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Abstract

This supplement presents the statements and proofs of the lemmas that are used in the
Appendix of the paper. Lemmas A.1-A.6 are used in the proofs of Theorems 2.4 and 3.2.
Lemma B.1 is used in the proof of Theorem 3.1.

Lemmas

Lemma A.1: Let M’ and M be compact and convex sets such that M = {y} x M
is strictly included in the interior of M’ x M. Let F denote the set of bounded and con-
tinuously differentiable functions g on the extension of the support of (Y,X) to the whole
space and such that the function g defined by g(z) = [|g(y,z)| dy is bounded and contin-
wously differentiable.  For all functions g in F, denote by llg|| the sum of the sup norms
of the values and derivatives of g and of § on M’ x M. For any (y,z) € MY x M°,
define the functionals o, (-) and B, (-) on F by o, (g) = 0loggy|x—.(y)/0y; and B, (g )
= 0log gy|x=2(y)/0x,. For simplicity we leave the argument (y,x) implicit. ~Assume that
the density fyx belongs to F and it is such that for 6 > 0 and all (y,x) € M’ x M,
frx (y,x) > 6 and fx (z) > 6. Then, there exists finite a > 0 and 0o > 0 such that for all
h €F with ||h|| < 8y and all (y,z) € M’ x M"

O‘yj(f—i_h)_ayj(f) = Dayj(th)"‘RO‘yj(f?h)a

and B, (f+h)=B,.(f) = DB, (f;h)+RB,, (f;h).

where [h oy h] h [h f—f h]
Dayj(f;h):# ; Ray, (f;h) =— f2](f+h)]
. . [hxsf B fl’sh] . [%xSf— f;;ﬁ] .
Dﬁxs <f7 h) - f2 fQ ’
— /E /EZES}.V_ }\;slﬁ
Rp,, (i) = — |Mhml = tel | |

PU+h) PR+



Moreover,

| Day, (fih)| < allbll; |DB,, (fil)| < allhll; [Ray, (f;h)| < allk]®; and |RB,, (f;h)] < allk|*.

Proof: To simplify notation, we will denote fy x(y, ) by f, fx(z) by f, JOfyx(y,z)/0y; by
fu;» Ofv,x(y,7)/0xs by fu,, and Ofx(v)/0xs by f,,, with similar shorthands for functions g
and h. By the definitions of a,,(g) and j3,_(g),

8gyg((y,fc) p 99v.x (y,x) 9gx (z) g il
Yj Yj oz, oz, Ts Ls
a,.(9g) =——""—==and 3, (g9) = : — : = — =
u(9) gvx(y,r) g 9) (gy,x(y,l’) gx(l’)) 9 9

Let do= min{5/2,1}. Then, for all & €F such that ||h|| < do, one has that |h| < §/2 and
’%‘ < 6/2. Since f > & and f > 4, it follows that (f +h) > §/2 and (f—i—?z) > 0/2. By
rearranging terms, it follows that

Oé,w(f + h) - ayj(f)

_ {fyﬂrhyj fyg}:

[hyjf_fyjh} h[hy].f—fyjh]]

f+hof f? FAf+h)
_ [hyjf_fyjh] _ h[hyjf_fyjh}
f? fAHf+h)

= Day, (f:h) + Ray, (f:1) and

_ (St he fo] | fethe,  fu
B..(F +h) — Bo.(f) P7:%— f] _— f]

_ [[h%f — fuh] _ hlhe S - fxsh]] BRI
— f? f2(f +h) J”c“z fg(f_F'E)

_ %J—AM_hdjh@ _hmJ—mm_h@{f@@
f? Iz f2(f +h) P(F+h)
= DB, (fih)+ RB,, (f;h)
where the last equalities in each of the two expressions above follow by the definitions of

Doy, (f;h), Ray, (f;h), DB, (f;h), and RSB, (f;h) in the statement of the Lemma.
It remains to show that for some finite a > 0, which does not depend on (y, z)

| Day, (fih)| < allbll; |DB,, (fih)| < a|lhll; [Ray, (f;)| < allh]®; and |RB,, (f;h)| < alln]®.




Let a = max {4 f||/ (6%) 4| f||/ (6°)} . By the definition of || f|| and |||, it follows that
FL | fos |5 s ‘ﬂ and ‘f;‘ are not larger than || || and that |h], |hy, |, |ha,| )%‘ and ‘?L
are not larger than ||h|| . Moreover, as was shown above, for all h such that ||h|| < /2, (f + h)
and < f+ h) are larger than §/2. By the assumption that f, f > ¢, it then follows that

hy f— f,.h 2
1Des ()] = | Ll 2Tt 2y
. _ h [hyjf_fyjh] 2 ”fH 2
[y, (Fim)] = | =gy~ | < 5 Il <allal
he f— fo.h %mst_ .}Fme% 4
R e | . l]. (254) 1o < ol anc
hlho f = foh] PR d - ER]| 4 11
R h)| = - h h
{ Bazs(f7 )} 2(f +h) 2(F+h) = I || <all ||
This completes the proof of the Lemma.
Lemma A.2: Let M’, M", M, M, F, ||l cy,(-) and B,, () be as in the statement of

Lemma A.1. Assume that the density fy x belongs to F and it is such that for § > 0 and all
(y,x) € M’ x M, fyx(y,2) > 6 and fx (x) > 6. Let p denote a bounded, nonnegative,
continuously differentiable function, with values equal to zero when any coordinate of x € 1WA
8 on the boundary of Mt, positive values when x is in the interior of Mt, and such that
|5 7 ) de = 1. For simplicity we will leave the argument (y,x) implicit. Define the
functzonal D, 2, on F by

Dy, s (g)z/ﬁayj(g) Be.(9) wly, ) dx —(/ vy (9) puly, = dw) </ B (g >

Then, there exist finite by > 0 and 6, > 0 such that for all h €F with ||h| < 6,

q)yj,:cs (f + h) - q)yj,:cs (f) = D(I)yj,acs (f7 h) + R(I)yj,:cs (fa h)
where, employing the notation of Lemma A.1 for the definitions of Day, (f;h), Ray, (f;h),
DB, (f;h), and RB, (f;h),

D®, .. (f;h) = /Day]fm(ms /ﬁxs udx)udx

+ [ D8 7im (= [ (Do) w do, and

ROy, (738) = [ Ray, (1 h)( - [ o0 ud:v> W da
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# [ Rt (on(n = [ ay(inde) u do

[ (Do, 738+ oy, (5:10) (D, () + R, (F500) o

_ (/M (Day, (f;h) + Ray, (f;h)) p dx) (/M (DB, (f;h) + RB,. (f; 1)) u dx).

Moreover,

DDy, 0. (f; )| <01 ||Al] and |RDy, ., (f3h)] < by |[B]]*.

Proof: Let 6;= min{d,/2,1}. To show that for all h such that ||h|| < 0

®y]7$s (f + h) - q)yj,:cs (f) = D(I)yjyxs (fa h) + Rq)yj,:cs (f’ h)

we note that by the definitions of ®, . , «a,,, and S

2., it can be shown by adding and
subtracting terms that

(I)yg,xs (f + h) - ¢yj7$s (f)

_ /Hayj<f+h> B (f + 1) di —(/_ ayj(f—l—h)udx) (/ 5. f+h)ﬂdx>
[ s nds + ([ apnuar) ([ sna)
- [t m =) (5.0~ [ 8. (ppir) e
w [ (ot = [ an(Onde) (5,040 = 8.0 o
b [ (@70 = (D) (B + 1) = B, (1) o

_ (/M (ay, (f +h) =y, () 1 dx) /M (Bo. (f + 1) = Bo. () dw) _

Employing the expressions of (v, (f +h) — oy, (f)) and of (8, (f + k) — B,.(f)) in terms
of Doy, (f;h), Ray,(f;h), DB, (f;h), and RSB, (f;h), guaranteed by Lemma A 1, it follows
from the last equality that

v (f+ 1) =

= [ pay, (s (Mf)
v [ D) (o)

4

ZL'S (f>
Ba. () udx) p dx

a\a\e

ay, (f) udJE) p dx



v [ o) (800 = [ 5..00) pde) o

w [ s (a0 = [ oy ude) s
[ (D, (1) + Ray, (7510) (DB, () + RS, (£31) o do

) (/M (Dew, (fih) + R, (F:h) g dfv) ( | 0.5+ R, (i) d:p)

Note that the sum of the first two terms is D®, . (f;h) and the sum of the last four terms
is R®,. .. (f;h). Hence,

(f =+ h) (I) s (f) = D(I)yj,xs (f7 h) =+ Rq)yj,:rs (fa h)
It remains to show that for some ﬁmte by >0,
D@y, 0, (fi1)] < bullh]| and [R®y, ., (f;h)] < by [|h]|*.

Let a = max {4|f||/(6°),4[/f]/(6°)}, as defined in the proof of Lemma A.1, and let
by = max {awT”f”, 16 a2} . Since by assumption f > § and J? > ¢, it follows by the definitions
of a,(f) and 3, (f), the assumption that |- u(y,z)dz =1, and the conclusion of Lemma

A.1 that
‘/ Day]fh< / 8, ( ,ud:r) u dz
< [ pay (5.0 [ a0 pir)| o
< [t (|| e < apan < G m
and that

[ et (a0 = [ o o) o

< [ 1ps.sn) (ayj<f>— [ ot udx)

b
< /MauhujQTij e < afn) 200 < Py

Hence, ‘Dq)yjﬁms (f; h)‘ < by [|h]| . Analogously, for the four terms of R®,, ... (f;h),

W dz




'/M Rayj(fh< / B,. de> 1 da

4
< [ amm([FE)] o< 5 e
M

‘/M RB, (fih) (ayj(f)—/ﬁ ay,(f) udx) 1 da
/]

.| (|21 b
< [ amn (PR wae <%

'/M (Dav, (f;h) + Ray, (f; 1)) (DB,, (f;h) + RB,, (fih)) pdx

2 2 by
< [ (1) e < (a0 < 40P < 0

‘( /M (Day, (f; k) + Ray, (f;h)) uda;) ( /M (DB,, (f;h) + RB,, (f;h)) de)
G (Il + I < 2 e

Hence, |R®,, ., (f;h)] < by |h]|*. This completes the proof.

Lemma A.3: Let M", M", M, M, F, Il ay, (), By, (-), and p be as in the statement of
Lemma A.3. Assume that the density fy x belongs to F and it is such that for § > 0 and all
(y,x) € M x M, fyx (y,x) > 6 and fx (x) > 6. For simplicity we will leave the argument
(y,x) implicit. Define the functional ®, .. and ®,, ., on F by

@) = [ (o) (a) o) do=( [ o) o) ) ([ (o) ntonr) dx).

Voo ()= [ 000 8t0) w0y as = ([ 50) o) o) ([ 6 uto) o)
<

Then, there exist finite by,bs > 0 and 05,05 > 0 such that for all h €F with Al

m1n{52,53}

Ys (f) = Dq)yj,ys (f;h) + Rq)yj,ys (f;h)
D®,. .. (f;h)+ R, ., (f3h)

<
<8
<

A
B
b
—
~
=
|
b
>
I
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where, employing the notation of Lemma A.1 for the definitions of Day,(f;h), Ray,(f;h),
Day,(f;h), and Roy, (f;h),

DBy, (fi) = [ Day (fih) (aysm— [ entrn d:r> W de

/ Doy, (f (% (f) /M oy, ()i dx) i de, and

R, ,. (f:h) = /H R, (f: ) (ays(f)— [ ewtim dx) b da
+/MRayS(f;h) (ayj(f)—/ﬁayj(f)u drr) podw
+ [ (Do, (1) + Ray, (£30)) (Do, (i) + Roy, (Fi1) - da

_ (/M (Day, (f;h) + Ray, (f 1)) s dx) (/H(D%S (f:h) + Ray, (f;1)) dx).

D%,,.. (1) = [ D3, fh)( - [ B de)udx
+ [ D8t (8,000 [ 8o d) e do, ana
RO, () = [ R, h)( ~ [ S ir)
+ [ R, (im) ( D= [ B udx> 0 da

+ [ (D8, (i) + B, (i) (DB, (i) + B3, (fi)

M

. ( [ (0, )+ B3, (1) das) ( [ 05,5+ R5,, (5:1) da:).

Moreover,

DDy, . (f;h)] < b2 |[Bl] and |R®,,,. (fih)] < baIR].

DB, 0, (f:1)] < by |h] and |R®,, ., (f:h)] < by |h

Proof: The proof follows similarly to the proof of Lemma A.2, after replacing 3, with
@, in the results related to ®, . (g) and replacing a,, with 5., in the results related to
@, 2, (9), with the obvious modification of the upperbounds.

Lemma A.4: Let M’, M", M, M', F, -l (4)s Bay () s Py, (4)) Py, (+) and
Dy 2, (1) e as in the statements of Lemmas A.2 and A.3. Assume that the density fyvx
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belongs to F and it is such that for § > 0 and all (y,z) € M’ x M, fyx (y,z) > 6 and
fx (x) > 6. For simplicity we will leave the arqgument (y,z) implicit. Define the functional

= on F by
Py (9) @, (9) (I)ylx(!J) (Dyzx(g)
Dy, (9 ) P, (9) — 23, . (9)
f) @

v (f) — @2 (f)] > 0" Then, there exist

YT

[1]

(9) =

and assume that for some §* > 0, [ wan (f
finite ¢ >0 and & >0 such that for all h €F wzth Ih|| <6

=(f +h) —E(f) = DE(f;h) + RE(f; 1)

where
=(f;h)
[D®y, y, (f3 1) Po (f) = DPyy o (f;h) Py (f)]

Dy, (f) Paa (f) — 5, 4 (f)
[Py (f) DPaie (f3h) = @y o (f) DPy, 0 (f51)]
Dy, (f) Pa (f) — @5, 4 (f)
. [q)yhyz (f) . (f) = Dy o (f) Pyoa (f)] [D® Y1,41 (f h) @, at Py (f) D, . (f; h)]
(@, 0 (F) P () = 2, ()]
+ 2 DOy, o (f5h) Pyo ()] [Pyre () Pow () = Py f) yarz ()]
(@111 (f) @o () = 22, ()]

+

Y

D=y, (f;1)| < cllhll, and |RE,,,, (f;h)] < c|h]*.

Proof: Let b = max {b, b, bs, (8 [Fdl& /6%)} and § = min {51,32,33, 5%/ (32 62)} , where

gl and b; are defined in Lemma A.2 and 52,53, bo, by are defined in Lemma A.3. Since the
assumptions of Lemmas A.2 and A.3 are satisfied, it follows from those lemmas that for all
h in F with ||h|| < 6, and for j,s = 1,2

q)yj,ys (f + h) - (I)yjyys (f) = D(I)yjyys (fa h) + R(I)yjyys (fa h)
Dy (f+ 1) =@y 0 (f) = Dy, . (f;h) + RPy, . (f; h) and

Ppo (f+h) = oo (f) = DPuy (f; h) + RO, . (f5 1)

where D@y, . (f;h), ROy, » (f;h), Dy, y, (f;h), ROy, (fih), DPuy (f5h), and ROy, (f;5h)
are as defined in Lemmas A.2 and A.3. By those Lemmas, these terms satisfy

‘Dq)ijs (f; h)‘ <b|h| and }R®yj7$s (f; h)} <b HhH2>



DDy, (f; )| S BBl and |R®,,,. (fih)] < bl|R]*, and

ID®, . (f;h)| <b|h|| and |R®,, (f;h)] <b|h|>.

We seek a first order expansion

E(f+h) —E(f) = D=(f;h) + R=(f; h)

with
IDE(f;h)| < cl|h]| and [RE(f;h)] < c|lh]

Denote D', N', D, and N by
N' =@y o (f + 1) Poo(f+h) =Py a(f+h) Ppu(f+h)

N =@y, 4, (f) Dy s (f) — Dy, (f) Dy 0 (f)
D = Dy, 4 (f + h) Dz (f + h) - [q)yh:c (f + h)]2
D=, (f) Qy (f) — [(I)yhx (f)]2

Then,
(I)yl,yz (f + h) q)x,:c (f + h) — (I)ywc (f + h) (I)yz,x (f + h)

(I)yl,m (f + h) (I):c,:c (f + h) - [(I)ym: (f + h)]2
. <I)yl,yz (f) (I)x,x (f) — q)yl,:c (f) <I)yz,ac (f)

CI)y1,yl (f) (I)z,x (f) - [(I)yl,x (f)]2
N N
D D
We will make use of the equality

N’ N:N'D—ND’_(D'—D) (N"D—-ND)

E(f+h) -2 =

D D D? D' D2
Lemmas A.2 and A.3 and the definitions of N’, D', N, and D imply that

N = Py, (f+h) Poo(f+h) = Pyo(f+h) Pyolf+h)

= Py, (f) Pz (f) — Py (f) Dy 0 (f)
+DPy, y, (f;7) Poue (f) + Pyy o (f) DPoe (f5h)

_Dq)yl,x (f’ h‘) (Dyz,x (f) - q)yhx (f) D(Dyz,x (fa h)

+RN



where

Ry = @y, 4, (fih) [Ruy (f + D))

+D®y, , (f3h) [Dpy (f +h) + ROy (f + 1)

+RPy, y, (f1 1) [@on (f + 1)+ Dy (f +h) + ROy (f + A
— Py, (fi 1) [ROy (f + 1))

—D®y, o (fih) [DPya (f + 1) + By, (f + h)]

—R®y, , (f;h) [q)yz,x (f+h)+ Doy, , (f+h)+ ROy, » (f +h)]

and
D' = Oy (f+h) Suu(f+R) =2 (f+)
= By (f) Do (f) — ®2,, (f)
+D®,, , (fih) Pyy+ Py (f) DByy (f3h)
—2D®,, , (f;h) D, . (f)
+Rp
where

Rp = @y (f;7) [RPey (f + )]
+D(I)y1,yl (f7 h) [D(I):c,:c (f + h) + Rq)a:,:c (f + h)]

+RPy, 41 (f 1) [Pa (f +h) + Do (f + h) + BPaa (f + h)]

_(Dyl,x (fa h) [Rq)yhx (f + h)]
—D®,,., (fih) DBy, (f +h) + R, (f + D)

—R®y, , (f; h) [q)yl,x (f+h)+ Doy, , (f+h)+ R®,, » (f +h)]
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= [(I)yl,yl (f) (I):ny (f) - (I)il,x (f)} [D(I)yl,m (fa h) (I):c,ac (f) + q)ylaZJZ (f) D(I):c,a: (f; h)]
- [q>y1,y1 (f) CI):c,x (f) - (Dg2;1,x (fﬂ [D(Dyl,x (f, h) q)yzﬂc (f) + q)ywc (f) D(Dyz,x (fa h)]
- [(I)yl,yz (f) Qs (f) - Dy, 0 (f) Dy 0 (f)] [D(I)yhyl (f;h) Qyo + Py (f) D, (f; h)]

+2 {q)yhyz (f) @ua(f) — Dy, 2 (f) Dy 2 ()] D&y, . (f; h) Dy, (f)

and

D' —D
= Doy, 4, (fv h) Py + Py (f) D, , (f: h) —-2D%,,, (fv h) Dy, (f) + Rp

Denote D= (f;h) and R=(f;h) by
D= (f;h)
. [D(I)yl,yz <f7 h) q)x,x (f) + (I)yl Y2 (f) Dq)x,:c <f7 h)]

B Dy 4 () oo (f) — D2, (/)

Dy . (Fih) Pypa (f) + Py (f) Dy (f51)]
Oy (f) P (f) = 5,0 (f)

_[D®y,y (Fi7) Puw + Py (f) DPua (f51)] [Py (f) Coo (f) = Pyra (f) P (f)]

(@ (F) @ (F) = 02, (1)

+ 2 Dy, o (f;h) Py, 0 ()] [q)yhyz (f) Poa (f) - CI)y1 2 (f) Dy, (f )]
@y () ®aae () = @2, ()]

and
R=(f;h)

DRy—NRp [D'—D] [N'D—ND

D? D% D
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Then,
=(f +h) —E(f) = DE(f;h) + RE(f; 1)

It remains to show that for some ¢ > 0,

[DE(f;h)| < c|lhl and |RE(f;h)| < c|A]*

By Lemmas A.2 and A.3, for all h in F with ||h]| <,

(I)yl,yl (f + h) (DI,I (f + h‘) - (1)32/1,1’ (f + h)
[(I)yl,zu (f) + Dy, 4, (fa h) + ROy, 4, (f7 h)] [(I)z,x (f) + D®, <f7 h) + R®, (f7 h)]

— @y, (f) + DOy, . (f; h) + ROy, . (f; 1))

and, by the definition of b, for all w, z € {y1 ya, 2}, |D®y . (f; )| < b||h| and |RDy, . (f; h)] <
b||h||*. Moreover, by the assumptions on fy x and p, for all such w, z, |®,, ., (f)| < (8 [Fdl& /8%)
< b. Hence,

Pyrn (f 4 1) Pog (f+1) = o (f+ 1)
By () B () B, () 4T

for T such that B
IT| < 16 b ||h]| <16 b* 6 < 6*/2

Then, since
(I)yhyl (f) (I)z,x (f) - CI)?2JME (f) > 0"

it follows that
Dy, (f 1) Poo (f+h)—®2 (f+h)>6/2

and then, by the definitions of D and D',

D* D' > (6%)° /2

Let ¢ = max {16 v?/ (6")*, 3776 b° / (6*)°} . Then, for all & such that || < )
16 v?

5 < ¢ [
(0%)

and since for all h such that ||h|| < 9, |D'| < 1862, |D| < 202, |N| < 262, |Rn| < 1202 ||h|1?,
|Rp| < 120%||h||*, | D’ — D| < 1612 ||h||, and [N'D — ND'| < 64b* ||h]| , it follows that

D= (f;h)] <

18 0%(24b* ||A]|” + 24b* |Al*) + (166 |1 ]) (64 b* ||Al))
(6%)° /2

|RE (f; h)|
< )’
This completes the proof of Lemma A.4.
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Lemma A.5: Let M*, M", M, M, F, |||, ay,(-), Bo. (), 1ty Pyya. (), Py, g (-) and
®,, 2, () be as in the statements of Lemmas A.2 and A.3. Suppose that either Assump-
tions 2.7-2.10 or Assumptions 2.7, 3.4, 8.5, 2.9, and 2.10 are satisfied. Let G denote the
dimension of the vector of observable endogenous variables Y and let M = {y} x M. Then,

VNo&2D®, , (f.f — )
:VN””é(ﬁmm—&m@H}wdﬂ_hﬁdmmﬂ dr + 0,(1)

S

VNoG2 |:¢J7j7$s (J/C\) - (D:cj,xs (f)} - N0G+2Dq)9”j7$s (f, J?_ f)+ N0G+2R(I)xj’763(f’ J/C\_ f)
= 0p(1)

VReTDa,, (1:F - 1)

— +2 fyi (y,2) = fy, (,2) \ |1 (o, () = [z . (f)p da) N
~ VNo© /H ( o ) [ ] d

_|_\/W/ ﬁ/s (v, 2) = fy. (g, 2) | | 1 (ayj<f) — Jer o, (Fp dx) i
M fly, x)

+0,(1) and

. 2
and VNoGH2 | f — fH — 0 in probability.

Proof: First note that

(T2) LD@@@(%m—é%mwm)um

M

- (haof = fo P] Jyy B Ju;
_/M IE f“d‘”/w T

(L) ([ () )
(B ) (f (2) )

Since by Assumption 2.8 the values and derivatives of the continuously differentiable function
1 when any coordinate of x is on the boundary of M are equal to zero and f and f are larger
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than § everywhere on M and Mt, it follows that the continuously differentiable functions
b i) /f, [l fy,] /12 [h p} /f and [h 7 fyj} / [ff] vanish when any coordinate of x is on
the boundary of . Hence, integration by parts of the terms in (7.2) containing h,, or ﬁxs

gives
| ot (a0 [ a0 pir) s
_ _/M h [ais (Mf];yj>+f”’”;2’3 ] dz +/ME lﬁi’s <’}f;ﬁ>+%l dx
(Lol (9)+ 1 ) (/ﬁ<
_(/M%[ais( )

Sy (Bal(f) = Jp B (f) pda) p
f2

[0 (it | Sedu S\ L) [2 ﬁ) fxsp}

[axs( Iz )* IE ] +(/M(f> Md){ars(f N
. 0 % fyj ﬁcsfyju fyj 0 12 ]?;S/J

(@) = [8335 ( 7 ) T (/M (7> “d"”) [8% (?) R ”

Then, by Lemmas A.2 and A.3 and by (7.2),

D@, (f:7 - 1)
= [ payriF-1) (Mf)— [ 5. udw> uda
M M

T /M DB,,(f: ]~ ) (ayj<f>— /M 0, (f) ud:r> o de

14



_ /M<fya —fyj) (8o, (f) = J37 B, (f) pud) 1 da

t [ (F-1) wutados [ (F-F) ae) do

By Assumptions 2.7, 2.9, and 2.10, it follows by Lemma 5 3 in Newey (1994) by letting

in that lemma, k:l G, /{:2 dim(x), l =0,t=x, hg = = <fM W, () dm),
and m(hg) = ( e W, () dm) ,that for a finite constant matrix V,
VRO ( [ (Fa) = 1) o (0)s) = ¥ 0.,
M

Slmllarly, lettlng in that same lemma, k1 = 0, ky = dim( ), l = 0,t =x hg = ]7,
5 f (7) dm) and m(hg) = (fM (7) da:) , it follows that for a

ﬁmte constant matrix V,
V([ (Fw) = o ) wsto) de) = ¥ 0.1,

Hence,

VNoSHDY,, o (f.F = 1)
= VNG [ (7,0 = 1, 00) [“(5%” ) = Jiy 81 1)

7 dz + 0,(1)
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Using analogous arguments for D®, . (f, ]/C\— f) and for D®, ., (f, J/“\— f), it follows that

~

v NUG+2D(ij,:cs(f7 f - f)
= VNS [ Da (5 1) (ﬁ%(f) - [ ) ud:v) u da
M M

oG+2 LT _
w7 [ D8, (17 1) (8,00~ [ 5.,00) pis) o
= Op(l)
and that
VR, (- 1)
- VN [ Doy (5:F 1) (ays(f)— [ anth ud:v> uda
M M
+VNUG+2/_D%S(f;f—f) (%j(f)—/_%j(f) udfr) 1
M M

_ W/ﬁ(fyj —fyj) ((%s(f)—fm;lys(f) pdz) N) I

VN [ (f.-1.) <(%(f )= i () 1) “) ir

/
+0p (1)

To show that

VNoG+2

we note that from Appendix B.3 in Newey (1994),

|7 = 1] = 0 (Vios)] No?52) + 0°)

~ 2
f— f” — 0 n probability.

2
Since by Assumption 2.10, NogG+2 <\/log (N) [/ (No?2G+2) + as> converges to zero, it
follows that )
— 0 n probability.

Nl

Lemma A.6: Under the same definitions, notations, and assumptions in Lemma A.5,
for all j,s and all w, z € {y;,ys, xj, x5}, for finite € > 0, and for ||f — fH sufficiently small,

SUP (.77 | (A@w 10g fy|x—x (y)) (A@Z log fyix—a (y)> s

(y,x)

2

2

— (80,108 fy = (1)) (A0 108 fyx—s (1) g <7 ||F = 1
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Proof: By Lemma A.1, it follows that for all ]? such that H]?— f H < go and for all
(y,x) € M,

J/C?\;j (y,2) _ Jy; (y, )
J?(y, x) fly, )

Ray, (£ 7= 1)]

Qy; (f) — Qy; (f)) < )Do‘yj (f’f_f>‘+

< ool

Hence,

Qy; (f)_ayj(f)’ S(LH,}/C\_fH_’_CL f_

sup
(y,x)eEM

Since p is bounded, fﬁ p(y, r)dr = 1, and M is compact, this implies that

‘/ vy, pdx (f) pdx

fa

aHf—fH+aHf—fH2

IN

ay,(f)~—caﬁ<fﬂ jda

IN

and therefore, for all (y,z) €

( Q@ (7) wae) = (o >—Aﬁ-muw)

Qry, A — ay, ( ‘ ‘/ay A pudx — v (f) pdx

<

< QaHf—fH—i—Qa‘ —

By an analogous argument for 3, , it can shown employing Lemma A.1 that for all (y,z) € M

(0. (7) = [ 00 (7) wie) = (5290~ [ 6. )

sl ezl

< 2a

Since for all (y,z) € M, f (y,x) > 0 and f (z) > 4, it also follows that, since by the definition
of 8y in the proof of Lemma A.1, d= min{d/2, 1}, for all f such that ‘ f- fH < b,

Two - swo| 2|74
e @Mﬂy@!_ o

<
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Denote a = (ayj <]?> — [y, <fA> ,udx) B= [ — 5 B8..(f )
a = (ay, (f) = 57y, (f) pdz), and B = [B,.(f) fM B, (f ,udx} Note that

a8 ap  @—)Br+ (B-p)as—as(F-7)

7o T
Then,
a3 op|  |@-Br+(B-8)as—aB(7-1)
For I
@)l |3 £+ [B=8| lo f1+ |- f] loB
<
7171
2 [l@=all |B] 171+ |[B= 5| lo f1+]|7 - £ lasl]

Since ’B’ = |+ DB+ RB| < |B|+|Dp|+|RS| and all the three last term are either uniformly
, by Lemma A.1, it

bounded, by Assumption 2.7, or bounded by a constant times ) F—
follows that for a finite ¢ > 0, for all (y,z) € M,
| (200108 Frix—s (1)) (20-108 frix—s () 75 = (A0 10 frixms (1) (A0 10 frix—a (1) 7 |

<t

where w = y; and z = x. A similar argument holds for w € {ys.z;, zs} and z € {y;,ys,z;}.

Lemma B.1: Suppose that (3.2) and Assumptions 3.1-3.3 are satisfied. Then,

o (@) e [ (B) @) 2 (B e

and

= =0 =) — (|~ |> (’yyl - fyyl) + 7y (’~y|) (rny ’71/2)
where the notation corresponds to that used in the proof of Theorem 3.1.

Proof: Taking logs and differentiating both sides of (7.3.1), in the proof of Theorem
3.1, with respect to z, leaving the arguments implicit, we get

(B.1.1) g, = Ti Gey + Vo

18



and taking logs and differentiation both sides of (7.3.1) with respect to y;, we get

(312) gy = 7';1 Gy + 7'51 Ges T Yy

2
T?Jl Tyl

is invertible, because by assumption T;l and 72 are different from zero, the unique value of
the vector (¢.,, ¢,) that solves (B.1.1) — (B.1.2) is

_ Tl?l
(B.1.3) < I ) _(mt < So 7 Ta >
s 10 &V

Since !, = (0,72) , it follows by (B.1.3) that

Since the matrix

(B14T.35) 1) q- =72 Gy = 8o — Vs

By the definition of r;, and (B.1.3),

Note that

By (B.1.5) and (B.1.6), it then follows that

(1) 7 @) 7] [y o]
1) @ @) et ) o )]
- () () -2 (7)) @+ [ (7) ()] e

Y1

By (B.1.4) and (B.1.7)



o[ () ) (B e [ (B) ) e
o (B) (e [ (B) () (B

By (B.1.6),

’Y?Jl a/yl
_ =~ 1 (72 ~ (72
o (A (E) R (E) )( ~
’7y2 '7y2
= (T3 - (7 -
:_<7x Vm)_ryz ﬁ (7y1_7y1)+ry1 |5:_y| (%}2 7212)
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