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APPENDIX B: PROOF THAT THE DM’S PAYOFF STRICTLY INCREASES IN M

CLAIM: If information matters, then the maximized expected payoff Π∗(M�η)
is strictly increasing under the following condition ((7) in the paper), and so equiv-
alent states are not optimal:
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PROOF: Let (g̃0� σ̃� d̃) be an optimal rule for parameters (M�η), with payoff
Π∗(M�η). I show here that if ξ(1)ξ(S) ≤ 1, then a strict payoff gain is possible
with one extra memory state whenever the first inequality in (B.1) holds. If
ξ(1)ξ(S) ≥ 1, a symmetric argument obtains under the second inequality in
(B.1).

So assume ξ(1)ξ(S) ≤ 1. Assume further that there are no equivalent mem-
ory states under (g0�σ�d); if there are equivalent states, then, as outlined in
footnote 15, use instead a payoff-equivalent rule with unused states. Now sup-
pose the DM is given one additional state and call it state 0. To prove the claim,
I will first construct a rule (g̃0� σ̃� d̃) for states {0�1� � � � �M} that earns payoff
Π∗(M�η), and then show that the rule is strictly suboptimal. Therefore, an op-
timal rule for {0�1� � � � �M} must earn a payoff strictly above Π∗(M�η), thus
establishing a strict payoff gain with one additional states.

To this end, let (g0�σ�d) be a protocol that agrees with (g̃0� σ̃� d̃) on states
{1�2� � � � �M}, chooses action 0 in state 0, and specifies the following transitions
in state 0: (i) if state 1 is not absorbing, then σS

0�1 = 1 and σs
0�0 = 1 ∀s �= S; (ii) if

state 1 is absorbing, then σS
0�2 = γ, σS

0�0 = 1−γ, σ1
0�1 = 1, and σs

0�0 = 0 ∀s /∈ {1� S},
with γ ∈ (0�1) a number to be determined. Observe that under (g0�σ�d), no
states transition into state 0, while transitions among states {1�2� � � � �M} are as
specified by the original rule σ̃ . Therefore, (g0�σ�d) yields the same terminal
probabilities (f θ

1 � � � � � f
θ
M) as the original rule (with f θ

0 = 0) and thus earns the
original payoff, Π∗(M�η).

A PROFITABLE DEVIATION IF STATE 1 IS NOT ABSORBING. Suppose first that
state 1 is not absorbing. I will show that the DM strictly prefers to move 1 ↓1 0,
implying that (g0�σ�d) does not correspond to a team equilibrium and, there-
fore, is not optimal. For any signal s, define vθ1s ≡ ∑

j∈{0����M} σ
s
1�jv

θ
j as the DM’s

expected payoff following an s-signal in memory state 1. Then since d1 = 0 if
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information matters (otherwise the DM chooses action 1 in all memory states)
and since (g0�σ�d) must specify staying in the lowest state, 1, after the lowest
signal s = 1, continuation payoffs in state 1 satisfy

vθ1 = η(0)+ (1 −η)μθ
1v

θ
1 +

S∑
s=2

(1 −η)μθ
s v

θ
1s(B.2)

⇒ ηvθ1 =
S∑
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(1 −η)μθ
s

(
vθ1s − vθ1

)
�

In state 0, continuation payoffs are given by

vθ0 = η(0)+ (1 −η)μθ
Sv

θ
1 + (1 −η)

∑
s �=S

μθ
s v

θ
0(B.3)

⇒ ηvθ1
(η+ (1 −η)μθ

S)
= (

vθ1 − vθ0
)
�

Substituting (B.2) into (B.3)yields

(
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)= ηvθ1
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By Lemma 1(a) and the assumption of no equivalent states, vH1s − vH1 ≥ 0 ≥
vL1s − vL1 for all s ∈ S , with strict inequality unless the DM stays in state 1 after
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s (in which case vθ1s = vθ1 ). But then consider the final term in (B.4): for any s
where vθ1s �= vθ1 , the sth ratio is

ξ(1)ξ(s)
vH1s − vH1
vL1 − vL1s

<
vH1s − vH1
vL1 − vL1s

≤ 1/
(1)(B.5)

(the first inequality by ξ(1)ξ(s) < ξ(1)ξ(S) and our assumption ξ(1)ξ(S) ≤ 1,
and the final inequality by Corollary 1 (RP), which requires that the state-1
self prefer memory state 1 to all other states). And since we are assuming here
that state 1 is not absorbing, there must be some signal s ∈ {2� � � � � S} for which
vθ1s �= vθ1 , which then satisfies (B.5). But then by (B.5), the final RHS expression
in (B.4) is strictly below 1/
(1). It then follows that 
(1)ξ(1) < ΔL

0�1/Δ
H
1�0 ≡ 
̄0;

so, by Proposition 2, the DM strictly prefers to move from state 1 to 0 if he
observes a 1-signal, as desired to establish that (g0�σ�d) (which never uses
state 0) is strictly suboptimal.

PROFITABLE DEVIATION IF STATE 1 IS ABSORBING. Suppose next that mem-
ory state 1 is absorbing, so that vθ1 = 0. In this case, under the protocol
(g0�σ�d), continuation payoffs in state 0 satisfy

vθ0 = (
η+ (1 −η)μθ

1

)
vθ1 + (1 −η)μθ

Sγv
θ
2 + (1 −η)

(
1 −μθ
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Sγ
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SγΔ

θ
2�1�

Taking ratios yields

vH0 − vH1
vL1 − vL0

= μH
S

μL
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1 + (1 −η)μL

S γ
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S γ

ΔH
2�1

ΔL
1�2

�(B.6)

By equation (2) in the paper, using the fact that state 1 is absorbing and that
g0

1 = 0 if information matters (the DM cannot start in absorbing state) yields

f θ
1 = f θ

1 (1 −η)+
M∑
j=2

f θ
j τ

θ
j�1 ⇒ fH

1

f L
1

=
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j=2

fH
j τH

j�1

M∑
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f L
j τ

L
j�1

≥ fH
2

f L
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(the final inequality by the ordering of the memory states and signal realiza-
tions). Thus, 
(1)≥ 
(2)ξ(1). Together with (B.6), this implies
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By Corollary 2, 
(2)ΔH
2�1/Δ

L
1�2 ≡ 
(2)/
̄1 ≥ 1; then, if the first inequality in (B.1)

holds, the RHS of (B.7) strictly exceeds 1 for γ sufficiently small. But then

(1� S)(vH0 − vH1 ) ≥ (vL1 − vL0 ), indicating that a state-1 self who observes S
strictly prefers to move from state 1 to state 0. Therefore, protocol (g0�σ�d)
(in which state 1 never moves to state 0) violates the conditions for a team
equilibrium and so, by Proposition 1, cannot be optimal. Q.E.D.

EXAMPLE—Absorbing and Equivalent States: Absorbing states and equiv-
alent states are not necessarily optimal if (B.1) fails, but may occur for some
parameters. For example, consider a binary signal and M = 3 memory states.
If the prior bias satisfies condition (B.8), which is possible only if (B.1) is vi-
olated, then the unique optimal protocol has the following features: state 3
is absorbing and chooses the high action, state 1 chooses the low action and
jumps to state 3 with chance σS

1�3 = 1 after an S-signal, and state 2 is either
unused or equivalent to state 1:

(ξ̄(η))4

(ξ(1))2ξ(S)
< β< 1� where ξ̄(η) ≡ η+ (1 −η)μH

S

η+ (1 −η)μL
S

�(B.8)

This is easily established via the following chain of arguments (which rely
on some omitted but straightforward computations): (i) The DM cannot
start in state 3, for all protocols (g0�σ�d) with initial state 3 yield 
(1) ≥

0(ξ(1))2/(ξ̄(η))2; together with (B.8) and the optimality condition 
0/
̄2 ≥ 1
for starting in state 3, this implies 
(1� S)/
̄2 ≥ (ξ(1))2ξ(S)/(ξ̄(η))2 > 1, and
so equilibrium demands σS

1�3 = σS
2�3 = 1. But all protocols with σS

1�3 = σS
2�3 = 1

yield 1/
̄2 ≡ ΔH
3�2/Δ

L
2�3 ≤ |πH/πL|, so 
0/
̄2 = β < 1 by (B.8), violating the

optimality condition for starting in state 3. Next, (ii) all protocols with ini-
tial state 1 or 2 yield 
(3�1) ≥ 
0ξ(S)ξ(1)/(ξ̄(η))2 and 1/
̄2 ≡ ΔH

3�2/Δ
L
2�3 ≥

|πH/πL|ξ(1)/(ξ̄(η))2; together with the first inequality in (B.8), we therefore
have 
(3�1)/
̄2 > 1, and so memory state 3 must be absorbing. But (iii) σS

1�3

must then equal 1, for all optimal protocols with an absorbing state 3 and initial
state 1 or 2, yield 
(1� S) ≥ 
0ξ(1)ξ(S)/(ξ̄(η))2, the same as our lower bound
on 
(3�1); thus, 
(1� S)/
̄2 > 1 by (B.8), implying that a state-1 self who ob-
serves an S-signal must move to state 3 with probability 1. Finally, (iv) since
σS

1�3 = 1 and state 3 is absorbing, state 2 is used only if it is an initial state. But
all protocols with σS

1�3 = σ1
3�3 = 1 and initial state 2 yield 
(2) ≤ 
0 (equality iff

σ1
2�1 = 1), in which case β< 1 (from (B.8)) implies 
(2)|πH/πL| ≤ β< 1: thus,

whenever state 2 is used, it must choose action 0, in which case it is equivalent
to state 1 (both choose the low action and move to an absorbing state 3 after
the first S-signal).
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APPENDIX C: DERIVATION OF STEP 4 IN THE PROOF OF PROPOSITION 4(c)

C.1. Preliminary Notation and Analysis From the Paper

Recall that the paper defines coefficients αl ≡ ∏l−1
j=2(σ

1
j+1�j/σ

S
j�j+1) and βl =∏M−1

j=l+1(σ
S
j−1�j/σ

1
j�j−1), and finds in Step 2 that an optimal protocol must satisfy

the following equations (restated here for convenience), the LHS of each ex-
pression with equality if state i is sticky up and the RHS with equality if i is
sticky down:

i ≤ i∗ − 1:
i∑

l=2

αlxl

σ1
l�l−1

/ i∑
l=2
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αl

≤ (
σS

1�2

)2
/η+ o(η)/η(C.1)
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�

i∗ ≤ i ≤ i0:
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+ αM

σS
1�2
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αl

≤ (σS
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2 + o(η)

η
(C.2)
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σS
1�2

i−1∑
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ul
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i ≥ i0:
M−1∑
l=i

βlvl

σS
l�l+1
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l=i+1

ul
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≥ (σ1
M�M−1)

2 + o(η)

η
(C.3)

≥
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l=i
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/M−1∑
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βl

�

(σS
1�2)

2

η
→

i0∑
l=2

αl

σ1
l�l−1

xl +
σS

1�2

αM
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l=i0
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l�l+1
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l=2
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+ αM
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1�2
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aM

σS
1�2

→
(
λ1

λ2

)(M−1)/2(
λ(M−1)/2 −√

β√
βλ(M−1)/2 − 1

)
�
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where λ1 ≡ μH
S /μ

H
1 , λ2 ≡ μL

1 /μ
L
S , and

xl ≡
(
ξ(1)λl−1 − 1

μH
1 λ

l−1
1

)
�(C.5)

yl ≡
(
λl−1 − 1
λl−1

2

)
�

vl ≡
(λM−l−1 1

ξ(1)
− 1

μL
S λ

M−l
2

)
�

ul ≡
(
λM−l − 1
λM−l

1

)
�

Observe also that if the second expression in (C.2) holds, then the first ex-
pression in (C.4) reduces to the following alternative optimality condition for
i ↓1 i− 1,1 which must hold with equality if σ1

i�i−1 ∈ (0�1):

i ↓1 i− 1:
(σ1

M�M−1)
2 + o(η)

η
(C.6)

≥

(
αM

σS
1�2

) i0∑
l=i+1

αl

σ1
l�l−1

xl +
M−1∑
l=i0

αl

σS
l�l+1

vl

M−1∑
l=i

ul/αl

�

Also, by equation (20) in the paper,
√
β > max{λ(M+1)/2−i∗� ξ(S)λi0−(M+3)/2}.

Substituting this into the second condition in (C.4) yields

aM

σS
1�2

< min
{(

λ1

λ2

)(M−1)/2

λ(M+1)/2−i∗
(
λi∗−1 − 1
λM−i∗ − 1

)
�(C.7)

(
λ1

λ2

)(M−1)/2

λi0−(M+3)/2

(
λM+1−i0 − ξ(S)

ξ(S)λi0−2 − 1

)}
�

1In the spirit of the notation in the paper, I use i ↓1 i− 1 to denote a downward transition i to
i− 1 after signal 1 and use i ↑S i+ 1 to denote an upward transition i to i+ 1 after signal S.
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C.2. Proofs for General Signals

For any states k ≥ 3 and i, define the functions, with xl, yl, ul, and vl given
by (C.5),

Uk(i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i∑
l=k+1

xl

/ i∑
l=k

yl for k< i ≤ i∗ − 1�

i∑
l=k+1

xl

i∗−1∑
l=k

yl + αM

σS
1�2

i∑
l=i∗

ul

for k ≤ i∗ ≤ i ≤ i0�
2

k∑
l=i

vl

/ k∑
l=i+1

ul for i0 ≤ i ≤ k�

D(i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i∑
l=2

xl

/ i−1∑
l=2

yl if i ≤ i∗ − 1�

i∑
l=2

xl

i∗−1∑
l=2

yl + αM

σS
1�2

i−1∑
l=i∗

ul

if i∗ ≤ i ≤ i0�

D̃(i)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
αM

σS
1�2

i0∑
l=i+1

xl +
M−1∑
l=i0

vl

)/M−1∑
l=i

ul for i∗ ≤ i ≤ i0 − 1�

M−1∑
l=i

vl

/M−1∑
l=i

ul for i ≥ i0�

Also define the states

i1 ≡ arg min
2≤i≤i0

D(i)� i2 ≡ arg max
M−1≥i≥i∗

D̃(i)�(C.8)

If i1 ≤ i2 and D(i) < D̃(i) (Step C.5 shows that a sufficient condition for this
is that i2 ≥ i1 + 2), then define Î ≡ {i1� � � � � i2}; if either of these conditions fail,
then let Î be the empty set. Proposition C simply restates Step 4 of Section A.9.

PROPOSITION C: If λ1 ≤ λ2, then (i) all interior states are fluid up; (ii) all states
i ≤ i1 are fluid down, as are all states i ≥ i2; (iii) if Î is nonempty, then all states

2If i∗ ≤ k < i, set the first sum in the denominator to zero, and replace the second by
∑i

l=k ul .
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in Î are sticky down. Also, (iv) If λ1 ≥ λ2, then all interior states i /∈ I∗ are fluid
down.

PROOF: The idea of this proof is as follows: The function Uk(i) describes
a lower bound (for i ≤ i0, lower bound for i ≥ i0) on (σS

1�2)/η for the state-i
self to find it incentive compatible to move up after S. And the function D(i)
describes the upper bound on (σS

1�2)
2/η for optimality of i ↓1 i − 1 with i ≤ i0,

while D̃(i) describes an lower bound on (σ1
M�M−1)

2/η for optimality of i ↓1 i−1
when i ≥ i∗ (for states between i∗ and i0, the two bounds coincide by (C.4)).
The proof below will show that as long as Uk(i) is increasing, no state i can be
sticky up (and symmetrically, as long as D(i) is decreasing, no state i can be
sticky down): for if i is indifferent, then (σS

1�2)
2/η is too low for state i + 1 to

move up at all. On the other hand, D(i − 1) < D(i) <D(i + 1) means that if i
is sticky down, then so too must be i− 1 and i+ 1. (And symmetrically, though
this is not shown, if U(i−1) > U(i) > U(i+1), then upward stickiness in state
i implies that i − 1� i + 1 must also be upward sticky). Step C.1 below shows
that if λ1 ≤ λ2, then Uk(i) is strictly increasing for all i; if λ2 ≤ λ1, then D(i)
and D̃(i) are strictly decreasing ∀i /∈ I∗. Step C.2 uses this result to prove parts
(i) and (iv) of the proposition. Step C.1 also shows that if λ1 ≤ λ2, then D(i)
and D̃(i) are decreasing to i1, then increasing from i1 to i2, and decreasing for
i > i2. Step C.3 uses this to prove part (ii). Step C.4 then shows that if any state
in {i1� � � � � i2} is sticky down, then all states in this set must be sticky down, and
Step C.5 shows that some state in this set (hence all states) are sticky down iff
D(i1) < D̃(i2). Thus, if Î (defined below (C.8)) is nonempty, then all states in
Î are sticky down. Q.E.D.

STEP C.1: (i) If λ2 ≥ λ1, then Uk(i) is strictly increasing in i; (ii) if λ2 ≤ λ1, then
D(i) and D̃(i) are strictly decreasing at all states i /∈ I∗; (iii) for any λ1 ≥ 1 and
λ2 ≥ 1, the states i1 and i2 are unique; D(i) is decreasing at i < i1 and increasing
at i > i1, and D̃(i) is increasing at i < i2 and decreasing at i > i2.

PROOF: For (i), it suffices to prove that if λ1 ≤ λ2, then the ith ratio in
Uk(i) is strictly increasing: that is, that (a) xi/yi is increasing if i ≤ i∗ − 1,
(b) xi∗−1/yi∗−1 ≤ xi∗/

αM
σS

1�2
ui∗ , (c) xi/ui is increasing in i if i∗ ≤ i ≤ i0, and

(d) vi/ui+1 is increasing if i ≥ i0. By (C.5),

μH
1 xi

yi
=
(
λ2

λ1

)i−1(
ξ(1)λi−1 − 1
λi−1 − 1

)
�

xi

ui

= λM+1−2i
1

μH
1

(
ξ(1)λi−1 − 1
λM−i − 1

)
�

vi

ui+1
= 1

λ1μ
L
S

(
λ1

λ2

)M−i
(λM−i−1 1

ξ(1)
− 1

λM−i−1 − 1

)
�
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The expression for xi/yi is increasing by λ2 ≥ λ1, which implies that (λ2/λ1)
i−1

is increasing, and by ξ(1) < 1 < λ, which implies that the final term is in-
creasing. The expression for vi/ui+1 is increasing by λ1 ≤ λ2, which implies
that (λ1/λ2)

M−i is decreasing in M − i and hence increasing in i, and by
ξ(1) < 1, which implies that the final expression is larger than 1/ξ(1) and de-
creasing (toward 1/ξ(1)) in M − i − 1, hence increasing in i. The expression
for xi/ui is increasing since λ > 1 implies that 1/(λM−i − 1) is increasing in
i, while λM+1−2i

1 (ξ(1)λi−1 − 1) is increasing, via straightforward calculation, by
λ = λ1λ2 > λ2

1 > 1. And finally, to show that xi∗−1/yi∗−1 ≤ xi∗/
αM
σS

1�2
ui∗ , by (C.5)

(for the first equality) and (C.7),

αM

σS
1�2

ui∗ <

(
λ1

λ2

)(M−1)/2

λ(M+1)/2−i∗
(
λi∗−1 − 1
λM−i∗ − 1

)
λM−i∗ − 1
λM−i∗

1

(C.9)

=
(
λi∗−1 − 1
λi∗−1

2

)
�

Thus, using the expression for x∗
i from (C.5) and simplifying gives

xi∗

σ1
M�M−1

σS
1�2

ui∗

≥ 1
μH

1

(
λ2

λ1

)i∗−1(
ξ(1)λi∗−1 − 1
λi∗−1 − 1

)
�

The RHS of this expression is strictly increasing in i∗ by λ2 ≥ λ1 and ξ(1) <
1 < λ; in particular, it strictly exceeds the value that would obtain if i∗ were
replaced by i∗ − 1, which is precisely xi∗−1/yi∗−1.

For (iii), it suffices to prove that once the ith ratio in D(i) begins to increase,
it continues to increase, and that once the ith ratio in D̃(i) begins to decrease,
it continues to decrease. That is, (a) if xi/yi−1 < xi+1/yi, then xi+1/yi < xi+2/yi+1;

(b) if xi∗−1/yi∗−2 < xi∗/yi∗−1, then xi∗/yi∗−1 ≤ σS
1�2
αM

xi∗+1/ui∗ ; (c) xi/ui−1 is increas-
ing; and (d) if vi−1/ui−1 > vi/ui, then vi/ui > vi+1/ui+1.3 For (a), by (C.5),

xi

yi−1
<

xi+1

yi
⇔ λ2

λ1

ξ(S)λi−1(λi−2 − 1)− (λi−2 − 1)
ξ(S)λi−2(λi−1 − 1)− (λi−1 − 1)

> 1�(C.10)

The derivative of the LHS with respect to (w.r.t.) i has the same sign as
(λ−1)(ξ(S)−1)(ξ(S)λ2i−3 −1) lnλ, which is positive for i ≥ 2 by λ > ξ(S) > 1.

3This uses the fact that as long as al/bl is decreasing, X(j) ≡ ∑j
l=2 al/

∑j
l=2 bl is decreasing.

Thus, X(j) < X(j + 1) ⇒ aj/bj < aj+1/bj+1. Now suppose it holds that aj/bj < aj+1/bj+1 ⇒
aj+1/bj+1 < aj+2/bj+2: that is, that once the jth ratio begins to increase, it continues to increase.
Then, if X(j) < X(j + 1), it follows that X(j) < X(j + 1) < aj+1/bj+1 < aj+2/bj+2, which is pre-
cisely the condition under which X(j + 1) < X(j + 2). Thus, once X(j) begins to increase, it
continues to increase; while if decreasing at j, it is also decreasing at j − 1.
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So if the condition holds (i.e., xl/yl is increasing) at l = i, then it holds also at
all l ≥ i. For (c), by (C.5),

xi

ui−1
<

xi+1

ui

⇔
(
ξ(1)λi−1 − 1
ξ(1)λi − 1

)(
λM−i − 1
λM+1−i − 1

)
λ2

1 < 1�

Since λ > 1, each of the first and second LHS terms are below 1/λ; then the
LHS is below λ2

1/λ
2 = 1/λ2

2, which is below 1 (as desired) provided λ2 > 1 ⇔
μL

1 ≥ μL
S . (Note that this is implied by λ2 ≥ λ1, which yields λ2

2 ≥ λ1λ2 = λ > 1.)
For (d), by (C.5), we have (after simplifying)

vi

ui

>
vi+1

ui+1

⇔
(
λ1

λ2

)⎛⎜⎜⎝
1

ξ(S)
λM−i(λM−i−1 − 1)− (λM−i−1 − 1)

1
ξ(S)

λM−i−1(λM−i − 1)− (λM−i − 1)

⎞⎟⎟⎠> 1�

The LHS is increasing in i (the derivative w.r.t. i is proportional to (λ − 1) ×
(ξ(S)−1) lnλ, which is positive by λ > ξ(S) > 1), and so the condition is easier
to satisfy in larger states. Therefore, as desired, if vl/ul is decreasing at l = i,

then it is decreasing also at l ≥ i. Finally, for (b), for xi∗/yi∗−1 ≤ σS
1�2
αM

xi∗+1/ui∗ , it
suffices that the following inequality holds (the LHS is the upper bound from
(C.9) on αMu

∗
i /σ

S
1�2):(

λi∗−1 − 1
λi∗−1

2

)
<

1
λ1

ξ(1)λi∗ − 1
ξ(1)λi∗−1 − 1

λi∗−2 − 1
λi∗−2

2

≡ xi∗+1

xi∗
yi∗−1(C.11)

⇔ λ1

λ2

(
λi∗−1 − 1
λi∗−2 − 1

)
ξ(1)λi∗−1 − 1
ξ(1)λi∗ − 1

< 1�

The LHS expression in (C.11) is decreasing in i∗ (the derivative is proportional
to (1 − λ)(ξ(1)λ2(i∗−1) − 1)(ξ(S) − 1) lnλ, negative ∀i∗ ≥ 2 by λ > ξ(S) > 1).
Therefore, a sufficient condition for (C.11) is that it holds when i∗ is replaced
by i∗ − 1, which, by (C.5), is precisely the condition for xi∗−1/yi∗−2 < xi∗/y .

Finally, for part (ii), it suffices to prove that if i ≤ i∗ − 2, then λ1 ≥ λ2 implies
that the ith ratio in D(i), xi/yi−1, is strictly decreasing, and that if i ≥ i0 + 1,
then the ith ratio in D̃(i), vi/ui, is strictly decreasing. For i ≥ i0, (C.5) yields

vi

ui

=
(
λ1

λ2

)M−i λ
M−i 1

ξ(S)
− 1

λM−i − 1
�
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Since λ1 ≥ λ2, the first term (λ1/λ2)
M−i is increasing in M− i, hence decreasing

in i, and the second term is also increasing in M − i by 1/ξ(S) < 1 < λ, hence
decreasing in i, as desired to establish that vi/ui is decreasing. For i ≤ i∗ − 1,
(C.10) yields

xi

yi−1
= 1

λ1μ
H
1

(
λ2

λ1

)i−2
ξ(S)λi−2 − 1
λi−2 − 1

�

The first term is decreasing by λ2/λ1 ≤ 1, and the second term is greater than
ξ(S) and decreasing toward ξ(S) as i increases. As desired, xi/yi−1 is then
strictly decreasing. Q.E.D.

STEP C.2: There exists η∗ such that in an optimal protocol with η< η∗, (i) all
interior states are fluid up if λ1 ≤ λ2; (ii) all interior states outside I∗ are fluid down
if λ1 ≥ λ2.

PROOF: First suppose, by contradiction, that some state i ≤ i0 − 1 is sticky
up. Choose the smallest such i and let k be the largest state below i that is
sticky down, defining k= 2 if all states below i are fluid down. Then, using the
Step 3 (from Section A.9 in the paper) result that upward stickiness in state i

implies σ1
i�i−1 = σ1

i+1�i = 1, we have αl = ∏l

j=3 σ
1
j�j−1/σ

S
j−1�j = αk ∀k + 1 ≤ l ≤ i,

αi+1 = αk/σ
S
i�i+1. If 3 ≤ k < i ≤ i∗ − 1, then by (C.1), the optimality conditions

for σ1
k�k−1 ∈ (0�1) (the first expression below) and σS

i�i+1 ∈ (0�1) (the second
expression below) are

k∑
l=2

αlxl/σ
1
l�l−1

k−1∑
l=2

yl/αl

= (σS
1�2)

2 + o(η)

η
=

k∑
l=2

αlxl

σ1
l�l−1

+
i∑

l=k+1

αlxl

σ1
l�l−1

k−1∑
l=2

yl

αl

+
i∑

l=k

yl

αl

⇒ (σS
1�2)

2 + o(η)

η
=

i∑
l=k+1

αlxl

σ1
l�l−1

i∑
l=k

yl

αl

= α2
k

i∑
l=k+1

xl

i∑
l=k

yl

�

The final term in the above expression is precisely (α2
k)U

k(i). Similarly, if
i ≥ i∗, the optimality condition for σS

i�i+1 ∈ (0�1) (the first expression in (C.2))
reduces, using the optimality condition for σ1

k�k−1 ∈ (0�1) and the fact that
αl = αk ∀k + 1 ≤ l ≤ i, to (σS

1�2)
2/η + o(η) = (αk)

2Uk(i). On the other hand,
consider the optimality condition for σS

i+1�i+2 > 0. If i ≤ i∗ − 2, then the first
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expression in (C.1) evaluated at i + 1 reduces (using the optimality condition
for σ1

k�k−1 ∈ (0�1)) to

(σS
1�2)

2 + o(η)

η
≥ α2

k

i∑
l=k+1

xl + xi+1

/
σS

i�i+1

i∑
l=k

yl + σS
i�i+1yi+1

>α2
k

i+1∑
l=k+1

xl

i+1∑
l=k

yl

≡ α2
kU

k(i+ 1)

(the final inequality by the fact that the second term is trivially decreasing in
σS

i�i+1)� By a similar calculation if i ≥ i∗ − 1, we conclude that optimality of
σS

i+1�i+2 > 0 requires the first inequality below and optimality of σS
i�i+1 ∈ (0�1)

requires the equality:

α2
kU

k(i+ 1) <
(σS

1�2)
2 + o(η)

η
= α2

kU
k(i)�

This is a contradiction, since Uk(i + 1) > Uk(i) by Step C.1 part (i). If k = 2,
the analysis is identical, except that the numerator and denominator sums in
Uk(i) both begin at 2 (rather than k+ 1 and k, respectively).

The proof that states i ≥ i0 + 1 are fluid up is nearly identical: if not, then let
i be the largest sticky-up state above i0, and let k be the smallest sticky-down
state above i. Using (C.3), the optimality condition for σS

i�i+1 ∈ (0�1) reduces,
using the condition for σ1

k�k−1 ∈ (0�1), to (σ1
M�M−1)

2/η → Uk(i), while the con-
dition for σS

i−1�i > 0 requires (σ1
M�M−1)

2/η < Uk(i − 1)—a contradiction, since
Uk(i) > Uk(i− 1) by Step C.1.

By a symmetric argument, states outside I∗ are fluid down when λ2 ≤ λ1.
For example, suppose some state i ≤ i∗ − 1 is sticky down and choose the
smallest such i. Then all states below i are fluid down; if also all lower states
are fluid up, then, by (C.1), the optimality condition for σ1

i�i−1 > 0 requires
(σS

1�2)
2+o(η)

η
< D(i), with equality if σ1

i�i−1 ∈ (0�1); moreover, if i is downward
sticky, then the upper bound (from (C.1)) on (σS

1�2)
2/η in the optimality con-

dition for i + 1 ↓1 i decreases. Thus, together, the optimality conditions for
σ1

i�i−1 ∈ (0�1) and σ1
i+1�i > 0 demand D(i) = (σS

1�2)
2/η + o(η) < D(i + 1)—

a contradiction, since D(i) is strictly decreasing at i ≤ i∗ − 1 by Step C.1 part
(iii). The argument is similar if there is a sticky-up state k< i (choose the low-
est such i and define a function Dk(i) that is identical to D(i), except that the
numerator and denominator sums begin at k+ 1 rather than 2). And similarly
for states i ≥ i0, where (σ1

M�M−1)
2/η must exceed a cutoff that increases as the

state decreases: if the condition holds for state i to be indifferent about moving
down, then state i− 1 will not move down at all. Q.E.D.

STEP C.3: Let λ1 ≤ λ2. There exists η∗ such that for any optimal protocol with
η<η∗, (i) all states i < i1 are fluid down; (ii) all states i > i2 are fluid down.
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PROOF: For (i), suppose that some state i < i1 is sticky down and choose
the smallest such i. By Step C.2, no interior states are sticky up and so αl = 1
∀l ≤ i − 1, while αi = σ1

i�i−1 and αi+1 = σ1
i+1�iσ

1
i�i−1. Then by (C.1), optimality of

σ1
i�i−1 ∈ (0�1) requires the equality below, and optimality of σ1

i+1�i > 0 requires
the final inequality:

D(i)≡
i∑

l=2

xl

/ i−1∑
l=2

yl =
(σS

1�2)
2 + o(η)

η
≤

⎛⎜⎜⎜⎜⎜⎝
i∑

l=2

xl + σ1
i�i−1xi+1

i−1∑
l=2

yl + yi
/
σ1

i�i−1

⎞⎟⎟⎟⎟⎟⎠ �(C.12)

But the RHS expression in (C.12) is increasing in σ1
i�i−1 (since xi+1 > 0 and

yi > 0) and therefore reaches a maximum value at σ1
i�i−1 = 1, of D(i + 1). But

since i < i1 implies that D(i) is decreasing at i by Step C.1(ii), we have D(i) >
D(i+1), contradicting (C.12). So no state below i1 is sticky down in an optimal
protocol.

The argument for states above i2 is nearly identical: if some i > i2 is
downward sticky (choose the largest such i), then optimality for σ1

i�i−1 ∈
(0�1) requires (σ2

M�M−1)/η → D̃(i), while optimality of σ1
i−1�i−2 > 0 requires

(σ1
M�M−1)

2/η > D̃(i − 1)—a contradiction, since D̃(i) is decreasing at i ≥ i2 by
Step C.1(ii). Q.E.D.

STEP C.4: Let λ1 ≤ λ2. There exists η∗ such that in an optimal protocol with
η<η∗, (i) if D(i) <D(i+1) and i+1 is sticky down, then i is sticky down; (ii) if
D̃(i) < D̃(i+ 1) and i is sticky down, then i+ 1 is sticky down.

PROOF: For (i), suppose (by contradiction) that there is an optimal protocol
such that for some state i, D(i) < D(i + 1), σ1

i+1�i ∈ (0�1), and σ1
i�i−1 = 1, and

choose the smallest i ≥ i1. By Step C.2, all states below i are fluid up. If they
are also fluid down, then optimality of σ1

i�i−1 > 0 demands the inequality below,
while optimality of σ1

i+1�i ∈ (0�1) demands the equality below (using (C.1) if
i ≤ i∗ − 1 and (C.2) if i∗ ≤ i ≤ i0, and noting that in a protocol with no mixing
below i+ 1, the RHS expressions in these equations equal D(i)):

D(i+ 1)= (σS
1�2)

2 + o(η)

η
≤D(i)�

This is a contradiction, since D(i) < D(i + 1). If there is a state k < i that is
downward sticky, the argument is similar, choosing the largest such k (we dis-
cuss the analogous situation more carefully in (ii); see below). For (ii), suppose
(by contradiction) that there is an optimal protocol such that for some state
i < i2, D̃(i) < D̃(i + 1), σ1

i�i−1 ∈ (0�1), and σ1
i+1�i = 1, and choose the largest



14 ANDREA WILSON

i < i2. By (C.6) and (C.3), optimality of σ1
i�i−1 demands the equality below, and

optimality of σ1
i+1�i = 1 demands the inequality below, using the Step C.2 result

that all states are fluid up:4

(
αM

σS
1�2

) i0∑
l=i+2

αl−1xl +
M−1∑
l=i0

αlvl

M−1∑
l=i+1

ul

αl

≤ (σ1
M�M−1)

2 + o(η)

η
(C.13)

=

(
αM

σS
1�2

) i0∑
l=i+1

αl−1xl +
M−1∑
l=i0

αlvl

M−1∑
l=i

ul

αl

�

By Step C.2, all states above i are fluid up. If also all states above i are fluid
down, then αl = αi ∀l ≥ i and so the LHS of the above expression is precisely
α2
i D̃(i + 1), while the RHS is α2

i D̃(i); but since D̃(i) < D̃(i + 1), the inequal-
ity cannot hold—a contradiction. If some state k ≥ i0 ≥ i + 2 is sticky down,
the argument is nearly identical, choosing the smallest such state k and substi-
tuting the optimality condition for σ1

k�k−1 ∈ (0�1) into (C.13). For example, if
k ≥ i0, the optimality of σ1

k�k−1 ∈ (0�1) requires that the second expression in
(C.13) holds at i = k. Then (C.13) reduces to an expression that is identical,
except that all sums ending at M − 1 are now truncated at k− 1, and since (by
construction) there is no mixing between i and k, so αl = αi ∀i ≤ l ≤ k − 1,
(C.13) reduces further to

α2
i

(
αM

σS
1�2

) i0∑
l=i+2

xl +
k−1∑
l=i0

vl

k−1∑
l=i+1

ul

≤ (σ1
M�M−1)

2 + o(η)

η

= α2
i

(
αM

σS
1�2

) i0∑
l=i+1

xl +
k−1∑
l=i0

vl

k−1∑
l=i

ul

4This is the expression for i ≤ i0 − 1. If i ≥ i0, delete the first numerator sum in both the LHS
and RHS bounds, and begin the second numerator sums (both LHS and RHS) at l = i.
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⇒ α2
i

(
αM

σS
1�2

) i0∑
l=i+2

xl +
k−1∑
l=i0

vl +
M−1∑
l=k

vl

k−1∑
l=i+1

ul +
M−1∑
l=k

ul

≤ (σ1
M�M−1)

2 + o(η)

η
= α2

i

(
αM

σS
1�2

) i0∑
l=i+1

xl +
k−1∑
l=i0

vl +
M−1∑
l=k

vl

k−1∑
l=i

ul +
M−1∑
l=k

ul

�

But since the LHS is α2
i D̃(i+ 1) and the RHS is α2

i D̃(i), and we have assumed
D̃(i) < D̃(i+ 1), this expression cannot hold—a contradiction. Q.E.D.

STEP C.5: If λ1 ≤ λ2 and D(i1)≤ D̃(i2), then all states in {i1� � � � � i2} are sticky
down; a sufficient condition for D(i1) < D̃(i2) is i2 ≥ i1 + 2.

PROOF: By Step C.2, λ1 ≤ λ2 implies that all interior states are fluid up, and
by Step C.3, all states i /∈ {i1� � � � � i2} are sticky down. Therefore, optimality of
i1 ↓1 i1 −1 demands (σS

1�2)
2/η+o(η)/η ≤D(i1), while optimality of i2 ↓1 i2 −1

demands (σ1
M�M−1)

2/η + o(η) ≥ D̃(i2) (using the corresponding equations in
(C.1), (C.2), (C.6), or (C.3), using the fact that all states outside {i1� � � � � i2} are
fluid both up and down). Together, for η sufficiently near zero, these inequali-
ties imply

(σ1
M�M−1)

2

(σS
1�2)

2 ≥ D̃(i2)

D(i1)
�(C.14)

But by Step C.4, if any state in {i1� � � � � i2}, is sticky down, then all states in this
set are sticky down. Therefore, it suffices to rule out a protocol with no mixing,
in which αM/σ

S
1�2 = σ1

M�M−1/σ
S
1�2 (and αM/σ

S
1�2 ≥ σ1

M�M−1/σ
S
1�2 if λ1 ≥ λ2, so that

some states are potentially upward sticky). But then the second condition in
(C.4) demands

(
σ1

M�M−1

σS
1�2

)2

≤
(
αM

σS
1�2

)2

→
(
λ1

λ2

)M−1(
λ(M−1)/2 −√

β√
βλ(M−1)/2 − 1

)2

�
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For η sufficiently near zero, this contradicts (C.14) whenever the following
inequality holds:5

D̃(i2)

D(i1)
>

(
λ1

λ2

)M−1(
λ(M−1)/2 −√

β√
βλ(M−1)/2 − 1

)2

�(C.15)

Thus, if (C.15) holds, then a protocol with no (downward) mixing cannot be
optimal and so all states in {i1� � � � � i2} are sticky down. For λ1 ≤ λ2 and β> 1,
the RHS expression in (C.15) is below 1 and so the expression holds when-
ever D(i1)≤ D̃(i2). This proves the first assertion. And for the second, assume
i2 − 1 ≥ i∗ and define ai = xi/

αM
σS

1�2
ui−1 ∀i ∈ {i∗� � � � � i0}. By definition of i2 and

Step C.1(iii), we know that D̃(i2) > D̃(i2 −1), which implies that D̃(i2) exceeds
the (i2 − 1)st ratio in D̃(i2 − 1):

(σ1
M�M−1)

2 + o(η)

η
≥ D̃(i2) >

αM

σS
1�2

xi2

/
ui2−1�

By definition of i1 and Step C.1(iii), we also have D(i1) < D(i1 + 1), which
implies that D(i1) is below the (i1 + 1)st ratio in D(i1 + 1):

(σS
1�2)

2 + o(η)

η
≤ D̃(i1) < xi1+1

/ αM

σS
1�2

ui1 �

Together, these inequalities demand the following condition for η near zero:

(
αM

σS
1�2

)2

≥
αM

σS
1�2

xi2

/
ui2−1

xi1+1

/ αM

σS
1�2

ui1

⇒ xi1+1/ui1 ≥ xi2/ui2−1�

This is a contradiction if i1 + 1 < i2, since xl/ul−1 is increasing by
Step C.1(iii). Q.E.D.

C.3. Specializing to Symmetric Signals

STEP C.6: For a symmetric signal, i1 ≤ i∗ + 1.

5This is, in fact, a necessary and sufficient condition for there to be a downward-sticky block of
interior states for any λ1 ≥ 1 and λ2 ≥ 1.
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PROOF: To show that i1 ≤ i∗ + 1, it suffices to prove that D(i∗ + 1) ≤
D(i∗ + 2), which holds iff D(i∗ + 1) (the LHS below, by (C.5)) is smaller than
the final ratio in D(i∗ + 2) (the RHS below):

i∗+1∑
l=2

xl

i∗−1∑
l=2

yl + αM

σS
1�2

ui∗

<
xi∗+2

αM

σS
1�2

ui∗+1

⇔

i∗+1∑
l=2

xl

σS
1�2

αM

i∗−1∑
l=2

yl + ui∗

<
xi∗+2

ui∗+1
�(C.16)

By (C.5) and λ/λ1 = λ2,

i∗+1∑
l=2

xl = 1
μH

1

(
ξ(1)

i∗+1∑
l=2

λl−1
2 −

i∗+1∑
l=2

λ1−l
1

)
(C.17)

= 1
μH

1

(
ξ(1)λ2

λi∗
2 − 1
λ2 − 1

− λi∗
1 − 1

λi∗
1 (λ1 − 1)

)

= 1
μH

1

1
λi∗

1

(
λi∗

1 − 1
)(λi∗

1 − 1
λ1 − 1

)
if λ1 = λ2�(C.18)

Also by (C.5),

xi∗+2

ui∗+1
= 1

μH
1

ξ(S)λi∗ − 1
λi∗+1

1

λM−i∗−1
1

λM−i∗−1 − 1
�(C.19)

ui∗ = λM−i∗ − 1
λM−i∗

1

�(C.20)

i∗−1∑
l=2

yl =
i∗−1∑
l=2

(
λl−1

1 − λ1−l
2

)= λi∗−1
1 − λ1

λ1 − 1
− λi∗−2

2 − 1
λi∗−2

2 (λ2 − 1)
�(C.21)

And by (C.7),

σS
1�2

αM

≥
(
λ2

λ1

)(M−1)/2 1
λ(M+1)/2−i∗

λM−i∗ − 1

λi∗−1 − 1
�(C.22)
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Then, in the second inequality in (C.16), the LHS of (C.16) has the following
upper bound, by (C.22), (C.18), (C.21), and (C.20):

i∗+1∑
l=2

xl

σS
1�2

αM

i∗−1∑
l=2

yl + ui∗

≤ 1
μH

1

1
λi∗

2

(
μH

1

μL
S

λi∗
2 − 1

)(
λi∗

2 − 1
λ2 − 1

)

/((
λ2

λ1

)(M−1)/2 1
λ(M+1)/2−i∗

λM−i∗ − 1

λi∗−1 − 1

× (λi∗−2
1 − 1)(λi∗−1

1 − 1)
λi∗−2

1 (λ1 − 1)
+ λM−i∗ − 1

λM−i∗
1

)
�

For a symmetric signal, with λ2 = λ1 and μH
1 = μL

S , this simplifies to

1
μH

1

1
λi∗

2

(
λi∗

2 − 1
)(
λi∗−1

2 + 1
) λM−i∗

1

(λM−i∗ − 1)

<
1
μH

1

1
λi∗

2

(
λ2i∗

2 − 1
) λM−i∗

2

(λM−i∗ − 1)
�

This is less than the expression in (C.19), evaluated at ξ(S) = λ1 = λ2, when-
ever

1
μH

1

1
λi∗

2

(
λ2i∗

2 − 1
) λM−i∗

2

(λM−i∗ − 1)
<

1
μH

1

λ2i∗+1
2 − 1
λi∗+1

2

λM−i∗−1
2

λM−i∗−1 − 1

⇔ (λ2i∗
2 − 1)

(λ2i∗+1
2 − 1)

λ2
2

(
λM−i∗−1 − 1
λM−i∗ − 1

)
< 1�

The first LHS term is below 1/λ2 (by λ2 > 1) and the final term (by λ > 1) is
below 1/λ. Thus, the LHS in the above expression is below λ2/λ = 1/λ2 < 1,
as desired. Q.E.D.

STEP C.7: For a symmetric signal, i2 ≥ i0 for β near ξ(S)λi0−(M+1)/2 and i2 ≥
i0 − 1 for β near ξ(S)λi0−(M+3)/2.

PROOF: By (20) in the paper, the DM starts in a state i0 satisfying ξ(S) ×
λi0−(M+1)/2 >

√
β > ξ(S)λi0−(M+3)/2. At the top end of this range, the DM is in-

different between starting in i0 and i0 + 1; here, symmetric signals yield i2 ≥ i0

(so that i0 is downward sticky), as I will prove below. At the bottom end of the
range, the DM is close to indifferent between starting in i0 and i0 − 1, at which
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point i0 is fluid down, and i2 only exceeds (in fact equals) i0 − 1. The two cal-
culations are nearly identical, so I prove only the first assertion in the Step C.7
statement.

To this end, to prove that D̃(i) is maximized at i2 ≥ i0, it suffices, by Step C.1,
to prove that D̃(i0 − 1) < D̃(i0), which holds iff the first ratio (for i = i0 − 1) in
D̃(i0 − 1) is smaller than D̃(i0):

αM

σS
1�2

xi0

/
ui0−1 <

M−1∑
l=i0

vl

/M−1∑
l=i0

ul�

By (C.5), for a symmetric signal,

xl ≡ 1
μH

1

(
λ2l−3

1 − 1
λl−1

1

)
� yl ≡

(
λ2l−2

1 − 1
λl−1

1

)
�

vl ≡ 1
μH

1

(
λ2M−2l−1

1 − 1
λM−l

1

)
� ul ≡

(
λ2M−2l

1 − 1
λM−l

1

)
�

Thus,

M−1∑
l=i0

vl = 1
μH

1

M−1∑
l=i0

(
λM−l−1

1 − λl−M
1

)= 1
μH

1

(λ
M−i0
1 − 1)2

λ
M−i0
1 (λ1 − 1)

�

M−1∑
l=i0

ul =
M−1∑
l=i0

λ2M−2l
1 − 1
λM−l

1

= (λ
M+1−i0
1 − 1)(λM−i0

1 − 1)

λ
M−i0
1 (λ1 − 1)

�

xi0 = 1
μH

1

(
λ

2i0−3
1 − 1

λ
i0−1
1

)
� ui0−1 = λ

2M+2−2i0
1 − 1

λ
M−i0+1
1

�

At
√
β = ξ(S)λi0−(M+1)/2, which becomes

√
β = λ

2i0−M

1 for symmetric signals,
the second expression in (C.4) yields (using λ1 = λ2)

αM

σS
1�2

→
(

λ(M−1)/2 −√
β√

βλ(M−1)/2 − 1

)
= λ

2i0−M
1

(
λ

2M−1−2i0
1 − 1

λ
2i0−1
1 − 1

)
�

Substituting into the desired inequality, we obtain the following sufficient in-
equality, after factoring:(

λ
2M−1−2i0
1 − 1

(λ
M+1−i0
1 + 1)(λM−i0

1 − 1)

)
λ

2i0−1
1 − λ2

1

λ
2i0−1
1 − 1

< 1�
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The first LHS term is less than 1: it is sufficient to show that the numerator
minus the denominator is negative, which yields the inequality

−λ
2M−1−2i0
1

(
λ2

1 − 1
)+ λ

M−i0
1 (λ1 − 1)

<−λ
M−i0
1 (λ1 − 1)

(
λ
M−1−i0
1 − 1

)
< 0�

The second term is less than 1 by λ1 > 1. As desired, this establishes that when
the DM is close to indifferent between starting in i0 and i0 + 1, we obtain
i2 ≥ i0. Q.E.D.

STEP C.8: For a symmetric signal,
√
β > λ implies that the set I ≡ {i1� � � � � i2}

is nonempty, and that all states in this set are sticky down.

PROOF: I prove the result for M odd and i∗ ≥ 3; a similar calculation yields
the desired result if i∗ = 2 or if M is even. For a symmetric signal, Step C.2
implies that all interior states are fluid up, Step C.3 implies that all interior
states outside I are fluid down, and Step C.4 implies that if any state in I is
sticky down, then all states in I are sticky down. Therefore, to prove the result,
it suffices to show that there is no optimal protocol in which all interior states
are fluid both up and down.

Suppose, by contradiction, that there is an optimal protocol for a symmetric
signal and

√
β> λ in which all interior states are fluid, both up and down. For√

β near λ, equation (20) in the paper yields i∗ = M−1
2 and i0 = M+3

2 . Using (C.2)
and our assumption that all interior states are fluid, optimality of i∗ ↓1 i

∗ − 1
demands the first inequality below, and the second inequality is for optimality
of i0 ↑S i0 + 1:

(σS
1�2)

2

η
≤

(M−1)/2∑
l=2

xl

/(M−3)/2∑
l=2

yl and

(σ1
M�M−1)

2

η
≥

M−1∑
l=(M+3)/2

vl

/ M−1∑
l=(M+3)/2

ul =
(M−1)/2∑

l=2

xl

/(M−1)/2∑
l=2

yl�

where the final equality above follows from the fact that for a symmetric signal,
xl = vM+1−l and yl = uM+1−l. Combining inequalities, and using the fact that
αM = σ1

M�M−1 when there is no interior mixing, we deduce (using (C.5) for the
final inequality)

(
αM

σS
1�2

)2

≥

(M−1)/2∑
l=2

xl

/(M−1)/2∑
l=2

yl

(M−1)/2∑
l=2

xl

/(M−3)/2∑
l=2

yl

=
(M−3)/2∑

l=2

yl

/(M−1)/2∑
l=2

yl = λ(M−3)/2
1 − λ1

λ(M−1)/2
1 − 1

�(C.23)
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On the other hand, the first expression in (C.4) yields the first inequality be-
low for

√
β > λ and λ1 = λ2, and the inequality is by λ = λ2

1 (for a symmetric
signal): (

αM

σS
1�2

)2

≤
(
λ(M−3)/2 − λ

λ(M+1)/2 − 1

)2

=
(
λ(M−3)/2

1 − λ1

λ(M+1)/2 − 1

)2(
λ(M−3)/2

1 + λ1

λ(M+1)/2 + 1

)2

(C.24)

<

(
λ(M−3)/2

1 − λ1

λ(M−1)/2 − 1

)(
λ(M−3)/2

1 − λ1

λ(M+1)/2 − 1

)

×
(
λ(M−3)/2

1 + λ1

λ(M+1)/2 + 1

)2

(by λ > 1)�

But since λ1 > 1, the product of the second two terms in (C.24) is below 1, while
the first term is smaller than the RHS expression in (C.23). Therefore, the
RHS of (C.24) is smaller than the RHS of (C.23), and so the two expressions
are incompatible—a contradiction. Q.E.D.

APPENDIX D: INFORMATION MATTERS

CLAIM: Given the normalization β ≥ 1, information matters if and only if the
following condition holds:

β< min
s∗∈{2�����S}

⎛⎜⎜⎜⎜⎜⎝
μL

1

μH
1

η+ (1 −η)

S∑
s=s∗

μH
s

η+ (1 −η)

S∑
s=s∗

μL
s

⎞⎟⎟⎟⎟⎟⎠
M−1

≡ (
ξ̄(η)/ξ(1)

)M−1
�(D.1)

PROOF: Let s∗ ∈ arg mins∈{2�����S}(η + (1 − η)
∑S

s=s∗ μ
L
s )/(η + (1 − η) ×∑S

s=s∗ μ
H
s ).

FIRST DIRECTION: β< (ξ̄(η)/ξ(1))M−1 ⇒ information matters.

PROOF: Suppose (by way of contradiction) that (D.1) holds, but information
does not matter. Then any memory protocol that chooses action 1 in all mem-
ory states is optimal. In particular, for all ε ∈ (0�1), the following protocol is
optimal: start in state M , and in each memory state i ∈ M, choose action 1,
transition to memory state M after any signal realization s ≥ s∗, transition to
memory state i − 1 with probability ε after signal realization s = 1, and oth-
erwise stay in state i. An immediate application of footnote 10 (noting that
ωθ

i�j = 0 whenever j /∈ {i− 1� i�M}) then yields the following expression for the
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terminal probabilities f θ
j :

f θ
j = yθ

j

M∑
i=1

yθ
i

� where

yθ
j =

(∏
i≤j−1

ωθ
i�M

)(∏
i≥j+1

ωθ
i�i−1

)

=
(
η+ (1 −η)

S∑
s=s∗

μθ
s

)j−1(
(1 −η)εμθ

1

)M−j
�

Taking ratios in memory state j = 1 and then considering the limit as ε → 0
yields

lim
ε→0

fH
1

f L
1

=
(
μH

1

μL
1

)M−1

lim
ε→0

M∑
i=1

yL
i

M∑
i=1

yH
i

=

⎛⎜⎜⎜⎜⎜⎝
μH

1

μL
1

η+ (1 −η)

S∑
s=s∗

μL
s

η+ (1 −η)

S∑
s=s∗

μH
s

⎞⎟⎟⎟⎟⎟⎠
M−1

�(D.2)

Then by continuity and (D.1), we can choose ε small enough that under the
suggested protocol, the following expression holds:


(1)
∣∣∣∣πH

πL

∣∣∣∣= 
0

∣∣∣∣πH

πL

∣∣∣∣fH
1

f L
1

< 1 ⇒ p(1)πH + (
1 −p(1)

)
πL < 0�

But then action 0 is strictly better than the specified action choice 1 in memory
state 1, contradicting optimality of the specified protocol. This establishes the
first direction: under (D.1), information matters. Q.E.D.

SECOND DIRECTION: If (D.1) is violated, then information does not matter.

PROOF: For this, I will prove that any optimal protocol yields the bound

fH
1

f L
1

≥

⎛⎜⎜⎜⎜⎜⎝
μH

1

μL
1

η+ (1 −η)

S∑
s=s∗

μL
s

η+ (1 −η)

S∑
s=s∗

μH
s

⎞⎟⎟⎟⎟⎟⎠
M−1

�(D.3)

Then if the inequality in (D.1) is violated, it follows that 
0|πH/πL|(fH
1 /f L

1 ) ≥
1, so that action 1 is preferred in memory state 1. Together with the ordering of
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the memory states and Proposition 1, it then follows that any optimal protocol
must always choose action 1, hence information does not matter.

To prove (D.3), let (g0�σ�d) be an optimal protocol with initial state i0. By
Appendix A.2, the terminal distribution f θ is the steady-state distribution of a
perturbed Markov process with transition chance ωθ

i�j from state i to j, where
ωθ

i�j = τθ
i�j if j �= i0, and ωθ

i�i0
= η + τθ

i�i0
. Then, for any subset of states A ⊆ M,

the probability of entering A equals the probability of leaving A. For memory
state i ≤ i0 and the set A = {1�2� � � � � i− 1}, this yields

∑
j≤i−1

f θ
j

(
η+

∑
k≥i

τθ
j�k

)
=
∑
j≥i

f θ
j

∑
k≤i−1

τθ
j�k�

Taking ratios and recalling that memory states are ordered so that fH
j /f L

j is
weakly increasing, it follows that

fH
i−1

f L
i−1

(
η+

∑
k≥i

τH
j�k

)
(
η+

∑
k≥i

τL
j�k

) ≥

∑
j≤i−1

fH
j

(
η+

∑
k≥i

τH
j�k

)
∑
j≤i−1

f L
j

(
η+

∑
k≥i

τL
j�k

)(D.4)

=

∑
j≥i

f H
j

∑
k≤i−1

τH
j�k∑

j≥i

f L
j

∑
k≤i−1

τL
j�k

≥ fH
i

f L
i

μH
1

μL
1

⇒ fH
i−1

f L
i−1

≥ fH
i

f L
i

⎛⎜⎜⎜⎜⎜⎝
μH

1

μL
1

η+ (1 −η)

S∑
s=s∗

μL
s

η+ (1 −η)

S∑
s=s∗

μH
s

⎞⎟⎟⎟⎟⎟⎠ �

If i0 = M (or if i0 ≤ M − 1 but all states above i0 are unused), then (D.3)
follows immediately by iterating (D.4), noting that fH

M /fL
M ≥ 1 by the ordering

of the memory states.
If i0 ≤M −1 and if some state above i0 is used, then (i) optimality of starting

in state i0 demands 
0 ≤ 
̄i0 ,6 while (ii) any state j > i0 with f θ
j > 0 has a belief

6This simply rearranges the condition stating that the DM must earn a weakly higher contin-
uation payoff in state i0 than i0 + 1 at the prior p0. Recall, from the discussion leading up to
Proposition 2 in the paper that 
̄i ≡ ΔL

i�i+1/Δ
H
i+1�i is the belief likelihood threshold for indifference

between states i and i+ 1, with belief likelihoods below 
̄i favoring state i.
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likelihood ratio 
(j) ≡ 
0f
H
j /f L

j ≥ 
̄i0 (by Corollary 2 in the paper). Together,
these inequalities imply

fH
j /f L

j ≥ 1 for all j ≥ i0 + 1 with f θ
j > 0�(D.5)

Also, f θ satisfies the following steady-state relationship, stating that the prob-
ability of entering {1�2� � � � � i0} equals the probability of leaving:∑

j≤i0

f θ
j

∑
k≥i0+1

τθ
j�k =

∑
j≥i0+1

f θ
j

(
η+

∑
k≤i0

τθ
j�i

)
�

Adding η
∑

j≤i0
f θ
j to both sides and taking ratios gives∑

j≤i0

fH
j

(
η+

∑
k≥i0+1

τH
j�k

)
∑
j≤i0

f L
j

(
η+

∑
k≥i0+1

τL
j�k

) =
η+

∑
j≥i0+1

fH
j

(∑
k≤i0

τH
j�i

)
η+

∑
j≥i0+1

f L
j

(∑
k≤i0

τL
j�i

)(D.6)

⇒ fH
i0

f L
i0

η+ (1 −η)

S∑
s=s∗

μH
s

η+ (1 −η)

S∑
s=s∗

μL
s

≥ μH
1

μL
1

�(D.7)

(The LHS of (D.7) is an upper bound on the LHS of (D.6) by the ordering of
the memory states; the RHS of (D.7) is a lower bound on the LHS of (D.6),
using τH

j�i/τ
L
j�i ≥ μH

1 /μ
L
1 , (D.5), and 1 >μH

1 /μ
L
1 .) Together with (D.4) (iterated),

it then follows that

fH
1

f L
1

≥ fH
i0

f L
i0

⎛⎜⎜⎜⎜⎜⎝
μH

1

μL
1

η+ (1 −η)

S∑
s=s∗

μL
s

η+ (1 −η)

S∑
s=s∗

μH
s

⎞⎟⎟⎟⎟⎟⎠
i0−1

≥

⎛⎜⎜⎜⎜⎜⎝
μH

1

μL
1

η+ (1 −η)

S∑
s=s∗

μL
s

η+ (1 −η)

S∑
s=s∗

μH
s

⎞⎟⎟⎟⎟⎟⎠
i0

�

which establishes (D.3) by i0 ≤M − 1. Q.E.D.
Q.E.D.
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APPENDIX E: AN ANALYTICAL EXAMPLE

I now illustrate the theory with a symmetric three-state example. Assume
the high and low states are equally likely, so p0 = 1

2 , and that payoffs are
πH = −πL = 1. The DM observes an “extreme” signal l or h with probability
(1 − φ), with likelihood ratios ξ(h) = 1/ξ(l) = q/(1 − q), and an “intermedi-
ate” signal m̄ or ¯m with probability φ, with ξ(m̄) = 1/ξ( ¯m) = p/(1 − p); as-
sume q > p> 1

2 . I restrict attention to protocols with beliefs 
(1) < 
(2) < 
(3)
and with no absorbing or equivalent states. Assume that the DM starts in mem-
ory state 2 and uses the decision rule d = (0� d2�1), with d2 the probability of
choosing the high action in memory state 2. The optimal transition rule then
maximizes the objective function

1
2
(
d2f

H
2 + fH

3

)− 1
2
(
d2f

L
2 + f L

3

)
�(E.1)

In Step E.1, I will illustrate why intermediate signals are optimally ignored for
η near zero. In Steps E.2–E.4, specializing to a binary signal (φ = 0), I will
demonstrate some features of optimal protocols that easily hold for general
termination chances η ∈ (0�1), not necessarily small; the remainder of the
section finishes computing the optimal transition rules for the action rules
d = (0� 1

2 �1) and d = (0�1�1), which are referenced in Step E.4.

STEP E.1: Only react to extreme signals for η near 0.

To see this most easily, consider a symmetric decision rule d = (0� 1
2 �1),

which intuitively implies a symmetric optimal transition rule. Then, with fH
2 =

f L
2 and f L

3 = fH
1 (by symmetry) and the identity

∑3
i=1 f

H
i = 1, we can rewrite

(E.1) as 1
2(f

H
3 − fH

1 ) = 1
2f

H
2 + fH

3 − 1
2 . Thus, defining x(σ) ≡ (fH

1 + 1
2f

H
2 )/

(fH
3 + 1

2f
H
2 ), the goal is to maximize 1

2f
H
2 + fH

3 = (1 + x(σ))−1, which clearly is
achieved by making x(σ) as small as possible.

By symmetry and the ordering of the states,

x(σ)≡
fH

1 + 1
2
fH

2

f L
1 + 1

2
f L

2

≥ fH
1

f L
1

with equality iff fH
2 = f L

2 = 0�(E.2)

And by equation (2) in the paper, f θ is the steady-state distribution of a
Markov process with transition chances ωθ

i�j , and so the probability of enter-
ing state 1 equals the probability of leaving:

f θ
1

(
ωθ

1�2 +ωθ
1�3

)= f θ
2 ω

θ
2�1 + f θ

3 ω
θ
3�1�(E.3)
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Taking ratios, and recalling ωH
i�j/ω

L
i�j ≥ ξ(l) (with equality if σs

i�j = 0 ∀s �= l) and
fH

3 /f L
3 > fH

2 /f L
2 = 1 yields

fH
1

f L
1

≥ ξ(l)
ωL

1�2 +ωL
1�3

ωH
1�2 +ωH

1�4

with equality iff σ ¯m2�1 = 0 and ωθ
3�1 = 0(E.4)

≡ ξ(l)
η+ (1 −η)μL

m̄(σ
m̄
1�2 + σm̄

1�3)+ (1 −η)μL
h(σ

h
1�2 + σh

1�3)

η+ (1 −η)μH
m̄(σ

m̄
1�2 + σm̄

1�3)+ (1 −η)μH
h (σ

h
1�2 + σh

1�3)
(E.5)

≥ ξ(l)/ξ(h) with equality iff η = σm̄
1�2 + σm̄

1�3 = 0�(E.6)

Thus, the ratio x(σ) that the DM wishes to minimize has a lower bound
ξ(l)/ξ(h), achieved as η → 0 only if intermediate signals are ignored (by
(E.4), (E.6), and symmetry), there are no jumps (by (E.4) and symmetry), and
fH

2 = f L
2 = 0 (achieved as η → 0 by leaving the extremal states with a vanishing

chance).7
Now specialize to a binary signal (φ = 0), and recall from Proposition 2 in

the paper that an equilibrium is characterized by thresholds 
̄1 ≤ 
̄2 such that
a self transitions to 1 if his posterior is below 
̄1, to state 3 if his posterior is
above 
̄2, and to state 2 for posteriors in between.

STEP E.2—Indifference Thresholds: d2 = 1 ⇒ 
̄1 < 
̄2 and ξ(l)/
̄1 < ξ(h)/
̄2.

PROOF: By equation (5) in the paper, the payoff differential Δθ
3�2 satisfies(

η+ (1 −η)μθ
l

(
σl

3�1 + σl
3�2

)+ (1 −η)μθ
hσ

h
2�3

)
Δθ

3�2(E.7)

= (1 −η)μθ
l

(
σl

2�1 − σl
3�1

)
Δθ

2�1�

With no equivalent states, Lemma 1(a) demands ΔH
3�2 > 0 and ΔH

2�1 > 0, requir-
ing σl

2�1 > σl
3�1 by (E.7). Then taking ratios in (E.7) and recalling 
̄2 ≡ ΔL

2�3/Δ
H
3�2

and 
̄1 ≡ ΔL
1�2/Δ

H
2�1 yields

η+ (1 −η)(1 − q)(σl
3�1 + σl

3�2)+ (1 −η)qσh
2�3

η+ (1 −η)q(σl
3�1 + σl

3�2)+ (1 −η)(1 − q)σh
2�3

1

̄2

= 1 − q

q

1

̄1
�(E.8)

The RHS of (E.7) is ξ(l)/
̄1, and the LHS is strictly above ξ(l)/
̄2 and strictly
below ξ(h)/
̄2; this immediately yields the desired result. Q.E.D.

7Of course, ignoring intermediate signals is not optimal for larger η. This is easily seen from

(E.5), which is minimized by setting σm̄
1�2 +σm̄

1�3 equal to 1 (instead of zero) whenever (η+(1−η)μH
h )

(η+(1−η)μL
h
)
<

ξ(m̄). This relates to the condition in footnote 11 in the paper for information to matter, and
holds for smaller values of η the closer are ξ(m̄) and ξ(h).
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Step E.2 has the following immediate implications: (i) State 2 cannot be
sticky in both directions, for if a state-2 self is indifferent about moving
down, 
(2)ξ(l)/
̄1 = 1, then he strictly prefers moving up after an h-signal,
as 
(2)ξ(h)/
̄2 > 1; thus, σl

2�1 ∈ (0�1) ⇒ σh
2�3 = 1. And (ii) if a state-1 self ever

jumps to state 3 after an h-signal, so 
(1�h)/
̄2 ≥ 1, then he never stays in state
1, as 
(1�h)/
̄1 > 1 (indicating a strict preference for state 2 over state 1); thus,
σh

1�3 > 0 ⇒ σh
1�2 + σh

1�3 = 1.

STEP E.3: No jumps if d2 ∈ {0�1}.

PROOF: In an equilibrium with σh
1�3 > 0, a state-1 self who observes an h-

signal must weakly prefer memory state 3 to 2, while a state-3 self who observes
an l-signal must weakly prefer state 2 to 3 (since we have ruled out absorbing
states). Thus, the following inequality must hold:

fH
1

f L
1

q

1 − q
≡ 
(1�h)≥ 
̄2 ≥ 
(3� l)≡ fH

3

f L
3

1 − q

q
�(E.9)

I will now derive a contradiction. By Step E.2 implication (ii), σh
1�3 > 0 ⇒ σh

1�2 +
σh

1�3 = 1. Then by (E.3), adding f θ
1 (1 −η)μθ

l to both sides and taking ratios,

fH
1

f L
1

= 1 − q

q

fH
1 + fH

2 σl
2�1 + fH

3 σl
3�1

f L
1 + f L

2 σ
l
2�1 + f L

3 σ
l
3�1

�(E.10)

Now note first that σl
3�1 ≤ σl

2�1 at equilibrium, for if σl
3�1 > 0 is optimal, so


(3� l)/
̄1 ≤ 1; then 
(2� l)/
̄1 is strictly below 1 and so σl
2�1 must equal 1. But

then by the ordering of the states and the identity
∑3

i=1 f
θ
i = 1, the RHS ex-

pression in (E.10) is strictly below 1 whenever σl
3�1 < 1, which was established

just below (E.7) for any equilibrium with d2 = 1. Thus, d2 = 1 ⇒ 
(1�h) < 1.
By a symmetric argument, 
(3� l) ≥ 1, with strict inequality in any equilibrium
with d2 = 0. Thus d2 ∈ {0�1} ⇒ 
(1�h) < 
(3� l), contradicting (E.9).8 Q.E.D.

STEP E.4: The optimal memory protocol is asymmetric, with d2 ∈ {0�1}.

8If d2 = 1
2 , then there is a symmetric team equilibrium with σh

1�3 = σl
3�1 = 1, but it is Pareto-

dominated by the symmetric equilibrium with no jumps described in Step E.4. This is easily seen
by noting that if the strategies were perturbed, say to σh

1�2 = ε and σh
1�3 = 1 − ε, we would have


(1�h) < 
(3� l), indicating that the jumps between states 1 and 3 are strictly suboptimal ((E.9) is
violated). But then for any ε > 0, it is a profitable deviation to increase ε further, and decrease
the chance (1 −ε) of jumps. This equilibrium with σh

1�3 = σl
3�1 = 1 also fails Marple and Shoham’s

(2012) “distributed perfect equilibrium” concept, which essentially requires that strategies be
robust to trembles.
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PROOF—Sketch: In the next two subsections, I will finish characterizing the
optimal protocol when d2 = 1, establishing that σl

2�1 = σh
2�3 = 1 and σh

1�2 < σl
3�2.

I then find the best symmetric equilibrium, with action rule d̂ = (0� 1
2 �1), ob-

taining the closed-form expressions for the best symmetric transition rule σ̂ ,9

σ̂ l
2�1 = σ̂h

2�3 = 1� σ̂h
1�3 = σ̂ l

3�1 = 0� and

σ̂h
1�2 = σ̂ l

3�2 = −η+√
η(2 −η)

1 −η
�

To see that (σ̂� d̂) is Pareto-dominated for η ∈ (0�1), note that it necessarily
leaves the DM indifferent between actions in the middle memory state, with
fH

2 = f L
2 . Thus, he would earn exactly the same payoff if he again followed

σ̂ , but switched to the action rule d = (0�1�1). But we have just established
that the optimal transition rule σ when d2 = 1 is necessarily asymmetric, with
σh

1�2 < σl
3�2, and so (σ�d) must earn a strictly higher payoff than (σ̂� d̂). The

intuition is that it is not optimal to waste memory resources on a completely
uninformed state. If the DM knows that he will choose the high action in the
middle state, then it is payoff-improving to reduce the chance of ending up
there in the low state of the world, while increasing the relative chance of end-
ing up there in the high state of the world. Since he is most often in state 1
(or 3) in the low (or high) state of the world, this is accomplished by reducing
σh

1�2 and increasing σl
3�2.10 Of course, the rule (σ̂� d̂) is asymptotically efficient:

part (d) of Proposition 4 guarantees that the chance of making a decision in
an interior memory state i vanishes as η → 0, and so the limit payoff does not
depend on di.

E.1. Completing the Example if d2 = 1

It remains to prove that the optimal transition rule σ satisfies σl
2�1 = σh

2�3 = 1
and σh

1�2 <σl
3�2.

STEP E.5: σl
2�1 ∈ (0�1)⇒ σh

1�2 = 1 and σh
2�3 ∈ (0�1)⇒ σl

3�2 = 1.

PROOF: I will prove the first assertion; the second follows by a symmetric
argument. Consider an equilibrium with σl

2�1 ∈ (0�1), if such an equilibrium

9Note that these transitions out of the extremal states are strictly increasing in η, but below
1 ∀η< 1; thus, stickiness optimally persists.

10The rule (σ̂�d) also does not correspond to a team equilibrium: each state-1 self knows that
the action will change for sure if he “passes the baton” to state 2 and so he is more reluctant to
do so (σh

1�2 must fall), while each state-3 self more readily passes the baton down, knowing that
the action will not change.
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exists. Optimality of σl
2�1 ∈ (0�1) demands that a state-2 self be indifferent be-

tween states 1 and 2 after observing an l-signal, so 
(2� l)/
̄1 = 1. But then by
Step E.2,


(2�h)/
̄2 ≡ 
(2)ξ(h)/
̄2 > 
(2)ξ(l)/
̄1 ≡ 
(2� l)/
̄1 = 1�(E.11)

while taking ratios in (E.5), using the Step E.3 result that σh
1�3 = σl

3�1 = 0, yields


(1�h) ≡ fH
1

f L
1

q

1 − q
>

fH
1

f L
1

η+ (1 −η)qσh
1�2

η+ (1 −η)(1 − q)σl
1�2

(E.12)

= fH
2

f L
2

μH
l

μL
l

≡ 
(2� l)= 
̄1�

But 
(2�h)/
̄2 > 1 (from (E.11)) implies that a state-2 self strictly prefers state
3 to 2 after observing an h-signal, and so at equilibrium, he moves with proba-
bility σh

2�3 = 1. Similarly, 
(1�h)/
̄1 > 1 (from (E.12)) implies that a state-1 self
strictly prefers state 2 to 1 after observing an h-signal, and so at equilibrium,
he moves with probability σh

1�2 = 1. Q.E.D.

STEP E.6: σh
2�3 = 1.

PROOF: By (E.8) and (E.11), using the Step E.2 result that σl
3�1 = 0,


(1�h)

̄1

/
(2�h)

̄2

= η+ (1 −η)(1 − q)σl
3�2 + (1 −η)qσh

2�3

η+ (1 −η)qσl
3�2 + (1 −η)(1 − q)σh

2�3

(E.13)

× η+ (1 −η)(1 − q)σh
1�2

η+ (1 −η)qσh
1�2

�

If there is an optimal protocol with σh
2�3 ∈ (0�1), then σl

3�2 = 1 by Step E.5,
implying that the RHS expression in (E.13) is strictly below 1. Also, in an equi-
librium with σh

2�3 ∈ (0�1), a state-2 self must be indifferent about moving up
after an h-signal, so 
(2�h)/
̄2 = 1. Thus 
(1�h)/
̄1 < 
(2�h)/
̄2 = 1, indicat-
ing that the state-1 self strictly prefers to remain in state 1 after an h-signal,
which is a contradiction, since absorbing states are not optimal. Q.E.D.

STEP E.7: Calculating 
(3� l)/
̄2 and 
(1�h)/
̄1.

By footnote 10 in the paper, using the Step E.3 result that there are no
transitions between states 1 and 3, the terminal distribution f θ satisfies f θ

i =
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yθ
i /
∑3

j=1 y
θ
j , where yθ

1 = ωθ
3�2ω

θ
2�1, yθ

2 = ωθ
1�2ω

θ
3�2, and yθ

3 = ωθ
1�2ω

θ
2�3.11 Next, com-

paring (5) from the paper in states 1 and 2 yields the following expression for
payoff gap Δθ

2�1, using σh
2�3 = 1 (just shown) and σl

3�1 = σh
1�3 = 0:(

η+ (1 −η)σl
2�1μ

θ
l + (1 −η)σh

1�2μ
θ
h

)
Δθ

2�1 = ηπθ + (1 −η)μθ
hΔ

θ
3�2�

Substituting (E.7) into this expression and solving for Δθ
2�1 and Δθ

3�2 yields

Δθ
2�1 = ηπθ

(η+ (1 −η)σl
3�2μ

θ
l + (1 −η)μθ

h)
3∑

j=1

yθ
j

and

Δθ
3�2 = ηπθ

(1 −η)σl
2�1μ

θ
l

3∑
j=1

yθ
j

�

Setting Γ ≡∑3
j=1 y

L
j /

∑3
j=1 y

H
j , we then obtain


(1�h)

̄1

≡ yH
1

yL
1

q

1 − q

ΔH
2�1

ΔL
1�2

Γ(E.14)

= η+ (1 −η)σl
3�2(1 − q)

η+ (1 −η)σl
3�2q

× η+ (1 −η)σl
3�2(1 − q)+ (1 −η)q

η+ (1 −η)σl
3�2q+ (1 −η)(1 − q)

Γ 2�


(3� l)

̄2

≡ yH
3

yL
3

1 − q

q

ΔH
3�2

ΔL
2�3

Γ = η+ (1 −η)σh
1�2q

η+ (1 −η)σh
1�2(1 − q)

1 − q

q
Γ 2�(E.15)

where

Γ =
((
η+ (1 −η)σh

1�2(1 − q)+ (1 −η)σl
2�1q

)
(E.16)

× (
η+ (1 −η)(1 − q)+ (1 −η)σl

3�2q
)− (1 −η)2q(1 − q)σl

2�1

)
/((

η+ (1 −η)σh
1�2q+ (1 −η)(1 − q)σl

2�1

)
× (

η+ (1 −η)q+ (1 −η)σl
3�2(1 − q)

)− (1 −η)2q(1 − q)σl
2�1

)
�

11For example, note that there are in principle three 1-trees: 3 → 2 → 1, 2 → 3 → 1, and
2�3 → 1. This yields yθ1 = ωθ

3�2ω
θ
2�1 + ωθ

2�3ω
θ
3�1 + ωθ

2�1ω
θ
3�1, but the last two terms equal zero given

ωθ
3�1 = 0.



BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 31

STEP E.8: σh
1�2 < 1 = σl

2�1.

PROOF: First, I show that σl
3�2 ∈ (0�1) ⇒ σh

1�2 ∈ (0�1): The equilibrium con-
dition for σl

3�2 ∈ (0�1) is 
(3� l)/
̄2 = 1, which, by (E.15), can only hold if
Γ > 1; but by (E.16), this requires σh

1�2 < 1, as σh
1�2 = 1 ⇒ Γ ≤ 1 (equality iff

σl
2�1 = σl

3�2 = 1).
Now, to prove that σh

1�2 < 1 = σl
2�1, we have just shown that if σh

1�2 = 1, then
σl

3�2 must also equal 1. But in such an equilibrium, the RHS expression in (E.14)
is strictly below Γ 2, while (E.16) yields Γ ≤ 1 at σh

1�2 = σl
3�2 = 1 (with equality

iff σl
2�1 = 1). Thus, if σh

1�2 = 1, then (E.14) yields 
(1�h)/
̄1 < 1, a violation of
the equilibrium condition in state 1: a state-1 self strictly prefers to stay in state
1 after an h-signal. We therefore conclude that there is no equilibrium with
σh

1�2 = 1; thus, σh
1�2 ∈ (0�1), which implies σl

2�1 = 1 by Step E.5. Q.E.D.

STEP E.9: Optimal transition chances σh
1�2 <σl

3�2.

It is now immediate that σl
3�2 > σh

1�2 at equilibrium: For if σl
3�2 ≤ σh

1�2 < 1 is
optimal, then the RHS expression in (E.14) must equal 1; this is only possible
if Γ > 1, which, by (E.16) evaluated at σl

2�1 = 1, demands σl
3�2 >σh

1�2—a contra-
diction.

It remains to choose σh
1�2 ∈ (0�1) and σl

3�2 such that the RHS expres-
sion in (E.14) equals 1, and the RHS expression in (E.15) is at most 1,
with equality if σl

3�2 ∈ (0�1). For large η (specifically, η satisfying γ(1 − γ)/

(1 − η) < η
√
γ +η), the optimal protocol has σl

3�2 = 1 and σh
1�2 = (−η +

(1 − γ)
√
η+ γ)/(1 − η − γ). For small η (whenever this inequality does not

hold), the transition from state 3 to 2 is also mixed: a closed-form solution is

not possible, but σl
3�2 may be found numerically by setting σh

1�2 = η/γ+σl
3�2(1−σl

3�2)

(σl
3�2)

2/η−(1−σl
3�2)

2

(this equates the RHS expressions in (E.14) and (E�15)) and then choosing
σl

3�2 ∈ (0�1) to set the RHS of (E.15) equal to 1.

E.2. Completing the Example if d2 = 1
2

We have already shown that jumps are not optimal, and so it remains to
calculate the optimal transition chances σl

3�2 = σh
1�2 and σl

2�1 = σh
2�3 to maxi-

mize

1
2

(
1
2
fH

2 + fH
3

)
− 1

2

(
1
2
f L

2 + f L
1

)
=symmetry

1
2
fH

2 + fH
3 − 1

2
�(E.17)
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With d2 = 1
2 , the expression for 
(1�h)/
̄1 from (E.14) changes to the expres-

sion (using symmetry to set σl
3�2 = σh

1�2 and Γ = 1)


(1�h)

̄1

=
(
η+ (1 −η)(1 − q)σh

1�2

η+ (1 −η)qσh
1�2

)
(E.18)

×
(
η+ (1 −η)(1 − q)σh

1�2 + 2(1 −η)q

η+ (1 −η)qσh
1�2 + 2(1 −η)(1 − q)

)
�

The first ratio is 
(1�h) and the second is 1/
̄1: Noting that 1/
̄1 is strictly
below ξ(h), we immediately have 
(2� l)/
̄1 = 
0ξ(l)/
̄1 < 1 (recalling that

(2) = fH

2 /f L
2 = 1 in a symmetric equilibrium), and so σl

2�1 must equal 1; sym-
metrically, σh

2�3 = 1.
To calculate the optimal transitions into the middle state, we need to choose

σh
1�2 such that either 
(1�h)/
̄1 = 1 and σh

1�2 ∈ (0�1), or 
(1�h)/
̄1 > 1 and
σh

1�2 = 1. In (E.18), the numerator exceeds the denominator by (1 − η) ×
(2q − 1)(2η(1 − σh

1�2) − (1 − η)(σh
1�2)

2). This difference is strictly negative at
σh

1�2 = 1, and so 
(1�h) < 
̄1, while the difference is strictly positive at σh
1�2 = 0,

and so 
(1�h) > 
̄1. Both contradict optimality. Any equilibrium therefore re-
quires mixing. In fact, by choosing σh

1�2 = (−η + √
η(2 −η))/(1 − η), we get


(1�h)= 
̄1. The condition for the transition from 3 to 2 is symmetric.
Finally, let us consider the equilibrium payoff. Substituting the optimal tran-

sition chances into (E.17) and simplifying with
√
ρ∗ ≡ (1 − q)2/q2 yields the

payoff

1
2

(1 −η)(1 − √
ρ∗)

1 + √
ρ∗ + 2

√
η(2 −η)(1 − q)/q

�

The limit as η → 0 is 1
2(1 − √

ρ∗)/(1 + √
ρ∗), that is, the bound at β = 1 in

Proposition 3 of the paper.

Dept. of Economics, University of Wisconsin–Madison, 1180 Observatory Dr.,
Madison, WI 53706, U.S.A.; awilson@ssc.wisc.edu.

Manuscript received May, 2004; final revision received June, 2014.

mailto:awilson@ssc.wisc.edu

	Appendix B: Proof That the DM's Payoff Strictly Increases in M
	Appendix C: Derivation of Step 4 in the Proof of Proposition 4(c)
	Preliminary Notation and Analysis From the Paper
	Proofs for General Signals
	Specializing to Symmetric Signals

	Appendix D: Information Matters
	Appendix E: An Analytical Example
	Completing the Example if d2=1
	Completing the Example if d2=1/2

	Author's Addresses

