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BY WOICIECH OLSZEWSKI AND RON SIEGEL

WE CHOOSE AN EQUILIBRIUM for each contest and refer to the sequence in
which the nth element is the equilibrium of the nth contest as the sequence
of equilibria. For both our theorems, we will show that every subsequence of
this sequence contains a further subsequence that satisfies the statement of the
theorem. This suffices, because the following observation can be applied with
Z, being the set of equilibria of contest #.

Subsequence Property. Given a sequence of sets {Z,:n =1,2,...}, sup-
pose that for every subsequence {Z,, : k =1,2,...}, every sequence {z,, : k =
1,2,...} with z, € Z, contains a subsequence {Z”k/ :1=1,2,...} such that ev-
ery element Zn,, has some property. Then there exists an N such that for every
n> N, every element in Z, has this property.!

S1. PROOF OF THEOREM 1

We begin with an outline of the proof. Given a subsequence of equilibria,
each equilibrium in the subsequence induces for each player a mapping from
bids to expected percentile rankings. We consider the average of those map-
pings, and G~! composed with this average gives a mapping 7" from bids to
prizes. As n increases, this mapping approximates the equilibrium mappings
from bids to prizes of all players in the nth contest. We then use Helly’s (1912)
selection theorem to find a subsequence of 7" that converges to some limit
mapping T from bids to prizes. We show that T is continuous and the subse-
quence of T" converges uniformly to 7. Then, for each agent type, we define
the set of optimal bids when T is treated as an inverse tariff, and define the
correspondence from agent types to sets of optimal bids. We consider a small
neighborhood of the graph of this correspondence and show that for large n,
every player i’s best responses in the nth contest are in the “x7 slice” of this
neighborhood. Such a slice could, in principle, be large, even if the set of opti-
mal bids of the corresponding agent type is small (this would happen if the set
of optimal bids of a nearby agent type is large). We show, however, that under
strict single crossing, each agent type has a single optimal bid, which is contin-
uous and weakly increases in the agent type. This implies that every player’s
best response set and, therefore, the support of her equilibrium strategy, is
bounded within an arbitrarily small interval as n increases. We then conclude

'Otherwise, there would be a sequence {zy, k=1,2,...} with z, € Z, of elements without
the property.
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that the unique mechanism induced by 7" implements the assortative alloca-
tion. This demonstrates part (b) in the statement of the theorem; part (a) then
follows easily.

For the proof, we take the subsequence of equilibria to be the sequence of
equilibria (this simplifies notation and has no effect on the proofs). We denote
the equilibrium of the nth contest by o = (o7, ..., ¢), where o] is player i’s
equilibrium strategy; a strategy of player i is a random variable taking values
in X x B whose marginal distribution on X coincides with the distribution of
player i’s types F!'. By referring to player i bidding with some probability in a
subset S of B, we mean the probability of the set X x S, that is, the probability
of S measured by the marginal distribution of player i’s strategy on B.

We denote by R/(¢) the random variable that is the percentile location of
player i in the ordinal ranking of the players in the nth contest if she bids
slightly above ¢ and the other players employ their equilibrium strategies.> That
is,

1
R} (t) =~ (1 + Z 1(a,gexX[o,t])>,
n k#i
where 1(,cxxp0. 18 1 if o0 € X x [0, ¢] and is 0 otherwise. Let
1
EHOE (1 +) Pr(a} e X x [0, t])>
ksti

be the expected percentile ranking of player i. Then, by Hoeffding’s inequality,
for all ¢ in B, we have

(S1) Pr(|R} (1) — A} ()] > 8) <2exp{—28°(n— 1) }.

Finally, let
n 1 . n
A'(t) = ;ZAi(t)
i=1

be the average of the expected percentiles rankings of the players in the nth
contest if they bid ¢ and the other players employ their equilibrium strategies.

Let 7" be the mapping from bids to prizes induced by A”. That is,
T"(t) = (G")~'(A"(t)), where (G")™'(z) = inf{y : G"(y) > z} for z > 0 and
(G™71(0) = inf{y : G"(y) > 0}. (In words, (G")~!(z) is the prize of an agent
with percentile ranking z when prizes are distributed according to G”".) Since

2This is the infimum of her ranking if she bids above ¢, which is equivalent to bidding ¢ and
winning any ties there. If ties happen with probability 0, then this is equivalent to bidding ¢.
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every T" is (weakly) increasing, by Helly’s (1912) selection theorem for mono-
tone functions, the sequence 7" contains a subsequence that converges point-
wise to a function 7' : B — Y. For the rest of the proof, denote this subsequence
by T".

We first describe some properties of inverse tariff 7'

(i) Inverse tariff T is (weakly) increasing, because every 7" is (weakly) in-
creasing.

(i) We have T'(0) = 0; otherwise players bidding 0 would have profitable
deviations.?

(iii) We have T (by.) = 1, since A"(bnay) = 1 and thus 7" (by.) = 1.

In addition, we will use the following property of discrete contest equilibria.

No-Gap Property. In any equilibrium, there is no interval (a, b) € B of posi-
tive length in which all players bid with probability 0 and some player bids in
[b, bimax] With positive probability.

Proof: Suppose to the contrary and consider such a maximal interval (a, b).
A player would only bid b or slightly higher than b if some other player bids
b with positive probability. But the player who bids b with positive probability
would be better off either by slightly increasing her bid (if another player bids
b and winning the tie leads to a higher prize) or by decreasing her bid (in the
complementary case).

Our first lemma shows that 7T is continuous. (So as not to obscure the struc-
ture of the proof, we relegate the proofs of all lemmas to the end of the sec-
tion.)

LEMMA S1: For any t € B and any sequences q™ 1 t and r'™ |, t in B, we have
lim7T(g™) =lim T (™) =T(¢).

The idea of the proof is that if 7 were discontinuous at some ¢, then for
large n, it would be better to bid slightly above ¢ than slightly below ¢. But if no
player bids slightly below ¢, then by the No-Gap Property, no player bids ¢ or
above.

Continuity and monotonicity of 7" imply the following result.

LEMMA S2: Sequence T" converges to T uniformly on B.

We now relate the inverse tariff 7 to players’ behavior in the equilibria that
correspond to the sequence 7”. Denote by BR, type x’s set of optimal bids
given T, that is, the bids ¢ that maximize U (x, T(¢), t). Denote by BR(¢) the

*Indeed, suppose to the contrary that 7/(0) > 0. This means that for some § > 0 and large
enough n, 4"(0) > G"(0) + 8. Thus, a fraction of at least G"(0) + & players bid 0 in the nth
contest with positive probability. Any one of them would be better off bidding slightly above 0
and winning against all other players who bid 0 than bidding 0 and with positive probability losing
to all other players who bid 0.
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e-neighborhood of the graph of the correspondence that assigns to every type
x the set BR,.* Denote by BR, (¢) the set of bids ¢ such that (x, r) € BR(&).

Note that BR(¢) is a two-dimensional open set, while each BR, (¢) is a one-
dimensional “slice” of BR(¢). Using sets BR, (&), we can characterize players’
equilibrium behavior.

LEMMA S3: For every € > 0, there is an N such that for every n > N, in the
equilibrium of the nth contest, every best response of every type x! of every player i
belongs to BR.x(é).

Strict single crossing implies several properties of BR,.

LEMMA S4: For every x, the set BR, is a singleton. In addition, the function br
that assigns to x the single element of BR, is continuous and weakly increasing.

Lemma S4 implies that for every ¢ > 0, there is a 6 > 0 such that BR,(6) C
[br(x) — &, br(x) + £] for every type x. We therefore have the following corol-
lary of Lemmas S3 and S4.

COROLLARY S1: Forevery € > 0, thereis an N such that for every n > N, in the
equilibrium of the nth contest, every best response of every type x of every player i
belongs to (br(x}) — &,br(x!) + ).

To prove part (b) of the theorem, we need to show that T o br is the assorta-
tive allocation. This is done by the following lemma.

LEMMA S5: We have G~'(F(x)) = T(br(x)) for all types x.

Thus, the mechanism that prescribes for type x prize 7'(br(x)) and bid br(x)
is a tariff mechanism that implements the assortative allocation. Moreover,
every type can get at least 0 by bidding 0, and type 0 gets no more than 0
(because T'(br(0)) =0).

To complete the proof, it remains to show part (a) of the theorem. In
short, this part follows from Corollary S1 and Hoeffding’s inequality (see Sec-
tion S1.6).

S1.1. Proof of Lemma S1

Suppose first that the lemma is false for some ¢ € (0, b,.x] and g™ 1 ¢. Let
y =1limT(¢™) and y” = T(¢) (the limit exists by the monotonicity of T), and
let y=(0"-y)/2.

“That is, BR(¢) is the union over all types x and bids ¢ € BR, of the open balls of radius &
centered at (x, ).
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Suppose that U(0, y, t) strictly increases in y. (Recall that we assumed
U(x, y,t) strictly increases in y only for x > 0.) Then, by uniform continuity
of U, there exist §, A > 0 such that every type x gains at least A from obtaining
a prize higher by vy at a bid higher by 6. More precisely,

(S2) Ux,y+v,t+8) —U(x,y,t)>A

for all x, y, and ¢ such that y + y and ¢ + & belong to the domain of U. This
implies, as U is bounded, that every type x strictly prefers bidding ¢ + 6 and
obtaining with sufficiently high probability a prize sufficiently close to y + vy
to bidding ¢ and obtaining with sufficiently high probability a prize sufficiently
close to y, independently of the prizes obtained with the remaining probability.

Choose ¢ = g™ such that t — ¢ < 6. Next, choose n large enough so that
|T"(t) — T(t)] < y/2 and |T"(¢') — T(¢')| < y/2. This implies that 7"(t) —
T"(s) > yforanybid s <¢.

By choosing n large enough, we guarantee (see (S1), which applies uniformly
to all bids) that R’ (s), the percentile ranking of player i who bids s in the nth
contest, is close to A" (s) with high probability, and R/ (¢) is close to 4" (¢) with
high probability. Thus, every type x obtains a prize sufficiently close to 7" (¢)
with a sufficiently high probability by bidding (slightly above) ¢, and obtains
a prize that is with a sufficiently high probability at most slightly higher than
T"(¢') by bidding (slightly above) any s < #'.> Therefore, because ¢ — ' < 8,
no player bids any s € (¢ — 8, #'] with positive probability, so by the No-Gap
Property, T"(¢') =1. But 7"(¢') - T(¢') <y < y” <1, a contradiction.

When U (0, y, ¢) only weakly increases in y, the argument above shows that
for any ¢ > 0, there exist §, A > 0 for which (S2) holds for every type x € [e, 1].
There also exists ' = ¢” such that t — ¢ < 6 and T"(¢t) — T"(¢') > 3y/2 for
large enough n. Letting ¢ = inf{s: T"(s) = T"(¢) — v} € (¢, t], we see that only
players with types lower than & can bid in [#, ¢”). Thus, for small enough &
(by continuity of G~ and convergence of (G")~! to G™!), to increase T"(¢') to
T"(¢') + v/2, multiple players with types & or higher must bid ¢ with positive
probability and, therefore, tie there. But then any one of these players could
profitably deviate to bidding slightly above ¢”.°

The argument is analogous if we suppose that the lemma is false for some
t € (0,bna) and ™ | t. If t = 0, then the above proof shows that for large #,
no player bids ¢ = 0 with positive probability. This means, in turn, that suffi-
ciently small bids give lower payoffs than ¢ = r” such that ¢ — ¢t < §. Thus,
no player bids close to ¢ = 0 with positive probability, which contradicts the
No-Gap Property.

SFor t = by, bidding “slightly above by, is impossible. But by bidding by, a player wins
with probability 1, because by, is strictly dominated by 0 for all players.

By doing so, such a player would obtain with high probability a prize of at least T"(¢') + y/2
instead of losing the tie with positive probability and then obtaining with high probability a prize
of at most 7"(t') + &.
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S1.2. Proof of Lemma S2

Suppose to the contrary. Then there is some 6 > 0 and a sequence of integers
ni, Ny, ... such that for every ny, there is some bid #, with |77 (#,) — T'(#)| > 6.
Passing to a subsequence if necessary, we assume that ¢, — f.

Consider numbers ¢’ and g” such that ¢ <t <q” and T(q") — T(q') < 6/2;
such numbers exist because T is continuous.” For large enough values of k, we
have that |7 (q') — T(q')| < 6/2 and |T"(q") — T(q")| < 8/2.

For any ¢’ € [¢/, q"], either (a) T"«(¢') > T(¢') or (b) T (¢') < T(?').

By monotonicity of 7 and 7", we have

() =T(() =T"(¢") - T(q)
=[T(@") = T(¢)|+T(¢") - T(a)] <&
in case (a) and
T()-T"(1) =T(q") = T"(q)

<[T(¢") - T(q)

() = T"(q)

in case (b).
Since #, € [q, q"] for large enough k, we obtain a contradiction to the as-
sumption that |77 (t,) — T (t;)| > 6 for all such k.

S1.3. Proof of Lemma S3

Suppose to the contrary that for arbitrarily large #, in the equilibrium of the
nth contest, some type x of some player i has a best response that belongs to
the complement of BR,» (&). Passing to a convergent subsequence if necessary,
we assume that x7 — x*.

Note that for every x, there is a 6, > 0 such that (under the inverse tariff)
any bid from the complement of BR, (¢) gives type x a payoff lower by at least
8, than any element of BR, does. Let 6 =§,.

We have the following observations:

(1) The maximal payoff of type x, attained at any bid from BR,, is continuous
in x.

This follows from Berge’s theorem.

(ii) For every p > 0, for sufficiently large n, the highest payoff that type
x? can obtain by bidding in the complement of BR,: (&) cannot exceed by p
the highest payoff that type x* can obtain by bidding in the complement of
BR.,-(&).

Indeed, suppose that for a sequence n; diverging to oo, type x;* obtains by
bidding some #; in the complement of BR # (&) a payoff at least p higher than

ft=0,set ¢ =0, and if = bpay, S€t " = bpnax.
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the highest payoff that type x* can obtain by bidding in the complement of
BR,:(&). Passing to a convergent subsequence if necessary, we assume that
fy — t. Since every (x;*, 1) belongs to the complement of BR(e), so does
(x*, t); thus, (x*, t) belongs to the complement of BR .« (&). However, by conti-
nuity of the payoff functions, bidding ¢ gives type x* a payoff by at least p higher
than the highest payoff that type x* can obtain by bidding in the complement
of BR«(&), a contradiction.

By observations (i) and (ii), for sufficiently large n, any bid in the comple-
ment of BR,»(¢) gives type x} a payoff lower by at least §/2 than any bid in
BR,. Indeed by observation (11) applied to p = 6/4, any bid in the comple-
ment of BR,» n(&) glves type x! a payoff at most /4 higher than the highest
payoff that type X* can obtain by bidding in the complement of BR,:(&). This
last payoff is, in turn, lower than the payoff that type x* obtains by bidding in
BR,- by at least 6. And by observation (i), the payoff that type x! obtains by
bidding in BR,» cannot be lower by more than 5/4 than the payoff ‘that type x*
obtains by blddmg in BR,-.

By uniform convergence of 7" to T, the analogous statement, with §/2 re-
placed with some smaller positive number and 7 replaced with 7", is also true.
This means, however, that for sufficiently large n, player i would be strictly bet-
ter off bidding slightly above any bid in BR,» when her type is x than bidding
in the complement of BR,»(&). This is because (S1) implies that for sufficiently
large n, by bidding shghtly above ¢, the player obtains a prize arbitrarily close
to 7" (t) with probability arbitrarily close to 1.

S1.4. Proof of Lemma S4

Observe that for any x’ < x”, strict single crossing implies that if ¥ € BR,,
and t" € BR,/, then ¢ < ¢”. Suppose that BR,, contained two bids, # < t,, for
some type x. The first observation and Lemma S3 imply that for any 0 < ¢ <
(t, — t1)/4, for sufficiently large n, only players with types in I = [max{x’ —
g, 0}, min{x’ + £, 1}] may bid in the interval [#, + (&, — t,) /4, t, — (&, — 1) /4].

Consider obtaining a prize that is A higher in the limit prize distribution®
by increasing the bid from ¢, + (&, — #;) /4 to t, — (&, — t;) /2. If A is sufficiently
small, then by continuity of G~!, the increase in the prize is small as well, so the
associated increment in utility is negative for all types and uniformly bounded
away from 0.

Therefore, taking A/2 = F(min{x' 4+ ¢, 1}) — F(max{x' — &,0}), if ¢ > 0 is
sufficiently small, then for sufficiently large n, every type of every player is
better off bidding # + (¢, — #,)/4 than bidding £, — (¢, — #;)/2. This is because
with high probability, the higher bid leads to a prize that is approximately only

8More precisely, given an initial prize y’, the prize that is A higher in the limit prize distribution
is the prize y” such that A = G(y") — G()'). The prize that is A higher in the prize distribution
G" is defined similarly.
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A/2 higher in the prize distribution G".° By convergence of (G")™! to (G)7!,
for sufficiently large n, this prize is not much more than A/2 higher in the limit
prize distribution.

Moreover, every type of every player is better off bidding # + (#, — t,)/4
than bidding any bid in interval (£, — (t, — 4,)/2, t, — (&, — t;)/4), because such
bids are even more costly than ¢, — (, — #;)/2, and enable a player to obtain a
prize that is with high probability not much more than A/2 higher in the limit
prize distribution than the prize the player obtains by bidding #, — (©, — #;)/2.
Therefore, no player bids in the interval ((t, — (&, — 1)/2, 6, — (& — t1)/4))
with positive probability, so by the No-Gap Property, T7"(t, — (&, — 4)/4) =1
for sufficiently large n. Thus, T(t, — (t, — t;)/4) =1, so &, cannot be in BR,,
because bidding slightly above £, — (, — ;) /4 gives type x a higher payoff.

Consequently, BR, is a singleton for any x, and by strict single crossing, br is
weakly increasing. An argument analogous to the argument used to show that
BR is a singleton also shows that br is continuous.™

S1.5. Proof of Lemma S5

Consider an arbitrary type x. Let x™" = min{z : br(z) = br(x)} and x™* =
max{z : br(z) = br(x)} (x™" and x™> are well defined because br is continu-
ous).

First, observe that G~!(F(x™")) = G~1(F(x™>)). Indeed, by Corollary S1,
for sufficiently large n, all types in the interval [x™", x™*] bid in the nth contest
close to br(x). Suppose that G~'(F(x™")) < G~1(F(x™)), and consider the
players whose types belong to [x™", x™*] with positive probability."! Among
these players, the one whose expected prize is the lowest contingent on having
a type in this interval can profitably deviate to bidding slightly above br(x),
thereby outbidding the other players with a type in this interval and obtaining
a discretely higher prize.

Suppose that x™" > (. By Corollary S1 for any & > 0, there is an N such
that if n > N, then the equilibrium bids of every player with type lower than
x™in — § are lower than br(x™"), and the equilibrium bids of every player with
type higher than x™" are higher than br(x™" — §). Therefore, a player who bids
br(x™") outbids all players with types lower than x™" — §, so T"(br(x™")) >

9This follows from the convergence of F" to F and Hoeffding’s inequality applied to random
variables:

g _ = 1 ifmin{?c’ +¢,1} <x7 <max{x' — &, 0},
' 0 otherwise,

fori=1,...,n.

19More precisely, suppose that br is discontinuous at some x, and apply the argument to ¢, =
br(x;) and #, = br(x,), where x; and x, are slightly lower and higher, respectively, than x.

"For large n, at least a fraction of players close to F(x™*) — F(x™") have types that belong to
[x™in ) xMaX] with positive probability.



LARGE CONTESTS 9

(GM)~1(F"(x™n — §)), and a player who bids br(x™" — §) is outbid by all
players with types higher than x™", so 7"(br(x™" — §)) < (G")~L(F"(x™)).
Since T" converges to T, T and br are continuous, (G")~! converges to (G™!),
F" converges to F, and F and G™! are continuous, we obtain T'(br(x™")) =
G—I(F(xmin)).

Similarly, if x™ < 1, we obtain that 7'(br(x™>)) = G~} (F (x™)).

Thus, since br(x) = br(x™") = br(x™) and G~'(F(x)) = G 1(F(x™")) =
G Y (F(x™>)), we have that T(br(x)) = G '(F(x)) when x™" > 0 or
x™™ < 1, Finally, it cannot be that x™" = 0 and x™* = 1, because 0 =
G Y(F0) <G Y(F1)=1.

S1.6. Proof of Theorem 1(a)

Consider a type x € X. Let t =br(x), and let ¢ and ¢’ be such that T(¢') =
T(t)—e/3and T(t") = T(t)+ /3. Finally, let x’ and x” be such that # = br(x’)
and " =br(x"). (Take x’ =0 and ¥ =0 if T(¢) — ¢/3 <0, and x" =1 and
t"=br(1)if T(t)+¢&/3>1.)

By Lemma S3, for sufficiently large n, every player with type no higher than
x" bids less than the player with type x, and every player with type no lower
than x” bids more than the player with type x. By Hoeffding’s inequality, the
player of type x outbids with high probability at least a fraction of players close
to F"(x').

Since F” converges to F, she outbids with high probability at least a fraction
of players close to F(x’). So, since (G")~! converges to G, she obtains (with
high probability) a prize no lower than G-'(F(x')) — &/3 = T(t) — 2¢/3. Simi-
larly, for sufficiently large n, a player of type x outbids with high probability at
most a fraction of players close to F(x"), and so she obtains (with high prob-
ability) a prize no higher than G~'(F(x")) = T(t) + 2¢/3. (These bounds are
immediate if y — £/2 < 0 or if y + ¢/2 > 1.) Thus, type x obtains (with high
probability) a prize that differs from G~'(F(x)) by at most 2&/3.

This proves part (a) for a single x, but we must show that there is an N such
that for any n > N, part (a) holds for all x simultaneously. Such an N can be
obtained by taking a finite grid of types x and the corresponding grid of bids
br(x) such that |T(¢') — T(#*)| < /3 for any pair of neighboring elements ¢!,
t* of the grid, and taking the largest N among the N’s corresponding to x’s
from the grid.

S2. PROOF OF THEOREM 2

Recall that G7!(z) = inf{y : G(y) > z} for z > 0 and G~!(0) = inf{y :
G(y) > 0}, and note that G~' may be discontinuous (but is left-continuous).
Discontinuities require modifying almost all the arguments used in the proof
of Theorem 1. As in Section S1, we relegate to the end of the section the proofs
of all intermediate results.
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Let [y = (y(’), yi) be a longest interval in [0, G~'(1)] to which G assigns mea-
sure 0, let I; = (y!, y*) be a longest such interval disjoint from I;, and so on.
Then every open interval of prizes that has measure zero is contained in one
of the intervals Iy, I, ..., and for any ¢ > 0, there is a K such that the lengths
of Ixi1, Ixia, ... sum to less than e.

The definitions of R}, A”, A", and T" are as in Section S1. The definition
of T, however, must be changed. First, by Helly’s selection theorem, we take
a converging subsequence of the sequence A"; denote its limit by A : B —
[0, 1]. This function is weakly increasing (because each A" is). For the rest of
the proof, denote this converging subsequence by A" (with the corresponding
sequence 7" = (G") ' o A").

Let T =G o A. Since G may not have full support, we now have that
T(0) =inf{z: G(z) > 0} and T (bn.) = G~'(1); in addition, T is still (weakly)
increasing (compare to properties (i)—(iii) from Section S1).

In addition, F" converges pointwise to F, but (G")~! may not converge
pointwise to G~1. It is, however, easy to check that lim,(G")~'(r) = G~!(r) un-
less r is the value of G on an interval I, = (yi, y¥); moreover, lim,(G")~'(r) >
G~(r) for every r that is the value of G on an interval I, = (y., y*), but it can
happen that lim,(G")~"'(r) = y¥ and G~(r) = yi.

The discontinuities in G~! imply that T’ may not be continuous, so Lemma S1
does not hold. Points of discontinuity, however, correspond to open intervals
of prizes that have measure zero. More precisely, we have the following result.

LEMMA S6: For any t > 0 in B, one of the following conditions holds:

1. Mapping T is continuous at t, that is, for any sequences q™ 1 t and r" | t,
we have lim T (g") =lim T (r™) = T (¢).

2. There is some k = 1,2, ... such that for any sequences q" t t and r" | t,
we have im T'(¢™) = yi and im T (r™) = y}. Moreover, lim A(q™) = G(y.) and
lim A(r™) = G(y}).

Using Lemma S6, we define another function 7* on B by setting 7*(¢) =
lim 7'(r) for some sequence r |, ¢ (and T*(bna) = G~'(1)). The monotonicity
of T guarantees that 7*(¢) is well defined. In addition, it is easy to check that
T+ is (weakly) increasing, right-continuous, and continuous at every bid ¢ such
that condition (i) from Lemma S6 holds. Note that 7* may not be an extension
of T, because when lim T'(r) ## T (t), we have that T*(¢) =lim T (r) # T(t).

Consider now a bid ¢ > 0 such that condition (ii) from Lemma S6 holds.
Denote this bid ¢ by #,, where & is described in condition (ii). Then there is a bid
t' <t such that A(#') = A(¢t) = G(y}), s0 A is constant on an interval below #.
Indeed, if A(#') < G(y}) for all #' < f, then, as in the proof of Lemma S6, for
large n, no player would bid any ¢’ slightly below #,. This would be so, because
bidding slightly above f#, would almost certainly give a prize no lower than yy,
whereas bidding # would almost certainly give a prize no higher than y!. Let

f,=inf{r : A(t) = G(y)} < &
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It is also true that every maximal interval on which T* is constant with a
value lower than G~!(1) is [#, #;) for some k. Indeed, consider a maximal
nontrivial interval with lower bound # and upper bound #* on which the value
of T* is y < G7'(1). It suffices to show that 7T*(t*) > y, because then condi-
tion (ii) from Lemma S6 applies to #*, which implies that #* = ¢, for some k,
and the maximality of [¢/, *) yields ¢/ = t.. Suppose that T*(t*) = y. Then,
for large enough 7, bidding #* almost certainly gives a prize at most slightly
higher than y, whereas bidding slightly above ¢ almost certainly gives a prize
not much lower than y. But then, for large enough #, no player bids in some
neighborhood of ¢, because bidding slightly above # leads to a higher payoff.
This contradicts the No-Gap Property, because y < G~!(1).

Because G~! may be discontinuous, 7" need not converge uniformly to 7 or
T*, even on the set of points at which they are continuous. In particular, for
ate [t,l(, f), it may be that 7"(t) = (G") ' (A"(¢)) > y} for arbitrarily large n,
whereas T'(t) = T*(t) = y,. Nevertheless, 7" “converges uniformly” except on
some neighborhoods of a finite number of intervals [t,i, t.]. More precisely, we
say that T" converges uniformly to T* up to B on a set C if there exists an N
such that for every n > N and ¢ € C, we have that

|T"(t) — T*(1)| < B.
We then have the following modification of Lemma S2.

LEMMA S7: Forevery B > 0, there exists a number K such that for every y > 0,
T" converges uniformly to T* up to B on the complement of

K
OY U ) tk + ’)/
k=1

We now relate players’ equilibrium behavior in large contests to the inverse
tariff 7*. Define BR,, BR(¢), and BR, (&) as in Section S1, with 7* instead of T
(the maximal payoff is achieved because T* is increasing and right-continuous,
so is upper semicontinuous). Define the mass expended (in the nth contest) in
an interval of bids I by players with type x € S as (}_;_ Pr(a? € S x I))/n. We
then have the following result, which we use in proving the remaining results.

LEMMA S8: For all k, and any ¢ > 0 and L > 0, there exists -y > 0 such that

for sufficiently large n, we have that the following statements hold:
(i) The mass expended in (t. — v, t. + ) by players with types x for which

1t ¢ BR, (&) is less than &/3L.

(ii) The mass expended in (t, — vy, t;] by players with types x for which t, ¢
BR, (&) is less than ¢/3L.

(iii) In addition, for any a > 0, for sufficiently large n, we have that the mass
expended in [t;, + a, t, — ] by all players is less than &/3L.
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Lemma S3 must also be modified.

LEMMA S9: For every & > 0, there exist K such that for every y > 0, there is
an N such that for every n > N in the equilibrium of the nth contest, every best
response of every type x'! of every player i belongs to

K
BR,: () U| (1t — 7. t).-
k=1

Strict single crossing no longer implies that BR, is a singleton. Instead, we
have the following result.

LEMMA S10: If strict single crossing holds, then for all but a countable number
of types, the set BR, is a singleton. For those types for which it is not a singleton,
BR, contains precisely two elements: t. and t, for some k. The correspondence
that assigns to type x the set BR, is weakly increasing (i.e., for any x' < x", if
t' € BRy and t" € BRy, then t' < t") and upper hemicontinuous.

Let br(x) = min BR,, and note that br is increasing and left-continuous, and
is not right-continuous precisely at types x for which BR, is not a singleton.
We then have the following corollary of Lemmas S8, S9, and S10, which is a
modification of Corollary S1.

COROLLARY S2: For every € > 0, there is an N such that for n > N, at least a
fraction 1 — ¢ of players i bid in (br(x") — &, br(x") + &) with probability at least
1—e.

To prove part (b) of the theorem, it remains to show that 7 o br is the assor-
tative allocation. This is done by the following lemma, which is a modification
of Lemma S5 that accommodates the discontinuities in 7* and br.

LEMMA S11: We have G~'(F(x)) = T*(br(x)) for any type x > 0.

To complete the proof, it remains to show (a) in the statement of the theo-
rem. To do so, we use the following result.

LEMMA S12: For every &, 6 > 0, there is an N such that for n > N, each type
x from a set whose F" measure is at least 1 — ¢ bids a t with probability at least
1 — &, and obtains a y with probability at least 1 — & such that for some r in BR,,

|t—r| <6 and |y— T*(r)| < 4.
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To see that Lemma S12 implies (a) in the statement of the theorem, choose
some ¢ > (. Lemma S12 shows that for every 6 > 0, there is an N such that
for n > N and for a fraction 1 — ¢ of players i, the F"" measure of their types
x” that satisfy the condition of Lemma S12 is at least (1 — ¢). This means that
each such player i obtains with probability at least 1 — ¢ a prize y that differs
by at most 6 from the prize T*(r) for some optimal bid r of the player’s type.
For types x7 > 0 such that br(x}) is a unique optimal bid, this yields (a) by
Lemma S11. However, by Lemma S9 and strict single crossing, there is only
a countable number of other types x”, and the F' measure of such types is 0
since F has no atoms, so the F" measure of such types is arbitrarily small for
sufficiently large n.

S2.1. Proof of Lemma S6

LetlimT(g™) =y and lim T'(+™) = y”. Both limits y’ and y” exist, and y’ < y”
by monotonicity. Suppose that y' < y”. If G assigns a positive measure to
(¥, y"), then it assigns a positive measure to any interval with endpoints suf-
ficiently close to y' and y”. In such a case, we obtain a contradiction by argu-
ments similar to those used in the proof of Lemma S1. Indeed, for sufficiently
large n, no bidder would bid slightly below ¢, because bidding slightly above ¢
would almost certainly give a better prize.

Thus, G assigns measure zero to (), ¥”). This implies that (y', y") € ( y,’(, ve)
for some k. By definition, T takes values in [0, y;] U [y¥, 1], so y' = y; and
y" = yi'. Moreover, the monotonicity of 7 implies that k is the same for any
sequences g™ 1 ¢ and r™ | t. It remains to show that lim A(¢™) = G(y!) and
lim A(r™) = G(yY).

For this, note that if lim A(¢™) > G(y,), then lim T'(¢") > y;. Similarly, if
lim A(r™) > G(y}'), then lim T'(+™) > y¥. The inequalities lim A(g™) < G(y})
and lim A(r"") < G(y;) can be ruled out similarly if G does not have atoms
at y; or y“. Suppose that G has an atom at y} and lim A(r™) < G(y}'). Since
lim 7 (r™) = y¥, A(r™) > G(y!) for sufficiently large m. Take two numbers ™
such that G( y,’() < A(r") < G(y); denote them by ¢’ < t”. Then, for sufficiently
large n, any player obtains a prize close to y; with arbitrarily high probability by
bidding any ¢ € [¢', ¢"]. Thus, for sufficiently large 7, no player would bid in the
interval [(# + ¢")/2, t”"] with positive probability. This contradicts the No-Gap
Property.

Suppose that G has an atom at y., and lim 4(¢™) < G(y.). Then, for suffi-
ciently large n, bidding ¢ almost certainly gives a prize at most slightly better
than y;. In contrast, bidding r™ almost certainly gives a prize at least as good
as y;. This follows directly from (S1) if G has an atom at y;'. If G does not,
then this again follows from (S1) for large enough n, because A(r™) > G(y;)
for any m. For large enough 7, a contradiction with the No-Gap Property is
obtained similarly to the last part of the proof of Lemma S1 that deals with
U (0, y, t) strictly increasing in y.
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S2.2. Proof of Lemma S7

The proof is analogous to the proof of Lemma S2. Take a K such that
the lengths of Iy, Ix,... sum up to less than B/2. Take any vy > 0, and
suppose to the contrary that there is an increasing sequence of integers
Ny, Ny, ..., Ny, ... such that for every n,, there is some bid ¢, ¢ O, with
| T (t,) — T*(t,)| > B. Passing to a subsequence if necessary, we assume that
the sequence ¢,, — t. Take ¢’ and ¢” such that ¢’ < t < q¢"and T*(q") - T*(q') <
B/2,? and

K
l4.q"]cB=J[4% 4]
k=1

This is possible, since the lengths of Ix.;, Ix.s,... sum to less than B/2.
In addition, for large enough &, we have that |7 (q") — T*(q')| < B/2 and
T (q") — T*(q")| < B/2, since the length of each Iy, Ik, ... is less than
B/2. The rest of the proof coincides with the proof of Lemma S2.

S2.3. Proof of Lemma S8

First, observe that the maximal payoff of type x, attained at any bid in BR,,
is still continuous in x. Indeed, upper semicontinuity of 7* is all that is needed
for the continuity of the maximal payoff. This observation implies that there
exists a 6 > 0 such that for any type x, any bid in the complement of BR, (&)
gives type x a payoff lower by at least 6 than any bid in BR,.

For (i), suppose to the contrary that for any y > 0, there are arbitrarily large
n such that the mass expended in (#, — v, . + ) by players with types x for
which 7/ ¢ BR,(¢) is at least ¢/3L. Take y small enough so that the payoff that
such players obtain by bidding slightly more than any bid in BR, is higher by
/2 than the payoff that they would obtain by bidding #; — y and getting y.."

Suppose first that ¢, > 0. By monotonicity of A4 and the definition of 7, we
have that A(z, — y) < G(y.). Take a positive @ < £/6L such that A(z, —y) <
G(y.) — a. For any ¢ > ¢! — vy and sufficiently large n, if A"(t) < G(y}) — a/2,
then no player of type x such that 7, ¢ BR,(¢) bids ¢, because by bidding ¢,
such a player would obtain with high probability a prize no higher than y; and,

21f t =0, take ¢’ = 0.

3To see why bidding slightly above any ¢ € BR, gives at least a payoff close to U(x, T*(t), t),
consider the following two cases:

(a) We have G™'(A(r)) > T*(¢) for all r > ¢: In this case, since lim, (G") ™' (A(r)) = G~ (A(r))
for any r > t, if n is sufficiently large, then (G")™'(A(r)) > T*(¢). This implies that a player
obtains a prize higher than 7*(¢) with arbitrarily high probability by bidding .

(b) We have G~1(A(r)) = T*(¢) for r > ¢ close enough to ¢: In this case, T*(r) = T*(¢) for all
such r. This implies that ¢ = ¢, for some k’. The claim now follows from left continuity of G~
and the fact that lim,(G")™'(q) > G~'(q) for any q.
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therefore, would obtain a higher payoff by bidding slightly more than any bid
in BR,.

Let vy, be defined by 7, — v, = inf{r: A"(t) > G(y.) — a}. Since A(t;, —y) <
G(yi) — a and A"(¢) is right-continuous, we have that vy, < y (for sufficiently
large n). And since for every ¢ < . — v,, we have A"(t) < G(y.) — a/2 (by
definition of v,), players with types x for which #, ¢ BR, (&) must expend the
mass of at least &/3L in [£, — vy,, f + ).

If more than half of this mass is expended in (t,l{ — Vs t,i + 7v), then we have
that A"(t, +7y) > A"(t. —v,)+¢&/6L > G(y,) —a+¢&/6L > G(y.). This cannot
happen for sufficiently large n, because for ¢ € [t,l{, t), we have A(t) = G( y,l{).
Thus, the players with types x for which ¢, ¢ BR,(¢) bid precisely ¢, — vy, with
probability at least £/6L. Since these players tie with each other at 7, — v,, by
bidding #, — v,, they must obtain a prize of a specific type y with probability 1,
even if they lose all ties at t,’c — v,. (Otherwise, each of them could obtain a
higher payoff by bidding slightly above ¢, — y + v, and winning the ties at
1 — y,.) But a player who loses all ties at ¢, — vy, has rank order no higher
than G(y,) — a, by definition of v,, so y < y;. Therefore, such a player would
obtain a strictly higher payoff by bidding slightly more than any bid in BR,.

Now suppose that # = 0. Then A(#,) < G(y;). The case A(t) < G(y.) is
handled as in the case 7, > 0 above. Suppose that A(#l) = G(y!). Then, for
any y > 0 such that ¢, + vy < #, for sufficiently large n, the mass expended
in (z;, ¢, + v) by all players is smaller than /6L, because A(¢) = G(y}) for
any ¢ € (£ + v, ). Thus, if (i) does not hold, for sufficiently large n, the mass
expended precisely at #, by the players with types x for which #, ¢ BR,(¢) is at
least /6L, and so the ranking of a player who ties at 7, and loses is at most
G(y,) — &/12L. But in this case, each player of type x for which #, ¢ BR,(¢&)
would strictly prefer bidding slightly more than any bid in BR, to bidding .,
a contradiction.

To show (ii), note that if #, = ¢, for some k', then (ii) follows from (i). Thus,
suppose that #, # ., for any k’. Suppose to the contrary that for any y > 0,
there is an arbitrarily large n such that the mass expended in (#; — v, #] by
players with types x for which #, ¢ BR,(¢) is atleast ¢/3L. Take y small enough
so that the payoff that such players obtain by bidding slightly more than any
bid in BR, is higher by §/2 than the payoff that they would obtain by bidding
1, — v and getting y¢. Observe that for sufficiently large n, by bidding #, any
player almost certainly obtains a prize at most slightly better than 7*(#) = y}'.
This is so, because #; # t;, and so A(#) # G(y.,) for any k'. Therefore, for
large enough n, a player with type x for which ¢, ¢ BR, (&) would be better off
bidding slightly above any ¢ € BR, than bidding in (#; — v, #].

Part (iii) follows immediately from the fact that the value of A on [z}, #;) is
G(y.), by the definition of #.
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S2.4. Proof of Lemma S9

Take a 6 > 0 such that for any type x, any bid in the complement of BR, (&)
gives type x a payoff lower by at least 6 than any bid in BR,. Take 8 > 0 such
that for any type x, bid ¢, and prizes y’ and y” with |y’ — y”| < B, we have

(ST Y]

[U(x,y', 1) = U(x, ', 1)| <

Next, take a K guaranteed by Lemma S7 for this 8. In addition, take K large
enough so the lengths of I, Ik, ... sum to less than B/2. Finally, for any
A > 0, take an N, that satisfies the definition of uniform convergence up to 8
on the complement of O,. (Note that K is the same for all A.)

Suppose, to the contrary of the statement of the lemma, that thereisa y > 0
and a subsequence of contests such that a type x” of player i in the nth contest
has a best response ¢” to the strategies of the other players that does not belong
to BRx;z (&)U Ule (t,’( — v, t). As usual, we assume that the subsequence is the
entire sequence; moreover, we assume that x7 — x* and " — ¢*.

Consider the following two cases:

A. We have t* # 1, for any k =1,..., K: In this case, for some A > 0, there
is a neighborhood of #* that is disjoint from O,. By uniform convergence of 7"
to 7* up to B on the complement of O,,

Ux], T"(t"), t") = U(x}, T*(1"),1") <

W| ™

for n > N,. And because 1" ¢ BR.x(e), for any ¢ € BR,», we have

U(x?, T*(t), 1) = U(x?, T*(¢"), 1") = 6.
Thus, we obtain

U T (0, 0) = U, T (), 1) 2 5

Observe that any bid ¢ higher than ¢ guarantees, for sufficiently large 7, a
prize not much worse than 7*(¢) with arbitrarily high probability.'*

We will now show that by bidding #*, for sufficiently high n, type x7 obtains
with arbitrarily high probability a prize no better than 7" (#") + 8. Indeed, since
t* does not belong to [z., ;] for any k < K, we have that A(#') is bounded away
from G(y!), ..., G(y%) for ¢ sufficiently close to ¢*. Therefore, A"(¢") is also
bounded away from G(y!), ..., G(y%) for sufficiently large n. And for suffi-
ciently large n, bidding ¢* gives with arbitrarily high probability a rank order
arbitrarily close to 4”(¢"). Since the lengths of Ik, Ik, ... sum to less than

4To see why, see the previous footnote.
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B/2, and for any r other than G(y!), ..., G( y}() and sufficiently large » the dif-
ference between (G")~'(r) and G~'(r) is no larger than the length of Ix,,, by
bidding ", a player obtains with arbitrarily high probability a prize no better
than (G")~'(A"(t")) + B.

Therefore, by definition of 8, we have that by bidding ¢, type x! obtains a
payoff that is higher than U (x?, T"(¢"), t") by at most slightly more than &/3.
Consequently, for sufficiently large n, player i would obtain by bidding some
t' > t a payoff strictly higher than by bidding #*, a contradiction.

B. We have #* = ¢, forsome k =1, ..., K: Then consider a #** slightly higher
than #*, such that #* does not belong to [t,’(, t]fork=1,..., K, and such that
(i) for sufficiently large n, the payoff (of any player) in the nth contest of bid-
ding #* is not much lower than the payoff of bidding ¢*; (ii) for sufficiently
large n, we have that the difference between U (x}, T*(¢), t) for any ¢ in BR,»
and U (x?, T*(¢*), t**) is not much lower than §. This latter condition is possi-
ble because, by definition, (x*, *) ¢ BR(&), and by right continuity of 7* at ¢*.
Now, using (ii), apply an argument analogous to that from case A with #* play-
ing the role of #", with a contradiction obtained by referring to (i).

S2.5. Proof of Lemma S10

Monotonicity of the correspondence follows from strict single crossing; up-
per hemicontinuity follows from standard arguments.'

Suppose that BR, contains a pair of bids #; < £,. Below we will show that
for any ¢ > 0 and any interval [a, b] such that #; < a and b < 1,, for sufficiently
large n, the mass expended in [a, b] by all players is at most . This implies
that the function A, and therefore 7%, is constant on every such interval [a, b]
and, therefore, on (#, t,). But T*(#,) > T*(,) because , < t, are in BR,, so by
definition of the discontinuity points #; of 7*, we must have (¢, t,) C (t,l{, t,) for
some k. And because BR, € B\ U ;> (., ), we have that t, = ¢, and t, = t;.

It remains to show that for any ¢ > 0, for sufficiently large », the mass ex-
pended in [a, b] by all players is at most €. We will show this for £/2 and play-
ers of types lower than x (a similar argument applies to types higher than x).
Choose x' < x such that F(x) — F(x') < &/3. For sufficiently small A > 0,
suplJ,.BR:(A) < a. (This is because x’ < x and #, € BR,, so every bid in
BR, is at most #, < a.)

Therefore, by Lemma S9, there is some K such that for every v > 0 and
sufficiently large n, any bid in [a, b] made by a player of type z < x’ in the
nth contest is in Uf:l(t,’c — v, t;). Consider one of these K intervals for which
(t,’( —v, ty) N[a, bl #¥. Since sup | J,_, BR.(A) < a < #,  isnot in BR,(A) for
any z < x". If £, > sup U, BR:(A), then by (i) of Lemma S8, there exists a y
such that for sufficiently large n, the mass expended in (7, — v, ;) by players of

5More precisely, this follows from the fact that BR, is the set of all ¢ such that (¢, T*(¢))
maximizes type x’s utility over the closure of the graph of 7, which is a compact set.
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type z < x' is less than £/6K. If ¢, <sup|J,_, BR.(A), then by (ii) and (iii) of
Lemma S8, for sufficiently large n, the mass expended in [a, t;) by players of
type z < x' is less than ¢/6K.

Therefore, for large enough n, the mass expended in [a, b] by players of type
z < x' is smaller than £/6, and because F(x) — F(x') < /3, the mass expended
in [a, b] by players of type z < x is smaller than &/2.

S2.6. Proof of Corollary §2

Choose ¢ > 0. Lemma S10 implies that there is a finite number of intervals
of types with total F mass £/2, such that for every type x not in one of these
intervals, BR, C (br(x) — &, br(x) + €).' Consider the F mass 1 — &/2 of types
x with the last property, and let K be the one in the statement of Lemma S9.
Then, by Lemma S9 and Lemma S8 for L = K, for sufficiently large 7, at most
an F mass ¢/2 of those types bid outside of (br(x) — &, br(x) + &).

S2.7. Proof of Lemma S11

The proof is analogous to that of Lemma S5. Consider an arbitrary type x.
Define x™" = min{z : br(x) € BR.} and x™* = max{z : br(x) € BR.}. By strict
single crossing, BR, has only one element br(z) = br(x) for all z € (x™", x™);
it may have two elements for z = x™" or x™®, in which cases br(x) is the higher
one and the lower one of the two, respectively.

The claim that G™'(F(x™")) = G~!(F(x™)) is obtained by the same argu-
ment as in the proof of Lemma S5. The rest of the proof requires the following
minor changes when BR,min has two elements (and analogous changes when
BR max has two elements):

(i) Instead of x™", we consider x™" = min{z : br(x™") € BR.}, and com-
pare the equilibrium bids of every player with type lower than x™" — § to
br(x™") and the equilibrium bids of every player with type higher than x™ to
br(x™" — §). This change does not affect the arguments, since G~ (F(x™")) =
Gfl (F(xmin))‘

(ii) It may not be true that the equilibrium bids of every player with type
lower than x™" — § are lower than br(x™") or that the equilibrium bids of
every player with type higher than x™" are higher than br(x™" — §), because
players may bid in Ule(t,’{ — v, ) — BR(¢) (see Lemma S9). However, this
happens only with vanishing probability as n grows large, so the arguments are
again not affected.

6There is a K > 0 such that 3, (& — 1}) < e. For each k < K such that BR,, = {z}, 1}
for some type x, consider the interval of types [x; — A, xx + A1 N [0, 1], where A is such that
(continuous) F increases by no more than ¢/2K on any interval no larger than 2A. The sum of
the F mass of these intervals is no larger than &/2, and the sum of the “jumps” of br on the
complement of these intervals is smaller than e.
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S2.8. Proof of Lemma S12

Take any A > 0. By Lemma S9Y, there is a large K such that for any vy > 0, if
n is sufficiently large, the equilibrium bid of every player i in the nth contest
belongs with probability 1 to

K
BR. (M) U(J(t — v. t)-

k=1

Assume that Kis, in addition, large enough so that the lengths of I 1, Iy, - ..
sum to less than §/2.

We first claim that for any ¢ (¢, — vy, 1) forall k =1, ..., K, there exists an
N, such that for every n > N,, a player who bids ¢ in the nth contest obtains
(with high probability) a prize y such that |y — T*(¢)| < 6/2. We will also show
that there exists an N = N, that is common for all such bids ¢.

Suppose first that ¢ # ;, forany k =1, ..., K. Since A(¢) differs from G(y;)
and G(y}) forany k=1, ..., K, any rank order close to A(¢) also differs from
G(y;) and G(y}). By (S1), for sufficiently large n, a player who bids ¢ has (with
high probability) a rank order close to A(¢); in particular, this rank order dif-
fers from G( y,’() and G(yy). By the assumption that the lengths of Iy, Ix42, ...
sum to less than &/2, this implies that the difference between 7*(¢) and the
prize obtained by a player who bids ¢ is lower than §/2 (with high probability).

Suppose that ¢ = ¢, for some kK =1, ..., K. By an argument analogous to
the one used in the previous case, the prize obtained by a player who bids ¢
cannot, as n increases, exceed 7*(¢) by 6/2 with a probability that is bounded
away from 0. And 7*(¢) cannot exceed this prize by 6/2 with a probability that
is bounded away from 0 as » increases, because the player would profitably
deviate by bidding slightly above ¢, which would guarantee a prize no worse
than 7*(¢) with arbitrarily high probability.

Now note that the number N, that was chosen for any bid ¢ also has the
required property for all bids close enough to ¢; in the case of ¢ = #, for some
k=1,...,K,we mean bids close enough and higher than ¢. That is, for every ¢,
there is a neighborhood W, of that ¢ with N, that is common for all bids from
this neighborhood. The family of sets W is an open covering of the compact set
of bids ¢ that satisfy ¢ (£, — vy, #;) for k =1, ..., K. Thus, it contains a finite
subcovering, and any number N that exceeds numbers N, for all elements of
this finite subcovering has the required property.

This yields the lemma for bids ¢ ¢ (¢, — vy, ;) for all k =1,..., K. Indeed,
note that BR, is a singleton and br(x) is its only element for all except a count-
able number of types x. Since F has no atoms, the set of such types has F' mea-
sure 1, and for such types x, equilibrium bids ¢ ¢ (t,’( —vy, ) forallk=1,...,K
belong to (br(x) — A, br(x) + A). If A is sufficiently small and x is bounded
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away from 0, then |t — | < 8 for r =br(x) and T*(¢) — T*(r) < §/2;'7 if A is
sufficiently small, then also T*(r) — T*(¢) < 6/2, because ¢ ¢ (t,’( — v, t) for all
k=1,...,K and the lengths of I, Ix,,, ... sum to less than §/2. Finally, by
our first claim, the prize y obtained by bidding ¢ must satisfy |y — T*(¢)| < /2,
so|y—T*(r)| <.

Now consider bids # such that 7 is in (. — v, ;) for some k =1, ..., K. By
(iii) of Lemma S8, we can disregard bids ¢ in [#;, + vy, & — y]. Suppose that ¢
isin (f — v, #) and 1, # t;, for all other k' =1, ..., K. By (ii) of Lemma S8,
one can assume that ¢, € BRX:_«.l8 We will show that for sufficiently small y
and for sufficiently large n, player i obtains by bidding ¢ (with arbitrarily high
probability) a prize y in (T*(#;) — 8, T* () + 8). First, note that player i cannot
obtain by bidding ¢ a prize lower than T*(#,) — 6 (with probability bounded
away from 0), because for small enough v, it would be profitable to deviate
to bidding slightly above ¢, and obtain a prize not much lower than 7*(#;)
with high probability. Player i cannot obtain by bidding ¢ a prize higher than
T*(t;) + 6 (with probability bounded away from 0), because by (S1), for any
r > t, and sufficiently large n, the rank order of player i is with arbitrarily high
probability bounded above by A(r). Thus, the upper bound on the prize follows
from the assumption that #, # ¢, for all other k' =1, ..., K, and the lengths of
Ixi1,Igia, ... sum to less than 6/2.

Finally, suppose that ¢ is in (¢, — v, t, + v) for some k =1, ..., K. By (i) of
Lemma S8, one can assume that 7, € BRX;;. We will show that for sufficiently
small y and for sufficiently large n, equilibrium bidding in (¢, — v, £} + v) leads
(with arbitrarily high probability) to a prize y € (T*(¢;) — 8, T*(£}) + 9), ex-
cept a small probability event. Indeed, by an argument similar to that from the
previous case, such a bid cannot lead to a prize lower than 7*(¢;) — & (with
probability bounded away from 0). To obtain a prize higher than T*(#}) + &
with a nonvanishing probability, a player’s expected rank order when bidding
¢ cannot be lower than G(y}) by a nonvanishing constant. But if a nonvanish-
ing fraction of players win a prize higher than 7*(#,) 4+ 8 with a nonvanishing
probability by bidding in (¢, — v, #, + ), then the increase in expected rank
order on the interval (#, — v, £, 4+ v) is bounded away from 0 for all n, which
contradicts the fact that A" (¢, + y) approaches G(y;) as n increases.

Dept. of Economics, Northwestern University, Evanston, IL 60208, U.S.A.;
wo@northwestern.edu
and

"Indeed, for types bounded away from 0 and for sufficiently small A, we have that U (x, y, t) >
U(x,y,t)whenever y —y' > §/2 and ¢t — t' < A. (The assumption that types are bounded away
from 0 is essential, because we did not assume that U (0, y, ¢) strictly increases in y.) However,
since r = br(x), we cannot have U (x, T*(t),t) > U(x, T*(r),r).

8The lemma says only that the mass expended in (# — 1, #] by types x for which # ¢ BR,(\)
for some small A > 0 is small. However, if A > 0 is sufficiently small, then the mass of types x such
that ¢, ¢ BR, but #, € BR,(A) is small.
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