − (1 − δ)2

− (1 − δ)2δϑt

M

(
1 − (1 − δ)M) − M

2
(1 − δ)(M−2)

(
1 − (1 − δ)2

)
(
1 − (1 − δ)2

)2

+ (1 − δ)M−1

[(
1 −M
M

)
ϑt +ϑp

t

]



Collecting terms gives

w
p
t = 1 − (1 − δ)M

1 − (1 − δ)2 δ(Ut −At)

+
[
(1 − δ)δ1 − (1 − δ)M−2

1 − (1 − δ)2 + (1 − δ)M−1

]
ϑ
p
t

+ (1 − δ)1 − (1 − δ)M−2

1 − (1 − δ)2 (1 − δ)γ

+
[
(1 + δ)1 − (1 − δ)M

1 − (1 − δ)2

− 2δ

(
1 − (1 − δ)M+2

) −
(

1 + M

2

)
(1 − δ)M(

1 − (1 − δ)2
)

(
1 − (1 − δ)2

)2

]
D

M

+
[
(1 − δ)1 − (1 − δ)M−2

1 − (1 − δ)2 + (1 − δ)M−1(1 −M)

− (1 − δ)2δ
(
1 − (1 − δ)M) − M

2
(1 − δ)(M−2)

(
1 − (1 − δ)2

)
(
1 − (1 − δ)2

)2

]

× ϑt

M
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Simplifying using straightforward algebra yields

(2 − δ)wp
t = (

1 − (1 − δ)M)
(Ut −At)+ (

1 − δ+ (1 − δ)M)
ϑ
p
t

+ 1
δ

(
(1 − δ)2 − (1 − δ)M)

γ

+ (1 − δ)M(
1 − δ− (2 − δ)M) − (1 − δ)

2 − δ
[
ϑt

M
− D

M

]



After some further rewriting, we can express the previous expression as the
alternating offer bargaining sharing rule

(α1 + α2)w
p
t = α1ϑ

p
t + α2(Ut −At)+ α3γ− α4(ϑt −D)�

where

α1 = 1 − δ+ (1 − δ)M�
α2 = 1 − (1 − δ)M�
α3 = α2

1 − δ
δ

− α1�

α4 = 1 − δ
2 − δ

α2

M
+ 1 − α2


Note that α1� 
 
 
 �α4 > 0. Alternatively, we can write the alternating offer
bargaining sharing rule in terms of the variables

α1Jt = α2(Vt −Ut)− α3γ+ α4(ϑt −D)

Finally, notice that for M → ∞, the sharing rule becomes

Jt = 1
1 − δ

[
Vt −Ut − (1 − δ)2

δ
γ

]



APPENDIX C: MEDIUM-SIZED DSGE MODEL

Here, we list the dynamic equilibrium equations for the medium-sized
DSGE model with alternating offer bargaining.

C.1. Medium-Sized Model: Scaled Dynamic Equations

Cons. FOC (1): ψt = ζct (ct − bct−1/μt)
−1

−βbEtζct+1(ct+1μt+1 − bct)−1
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Bond. FOC (2): ψt = βEtψt+1Rt/(πt+1μt+1)

Invest. FOC (3): 1 = pk′�tΥt
[
1 − S̃t − S̃′

tμtμΨ�tit/it−1

]
+βEtψt+1/ψtpk′�t+1Υt+1S̃

′
t+1(it+1/it)

2μΨ�t+1μt+1

Capital FOC (4): ψt = βEtψt+1r
k
t+1/(πt+1μt+1)

LOM capital (5): k̄t =
(
1 − δk)/(μtμΨ�t)k̄t−1 +Υt(1 − S̃)it

Cost. minim. (6): 0 = a′(ukt )ukt k̄t−1/(μΨ�tμt)

− α/(1 − α)ϑt

[
νfRt + 1 − νf ]lt

Production (7): yt = p̊λ/(λ−1)
t

[
εt

(
ukt k̄t−1/(μtμΨ�t)

)α
l1−α
t − nφ�tφ

]
Resources (8): yt = ng�tg+ ct + it + a

(
ukt

)
k̄t−1/(μψ�tμt)

+ ns�tsQ−1
t xtlt−1 + nκ�tκxtlt−1

Taylor rule (9): ln(Rt/R)= ρR ln(Rt−1/R)

+ (1 − ρR)
[
rπ ln(πt/π)+ ry ln(Yt/Y)

]
+ σRεR�t/400

Pricing 1 (10): Ft =ψtyt +βξEt(π̃t+1/πt+1)
1/(1−λ)Ft+1

Pricing 2 (11): Kt = λψtytmct +βξEt(π̃t+1/πt+1)
λ/(1−λ)Kt+1

Pricing 3 (12): (1 − ξ)(Kt/Ft)
1/(1−λ) = 1 − ξ(π̃t/πt)1/(1−λ)

Price disp. (13): p̊λ/(1−λ)
t = (1 − ξ)1−λ[1 − ξ(π̃t/πt)1/(1−λ)]λ

+ ξ[π̃t/πtp̊t−1]λ/(1−λ)

PV wages (14): wp
t =wt + ρβEtψt+1/ψtw

p
t+1

PV revenue (15): ϑp
t =ϑt + ρβEtψt+1/ψtϑ

p
t+1

Free entry (16): ns�ts=Qt(Jt − nκ�tκ)
Firm value (17): Jt =ϑp

t −wp
t

Work value (18): Vt =wp
t +At

Cont. value (19): At = (1 − ρ)βEtψt+1/ψt
[
ft+1Vt+1 + (1 − ft+1)Ut+1

]
+ ρβEtψt+1/ψtAt+1

Unemp. value (20): Ut = nD�tD
+βEtψt+1/ψt

[
ft+1Vt+1 + (1 − ft+1)Ut+1

]
Sharing rule (21): α1Jt = α2(Vt −Ut)− α3nγ�tγ+ α4(ϑt − nD�tD)
Real GDP (22): Yt = ng�tgt + ct + it
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Unemp. rate (23): ut = 1 − lt
Finding rate (24): ft = xtlt−1/(1 − ρlt−1)

Matching (25): xtlt−1 = σm(1 − ρlt−1)
σ
(
vtot
t

)1−σ

Vacancies (26): vtot
t = vtlt−1

Filling rate (27): Qt = xt/vt
LOM empl. (28): lt = (ρ+ xt)lt−1

Comp. tech. (29): lnμt = α/(1 − α) lnμΨ�t + lnμz�t

Neutr. tech. (30): lnμz�t = (1 − ρμz) lnμz + ρμz lnμz�t−1

+ σμzεμz�t/100

Invest. tech. (31): lnμΨ�t = (1 − ρμΨ ) lnμΨ + ρμΨ lnμΨ�t−1

+ σμΨ εμΨ �t/100

Tech. diffus. (32): ni�t = n1−θi
i�t−1μ

−1
t for i ∈ {φ�κ�γ�g�D� s}�

where ni�t =Ωi�t/Φt

Check: 32 equations in the following 32 endogenous unknowns:

ψt ct Rt πt pk′�t it u
k
t k̄t ϑt lt yt p̊t xt Ft Kt St Ut Jt

wt vt Qt ft ut Yt ϑp
t w

p
t At v

tot
t ni�t μt μΨ�t μz�t 


In the above 32 equations, it is useful to define several abbreviated variables
that are functions of the 32 endogenous variables. In particular,

Cap. util. cost (33): a
(
ukt

) = 0
5σbσa
(
ukt

)2 + σb(1 − σa)ukt
+ σb(σa/2 − 1)

Cap. util. deriv. (34): a′(ukt ) = σbσaukt + σb(1 − σa)

Invest. adj. cost (35): S̃t = 0
5 exp
[√
S̃′′(μtμΨ�tit/it−1 −μ ·μΨ)

]
+ 0
5 exp

[−√
S̃′′(μtμΨ�tit/it−1 −μ ·μΨ)

]
− 1

Invest. adj. deriv. (36): S̃′
t = 0
5

√
S̃′′ exp

[√
S̃′′(μtμΨ�tit/it−1 −μ ·μΨ)

]
− 0
5

√
S̃′′

× exp
[−√

S̃′′(μtμΨ�tit/it−1 −μ ·μΨ)
]
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Capital return (37): rkt = πt/(μΨ�tpk′�t−1)

× (
ukt a

′(ukt ) − a(ukt ) + (1 − δK)pk′�t
)

Marginal cost (38): mct = τt(μΨ�tμt)αϑt

[
νfRt + 1 − νf ](ukt k̄t−1/lt

)−α

/
(
εt(1 − α))

Price indexation (39): π̃t = πκft−1π
1−κf−κ

f
π̆κ

f

We adopt κf = 0 and κ
f = π̆ = 1, which corresponds to the case of no in-

dexation of prices. We set νf = 1, which corresponds to the working capital
specification in the main text. The variables ζct , Υt , εt , and τt are exogenous
and set equal to 1 for all t. In addition, we set gt = g for all t.

Also, the case of Nash sharing can be obtained by replacing the alternating
offer sharing rule (21) with the equation

Nash sharing
(
21′) : Vt −Ut = η[Vt −Ut + Jt]


C.2. Medium-Sized Model: Steady State

IMPOSE uk = 1� solve (37) for σb later

(33): a(1)= 0

(29): μz = μ/(μΨ)α/(1−α)

(32): ni = μ−1/ϑi

(30): εμz = 0

(31): εμΨ = 0

(36): S̃ = 0

(37): S̃′ = 0

IMPOSE u� solve (21) or (21′) for γ or η later

(23): l= 1 − u
IMPOSE π�“drop” equation (9), i.e.�R=R

(2): R= πμ/β
(3): pk′ = 1

(4): rk = πμ/β
(37): σb =RkμΨpk′/π − (1 − δk)pk′
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(34): a′(1)= σb
(40): π̃t = πκf π1−κf−κ

f
π̆κ

f

(10)–(12): mc = 1
λ

1 −βξ(π̃/π)λ/(1−λ)

1 −βξ(π̃/π)1/(1−λ)

[
1 − ξ(π̃/π)1/(1−λ)

1 − ξ
]1−λ

(13): p̊=
[

1 − ξ(π̃/π)1/(1−λ)

1 − ξ
]1−λ/[

1 − ξ(π̃/π)λ/(1−λ)

1 − ξ
](1−λ)/λ

(6) & (39): k̄/ l= [
α(μΨμ)

1−αmc/σb/τ
]1/(1−α)

→ k̄= k̄/ l · l
(39): ϑ= (1 − α)mc

τ(μΨμ)
α
[
νfR+ 1 − νf ](k̄/ l)α

Steady state profits are

Prof = Py − MC(y + nφφ) solve for nφφ

nφφ=
(

1 − mc
mc

)
y − Prof/P

mc

substitute in (7) and rewrite

y = mc(
p̊λ/(1−λ) − 1

)
mc + 1 − Prof

Py

(
k̄/ l/(μ ·μΨ)

)α
l

for given
Prof
Py

(7): φ= [(
k̄/ l/(μ ·μΨ)

)α
l− yp̊λ/(1−λ)]/nφ

(5): i= [
1 − (1 − δk)/(μ ·μΨ)

]
k̄

Assume g equals share ηg of y and recruiting/search cost equal

share ηh +ηs of y

(8): c = (1 −ηg −ηs −ηh)y − i
for some given ηg�ηs�ηh → g= ηgy/ng

(1): ψ= (c− bc/μ)−1 −βb(cμ− bc)−1

(22): Y = ngg+ c+ i

(11): K = λ ·ψ · y · mc
1 −βξ(π̃/π)λ/(1−λ)
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(10): F = ψ · y
1 −βξ(π̃/π)1/(1−λ)

(28): x= 1 − ρ
(24): f = xl/(1 − ρl)

IMPOSE Q� solve (25) for σm

(27): v= x

Q

(26): vtot = v · l
(25): σm = xl(1 − ρl)−σ(vtot

)σ−1

given ηh and ηs calculate κ and s

→ κ= ηh/(x)/l · y/nκ
→ s = ηs/

(
Q−1x

)
/l · y/ns

(16): J = nssQ−1 + nκκ

(15): ϑp = ϑ

1 − ρβ
(17): wp =ϑp − J
(14): w=wp(1 − ρβ)

(18)–(20): V −U =
(
wp −

nDD

w
w

1 −βρ

)/(
1 − (1 − f )βρ

1 −βρ
)

where
nDD

w
is the estimated replacement ratio

(20): U =
nDD

w
w+βf(V −U)

1 −β
→ V = V −U +U

(18): A= V −wp

(21): γ =
(
α2(V −U)− α1J + α4

(
ϑ− nDD

w
w

))/
(nγ · α3)

(21′): η= V −U
V −U + J



22 L. J. CHRISTIANO, M. S. EICHENBAUM, AND M. TRABANDT

C.3. Medium-Sized Sticky Wage Model: Scaled Dynamic Equations

Cons. FOC (1): ψt = ζct (ct − bct−1/μt)
−1

−βbEtζct+1(ct+1μt+1 − bct)−1

Bond. FOC (2): ψt = βEtψt+1Rt/(πt+1μt+1)

Invest. FOC (3): 1 = pk′�tΥt
[
1 − S̃t − S̃′

tμtμΨ�tit/it−1

]
+βEtψt+1/ψtpk′�t+1Υt+1S̃

′
t+1(it+1/it)

2μΨ�t+1μt+1

Capital FOC (4): ψt = βEtψt+1R
k
t+1/(πt+1μt+1)

LOM capital (5): k̄t =
(
1 − δk)/(μtμΨ�t)k̄t−1 +Υt(1 − S̃)it

Cost. minim. (6): 0 = a′(ukt )ukt k̄t−1/(μΨ�tμt)

− α/(1 − α)wt
[
νfRt + 1 − νf ]ẘλw/(λw−1)

t lt

Production (7): yt = p̊λ/(λ−1)
t

× [
εt

(
ukt k̄t−1/(μtμΨ�t)

)α(
ẘλw/(λw−1)
t lt

)1−α − nφ�tφ
]

Resources (8): yt = ng�tgt + ct + it + a
(
ukt

)
k̄t−1/(μψ�tμt)

Taylor rule (9): ln(Rt/R)= ρR ln(Rt−1/R)

+ (1 − ρR)
[
rπ ln(πt/π)+ ry ln(Yt/Y)

]
+ σRεR�t/400

Pricing 1 (10): Ft =ψtyt +βξEt(π̃t+1/πt+1)
1/(1−λ)Ft+1

Pricing 2 (11): Kt = λψtytmct +βξEt(π̃t+1/πt+1)
λ/(1−λ)Kt+1

Pricing 3 (12): (1 − ξ)(Kt/Ft)
1/(1−λ) = 1 − ξ(π̃t/πt)1/(1−λ)

Price disp. (13): p̊λ/(1−λ)
t = (1 − ξ)1−λ[1 − ξ(π̃t/πt)1/(1−λ)]λ

+ ξ[π̃t/πtp̊t−1]λ/(1−λ)

Wage disp. (14): ẘλw/(1−λw)
t = (1 − ξw)1−λw

× (
1 − ξw(π̃w�t/πw�t)1/(1−λw))λw

+ ξw[π̃w�t/πw�tẘt−1]λw/(1−λw)
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Wage setting 1 (15): Fw�t =ψt/λwẘλw/(λw−1)
t lt

+βξwEt(wt+1/wt)(π̃w�t+1/πw�t+1)
1/(1−λw)

× Fw�t+1

Wage setting 2 (16): Kw�t =
(
ẘλw/(λw−1)
t lt

)1+σL

+βξwEt(π̃w�t+1/πw�t+1)
λw(1+σL)/(1−λw)

×Kw�t+1

Wage setting 3 (17): 1 − ξw(π̃w�t/πw�t)1/(1−λw)

= (1 − ξw)
(
A ·Kw�t/(wtFw�t)

)1/(1−λw(1+σL))

Wage inflation (18): πw�t =wtμtπt/wt−1

Real GDP (19): Yt = ng�tgt + ct + it
Comp. tech. (20): lnμt = α/(1 − α) lnμΨ�t + lnμz�t

Neutr. tech. (21): lnμz�t = (1 − ρμz) lnμz + ρμz lnμz�t−1

+ σμzεμz�t/100

Invest. tech. (22): lnμΨ�t = (1 − ρμΨ ) lnμΨ + ρμΨ lnμΨ�t−1

+ σμΨ εμΨ �t/100

Tech. diffus. (23): ni�t = n1−θi
i�t−1μ

−1
t for i ∈ {φ�g}�

where ni�t =Ωi�t/Φt

Check: 23 equations in the following 23 endogenous unknowns:

ψt ct Rt πt pk′�t it u
k
t k̄t lt yt p̊t Ft Kt wt ẘt Fw�t

Kw�t πw�t Yt μt μz�t μΨ�t ni�t 


In the above 23 equations, it is useful to define several abbreviated variables
that are functions of the 23 endogenous variables. In particular,

Cap. util. cost. (24): a
(
ukt

) = 0
5σbσa
(
ukt

)2 + σb(1 − σa)ukt
+ σb

(
(σa/2)− 1

)
Cap. util. deriv. (25): a′(ukt ) = σbσaukt + σb(1 − σa)
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Invest. adj. cost (26): S̃t = 0
5 exp
[√
S̃′′(μtμΨ�tit/it−1 −μ ·μΨ)

]
+ 0
5 exp

[−√
S̃′′(μtμΨ�tit/it−1 −μ ·μΨ)

]
− 1

Inv. adj. deriv. (27): S̃′
t = 0
5

√
S̃′′ exp

[√
S̃′′(μtμΨ�tit/it−1 −μ ·μΨ)

]
− 0
5

√
S̃′′

× exp
[−√

S̃′′(μtμΨ�tit/it−1 −μ ·μΨ)
]

Capital return (28): Rkt = πt/(μΨ�tpk′�t−1)

× (
ukt a

′(ukt ) − a(ukt ) + (
1 − δk)pk′�t

)
Marginal cost (29): mct = τt(μΨ�tμt)αwt

[
νfRt + 1 − νf ]

× (
ukt k̄t−1/

(
ẘλw/(λw−1)
t lt

))−α
/
(
εt(1 − α))

Price indexation (30): π̃t = πκft−1π
1−κf−κ

f
π̆κ

f

Wage indexation (31): π̃w�t = πκwt−1π
1−κw−κ

w
π̆κ

w
μθ

w

In the baseline specification, we set κf = 0 and κ
f = π̆ = 1, which cor-

responds to the case of no indexation of prices. Likewise, we set κw = 0,
κ
w = π̆ = 1, and θw = 0, which results in no wage indexation. We set νf = 1,

which corresponds to the working capital specification in the main text. The
variables ζct , Υt , εt , and τt are exogenous and set equal to 1 for all t. In addi-
tion, we set gt = g for all t.

C.4. Medium-Sized Sticky Wage Model: Steady State

IMPOSE uk = 1� solve (28) for σb later

(24): a(1)= 0

(20): μz = μ/(μΨ)α/(1−α)

(23): ni = μ−1/ϑi

(21): εμz = 0

(22): εμΨ = 0

(26): S̃ = 0
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(27): S̃′ = 0

IMPOSE π�“drop” equation (9), i.e.�R=R
(2): R= πμ/β
(3): pk′ = 1

(4): Rk = πμ/β
(28): σb =RkμΨpk′/π − (

1 − δk)pk′

(25): a′(1)= σb
(30): π̃t = πκf π1−κf−κ

f
π̆κ

f

(10)–(12): mc = 1
λ

1 −βξ(π̃/π)λ/(1−λ)

1 −βξ(π̃/π)1/(1−λ)

[
1 − ξ(π̃/π)1/(1−λ)

1 − ξ
]1−λ

(13): p̊=
[

1 − ξ(π̃/π)1/(1−λ)

1 − ξ
]1−λ/[

1 − ξ(π̃/π)λ/(1−λ)

1 − ξ
](1−λ)/λ

(6) & (29): kl= k̄/(ẘλw/(λw−1)l
) = [

α(μΨμ)
1−αmc/σb/τ

]1/(1−α)

(18): πw = μπ
(31): π̃w�t = πκwt−1π

1−κw−κ
w
π̆κ

w
μθ

w

(14): ẘ=
(

1 − ξw(π̃w/πw)1/(1−λw)

1 − ξw
)1−λw

/(
1 − ξw(π̃w/πw)λw/(1−λw)

1 − ξw
)(1−λw)/λw

(6) & (29): kl= k̄/(ẘλw/(λw−1)l
) = [

α(μΨμ)
1−αmc/σb/τ

]1/(1−α)

(29): w= (1 − α)mc
τ(μΨμ)

α
[
νfR+ 1 − νf ](kl)α

Steady state profits are

Prof = Py − MC(y + nφφ) solve for nφφ

nφφ=
(

1 − mc
mc

)
y − Prof/P

mc

substitute in (7) and rewrite

y = mc(
p̊λ/(1−λ) − 1

)
mc + 1 − Prof

Py

(
kl/(μ ·μΨ)

)α
ẘλw/(λw−1)l
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for given
Prof
Py

IMPOSE l� solve (17) or A later

→ k̄= kl · ẘλw/(λw−1)l

(7): φ= [(
kl/(μ ·μΨ)

)α
ẘλw/(λw−1)l− yp̊λ/(1−λ)]/nφ

(5): i= [
1 − (

1 − δk)/(μ ·μΨ)
]
k̄

Assume g equals share ηg of y

(8): c = (1 −ηg)y − i for some given ηg → g= ηgy/ng
(1): ψ= (c− bc/μ)−1 −βb(cμ− bc)−1

(19): Y = ngg+ c+ i

(11): K = λ ·ψ · y · mc
1 −βξ(π̃/π)λ/(1−λ)

(10): F = ψ · y
1 −βξ(π̃/π)1/(1−λ)

(16): Kw =
(
ẘλw/(λw−1)l

)1+σL

1 −βξw(π̃w/πw)λw(1+σL)/(1−λw)

(15): Fw = ψ/λwẘ
λw/(λw−1)l

1 −βξw(π̃w/πw)1/(1−λw)

(17): A=
[

1 − ξw(π̃w/πw)1/(1−λw)

1 − ξw
]1−λw(1+σL)

wFw/Kw

APPENDIX D: IMPULSE RESPONSES: SENSITIVITY ANALYSIS

Finally, to get a sense of which features of the data help to identify the bar-
gaining parameters, (δ�γ), and the parameters governing the matching tech-
nology, (σ� s�κ), we proceeded as follows. We recomputed the impulse re-
sponse functions for the estimated AOB model, perturbing each parameter
one at a time. Figures A.1–A.3 show the results. We found that the impulse
responses to the monetary policy shock are the most sensitive to the perturba-
tions. This result suggests that most of the information about these parameters
comes from the monetary policy impulse responses. The response of inflation,
real wages, the job finding rate, and, to a lesser extent, the unemployment rate
and GDP, are particularly sensitive to perturbations in δ, γ, s, and κ. The re-
sponse of vacancies to a monetary policy shock is very sensitive to a perturba-
tion in σ .
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FIGURE A.1.—Impulse responses to a monetary policy shock.

FIGURE A.2.—Impulse responses to a neutral technology shock.



28 L. J. CHRISTIANO, M. S. EICHENBAUM, AND M. TRABANDT

FIGURE A.3.—Impulse responses to an investment specific technology shock.
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