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RESIDENTIAL BROADBAND”: APPENDIX

(Econometrica, Vol. 84, No. 2, March 2016, 411–443)

BY AVIV NEVO, JOHN L. TURNER, AND JONATHAN W. WILLIAMS

IN THIS APPENDIX, we present further analysis and results that were not in-
cluded in the text due to space considerations. In Section S.1, we discuss the
model: we present further analysis to motivate the modeling assumptions used
in the paper and discuss ways to enrich the model. In Section S.2, we provide
greater detail regarding the estimation and further analysis of identification.

S.1. EXTENSIONS OF THE MODEL

S.1.1. Day-of-Week Dependence

If a consumer’s online habits vary by the day of week, the distribution of the
preference shocks should include a day-of-week component (which would vio-
late the i.i.d. assumption). In principle, this can easily be dealt with by adding
an additional state variable that captures the day of the week. Table VIII
presents average daily usage by day of week. We find no consistent and statis-
tically significant difference across days. To check that the lack of day-specific
demand is not driven by some odd behavior in our data, we also look at two
other operators for roughly the same time period. The results for these opera-
tors also exhibit little difference in the level of activity across days, suggesting
that it is not necessary to add day of week to the state vector.1

S.1.2. Transferability of Content Across Days

Another violation of the i.i.d. assumptions would occur if subscribers post-
pone consumption from one day to another. The end of one billing cycle, and
the beginning of the next, presents the best opportunity to find evidence that
subscribers have postponed consumption of content until a later time. Con-
tent is most likely to be postponed when a subscriber knows that the usage
allowance will soon be refreshed, and they do not have to postpone consump-
tion by more than a few days. Thus, if we find little evidence of content being
transferred at the end of the billing cycle in these situations, it suggests that
transfer of content across days is unlikely to occur elsewhere.

To look for evidence of content being transferred across billing cycles, we en-
rich the end-of-month analysis from the main text. First, for each day and every

1Note that any variation by day of week is separately identified from patterns in usage across
the month due to usage-based pricing, since consumers have staggered billing cycles.
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TABLE VIII

AVERAGE DAILY USAGE BY DAY OF WEEKa

Day of week Daily usage (GBs)

Sunday 1.55
Monday 1.59
Tuesday 1.50
Wednesday 1.47
Thursday 1.46
Friday 1.46
Saturday 1.48

aThis table presents average daily usage during the
May–June 2012 billing cycle.

consumer, we calculate the percentage deviation in daily usage from the con-
sumer’s own mean. We then classify consumers into groups based upon their
cumulative usage at the end of the billing cycle: light (0 ≤ CT

Ck
≤ 0�2), moder-

ate (0�4 ≤ CT

Ck
≤ 0�6), and heavy (0�8 ≤ CT

Ck
≤ 1�2). For each of these groups,

we calculate the average percentage deviation over each of the last five days
of the billing cycle and the first five days of the next billing cycle. Figure 7

FIGURE 7.—Transferability of content, across-month dynamics. Note: This figure presents the
average percentage deviation from a subscriber’s own daily average for three groups of sub-
scribers on usage-based plans (light, moderate, and heavy) for the last five days of the May–June
2012 billing cycle and the first five days of the next billing cycle.
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FIGURE 8.—Across-month dynamics. Note: This figure presents how the percentage difference
between average usage during the last days of a billing cycle and average usage during the first
days of the next varies with the proportion of the allowance consumed by a subscriber at the end
of the billing cycle. The figure presents results using a 1-, 2-, and 3-day window for calculating the
averages.

presents the results of these calculations. If content was being transferred to
the next billing cycle, we would expect to see a higher than average usage on
the first few days, especially for the heavy users. We observe no evidence of
content being transferred across billing cycles for those consumers near the
allowance.

To further demonstrate the robustness of our results presented in the main
text, Figure 8 presents the results from a calculation identical to that used to
generate Figure 3, except we perform the calculation using a 1-day, 2-day, and
3-day window. Specifically, the 1-day window is identical to the results pre-
sented in the main text. The results for the 2-day (3-day) window are simi-
lar, but rather than the difference in usage on the first and last days of the
billing cycle being used in the calculation, average usage on the last two (three)
and first two (three) days of the billing cycle is used. The results are simi-
lar, with the only noticeable difference occurring for those subscribers well
over the allowance by the end of the month. However, this variation is largely
due to the very small number of subscribers who substantially exceed their al-
lowance.
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S.1.3. Serial Correlation

To examine the possibility of serial correlation in the realizations of the pref-
erence shock, we cannot simply look at serial correlation in usage since our
model predicts that (positive) serial correlation will arise through the shadow
price faced by a subscriber. We therefore examine whether serial correlation in
usage varies with how close a consumer is to the allowance. Serial correlation
due to correlation in the shadow price predicts that closeness to the allowance
will impact serial correlation. Under the alternative, of serial correlation in the
preference shock, this will not be the case.2

Specifically, we calculate the deviation in daily usage from the subscriber’s
mean as c̃jt = cjt − 1

T

∑T

j=1 cjt , for each subscriber on each day. We then cal-
culate the measure of serial correlation for each subscriber, φj , by regressing
these deviations on their own lags (̃cjt = φjc̃j(t−1) + ηjt). The median correla-
tion is 0.151 and the average correlation coefficient is 0.176.

To identify those consumers most likely to exhibit positive serial correlation
in their usage, we regress the estimate of φj on the fraction of the allowance
used by the subscriber at the end of the billing cycle, CjT

Cjk
. The results are pre-

sented in the first column of Table IX. We find that consumers near their al-
lowance by the end of a billing cycle exhibit more serial correlation compared
to those who use a small portion of their allowance. The second column of

TABLE IX

IDENTIFYING SOURCE OF SERIAL CORRELATIONa

(1) (2)

CjT

Cjk
0.047∗∗ 0.077∗∗

(0.002) (0.003)
(
CjT

Cjk
)2 – −0.004∗∗

– (0.001)
Constant 0.151∗∗ 0.139∗∗

(0.001) (0.002)

Observations 42,485 42,485

aThis table presents OLS estimates from regressing the
correlation coefficient for each subscriber (φj from the re-
gression, c̃jt = φjc̃j(t−1) + ηjt ) on the fraction of the al-
lowance used by a subscriber, CjT /Cjk . The regression uses
42,485 observations. Asterisks denote statistical significance:
∗∗1% level, ∗5% level.

2Note that the across-month analysis largely rules out negative serial correlation, or mean
reversion, as the explanation for our results, so we do not discuss it further here.
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Table IX presents the results when we add a quadratic term to allow for non-
linearities in the relationship. We also find that the quadratic term has a neg-
ative sign, which suggests a diminishing effect, such that those well over the
allowance exhibit less serial correlation. While this effect is statistically signifi-
cant, it is quite small in magnitude.

S.1.4. Response to the Shadow Price versus Overage Charge

In our model, rational consumers treat shadow price variation as if it is actual
variation in price. We provide evidence in Section 2.2 in the main text that
consumers indeed respond to the shadow price. But, in principle, they might
respond differently to a change in the shadow price versus a change in the
actual price, namely the overage charge. To examine this, we do two things.
First, we estimate a model that allows for a differential response. Next, we
estimate a model that only uses realized overage charges (and plan choice) to
estimate the model.

The marginal, or shadow, price of usage in the model is given by

p̃k(ct�Ct−1)=
⎧⎨
⎩
pk� if Otk(ct) > 0�

ρ
dE

[
Vhk(t+1(Ct−1 + ct)

]
dct

� if Otk(ct)= 0�

We restrict ρ to equal 1 for the analysis in the main text. Namely, at each point
in the billing cycle, either the subscriber is making marginal decisions on usage
facing the overage price, pk, or fully internalizing the impact of current usage
decisions on the possibility of overages, such that the perceived price equals
dE[Vhk(t+1(Ct−1+ct )]

dct
. By allowing ρ to differ from 1, we allow for consumers who

do not fully internalize the impact of current usage until overages are actually
incurred, or overreact to the possibility of overages.

We estimate ρ in a way similar to the other five parameters by using three
points of support for ρ (0.5, 1, and 1.5).3 These points of support for ρ permit
subscribers who (i) respond more to actual overages than to changes in the
shadow price (ρ = 0�5), (ii) fully internalize the impact of usage on the pos-
sibility of overages (ρ = 1), and (iii) overreact to the possibility of incurring
overage charges (ρ = 1�5). The parameter ρ is identified by behavior just be-
fore and just after the allowance is exceeded. If there is no change right around
the allowance, then usage is consistent with ρ= 1. On the other hand, a differ-
ence in behavior just before and just after the allowance is reached is consistent
with ρ different from 1.

3We only use usage-based plans for this estimation due to the absence of overages for the
grandfathered unlimited plans.
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Our estimate of the marginal distribution of ρ provides support for the as-
sumption in the main text. Specifically, we estimate that 91.0% of subscribers
have ρ equal to 1, while 3.1% equal 0.5 and 5.9% equal 1.5. Most importantly,
we find that this small number of subscribers with ρ different from 1 has little
implication for our counterfactual results.

We also estimate the model with the restriction that ρ= 0. This is equivalent
to not using the variation in shadow price, and only using the variation in the
actual price. We expect this to yield a flatter demand curve that is less respon-
sive to price. The intuition is simple. Before reaching the allowance, we saw
that consumers reduce their consumption. The dynamic model interprets this
as a response to the shadow price, but the simpler model assumes that this is
noise and just reduces the average usage at a price of zero. This intuition is
confirmed from estimates of the simple model.

We estimate this model using the exact same moments as the full model, but
by setting ρ = 0 we assume that the price is zero until the consumer reaches
the allowance. In principle, there are simpler ways to estimate this model. But
by using the same moments, we believe we can separate the effect of dynamics
from differences in estimation methods. The estimation yields a distribution
of types, which we can use to generate the same statistics as in the paper. The
most illustrative is to compute the usage response in response to a linear tariff
(as in Table IV). When doing that, we find that the simple model underesti-
mates the price response by an average of 38.6%, and predicts usage levels
that are 28.4% different, on average.

S.2. ECONOMETRIC DETAILS

S.2.1. Step 1: Solving the Model

As we describe in the main text, in the first step of the estimation algorithm,
we solve the dynamic problem for a large number of types, once for each type,
and store the optimal policy.

For a plan, k, and subscriber type, h, we solve the finite-horizon dynamic
program recursively. To do so, we discretize the Ct state to a grid of 2,000
points with spacing of size �ck GBs, for each plan k. The step size, �ck, is plan-
specific and non-decreasing in the plan’s usage allowance, allowing for a denser
state space on plans with lower usage allowances where usage is typically lower.
The maximum consumption is set at five times the allowance for usage-based
plans, and one Terabyte for unlimited plans, which is high enough to capture all
usage in our data. Time is naturally discrete (t = 1�2� � � � �30 over a billing cycle
with T = 30 days) for our daily data. These discretizations leave υt as the only
continuous state variable. Because the subscriber does not know υt prior to
period t, we can integrate it out and the solution to the dynamic programming
problem for each type of subscriber can be characterized by the expected value
functions, E[Vhkt(Ct−1)], and policy functions, E[c∗

hkt(Ct−1)]. To perform the
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numerical integration over the bounded support of υt , [0�υ], we use adaptive
Simpson quadrature.

Having solved the dynamic program for a subscriber of type h, we generate
the transition process for the state vector implied by the solution. The transi-
tion probabilities between the 60,000 possible states (2,000 × 30) are implicitly
defined by threshold values for υt . For example, consider a subscriber of type
h on plan k, that has consumed Ct−1 prior to period t. The threshold, υt(z), is
defined as the value of υt that makes a subscriber indifferent between consum-
ing z units of content of size �ck and z + 1 units, such that the marginal utility
(net of any overage charges) of an additional unit of consumption

uh

(
(z + 1)�ck� yt�υt(z);k

) − uh

(
z�ck� yt�υt(z);k

)
is equated to the loss in the net present value of future utility

E
[
Vhk(t+1)

(
Ct−1 + (z + 1)�ck

)] −E
[
Vhk(t+1)(Ct−1 + z�ck)

]
�

These thresholds, along with all subscribers’ initial condition (C0 = 0), define
the transition process between states. For each subscriber type h and plan k,
we characterize this transition process by the CDF of cumulative consumption
that it generates,

Γhkt(C)= P(Ct−1 <C)�

the proportion of subscribers that have consumed less than C through period
t of the billing cycle. Due to the discretized state space, Γhkt(C) is a step func-
tion.

S.2.2. Step 2: Estimation

The second step of our estimation approach matches empirical moments we
recover from the data to those predicted by our model by choosing weights for
each subscriber type.

As we describe in the main text, our estimates of the weights are chosen
to maximize the objective function. The weighting matrix, V̂−1, would ideally
be the variance–covariance matrix of m̂dat

k , ensuring that more variable mo-
ments receive less weight. This choice of weighting matrix in our application is
problematic. Specifically, since our approach relies on state-specific moments,
which are aggregated across a large number of types, the variance of the mo-
ments can be quite small. These very low variance moments cause numerical
instability during the optimization of the objective function. For this reason,
we set V̂−1 equal to the identity matrix.
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The richness of the data, along with the low dimensionality of the state space,
(Ct−1� t), allows a flexible approach for recovering moments from the data to
match with the model.

To recover the cumulative distribution of Ct−1 for each day t and plan k, we
use a smooth version of a simple Kaplan–Meier estimator,

Γ̂kt(C)= 1
Nk

Nk∑
i=1

1[Ci(t−1) < C]�

We estimate these moments for each k and t, considering values of C such that
Γ̂kt(C) ∈ [0�1], ensuring that we fit the tails of the usage distribution. We use a
normal kernel with an adaptive bandwidth to smooth the empirical CDF.

We recover the moments of usage at each state by estimating a smooth sur-
face using a nearest-neighbor approach. Consider a point in the state space,
(Ct−1� t). A neighbor is an observation in the data for which the subscriber is t
days into the billing cycle and cumulative consumption up until day t is within
five percent of Ct−1. Denote the number of neighbors by Nkt(Ct−1). Then, we
estimate the conditional (on reaching the state) mean at (Ct−1� t) using

Ê
[
c∗
kt(Ct−1)

] = 1
Nkt(Ct−1)

Nkt(Ct−1)∑
i=1

ci�

where i ∈ {1� � � � �Nkt(Ct−1)} indexes the set of nearest neighbors. If Nkt(Ct−1) >
500, we use those 500 neighbors nearest to Ct−1. Note that this gives us the av-
erage usage conditional on a subscriber arriving at the state. To recover the
unconditional mean, we multiply Ê[c∗

kt(Ct−1)] by the probability of observing a
subscriber at state (Ct−1� t), recovered from the estimated CDF of cumulative
consumption.

We estimate both moments at the same set of state space points used
when numerically solving the dynamic programming problem for each sub-
scriber type. This results in 120,000 moments for each plan of the 8 plans, or
8 × 120,000 = 960,000 moments in total.

S.2.3. Identification: Plan Selection and Usage

In this subsection, we provide additional results to demonstrate the relative
importance of plan selection and usage. In particular, in Figure 9, we present
the marginal distribution of all five parameters using only plan selection and
applying uniform weights to all types that choose a particular plan, in the left
graphs, and both usage and plan selection in the right graphs. The results con-
firm that usage information is driving much of the results.
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FIGURE 9.—Sources of identification: plan selection and usage. Note: This figure presents the
marginal distribution of each parameter, when only information on optimal plan selection is used
and uniform weights are applied, and when the weights are chosen using information on optimal
plan selection and to match usage moments from the data.

S.2.4. Identification: Variation in Behavior Across Types

To demonstrate the differences in behavior between types, we look at the
heterogeneity in behaviors within a particular plan. In Figures 10 and 11, we
plot the model’s predicted behavior for the four types with the greatest es-
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FIGURE 10.—Predicted behavior by type, CDF of CT . Note: This figure presents the CDF of
cumulative consumption on the last day of the billing cycle, CT , for the types that received the
greatest estimated weight on one of the usage-based plans in our data. The CDF is a function of
CT , but since this is for a single type, there is a one-to-one mapping to CT

Ck
.

FIGURE 11.—Predicted behavior by type: expected usage E[c∗
T (CT−1�υt)]. Note: This figure

presents expected usage on the last day of the billing cycle, E[c∗
T (CT−1�υt)], for the types that

received the greatest estimated weight on one of the usage-based plans in our data.
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timated weights on a particular usage-based plan. Figure 10 plots the CDF of
cumulative consumption on the final day of the billing cycle, CT , for each of the
types. Figure 11 plots expected usage on the last day of the billing cycle, condi-
tional on each possible level of cumulative consumption on the previous days,
CT−1. The functions in this figure highlight price sensitivity, through the change
in expected usage as the fraction of the allowance used, CT−1

Ck
, increases. This

price sensitivity also reveals information about variation in usage. A subscriber
like type B in Figure 11 whose cumulative usage is well below the allowance,
but whose expected usage changes with small movements in the fraction of the
allowance used, has some chance of very high usage.

Figures 10 and 11 make clear that variation in the parameters induces sub-
stantially different behaviors even within a group of types that prefer the
same plan. For example, type A, with parameters (μ = 1�00�σ = 0�85�κ1 =
2�63�κ2 = 13�25�β = 0�24), typically has low usage with occasionally very high
usage (think of this user as one that will occasionally watch online video).
Type B, with parameters (μ = 1�00�σ = 0�60�κ1 = 2�63�κ2 = 0�5�β = 0�33),
has typical high usage, a greater probability of reaching high cumulative con-
sumption states, and a quite high usage elasticity. This type can be considered
as someone who regularly watches online video. In contrast, type C, charac-
terized by the vector (μ = 1�25�σ = 0�73�κ1 = 0�50�κ2 = 13�25�β= 0�68), has
a very low probability of reaching high cumulative consumption states and a
relatively low usage elasticity. This type seems to mainly use the broadband
connection for applications that are less data intensive, such as web surfing,
and seems to choose this plan for the greater speed.

To further isolate the role that each parameter has in determining type-
specific behavior, and the moments used in estimation, we consider how per-
turbations of the parameter vector are reflected in the particular moments
we consider. We consider the most common type in our data, (μ = 1�00�σ =
0�60�κ1 = 2�63�κ2 = 0�50�β = 0�33), accounting for over 28% of the popula-
tion. Figure 12 presents the derivative of the CDF of cumulative consump-
tion on the last day of the billing cycle, CT , with respect to μ, κ1, and β.
Figure 13 presents the derivative of optimal consumption on the last day of
the billing cycle, c∗

T (CT−1), for each possible level of cumulative consumption,
CT−1.

For each of the parameters, perturbations result in quite different behav-
ioral responses. An increase in μ results in the entire distribution of cumula-
tive consumption shifting to the right, that is, the CDF is lower at each point,
particularly at low cumulative consumption states. Conversely, an increase in
κ1 shifts the entire distribution to the left, that is, the CDF is greater at each
point, although relatively similarly across the entire distribution. The most in-
teresting response comes when β is increased, which results in a more concen-
trated distribution, that is, the frequency of very low and very high cumulative
consumption states is reduced. Figure 13 shows that perturbations of each of
the parameters has a differing effect on expected consumption conditional on
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FIGURE 12.—Perturbation of parameters, CDF of CT . Note: This figure presents the
derivative of the CDF of cumulative usage on the last day of the billing cycle with re-
spect to each of the type-specific parameters, μ, κ1, and β, for the most common type,
(μ = 1�00�σ = 0�60�κ1 = 2�63�κ2 = 0�50�β = 0�33). The derivative is a function of CT , but since
this is for a single type, there is a one-to-one mapping to CT

Ck
.

reaching a particular cumulative consumption state. Again, κ1 has a moderate
and similar effect on expected consumption regardless of the state. An increase
in β results in decreased usage at all states, while an increase in μ results in
increased usage at all states. The absolute value of these changes is smallest
near the usage allowance.

S.2.5. Grid Density

Our estimates presented in the main text form a densely populated grid of
types. Specifically, for each of the five parameters, we consider seven points of
support for a total of 75 = 16,807 types. This grid was chosen carefully through
extensive experimentation to ensure that the type space we considered was
“centered” over the types that place some value on broadband, and economic
restrictions on the parameters. For example, β is naturally restricted between
zero and 1 by economic theory, while there is a reasonable range of κ1 that is
bounded below by zero and captures an individual’s time cost.

The grid increments in the state space are arbitrary, and so are the num-
ber of moments. On one hand, too fine a grid and the number of observations
available at the various state points becomes too small to compute a mean
or variance (the smoothing across states, we describe above, helps). In addi-
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FIGURE 13.—Perturbation of parameters, expected usage. Note: This figure presents the
derivative of expected consumption conditional on reaching a state on the last day of the billing
cycle with respect to each of the type-specific parameters, μ, κ1, and β, for the most common
type, (μ= 1�00�σ = 0�60�κ1 = 2�63�κ2 = 0�50�β = 0�33).

tion, we cannot increase the density of the grid without severe multicollinear-
ity problems (i.e., types behave too similarly at all states). On the other hand,
too coarse a grid and the aggregation across states means information is lost to
identify the parameters.

To show that our approach performs well even when the density of the grid
of types is substantially reduced, we take the following approach. For each
parameter, we consider the same range of support (minimum and maximum
unchanged), but remove every other point. This leaves four points of sup-
port along each dimension for a total of 1,024 types (45). We then follow the
same steps to estimate weights for each type. We find that 36 types get positive
weight. The top-5 types account for 62% of the mass, the top-10 account for
75%, and the top-20 for 92%.

The estimated distribution is slightly different, but we find the implications
of the type distribution for overall demand are rather similar. To visualize this,
Table X presents average daily usage under the same set of linear tariffs as
Table IV. The largest differences in predicted daily usage occur for the lowest
speeds, while the predictions for higher speeds are quite similar. The similarity
of the results gives us confidence that our approach can be applied in more
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TABLE X

EXPECTED DAILY USAGE UNDER A LINEAR TARIFF, COARSE GRIDa

Speed (Mb/s)

Price ($) 2 Mb/s 14.68 Mb/s 50 Mb/s 100 Mb/s 1,024 Mb/s

0.00 0.45 2.22 2.99 3.37 4.28
(0.005) (0.010) (0.015) (0.018) (0.034)

1.00 0.27 1.26 1.74 1.97 2.57
(0.002) (0.001) (0.005) (0.006) (0.009)

2.00 0.19 0.80 1.06 1.18 1.48
(0.001) (0.002) (0.003) (0.003) (0.004)

3.00 0.14 0.54 0.70 0.77 0.94
(0.001) (0.001) (0.001) (0.001) (0.001)

4.00 0.11 0.39 0.49 0.53 0.63
(0.001) (0.001) (0.001) (0.001) (0.001)

5.00 0.09 0.29 0.36 0.38 0.45
(0.001) (0.001) (0.001) (0.001) (0.001)

aThis table presents the expected daily usage averaged across all subscriber types when facing a linear tariff when
we estimate the model on a coarser grid. It is meant to demonstrate the sensitivity to the choice of grid. Standard
errors, in parentheses, are calculated using a block-resampling methodology as described in the text.

complex and higher-dimensional problems, where a less-dense grid of types is
necessary.
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