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APPENDIX A: PROOF OF LEMMA 2.1

TO VERIFY THAT THE STATEMENT IN LEMMA 2.1 is indeed equivalent to the
usual definition of pairwise stability, notice that if μ is not pairwise stable, there
exists a pair i� j �= μw(i) such that Uij > Uiμw(i) and Vji > Vjμm(j). In particular, j
is available to i under μ, that is, j ∈Mi[μ], so that U∗

i (Mi[μ]) ≥ Uij > Uiμw(i),
which violates the first part of the condition. Conversely, if the condition
in the lemma does not hold for woman i, then there exists j ∈ W ∗

i [μ] such
that U∗

i (Mi[μ]) ≥ Uij > Uiμw(i). On the other hand, j ∈ Mi[μ] implies that
Vji ≥ Vjμm(j), and that inequality is strict in the absence of ties since, by as-
sumption, i �= μm(j). On the other hand, if the condition is violated for a man
j, we can find a blocking pair consisting of j and a woman i ∈Wj[μ] using an
analogous argument. Q.E.D.

APPENDIX B: PROOFS FOR SECTION 3

B.1. Proof of Theorem 3.1

Without loss of generality, let γ∗ = 0. The proof consists of three steps: We
first show that under Assumption 2.1, any solution to the fixed-point problem
in (3.5) is differentiable, so that we can restrict the problem to fixed points
in a Banach space of continuous functions. We then show that the mapping
(logΓw� logΓm) �→ (logΨw[Γm]� logΨm[Γw]) is a contraction, so that the conclu-
sions of the theorem follow from Banach’s fixed-point theorem. Without loss
of generality, we only consider the case in which all observable characteristics
are continuously distributed, x1i = xi and z1i = zi.

Bounds on Solutions. We first establish that any pair of functions (Γ ∗
w(x)�

Γ ∗
m(z)) solving the fixed-point problem in (3.5) are bounded from above: As-

suming the solutions exist, and noticing that Γm(z) ≥ 0 for all z ∈ Z , we have
that

Γ ∗
w(x)= Ψw

[
Γ ∗
m

]
(x)=

∫ exp
{
U(x� s)+ V (s�x)}m(s)

1 + Γ ∗
m(s)

ds(B.1)

≤
∫

exp
{
U(x� s)+ V (s�x)}m(s)ds ≤ exp{Ū + V̄ }�
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which is finite by Assumption 2.1. Similarly, we can see that

Γ ∗
m(z)≤ exp{Ū + V̄ }(B.2)

if a solution to the fixed-point problem exists.
Continuity of Solutions. In order to establish continuity, notice that any fixed

point (Γw�Γm) of (Ψw�Ψm) has to satisfy

Γw =Ψw

[
Ψm[Γw]

]
�

Now, consecutive application of Ψw and Ψm gives

Ψw

[
Ψm[Γw]

]
(x)=

∫ exp
{
U(x� t)+ V (t�x)}

1 +
∫ exp

{
U(s� z)+ V (z� s)}w(s)

1 + Γw(s) ds

m(t)dt

for any function Γw. Since exp{U(x�z)} and exp{V (z�x)} are also continuous
in z�x, and the integrals are all nonnegative, Ψw[Ψm[Γw]] is also bounded and
continuous in x for any nonnegative function Γw. Similarly, Ψm[Ψw[Γm]] is also
bounded and continuous, so that any solution of the fixed-point problem in
(3.5), if one exists, must be continuous.

Hence, the range of the operators Ψw ◦Ψm and Ψm ◦Ψw is restricted to a set
of bounded continuous functions, so that we can w.l.o.g. restrict the fixed-point
problem to the space of continuous functions satisfying the bounds derived be-
fore. Existence of bounded derivatives up to the pth order follows by induction
using the product rule and existence of bounded partial derivatives of the func-
tions U(x�z) and V (z�x); see Assumption 2.1.

Contraction Mapping. We next show that the mapping (logΓw� logΓm) �→
(logΨw[Γm]� logΨm[Γw]) is a contraction on a Banach space of functions that
includes all potential solutions of the fixed-point problem (3.5). Specifically,
let C∗ denote the space of continuous functions on X × Z taking nonnega-
tive values and satisfying (B.2) and (B.1). As shown above, any solution to the
fixed-point problem—if a solution exists—is an element of C∗ × C∗, which is a
Banach space.

Consider alternative pairs of functions (Γw�Γm) and (Γ̃w� Γ̃m). Using the def-
initions of the operators,

logΨw[Γ̃m](x)− logΨw[Γm](x)

= log
∫ exp

{
U(x� s)+ V (s�x)}m(s)
1 + exp

{
log Γ̃m(s)

} ds

− log
∫ exp

{
U(x� s)+ V (s�x)}m(s)
1 + exp

{
logΓm(s)

} ds�
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By the mean-value theorem for real-valued functions of a scalar variable, for
every value of x, there exists t(x) ∈ [0�1] such that

log
Ψw[Γ̃m](x)
Ψw[Γm](x) = − 1

Ψw

[
Γ 1−t(x)
m Γ̃ t(x)

m

]
(x)

×
∫ exp

{
U(x� s)+ V (s�x)}Γm(s)1−t(x)Γ̃m(s)t(x)[

1 + Γm(s)1−t(x)Γ̃m(s)t(x)
]2

× [
log Γ̃m(s)− logΓm(s)

]
m(s)ds�

Since we are restricting our attention to functions Γm(z)� Γ̃m(z) satisfying the
bounds in (B.1), we can bound the ratio

0 ≤ Γm(z)
1−t(x)Γ̃m(z)t(x)

1 + Γm(z)1−t(x)Γ̃m(z)t(x)
≤ exp{Ū + V̄ }

1 + exp{Ū + V̄ } =: λ(B.3)

for all z ∈ Z . Since all components of the integrand are nonnegative, we can
bound the right-hand side in absolute value by∣∣∣∣log

Ψw[Γ̃m](x)
Ψw[Γm](x)

∣∣∣∣ ≤ λ

Ψw

[
Γ 1−t(x)
m Γ̃ t(x)

m

]
(x)

∫ exp
{
U(x� s)+ V (s�x)}

1 + Γm(s)1−t(x)Γ̃m(s)t(x)

× sup
z∈Z

∣∣log Γ̃m(s)− logΓm(s)
∣∣m(s)ds

= λ

Ψw

[
Γ 1−t(x)
m Γ̃ t(x)

m

]
(x)

‖ log Γ̃m − logΓm‖∞

×
∫ exp

{
U(x� s)+ V (s�x)}

1 + Γm(s)1−t(x)Γ̃m(s)t(x)
m(s)ds

= λ‖ log Γ̃m − logΓm‖∞�

since the integral in the second to last line is equal to Ψw[Γ 1−t(x)
m Γ̃ t(x)

m ](x) by
definition of the operator Ψw. Since this upper bound does not depend on the
value of x, it follows that∥∥logΨw[Γ̃m] − logΨw[Γm]∥∥∞ = sup

x∈X

∣∣logΨw[Γ̃m](x)− logΨw[Γm](x)∣∣
≤ λ‖ log Γ̃m − logΓm‖∞�

and by a similar argument,∥∥logΨm[Γ̃w] − logΨm[Γw]
∥∥

∞ ≤ λ‖ log Γ̃w − logΓw‖∞�
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Since by Assumption 2.1 and the expression in equation (B.3), λ= exp{Ū+V̄ }
1+exp{Ū+V̄ } <

1, the mapping (logΓw� logΓm) �→ (logΨw[Γm]� logΨm[Γw]) is indeed a contrac-
tion.

Existence and Uniqueness of Fixed Point. Since we showed in the first step
that the solution (Γ ∗

w�Γ
∗
m), if it exists, has to be continuous, we can take the

fixed-point mapping (logΓw� logΓm) �→ (logΨw[Γm]� logΨm[Γw]) to be its re-
striction to the space of continuous functions (C∗ × C∗�‖ · ‖∞) endowed with
the supremum norm

∥∥(Γw�Γm)∥∥∞ := max
{

sup
x

∣∣logΓw(x)
∣∣� sup

z

∣∣logΓm(z)
∣∣}�

Since this space is a complete vector space, and (logΨw� logΨm) is a contrac-
tion mapping, the conclusion follows directly using Banach’s fixed-point theo-
rem. Q.E.D.

In the following, denote Ũij := U(xi� zj) and Ũik := U(xi� zk). Before prov-
ing Lemma 3.1, we are going to establish the following lemma:

LEMMA B.1: Suppose that Assumptions 2.1, 2.2, and 2.3 hold, and that the
random utilities Ui0�Ui1� � � � �UiJ are J i.i.d. draws from the model in (2.1) where
the outside option is given by (2.2). Then as J → ∞,∣∣∣∣∣P(

Ui0 ≥Uik�k= 0� � � � � J|Ũi1� � � � � ŨiJ

) − 1

1 + 1
J

J∑
k=1

exp{Ũik}

∣∣∣∣∣ → 0

and ∣∣∣∣∣JP(
Uij ≥Uik�k= 0� � � � � J|Ũi1� � � � � ŨiJ

) − exp{Ũij}

1 + 1
J

J∑
k=1

exp{Ũik}

∣∣∣∣∣ → 0

for any fixed j = 1�2� � � � � J.

PROOF: For this proof, denote the J draws for the outside option in (2.2)
with random utilitiesUij = Ũij+σηij for j = J+1� � � � �2J, where Ũij = 0. Using
independence, the conditional probability that Uij ≥ Uik for all k = 1� � � � � J
given ηij is equal to

P(Uij ≥Uik�k= 1� � � � � J|Ũi1� � � � � ŨiJ�ηij)

=
∏
k �=j
G

(
ηij + σ−1(Ũij − Ũik)

)
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for any j = 0�1� � � � � J. By the law of iterated expectations, the unconditional
probability is obtained by integrating over the density of η,

P(Uij ≥Uik�k= 1� � � � � J|Ũi1� � � � � ŨiJ)(B.4)

=
∫ ∞

−∞

[∏
k �=j
G

(
s+ σ−1(Ũij − Ũik)

)]
g(s)ds

=
∫ ∞

−∞
exp

{∑
k �=j

logG
(
s+ σ−1(Ũij − Ũik)

)}
g(s)ds

=
∫ ∞

−∞
exp

{
2J∑
k=0

logG
(
s+ σ−1(Ũij − Ũik)

)} g(s)
G(s)

ds�

where the last step follows since Ũij−Ũij = 0. Now we can rewrite the exponent
in the last expression as

2J∑
k=0

logG
(
s+ σ−1(Ũij − Ũik)

)

= 1
J

2J∑
k=0

J log
(
G

(
s+ σ−1(Ũij − Ũik)

))
�

We now let the sequences bJ :=G−1(1 − 1
J
)→ ∞ and aJ = a(bJ)= σ−1, where

a(z) is the auxiliary function specified in Assumption 2.2. Then, by a change of
variables s = aJt + bJ , we can rewrite the integral in (B.4) as

P(Uij ≥Uik�k= 1� � � � � J|Ũi1� � � � � ŨiJ)

=
∫ ∞

−∞
exp

{
1
J

2J∑
k=0

J logG
(
aJ(t + Ũij − Ũik)+ bJ

)}

× aJg(aJt + bJ)
G(aJt + bJ) dt�

Convergence of the Integrand. We next show that for j �= 0, the integrand
converges to a non-degenerate limit as J → ∞. First consider the exponent

RJ(t) := 1
J

2J∑
k=0

J logG
(
aJ(t + Ũij − Ũik)+ bJ

)
�
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Since for G→ 1, − logG≈ 1 −G, we obtain

RJ(t)= −1
J

2J∑
k=0

J
(
1 −G(

bJ + aJ(t + Ũij − Ũik)
)) + o(1)

= −1
J

2J∑
k=0

J
(
1 −G(

bJ + a(bJ)(t + Ũij − Ũik)
)) + o(1)�

where the last step follows from the choice of aJ . Since (1 − G(s))−1 is Γ -
varying with auxiliary function a(s), and bJ → ∞,

1 −G(
bJ + a(bJ)(t + Ũij − Ũik)

)
1 −G(bJ) → exp

{−t − (Ũij − Ũik)
}
�

Finally, since G(bJ)= 1 − 1
J
,

J
(
1 −G(

bJ + a(bJ)(t + Ũij − Ũik)
))

=
(
1 −G(

bJ + a(bJ)(t + Ũij − Ũik)
))

1 −G(bJ) → exp
{−t − (Ũij − Ũik)

}
�

Since G(aJt + bJ) is also nondecreasing in t, convergence of the integrand
is also locally uniform with respect to t and (Ũij − Ũik) by the arguments in
Section 0.1 in Resnick (1987). Hence,

RJ(t)= −e−t 1
J

2J∑
k=0

exp{Ũik − Ũij} + o(1)�(B.5)

where the term 1
J

∑2J
k=0 exp{Ũik−Ũij} ≤ 1+exp{2Ū}<∞ is uniformly bounded

by Assumption 2.1. Next, we turn to the term

rJ(t)= JaJg(bJ + aJt)= Ja(bJ)g(bJ + aJt)�
Since a(z)= 1−G(z)

g(z)
, we can write

rJ(t)= Ja(bJ)1 −G(bJ + aJt)
a(bJ + aJt) �

By the same steps as before,

J
(
1 −G(bJ + aJt)

) → e−t �
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Furthermore, by Lemma 1.3 in Resnick (1987), we have

a(bJ)

a(bJ + aJt) → 1�

so that

rJ(t)→ e−t �

Combining this result with (B.5), we get

J exp

{
1
J

2J∑
k=0

J logG
(
aJ(t + Ũij − Ũik)+ bJ

)}
aJg(aJt + bJ)

= exp
{
RJ(t)

}
rJ(t)

= exp

{
−t − e−t 1

J

2J∑
k=0

exp{Ũik − Ũij}
}

+ o(1)

for every t ∈ R.
Convergence of the Integral. Let h∗

J(t) := exp{−t − e−t 1
J

∑2J
k=0 exp{Ũik − Ũij}}.

Since the function hJ(t) := exp{RJ(t)}rJ(t) is bounded uniformly in J, and
|hJ(t)− h∗

J(t)| → 0 pointwise, it follows that∣∣∣∣JP(
Uij ≥Uik�k= 0� � � � � J|Ũi1� � � � � ŨiJ

) −
∫ ∞

−∞
h∗
J(t)dt

∣∣∣∣
=

∣∣∣∣
∫ ∞

−∞

(
hJ(t)− h∗

J(t)
)
dt

∣∣∣∣ → 0

using dominated convergence. From a change in variables ψ := −e−t , we can
evaluate the integral

∫ ∞

−∞
h∗
J(t)dt =

∫ ∞

−∞
exp

{
−e−t 1

J

2J∑
k=0

exp{Ũik − Ũij}
}
e−t dt

=
(

1
J

2J∑
k=0

exp{Ũik − Ũij}
)−1

= exp{Ũij}
1
J

2J∑
k=0

exp{Ũik}

= exp{Ũij}

1 + 1
J

J∑
k=1

exp{Ũik}
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since
∑2J

j=J+1 exp{Ũij} = J. Hence,∣∣∣∣∣JP(
Uij ≥Uik�k= 0� � � � � J|Ũi1� � � � � ŨiJ

) − exp{Ũij}

1 + 1
J

J∑
j=1

exp{Ũik}

∣∣∣∣∣ → 0

for each j = 1�2� � � � � J, as claimed in (B.1). Furthermore, it follows that

P(Ui0 ≥Uik�k= 0� � � � � J|Ũi1� � � � � ŨiJ)(B.6)

= 1 −
J∑
j=1

P(Uij ≥Uik�k= 0� � � � � J)

= 1

1 + 1
J

J∑
j=1

exp{Ũik}
+ o(1)�

which establishes the second assertion. Q.E.D.

B.2. Proof of Lemma 3.1

For the main conclusion of the lemma, note that since z1� z2� � � � are a se-
quence of i.i.d. draws from M(z), Assumption 2.1 and a law of large numbers
can be used to establish 1

J

∑J

l=1 exp{U(xi� zl)} → ∫
exp{U(xi� s)}m(s)ds. It fol-

lows by the continuous mapping theorem that

exp
{
U(xi� zj)

}
1 + 1

J

J∑
k=l

exp
{
U(xi� zl)

} → exp
{
U(xi� zj)

}
1 +

∫
exp

{
U(xi� s)

}
m(s)ds

almost surely, so that the conclusion follows from Lemma B.1 and the triangle
inequality. Q.E.D.

B.3. Auxiliary Lemmas for the Proof of Theorem 3.2

In order to prove Theorem 3.2, we start by establishing the main techni-
cal steps separately as Lemmata B.2–B.6. The first result concerns the rate at
which the number of available potential spouses increases for each individual
in the market. For a given stable matching μ∗, we let

J∗
wi =

n∑
j=1

1
{
Vji ≥ V ∗

j

(
W ∗
j

)}
and J∗

mj =
n∑
i=1

1
{
Uij ≥U∗

i

(
M∗

i

)}
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denote the number of men available to woman i, and the number of women
available to man j, respectively, where M∗

i and W ∗
j denote woman i’s and

man j’s opportunity sets under μ∗, and U∗
i (M) := maxj∈M Uij and V ∗

j (W ) :=
maxi∈W Vji, where by convention, the outside option 0 ∈W ∗

j and 0 ∈M∗
i . Simi-

larly, we let

L∗
wi =

n∑
j=1

1
{
Uij ≥U∗

i

(
M∗

i

)}
and L∗

mj =
n∑
i=1

1
{
Vji ≥ V ∗

j

(
W ∗
j

)}

so that L∗
wi is the number of men to whom woman i is available, and L∗

mj is the
number of women to whom man j is available. Lemma B.2 below establishes
that in our setup, the number of available potential matches grows at a root-n
rate as the size of the market grows.

LEMMA B.2: Suppose Assumptions 2.1, 2.2, and 2.3 hold; then (a) under any
stable matching,

n1/2 exp{−V̄ + γm}
1 + exp{Ū + V̄ + γw}

≤ J∗
wi ≤ n1/2 exp{V̄ + γm}�

n1/2 exp{−Ū + γw}
1 + exp{Ū + V̄ + γm} ≤ J∗

mj ≤ n1/2 exp{Ū + γw}�

for each i= 1� � � � � n and j = 1� � � � � n with probability approaching 1 as n→ ∞.
(b) Furthermore,

n1/2 exp{−Ū + γm}
1 + exp{Ū + V̄ + γm} ≤L∗

wi ≤ n1/2 exp{Ū + γm}�

n1/2 exp{−V̄ + γw}
1 + exp{Ū + V̄ + γw}

≤L∗
mj ≤ n1/2 exp{V̄ + γw}�

for each i= 1� � � � � n and j = 1� � � � � n with probability approaching 1 as n→ ∞.

PROOF: First note that since the sets of available spouses W ∗
i and M∗

j un-
der the stable matching are endogenous, the taste shifters ηij and ζji are, in
general, not independent conditional on those choice sets. To circumvent this
difficulty, the following argument only relies on lower and upper bounds on U∗

i

and V ∗
i that are implied by the respective utilities of the outside option Ui0, Vj0,

and unconditional independence of taste shocks.
Rate for Expectation of Upper Bound J̄mj . In the following, we denote the set

of women that prefer man j to their outside option by W̄j . Since every woman
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can choose to remain single, we can bound J∗
mj by

J∗
mj =

nw∑
i=1

1
{
i ∈W ∗

j

} =
nw∑
i=1

1
{
Uij ≥U∗

i

(
M∗

i

)}

≤
nw∑
i=1

1{Uij ≥Ui0} =
nw∑
i=1

1{i ∈ W̄j} =: J̄mj�

By Assumption 2.3 and Lemma B.1,

JP(Uij ≥Ui0|xi� zj)→ exp{Ũij}
1 + 1

J
exp{Ũij}

�

Hence, we can obtain the expectation of the upper bound J∗
mj ,

E[J̄mj|zj�x1� � � � � xn] → 1
J

nw∑
i=1

exp{Ũij}
1 + 1

J
exp{Ũij}

≤ nw

J
exp{Ū}�

where Ū <∞ was given in Assumption 2.1. Since by Assumption 2.3, J = [n1/2]
and the bound on the right-hand side does not depend on zj�x1� � � � � xn, we
have, by the law of iterated expectations, that

E[J̄mj] ≤ n1/2
(
exp{Ū + γw} + o(1))�(B.7)

where the remainder term o(1) can be shown to converge uniformly for j =
1�2� � � � .

Rate for Variance of J̄mj . Let pijn := exp{Ũij }
J+exp{Ũij } and v̄jn := 1

n

∑nw
i=1pijn(1 −

pijn). Since by Assumption 2.3, exp{−Ū}√
n+1+exp{−Ū} ≤ pijn ≤ exp{Ū}√

n+1+exp{Ū} , we have that
(n1/2 + 2)−1 exp{−Ū + γw} ≤ v̄jn ≤ n−1/2 exp{Ū + γw}. Hence, v̄jn → 0 and
nv̄jn → ∞.

Since ηi0�k, k= 1� � � � � J are i.i.d. draws from the distribution G(η), we can
apply a CLT for independent heterogeneously distributed random variables to
the upper bound J̄mj ,

J̄mj −E[J̄mj]√
nv̄jn

= 1√
nv̄jn

nw∑
i=1

(
1{Uij ≥Ui0} −pijn

) d→N(0�1)�
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where the Lindeberg condition holds since the random variables 1{Uij ≥ Ui0}
are bounded, and nv̄jn → ∞. Since v̄jn → 0 uniformly in j = 1�2� � � � , we obtain
that

J̄mj −E[J̄mj]√
n

p→ 0

uniformly in j = 1�2� � � � .
Rate for Expectation of Lower Bound J◦

wi. Next, we denote the set of men j
that prefer woman i to their outside option or any woman in W̄j by M◦

i . Since
by construction, W̄j is a superset of (i.e., contains) W ∗

j , M◦
i ⊂M∗

i . Hence, we
can bound J∗

wi by

J∗
wi =

nm∑
j=1

1
{
j ∈M∗

i

} =
nm∑
j=1

1
{
Vji ≥ V ∗

j

(
W ∗
j

)}

≥
nm∑
j=1

1
{
Vji ≥ V ∗

j (W̄j)
} =

nm∑
j=1

1
{
j ∈M◦

i

} =: J◦
wi�

Applying Lemma B.1 again, we obtain

JP
(
Vji ≥ max

k∈W̄j
Vjk

∣∣xi� zj� W̄j

)
→ exp{Ṽji}

1 + 1
J

∑
k∈W̄j

exp{Ṽjk}
≥ J exp{−V̄ }
J + J̄mj exp{V̄ } �

where V̄ <∞ was defined in Assumption 2.1.
Finally, note that this lower bound is a convex function of J̄mj , so that we can

use our previous bound in (B.8) together with Jensen’s inequality to obtain

JP
(
Vji ≥ max

k∈W̄j
Vjk

∣∣xi� zj)

≥ J exp{−V̄ }
J +E[J̄mj]exp{V̄ } ≥ J exp{−V̄ }

J + n1/2 exp{Ū + γw + V̄ } �

which is bounded for all values of J since J = [√n]. Hence, by the law of iter-
ated expectations, we can obtain the expectation of the lower bound J◦

wi,

E
[
J◦
wi

] =
nm∑
j=1

P
(
Vji ≥ max

k∈W̄j
Vjk

∣∣xi� zj)(B.8)

≥ n1/2

(
exp{−V̄ + γm}

1 + exp{Ū + V̄ + γw}
+ o(1)

)
�
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where the remainder term o(1) can be shown to converge uniformly for i =
1�2� � � � .

Rate for Variance J◦
wi. Let pjin := exp{Ṽij }

J+∑
k∈W̄j exp{Ṽik} and v̄in := 1

n

∑nm
j=1pjin(1−pjin).

Using the corresponding bounds derived above and similar steps as for v̄jn, we
obtain v̄in → 0 and nv̄in → ∞. Since ζj0�k, k= 1� � � � � J, and ζji, i= 1� � � � � n are
i.i.d. draws from the distribution G(η) and independent of W̄j , we can again
apply the Lindeberg–Lévy CLT to obtain that

J◦
wi −E

[
J◦
wi

]
√
n

p→ 0

uniformly in i= 1�2� � � � .
Symmetry: Bounds for Both Sides. If we reverse the role of the male and fe-

male sides of the market, we can repeat the same sequence of steps and obtain
a lower bound J◦

mj ≤ J∗
mj and an upper bound J̄wi ≥ J∗

wi satisfying

E[J̄wi] ≤ n1/2
(
exp{V̄ + γm} + o(1))�

E
[
J◦
mj

] ≥ n1/2

(
exp{−Ū + γw}

1 + exp{Ū + V̄ + γm} + o(1)
)
�

where

J̄wi −E[J̄wi]√
n

p→ 0 and
J◦
mj −E

[
J◦
mj

]
√
n

p→ 0�

which concludes the proof of part (a). The proof of part (b) is completely anal-
ogous. Q.E.D.

We now show that an exogenous change to an arbitrarily chosen availabil-
ity indicator affects a given individual’s opportunity set with a probability that
converges to zero as n grows. In the following, we use indices i and k to denote
a specific (generic, respectively) woman in the market, and j and l to denote
a specific (generic) man. The indicator variable D∗

il := 1{l ∈M∗
i } is equal to 1

if man l is available to woman i under the stable matching μ∗, and zero other-
wise. Similarly, we let Ejk := 1{k ∈W ∗

j } be an indicator variable that is equal
to 1 if woman k is available to j, and zero otherwise. We can stack the in-
dicator variables whether men l = 1� � � � � nm are available to woman i under
the stable matching μ∗ to form the vector D∗

i := (D∗
i1� � � � �D

∗
inm
)′, and dum-

mies whether women k = 1� � � � � nw are available to man j to form the vector
E∗
j := (E∗

j1� � � � �E
∗
jnw
)′. In the following, we also use DW

i �E
W
j �D

M
i , and EMj to

denote the corresponding vectors of availability indicators under the W- and
M-preferred matchings.
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The following lemma gives a bound on the probability that changing one
arbitrarily chosen availability indicator from 1 to zero (or vice versa) alters
another agent’s opportunity set, where the bound converges to zero at a root-n
rate.

LEMMA B.3: Suppose Assumptions 2.1, 2.2, and 2.3 hold, and let {D∗
kl�E

∗
lk :

k = 1� � � � � nw� l = 1� � � � � nm} be the availability indicators arising from a stable
matching. Suppose we change Eji exogenously to Ẽji = 1 − E∗

ji for some woman
i and man j and then iterate the deferred acceptance algorithm from that starting
point to convergence. Denoting the resulting availability indicators with {D̃kl� Ẽ

∗
lk :

k= 1� � � � � nw� l= 1� � � � � nm}, for any woman k̄ and man l̄ �= j we have that (a)

P
(
D̃k̄ �=D∗

k̄
|D∗

k̄
�D∗

ij = 0
) = P(

Ẽl̄ �= E∗
l̄
|E∗

l̄
�D∗

ij = 0
) = 0�

and (b) there exist constants q̄ <∞ and 0 < λ < 1 such that we can bound the
conditional probabilities

P
(
D̃k̄ �=D∗

k̄
|D∗

k̄
�D∗

ij = 1
) ≤ n−1/2q̄

1 − λ �

P
(
Ẽl̄ �=E∗

l̄
|E∗

l̄
�D∗

ij = 1
) ≤ n−1/2q̄

1 − λ �

The analogous result holds for an exogenous change of an availability indicator
Dij exogenously to D̃ij = 1 −D∗

ij .

PROOF: In the following, we analyze the sequence of adjustments to a stable
matching and opportunity sets resulting from an arbitrary change in i’s taste
shifters. We let D̃(s)

kl denote the indicator whether man l is available to woman
k after the sth iteration, Ẽ(s)lk an indicator whether woman k is available to
man l after the sth iteration of the algorithm, and Ũ∗(s)

k := maxl:D̃(s)
kl

=1{Ukl} and

Ṽ ∗(s)
l := maxk:Ẽ(s)

lk
=1{Vlk} woman k’s and man l’s respective indirect utility given

their opportunity sets at the sth stage.
We first show that switching one of i’s availability indicators and then follow-

ing the resulting proposals and rejections in the Gale–Shapley algorithm starts
a “chain” of subsequent changes, where at each iteration, there is at most one
element in each of the two sets of dummies {D̃(s)

kl }k�l and {Ẽ(s)kl }k�l that will be
changed at the sth stage and has an impact on subsequent rounds. Further-
more, at each iteration, there is a nontrivial probability that the shift in the
previous iteration only affects the outside option, in which case the chain will
be terminated at that stage.

Base Case. First, note that changing Eji exogenously to Ẽ(1)ji = 1 − E∗
ji,

and leaving the indicators Ẽ(1)li = E∗
li unchanged for all other men l �= j,
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changes only man j’s indirect utility from V ∗
j := maxk:E∗

jk
=1{Vjk} to Ṽ ∗(1)

j =
max

k:Ẽ(1)
jk

=1{Vjk}. In particular, ifDij = 0, then Vji < V ∗
j , so that V ∗

j = Ṽ ∗(1)
j . Then

any changes to Eij do not have any subsequent effects on j’s choices and can
therefore be ignored, which establishes part (a) of the lemma. On the other
hand, if Dij = 1, then Vji ≥ V ∗

j , so that a change from Eji = 0 to Ẽ(1)ji = 1 in-
creases j’s indirect utility. Hence if for woman k, Vji > Vjk > V ∗

j , we have that
Dkj = 1 and D̃(2)

kj = 0. Hence it is sufficient to consider shifts in Eji for men j
such that Dij = 1.

Inductive Step. We now use induction to show that there is at most one such
adjustment at each subsequent round s = 2�3� � � � : suppose that after s itera-
tions of one of the two chains, the availability indicators are given by D̃(s)

kl and
Ẽ(s)lk , where k = 1� � � � � nw, and l = 1� � � � � nm. Under the inductive hypothesis,
for the sth stage there is at most one woman k such that Ẽ(s)k �= Ẽ(s−1)

k . Further-
more, among all men l = 1� � � � � nm which were available to k at stage s (i.e.,
D̃(s)
il = 1), there was at most one change of an indicator Ẽ(s−1)

lk to a new value
Ẽ(s)lk .

Consider first the last change from Ẽ(s−1)
lk = 1 to Ẽ(s)lk = 0. It follows that

Ṽ ∗(s)
l =: Vlk′ for some k′ such that Ẽ(s)lk′ = 1, where k′ is unique with probability 1.

Hence, at the (s+1)st iteration, there is a shift from D̃(s)
k′l = 0 to D̃(s+1)

k′l = 1, that
is, l becomes available to k′.

Note that man l also becomes available to any woman k̃ for whom V ∗(s−1)
l >

Vlk̃ ≥ Ṽ ∗(s)
l . However, by definition of k′, any such k̃ would not have been avail-

able to l, that is, Ẽ(s)
lk̃

= 0. Hence for k̃, Uk̃l < Ũ
∗(s)
k̃

so that this change has no
effect on subsequent iterations. Note that this includes, in particular, woman
k who became unavailable to j at the previous stage. Next, consider a change
from Ẽ(s−1)

lk = 0 to Ẽ(s)lk = 1, where D̃(s)
kl = 1 and man l’s indirect utility in the

previous round was Ṽ ∗(s−1)
l =: Vlk′ for some k′ with Ẽ(s−1)

lk′ = 1. Since D̃(s)
kl = 1, it

must be true that Vlk ≥ Ṽ ∗(s−1)
l , so that l may become unavailable to woman k′,

D̃(s+1)
k′l = 0. On the other hand, for any k̃ such that Vlk = Ṽ ∗(s)

l > Vlk̃ > Ṽ
∗(s−1)
l ,

we must have had Ẽ(s)
lk̃

= 0 by definition of Ṽ ∗(s−1)
l . Hence with probability 1, the

change in the sth round affects at most one woman k′ with Ẽ(s)lk′ = 1, whereas
for women k̃ with Ẽ(s)

lk̃
= 0, indirect utility does not depend on whether l is

available at round s+ 1, so that there is no effect on subsequent iterations.
Hence there is at most one indicator corresponding to a woman k′ with

Ẽ(s)lk′ = 1 that changes in the sth round. Interchanging the roles of men and
women, an analogous argument yields that there is at most one indicator cor-
responding to a man l′ with D̃(s)

k′l′ = 1 that changes in the second part of the sth
round, confirming the inductive hypothesis.
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Probability of Terminating Events. Each of the two chains of adjustments can
terminate at any given stage s if the change in the previous round only affects
the outside option, that is, if Ṽ ∗(t)

l = Vl0 or Ũ∗(t)
k = Uk0 at t = s or t = s − 1.

On the other hand, if the chain results in a change of Dk̄1� � � � �Dk̄nm at a given
stage, we ignore any subsequent adjustments and treat such a change as the
second terminating event. In the following, we bound the conditional prob-
ability for each of these two terminating events given D∗

k̄
and the chain not

having terminated before the sth stage.
We first derive a lower bound for the probability that the chain is termi-

nated by the outside option at stage s: By the same reasoning as in the proof
of Lemma B.2, man l’s opportunity set is contained in the set W ◦

l , where the
taste shifters ζlk are jointly independent of W ◦

l , and the size of W ◦
l is bounded

from above by n1/2 exp{Ū + γw} with probability approaching 1. Hence, by
Lemma B.1, we have

n−1/2 exp(V̄ ) ≥ exp
(
V (zl� xk)

)(
1 + exp(V̄ − Ū + γw)

)
n1/2

(
1 + 2 exp(V̄ − Ū + γw)

)
≥ P(

Vlk > V
∗
l |xk� zl

) ≥ exp
(
V (zl� xk)

)
n1/2

(
1 + exp(Ū + V̄ + γw)

)
for any k� l if n is sufficiently large.

This implies that as n grows large, the (unconditional) share of men re-
maining single is bounded from below by 1

1+exp(Ū+V̄ +γw) =: ps with probability
approaching 1. By the law of total probability, that bound also holds condi-
tional on i’s opportunity set, (D∗

i1� � � � �D
∗
inm
), with probability arbitrarily close

to 1 as n grows. Specifically, for the outside option, P(Vl0 > V ∗
l |D∗

ik� xk� zl) ≥
1

1+exp(Ū+V̄ +γw) . Furthermore, by Lemma B.2 part (b), the number of women to
whom man l is available is bounded by

¯L := n1/2 exp{−V̄ + γw}
1 + exp{Ū + V̄ + γw}

≤Lml ≤ n1/2 exp{V̄ + γw} =: L̄

with probability approaching 1.
In order to construct a lower bound on the conditional probability that man

l is unmatched given D̃(s)
kl = 1, we can assume the lower bound for L∗

j if j is
unmatched, and the upper bound if j is matched. Then, by Bayes’ law,

P
(
Vl0 > V

∗
l |D∗

k̄
� D̃(s)

lk = 1�xk� zl
)

≥ ¯Lps
L̄(1 −ps)+ ¯Lps

= n−1/2

¯L
n−1/2L̄exp(Ū + V̄ + γw)+ n−1/2

¯L
�
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which is strictly greater than zero by Assumptions 2.1 and 2.3. Hence, the prob-
ability that the shift is not absorbed by the outside option in the sth step is less
than or equal to

1 − P(
Vl0 > V

∗
l |D∗

k̄
� D̃(s)

lk = 1�xk� zl
)

≤ L̄exp(Ū + V̄ + γw)
L̄exp(Ū + V̄ + γw)+ ¯L

=: λ < 1�

where the bound on the right-hand side does not depend on s.
Finally, we construct an upper bound for the probability that the chain leads

to a change in the availability indicators Dk̄1� � � � �Dk̄nm at stage s. To this end,
we can follow the same reasoning as for the choice probability for the outside
option, where we use the lower bound on the size of the opportunity set from
Lemma B.2. Applying Lemma B.1, we then have

P
(
Vlk̄ > V

∗
l |D∗

k̄
� xk� zl

)
≤ n−1/2 exp

(
V (zl� xk)

)(
1 + exp(V̄ − Ū + γm)

)
1 + exp(V̄ − Ū + γm)+ exp(−Ū − V̄ + γw)

≤ n−1/2 exp{V̄ }
for n sufficiently large. Hence, the conditional probability that one of the indi-
cators Dk̄l, l = 1� � � � � nm is switched given that the process is still active at the
sth stage can be bounded by

P
(
D̃(s)

k̄
�=D∗

k̄
|D∗

k̄
� D̃(s)

lk = 1� zl� xk
)

≤ n−1/2 exp{V̄ }L̄
n−1/2 exp{V̄ }L̄+ ¯L

≤ n−1/2 exp{V̄ } L̄
¯L

=: n−1/2q̄�

where q̄ < ∞. Clearly, this upper bound becomes arbitrarily small as n gets
large.

By the law of total probability, the conditional probability that D̃W
k̄

�=DW
k̄

can
therefore be bounded almost surely by

P
(
D̃k̄ �=D∗

k̄
|D∗

k̄

) ≤
∞∑
s=1

λsn−1/2q̄≤ n−1/2q̄

1 − λ �

which establishes part (b) of the lemma Q.E.D.

Next, we show that the dependence between taste shifters ηij , ζji, and op-
portunity sets becomes small as n increases. We consider the joint distribution
of ηi := (ηi1� � � � �ηinm)′, ζj = (ζj1� � � � � ζjnw)′ and the availability indicators DW

i ,
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EWj , DM
i , and EMj corresponding to the W- and M-preferred matchings, re-

spectively. We also let DW
i�−j := (DW

i1 � � � � �D
W
i(j−1)�D

W
i(j+1)� � � � �D

W
inm
) and EWj�−i :=

(EWj1 � � � � �E
W
j(i−1)�E

W
j(i+1)� � � � �E

W
jnw
) for the W-preferred matching, and use anal-

ogous notation for the M-preferred matching. Then for any vectors of indicator
variables d = (d1� � � � � dnm−1) ∈ {0�1}nm−1 and e = (e1� � � � � enw−1) ∈ {0�1}nw−1,
we denote the conditional c.d.f.s

GW
η|D(η|d) := P(

ηi ≤ η|DW
i = d

)
� GM

η|D(η|d) := P(
ηi ≤ η|DM

i = d
)
�

GW
η�ζ|D�E(η�ζ|d� e) := P(

ηi ≤ η�ζj ≤ ζ|DW
i�−j = d�EWj�−i = e

)
� and

GM
η�ζ|D�E(η�ζ|d� e) := P(

ηi ≤ η�ζj ≤ ζ|DM
i�−j = d�EMj�−i = e

)
with the associated p.d.f.s gWη|D(η|d), gMη|D(η|d), and gWη�ζ|D�E(η�ζ|d� e), respec-
tively. We also use the analogous notation for the conditional distribution of ζj
given EWj and EMj , respectively.

We can now state the following lemma characterizing the conditional distri-
bution of taste shifters given an agent’s opportunity set.

LEMMA B.4: Suppose Assumptions 2.1, 2.2, and 2.3 hold. Then (a) the condi-
tional distributions for η given DW

i and DM
i , respectively, satisfy

lim
n

∣∣∣∣g
W
η|D

(
η|DW

i

)
gη(η)

− 1
∣∣∣∣ = lim

n

∣∣∣∣g
M
η|D

(
η|DM

i

)
gη(η)

− 1
∣∣∣∣ = 0

with probability approaching 1 as n→ ∞. The analogous results hold for the male
side of the market. Furthermore, (b) the conditional distributions for (η�ζ) given
DW
i�−j�E

W
j�−i (given DM

i�−j�E
M
j�−i, respectively) satisfy

lim
n

∣∣∣∣g
W
η�ζ|D�E

(
η�ζ|DW

i�−j�E
W
j�−i

)
gη�ζ(η�ζ)

− 1
∣∣∣∣

= lim
n

∣∣∣∣g
M
η�ζ|D�E

(
η�ζ|DM

i�−j�E
M
j�−i

)
gη�ζ(η�ζ)

− 1
∣∣∣∣ = 0

with probability approaching 1 as n→ ∞. (c) The analogous conclusion holds
for any fixed finite subset of men M0 ⊂ {1� � � � � nm} and women W0 ⊂ {1� � � � � nw},
where the conditioning set excludes the availability indicators between any pair
k ∈W0 and l ∈M0.

PROOF: Without loss of generality, let γw = γm = 0. We first prove part (a)
for the W-preferred matching, where we need to establish that the conditional
distribution of ηi given DW

i converges to the unconditional distribution at a
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sufficiently fast rate: Let gWη�D(·) denote the p.d.f. of the joint distribution of
DW
i with η. By the definition of conditional densities, we can write

gWη|D
(
η|DW

i

)
gη(η)

= gWη�D
(
η�DW

i

)
gη(η)P

(
DW
i

)(B.9)

= P
(
DW
i |ηi = η

)
gη(η)

P
(
DW
i

)
gη(η)

= P
(
DW
i |ηi = η

)
P

(
DW
i

) �

where the last step follows since the marginal distributions of ηi has p.d.f.
gη(η) by assumption.

The remainder of the proof then derives a common bound on the rela-
tive change in the conditional probability of DW

i given ηi that does not de-
pend on DW

i and ηi, and applies that bound to the event DW
i to establish that

|P(DWi |ηi)
P(DWi )

−1| → 0 almost surely. Hence, as a final step it follows from (B.9) that

| gWη|D(η|DWi )
gη(η)

− 1| → 0.

Specifically, let η̄ = (η′
1� � � � �η

′
nw
)′, ζ̄ = (ζ ′

1� � � � � ζ
′
nm
)′, η̄−i = (η′

1� � � � �η
′
i−1�

η′
i+1� � � � �η

′
nw
)′, and define the random variable

I
(
η�dW

) := 1
{
η̄−i�ηi = η� ζ̄ imply DW

i = dW
}

an indicator whether DW
i results from the W-preferred stable matching given

the realizations of taste shifters. We can then write

P
(
DW
i = dW |ηi = η1

) =
∫
I
(
η1�dW

)
dG(η̄−i� ζ̄|ηi = η1)

=
∫
I
(
ηi�dW

)
dG(η̄−i� ζ̄)�

since ηi and η̄−i� ζ̄ are (unconditionally) independent by assumption.
Now for any pair of alternative values η1�η2, we can then bound

P
(
DW
i = dW |ηi = η1

) − P(
DW
i = dW |ηi = η2

)
P

(
DW
i = dW |ηi = η1

)(B.10)

=

∫ (
I
(
η1�dW

) − I(η2�dW
))
dG(η̄−i� ζ̄)

P
(
DW
i = dW |ηi = η1

)
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≤

∫
I
(
η1�dW

)(
1 − I(η2�dW

))
dG(η̄−i� ζ̄)

P
(
DW
i = dW |ηi = η1

)
=

∫ (
1 − I(η2�dW

))
dG

(
η̄−i� ζ̄|DW

i = dW �ηi = η1

)
�

where the last equality follows from the definition of a conditional density.
Similarly,

P
(
DW
i = dW |ηi = η2

) − P(
DW
i = dW |ηi = η1

)
P

(
DW
i = dW |ηi = η2

)(B.11)

=

∫ (
I
(
η2�dW

) − I(η1�dW
))
dG(η̄−i� ζ̄)

P
(
DW
i = dW |ηi = η2

)
≤

∫ (
1 − I(η1�dW

))
dG

(
η̄−i� ζ̄|DW

i = dW �ηi = η2

)
�

It therefore only remains to be shown that the bounds on the right-hand side of
(B.10) and (B.11) both converge to zero as n grows large. We can then combine
those two bounds to conclude that∣∣∣∣P

(
DW
i = dW |ηi

)
P

(
DW
i = dW

) − 1
∣∣∣∣ ≤ sup

η1�η2

∣∣∣∣P
(
DW
i = dW |ηi = η1

)
P

(
DW
i = dW |ηi = η2

) − 1
∣∣∣∣ → 0�

so that claim (a) of the lemma follows (B.9).
Deferred Acceptance Algorithm. We now consider the direct effect of a change

ηi from ηi =: η1 = (η11� � � � �η1nm)
′ to η2 = (η21� � � � �η2nm)

′ on her opportu-
nity sets under the two extremal matchings, holding all other agents’ taste
shifters fixed: By Theorem 2.12 in Roth and Sotomayor (1990), the W- and
M-preferred matchings coincide with the solutions of the Gale–Shapley (de-
ferred acceptance) algorithm with the female (male, respectively) side propos-
ing under the assumptions of this paper (see Section 2 in their monograph
for a detailed description of the algorithm). It is now easy to verify that the
result of the deferred acceptance algorithm only depends on which proposals
are eventually made and/or rejected, but not their particular order, which may
only change the number of iterations needed for the algorithm to converge.
Specifically, if i makes a proposal to a man who is not available to her under
the W-preferred matching, that proposal will be rejected at some stage of the
algorithm and does not affect the resulting matching.

Among the men who received a proposal from woman i under the original
W-preferred matching but not after the change to i’s preferences, there is ex-
actly one man j who was available under the initial matching, that is, DW

ij = 1
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and DW
il = 0 for all l such that EWli = 1 and ẼWli = 0. Similarly, there is exactly

one man j̃ among those receiving a proposal after the change who is also avail-
able to i under the new matching, that is, D̃W

ij̃
= 1 and D̃W

il = 0 for all l such
that ẼWli = 1 and EWli = 0. If man l is unavailable to i under both matchings,
then by Lemma B.3 part (a), a proposal by i to l does not alter the resulting
stable matching. Any other men who were initially unavailable may have be-
come available under the new matching only as a consequence of changing Dij

and Dij̃ , respectively.
Conditional and Unconditional Probability of DW

i . Hence, in order to verify
whether a change of ηi from η1 to η2 results in a different opportunity set
for woman i under either of the extremal matchings, it is sufficient to ver-
ify whether a proposal by i to her respective spouses under the W-preferred
matching given η1 and η2, respectively, has an effect on her opportunity set.
If such a change does not alter the indicator variables Di1� � � � �Dinm , then the
same opportunity set is supported by the W-preferred (M-preferred, respec-
tively) matching given the new realization η̃i of woman i’s taste shocks.

Now denote the availability indicators for the W-preferred matching result-
ing from replacing ηi = η1 with η̃i = η2 by D̃W

i := (D̃W
i1 � � � � � D̃

W
inm
)′. It then fol-

lows from Lemma B.3 part (b) that the conditional probability for D̃W
i �=DW

i

given ηk and ζl can be bounded by

P
(
D̃W
i �=DW

i |ηi = η1

)
P

(
DW
i |ηi = η1

) ≤
∞∑
s=1

λsn−1/2q̄≤ 2
n−1/2q̄

1 − λ �

It follows that

P
(
DW
i |ηi = η2

)
P

(
DW
i |ηi = η1

) − 1 ≤ 2
n−1/2q̄

1 − λ �

which converges to zero as n→ ∞. Similarly, exchanging the roles of η1 and
η2, as well as DW

i and D̃W
i , and repeating these steps, we can bound

P
(
DW
i |ηi = η1

)
P

(
DW
i |ηi = η2

) − 1 ≤ 2
n−1/2q̄

1 − λ �

In order to show that these two inequalities imply the desired bound, we have
to distinguish two cases: If P(DW

i |ηi = η2)≥ P(DW
i |ηi = η1), then P(DWi |ηi=η2)

P(DWi |ηi=η1)
−

1> 0 so that by first inequality,

∣∣∣∣P
(
DW
i |ηi = η2

)
P

(
DW
i |ηi = η1

) − 1
∣∣∣∣ = P

(
DW
i |ηi = η2

)
P

(
DW
i |ηi = η1

) − 1 ≤ 2
n−1/2q̄

1 − λ �



LARGE MATCHING MARKETS 21

If, on the other hand, P(DW
i |ηi = η2)≤ P(DW

i |ηi = η1), then P(DWi |ηi=η1)

P(DWi |ηi=η2)
≥ 1 so

that the second inequality also holds in absolute values. In that case we also
have ∣∣∣∣P

(
DW
i |ηi = η2

)
P

(
DW
i |ηi = η1

) − 1
∣∣∣∣ ≤ P

(
DW
i |ηi = η1

)
P

(
DW
i |ηi = η2

) ∣∣∣∣P
(
DW
i |ηi = η2

)
P

(
DW
i |ηi = η1

) − 1
∣∣∣∣

=
∣∣∣∣P

(
DW
i |ηi = η1

)
P

(
DW
i |ηi = η2

) − 1
∣∣∣∣ ≤ 2

n−1/2q̄

1 − λ �

Hence the upper bound is the same in both cases, so that∣∣∣∣P
(
DW
i |ηi = η2

)
P

(
DW
i |ηi = η1

) − 1
∣∣∣∣ ≤ 2

n−1/2q̄

1 − λ �

which converges to zero. Combining the two bounds with (B.9) yields the con-
clusion of part (a) for the W-preferred matching. The argument for the M-
preferred matching is completely analogous.

For parts (b) and (c), note that the argument in part (a) can be extended
directly from one to any finite number of individuals. Specifically, if we change
the values of ηi and ζj in an arbitrary manner, we generate four rather than
two chains of adjustments, whereas at any iteration, each chain can affect ei-
ther i’s or j’s opportunity set. Hence, we can bound the probability of a shift by
a multiple of the bound in part (a), 4n−1/2q̄

1−λ , which can in turn be made arbitrar-
ily small by choosing n large enough. Part (c) can be established in a similar
fashion. Q.E.D.

In the following, let IMwi = Iwi[MM
i ] and IWwi = Iwi[MW

i ] denote the inclusive
values for woman i under the two extremal matchings, so that for any other
stable matching, IMwi ≤ Iwi[M∗

i ] ≤ IWwi . Also, let Γ M
w (x) and Γ W

w (x) be the cor-
responding expected inclusive value functions. Similarly, we let IMmj = Imj[W M

j ]
and IWmj = Imj[W W

j ] denote the men’s inclusive values, and Γ M
m (z) and Γ W

m (z)
be the corresponding expected inclusive value functions.

LEMMA B.5: Suppose Assumptions 2.1, 2.2, and 2.3 hold. Then, (a) for the
M-preferred stable matching,

IMwi ≥ Γ̂ M
wn(xi)+ op(1) and IMmj ≤ Γ̂ M

mn(zj)+ op(1)
for all i = 1� � � � � nw and j = 1� � � � � nm. Furthermore, (b) if the weight functions
ω(x�z)≥ 0 are bounded and form a Glivenko–Cantelli class in x, then

sup
x∈X

1
n

nm∑
j=1

ω(x�zj)
(
IMmj − Γ̂ M

m (zj)
) ≤ op(1)
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and

inf
z∈Z

1
n

nm∑
j=1

ω(xi� z)
(
IMwi − Γ̂ M

w (xi)
) ≥ op(1)�

The analogous conclusions hold for the W-preferred stable matching with
the inequalities reversed, and if weights ω(x�z)≥ 0 form a Glivenko–Cantelli
class in z.

PROOF OF LEMMA B.5: First, note that we can bound conditional choice
probabilities given an opportunity set from a pairwise stable matching using
the extremal matchings: Specifically, we define

ΛM
w

(
x�z;MM

) := P(
Uij ≥U∗

i

(
MM

i

)|MM
i =MM�xi = x�zj = z

)
as the conditional choice probability given the realization of the opportu-
nity set MM from the male-preferred matching, where indirect random utility
U∗
i (M) for the opportunity set M was defined in (2.3). Also, we let the func-

tionΛw(x�z�W ) be the conditional choice probability for an exogenously fixed
opportunity set M ,

Λw(x�z;M) := P(
Uij ≥U∗

i (M)|xi = x�zj = z
)
�

By Lemma B.4, the conditional distribution of taste shifters ηi given W M
i is

approximated by its marginal distribution as n grows large. Hence, combining
Lemmas B.1 and B.4, there exists a selection of stable matchings μ∗ such that
M∗

i =MM
i w.p.a.1, and taste shifters are independent of M∗

i . In particular, we
have

JΛM
w

(
xi� z;MM

i

) ≤ JΛw

(
xi� z;MM

i

) + op(1)�
Furthermore, the conditional success probabilities Λw(·; Iw) and Λm(·; Im) are
of the order J−1 = n−1/2, whereas the approximation error in Lemma B.4 is
multiplicative. Hence, by Lemma B.4 part (b),

E
[
J
(
DM
il1

−Λm(zl1�xi; Iml1)
)|IMml1� IMml2�xi� zj] → 0�

and

E
[
J2

(
DM
il1

−Λm

(
zl1�xi; IMml1

))(
DM
il2

−Λm

(
zl2�xi; IMml2

))|IMml1� IMml2�xi� zj]
→ 0

with probability approaching 1, and for all l1 = 1� � � � � nm and l2 �= l1. Therefore
by the law of iterated expectations, and the conditional variance identity, we
have that for any two men l1 �= l2, the unconditional pairwise covariance

J2 Cov
((
DM
il1

−Λm

(
zl1�xi; IMml1

))
�
(
DM
il2

−Λm

(
zl2�xi; IMml2

))) → 0
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with probability approaching 1. Since by Assumption 2.1, exp{U(x�z)} is
bounded by a constant, we have that Var(IMwi − Γ̂ M

wn(xi)) → 0 for each i =
1� � � � � nw, so that part (a) follows from Chebyshev’s inequality.

For part (b), it is sufficient to notice that part (a) and boundedness of
ω(x�z) imply joint convergence in probability for any finite grid of values
x(1)� � � � � x(k) ∈ X , so that uniform convergence follows from the Glivenko–
Cantelli condition on ω(x�z) following standard arguments. Q.E.D.

Next, we establish uniform convergence of the fixed-point mapping Ψ̂ in
equation (3.1). We consider uniformity with respect to Γw ∈ Tw and Γm ∈ Tm,
where Tw and Tm denote the space of bounded continuous real-valued func-
tions on X and Z , respectively, whose values and first p partial derivatives are
uniformly bounded by constants corresponding to the bounds in Theorem 3.1.

Recall that Ψ̂w[Γm](x) as defined in (3.1) is the sample average

Ψ̂wn[Γm](x)= 1
n

nm∑
j=1

ψw(zj�x;Γm)�

where

ψw(zj�x;Γm) := exp
{
U(x�zj)+ V (zj�x)

}
1 + Γm(zj) �

Similarly, we denote

ψm(xi� z;Γw) := exp
{
U(xi� z)+ V (z�xi)

}
1 + Γw(xi) �

and define the classes of functions Fw : {ψw(·�x;Γm) : x ∈X � Γm ∈ Tm} and Fm :
{ψm(·� z;Γw) : z ∈Z� Γw ∈ Tw}.

LEMMA B.6: Suppose Assumption 2.1 holds. Then (i) the classes Fw and Fm

are Glivenko–Cantelli, and (ii) the mapping

(
Ψ̂w[Γm](x)� Ψ̂m[Γw](x)

) p→ (
Ψw[Γm](x)�Ψm[Γw](z)

)
uniformly in Γw ∈ Tw and Γm ∈ Tm and (x′� z′)′ ∈X ×Z as n→ ∞.

PROOF: The Glivenko–Cantelli property follows from fairly standard argu-
ments: By Assumption 2.1, the function exp{U(x�z)+ V (z�x)} is Lipschitz in
x so that, following Example 19.7 in van der Vaart (1998), G := {exp{U(x�z)+
V (z�x)} : x ∈ X } is a Glivenko–Cantelli class with respect to the distribution
m(z). Since by definition of Tw�Tm, Γw ∈ Tw and Γm ∈ Tm also have at least
p ≥ 1 bounded derivatives, the class H = {Γw ∈ Tw} ∪ {Γm ∈ Tm} satisfies the
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conditions for Example 19.9 in van der Vaart (1998), and is also Glivenko–
Cantelli. Now note that the transformation ψ(g�h) := g

1+h for g ∈ G and h ∈H
is continuous and bounded on its domain since g and h are bounded, and h≥ 0.
It then follows from Theorem 3 in van der Vaart and Wellner (2000) that the
class {ψ(g�h) := g

1+h |g ∈ G�h ∈H} is also Glivenko–Cantelli.
For (ii), the Glivenko–Cantelli property of Fw�Fm immediately implies

uniform convergence of Ψ̂w and Ψ̂m to their respective population expecta-
tions. Q.E.D.

B.4. Proof of Theorem 3.2

We now turn to the proof of the main theorem, starting with part (a).
Fixed-Point Representation. By Lemma B.5, we have that for the M-preferred

matching, IMwi ≥ Γ̂ M
wn(xi)+ op(1) and IMmj ≤ Γ̂ M

mn(zj)+ op(1) for all i= 1� � � � � nw
and j = 1� � � � � nm. Note that, by construction, IMmj ≥ 0 a.s., and exp{U(x�z)+
V (z�x)} ≤ exp{Ū + V̄ }<∞ is bounded by Assumption 2.1, and is a Glivenko–
Cantelli class of functions in x�z. Hence we can apply Lemma B.5 part (b) to
conclude that

Γ̂ M
w (x)= 1

n

nm∑
j=1

exp
{
U(x�zj)+ V (zj�x)

}
1 + IMmj

≥ 1
n

nm∑
j=1

exp
{
U(x�zj)+ V (zj�x)

}
1 + Γ̂ M

m (zj)
+ op(1)�

where the remainder converges to zero in probability uniformly in x. We obtain
similar expressions for Γ̂ M

m (z), Γ̂
W
w (x), and Γ̂ W

m (z). Hence, the inclusive value
functions satisfy

Γ̂ M
w ≥ Ψ̂M

w

[
Γ̂ M
m

] + op(1) and Γ̂ M
m ≤ Ψ̂M

m

[
Γ̂ M
w

] + op(1)�
Γ̂ W
w ≤ Ψ̂ W

w

[
Γ̂ W
m

] + op(1) and Γ̂ W
m ≥ Ψ̂ W

m

[
Γ̂ W
w

] + op(1)�
where inequalities are component-wise, that is, for Γ̂ M(x) and Γ̂ W (z) evalu-
ated at any value of x ∈ X and z ∈ Z , respectively. Noting that Ψ̂w[Γm] and
Ψ̂m[Γw] are nonincreasing and Lipschitz continuous in Γm and Γw, respectively,
we have

Γ̂ M
w ≥ Ψ̂M

w

[
Γ̂ M
m

] + op(1)≥ Ψ̂M
w

[
Ψ̂M
m

[
Γ̂ M
w

]] + op(1)
from the first two inequalities. Hence, for any functions (Γ ∗

w�Γ
∗
m) solving the

fixed-point problem

Γ ∗
w = Ψ̂w

[
Γ ∗
m

] + op(1) and Γ ∗
m = Ψ̂m

[
Γ ∗
w

] + op(1)
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with equality, we have

Γ̂ M
w ≥ Γ ∗

w + op(1) and Γ̂ M
m ≤ Γ ∗

m + op(1)
and, from the second set of inequalities,

Γ̂ W
w ≤ Γ ∗

w + op(1) and Γ̂ W
m ≥ Γ ∗

m + op(1)�

However, since the mapping Ψ̂ is a contraction in logs, the fixed point (Γ ∗
w�Γ

∗
m)

is unique up to a term converging to zero in probability. Furthermore, since
MM

i ⊂MW
i and W W

j ⊂W W
j almost surely, we also have

Γ̂ M
w ≤ Γ̂ W

w and Γ̂ M
m ≥ Γ̂ W

m �

It therefore follows that

Γ̂ M
w = Γ ∗

w + op(1) and Γ̂ M
m = Γ ∗

m + op(1)�
and the same condition also holds for the inclusive values from the W-
preferred matching. Note that this argument does not require uniformity with
respect to (any random selection from) the full set of stable matchings, but
only joint convergence for the two extremal matchings.

This establishes the fixed-point representation for Γ̂ W
w and Γ̂ M

w in equations
(3.1) and (3.2). Similarly, we can also establish the fixed-point characteriza-
tion for the inclusive value function Γ̂ W

m and Γ̂ M
m for the male side of the mar-

ket. Since for any other stable matching, Γ̂ M
w ≤ Γ̂ ∗

w ≤ Γ̂ W
w and Γ̂ W

m ≤ Γ̂ ∗
m ≤ Γ̂ M

m ,
and furthermore by Theorem 3.1, the solution to the exact fixed-point problem
Γ = Ψ̂ [Γ ] is unique with probability 1, it follows that (3.2) is also valid for the
inclusive value functions under any other stable matching.

In order to prove part (b), we will proceed by the following steps: we first
show existence and smoothness of the solutions to the fixed-point problem in
the finite economy (3.2), and then show that the solution to the fixed-point
problem of the limiting market in (3.5) is well separated, so that uniform con-
vergence of the mapping log Ψ̂ to logΨ implies convergence of Γ̂ to Γ ∗.

Existence and Smoothness Conditions for Γ̂ . First, note that existence and dif-
ferentiability of Γ̂w and Γ̂m solving the fixed-point problem in (3.2) follow from
Theorem 3.1: Since the conditions of the theorem do not make any assump-
tions on the distribution of xi and zj , it applies to the case in which w(x) and
m(z) are the p.m.f.s corresponding to the empirical distributions of xi and zj ,
respectively. Hence, Assumption 2.1 and Theorem 3.1 imply uniqueness and
differentiability to pth order with uniformly bounded partial derivatives condi-
tional on any realization of the empirical distribution of observable character-
istics. Since the bounds on the contraction constant λ and on partial derivatives
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of Γ̂w� Γ̂m do not depend on the marginal distributions, they also hold almost
surely with respect to realizations of the empirical distribution.

Local Uniqueness. Next, we verify that, for all δ > 0, we can find η > 0
such that, for any pair Γ� Γ̃ with ‖ log Γ̃ − logΓ ‖∞ > δ, we have ‖(log Γ̃ −
logΨ [Γ̃ ]) − (logΓ − logΨ [Γ ])‖∞ > η: First, note that by Theorem 3.1, the
mapping (logΓ ) �→ (logΨ [Γ ]) is a contraction with constant λ :=

exp{Ū+V̄ +γ∗}
1+exp{Ū+V̄ +γ∗} < 1, where we let γ∗ := max{γw�γm}. Then, using the triangle in-
equality, we can bound∥∥(

log Γ̃ − logΨ [Γ̃ ]) − (
logΓ − logΨ [Γ ])∥∥∞

≥ ‖ log Γ̃ − logΓ ‖∞ − ∥∥logΨ [Γ̃ ] − logΨ [Γ ]∥∥∞

≥ ‖ log Γ̃ − logΓ ‖∞ − λ‖ log Γ̃ − logΓ ‖∞

> (1 − λ)δ > 0�

so that we can choose η= η(δ) := (1 − λ)δ.
Convergence of (Γ̂ − Γ ∗). Finally, Lemma B.6 implies that the fixed-point

mapping Ψ̂ converges to Ψ0 uniformly in x�z and Γw ∈ Tw, and Γm ∈ Tm. Since
Ψ̂ > 0 is bounded away from zero almost surely, it follows that | log Ψ̂ − logΨ0|
converges to zero in outer probability and uniformly in x�z and Γw ∈ Tw, and
Γm ∈ Tm as well. Hence, for any ε > 0 and n large enough, we have

P

(
sup
Γ ∈T

∥∥log Ψ̂ [Γ ] − logΨ0[Γ ]∥∥∞ >
η

2

)
≤ 1 − ε�

It follows from the choice of η above that

P
(∥∥log Γ̂ − logΓ ∗∥∥

∞ > δ
) ≤ 1 − ε�

so that convergence of Γ̂ to Γ ∗ in probability under the sup norm follows from
the continuous mapping theorem. Q.E.D.

B.5. Proof of Corollary 3.1

As shown in Section 2, the event that woman i and man j are matched under
a stable matching requires that woman i prefers j over any man l in her oppor-
tunity set M∗

i given that matching, and that man j prefers i over any woman
k in his opportunity set W ∗

j . Now, by Lemmata B.1 and B.4 part (a), the con-
ditional probability that i prefers j over any l ∈M∗

i given her inclusive value
satisfies

JP
(
Uij ≥U∗

i

(
M∗

i

)|Iwi� xi� zj) = JΛw(xi� zj; Iwi)+ o(1)
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with probability approaching 1, where Λw(·) is as defined in Section 2.3. Also,
by Theorem 3.2(b), the inclusive values Iwi and Imj converge in probability to
Γw(xi) and Γm(zj), respectively, so that, by the continuous mapping theorem,

JΛw(xi� zj; Iwi)= JΛw

(
xi� zj;Γw(xi)

) + op(1)�
Similarly, the conditional probability that man j chooses i over every k ∈W ∗

j

converges according to

JP
(
Vji ≥ V ∗

j

(
W ∗
i

)|Imj� zj� xi) = JΛm

(
zj�xi;Γm(zj)

) + op(1)�
Finally, by Lemma B.4 part (b) and Assumption 2.3, the joint probability of the
two events converges to the product of the marginals,

nP
(
Uij ≥U∗

i

(
M∗

i

)
� Vji ≥ V ∗

j

(
W ∗
i

)|Iwi� Imj� xi� zj)
= J2Λw

(
xi� zj;Γw(xi)

)
Λm

(
zj�xi;Γm(zj)

)
�

so that the conclusion of this corollary follows from a LLN using Lemma B.4,
part (c), together with Assumptions 2.1 and 2.3, via an argument analogous to
the proof of Lemma B.5. Q.E.D.
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