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This supplementary material is organized as follows. The first part of Appendix A
discusses the alternative regression-based approach for testing for common GARCH
factors and highlights some singularities that make the standard Wald, likelihood ratio,
and Lagrange multiplier tests invalid. The second part of Appendix A provides some
additional interpretations of the mixture of rates of convergence that we get for the
GMM estimators. It also highlights some key differences between the first-order local
identification failure studied in this paper and the weak identification framework (see,
e.g., Stock and Wright (2000), Kleibergen (2005), and Andrews and Mikusheva (2012)).
Appendix B contains the proofs of all of the results stated in the main paper.

APPENDIX A: TESTING FOR CH EFFECTS ON COMMON FEATURES AND
FURTHER REMARKS

A.1. Testing for CH Effects on Common Features

A REGRESSION-BASED APPROACH IS AKIN to considering an instrumental het-
eroskedasticity model that can be written

ξt+1 = a+ bzt + εt+1�(A.1)

where ξt+1 is anm-dimensional vector that gathers some coefficients of the ma-
trix Yt+1Y

′
t+1, zt is again a vector of H Ft-measurable instruments, E(εt+1)= 0,

Cov(εt+1� zt) = 0, and a ∈ R
m and b ∈ R

m×H are vectors of unknown parame-
ters. It will be possible to check from this regression model that the portfolio
θ′Yt+1 is a CH common feature insofar as

(
θ′Yt+1

)2 = θ′Yt+1Y
′
t+1θ= γ′(θ)ξt+1

for some known function γ from Θ to R
mH . In other words, the regression

model (1) must be rich enough to be such that the vector ξt+1 gathers in partic-
ular the coefficients of Yt+1Y

′
t+1 that show up in θ′Yt+1Y

′
t+1θ. In these circum-

stances, the null hypothesis of interest for the test of CH common features will
be

H0 :∃θ: γ′(θ)b= 0�

Irrespective of the preferred test chosen from the trinity of asymptotic tests
used to test such a composite hypothesis (see Gourieroux and Monfort (1989)),
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the standard asymptotic chi-squared distribution under the null will be war-
ranted only if

∂[γ′(θ)b0]
∂θ

∣∣∣∣
θ=θ0

is full rank. However, from the regression model,

(
θ′Yt+1

)2 = γ′(θ)a0 + γ′(θ)b0zt + γ′(θ)εt+1�

and thus

∂(θ′Yt+1)
2

∂θ
= ∂γ′(θ)

∂θ
a0 + ∂γ′(θ)

∂θ
b0zt + ∂γ′(θ)

∂θ
εt+1

and

Cov
(
∂(θ′Yt+1)

2

∂θ
� zt

)
= ∂γ′(θ)

∂θ
Cov

(
b0zt� zt

)
�

Therefore,

∂γ′(θ)
∂θ

b0

∣∣∣∣
θ=θ0

= Cov
(
∂(θ′Yt+1)

2

∂θ
� zt

)∣∣∣∣
θ=θ0

(
Var(zt)

)−1 = 0

by Proposition 2.1 when θ0 is a common feature.

A.2. Heterogeneity of Rates of Convergence

REMARK A.1: It is worth interpreting the heterogeneity of rates of conver-
gence across the sample space in terms of the randomness of a (population)
matrix that may be seen as a Fisher information matrix. While randomness
of the information matrix is known to occur in some nonergodic settings, it
has been recently considered as a possibility in the context of weak identifica-
tion by Andrews and Mikusheva (2012), even though they eventually precluded
this possibility by their maintained Assumption 1(b). By a slight abuse of lan-
guage, we will use here their information theoretic terminology, even though
we are in a GMM context that is more general than maximum likelihood for
which Fisher information matrices are usually defined. The GMM analogs of
the score vector and of the Hessian of the log-likelihood will be defined from
the criterion function

QW
T (θ)= T

2
φ̄′
T (θ)WT φ̄T (θ)�
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The GMM analog of the outer product of the score is then

IWT (θ)= 1
T

∂QW
T (θ)

∂θ
�
∂QW

T (θ)

∂θ′

= ∂φ̄′
T (θ)

∂θ
WT

(√
Tφ̄T (θ)

)(√
Tφ̄′

T (θ)
)
WT

∂φ̄T (θ)

∂θ′

such that, under regularity conditions, we have, at true value θ= θ0,

IW
(
θ0

) = lim
T→∞

E
(
IWT

(
θ0

)) = Γ ′(θ0
)
W Σ

(
θ0

)
W Γ

(
θ0

)
�

The GMM analog of the Hessian matrix of the log-likelihood is

HW
T (θ)= 1

T

∂2QW
T (θ)

∂θ∂θ′(A.2)

= ∂φ̄′
T (θ)

∂θ
WT

∂φ̄T (θ)

∂θ′ + (
h′
ijT (θ)WT φ̄T (θ)

)
1≤i�j≤p�

where

hijT (θ)= ∂2φ̄T (θ)

∂θi ∂θj
�

In particular, under regularity conditions, we have, at true value θ= θ0,

HW
(
θ0

) = plim
T→∞

HW
T

(
θ0

) = Γ ′(θ0
)
W Σ

(
θ0

)
W Γ

(
θ0

)
�

In the (standard) strong identification case, Γ (θ0) is full column rank. Then
for large T , both the expected outer product matrix E(IWT (θ

0)) and the Hes-
sian matrix HW

T (θ
0) are positive definite with probability 1. Moreover, for

the efficient choice W = Σ−1(θ0) of the weighting matrix, the difference
(E(IWT (θ

0)) − HW
T (θ

0)) converges to zero in probability. This generalization
to non-maximum-likelihood contexts of the so-called second informational
equality was put forward by Gourieroux and Monfort (1989) as the necessary
and sufficient condition to keep the asymptotic equivalence between the stan-
dard asymptotic tests.

The situation is much different in the context of weak identification (drift-
ing data generating process (DGP) such that Γ (θ0) = O(1/

√
T); see, e.g.,

Kleibergen (2005)) or in our context (Γ (θ0)= 0). Then, as stressed by Andrews
and Mikusheva (2012), “the difference between the two information matrices
is asymptotically non-negligible compared with the information measure” it-
self. While they point this out in a maximum-likelihood context, this statement
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remains true in a GMM context, regardless of the choice of the weighting ma-
trixW . There is, however, an important difference between our setting and the
common weak identification framework.

In the common “GMM with weak identification” asymptotics as developed
by Stock and Wright (2000), the drifting DGP introduces a perverse fac-
tor (1/

√
T) at the level of the moment condition itself and this factor will

go through all derivatives of moment conditions. Then both E(IWT (θ
0)) and

HW
T (θ

0), and their difference as well are all of order 1/T .
In our framework, while E(IWT (θ

0)) is still of order 1/T , the Hessian matrix
HW
T (θ

0) is now dominating since we can deduce from (A.2) that

√
THW

T

(
θ0

) d→Z(X)�

where

Z(X)= (
h′
ij

(
θ0

)
WX

)
1≤i�j≤p� h′

ij

(
θ0

) = plim
T→∞

h′
ijT

(
θ0

)
�

and X is defined by the Gaussian limit in distribution of
√
T φ̄T (θ

0):
√
Tφ̄T

(
θ0

) d→X ∼N(
0�Σ

(
θ0

))
�

Note that since the variance matrix Σ(θ0) is nonsingular, Z(X) is a nonde-
generate random matrix, the coefficients of which are all Gaussian with zero
mean.

APPENDIX B: PROOFS

Throughout this appendix, we denote by Δ and Δ̄ the R
H-valued functions

defined by

Δ(v)=
(
v′ ∂

2ρh

∂θ∂θ′
(
θ0

)
v

)
1≤h≤H

and

Δ̄(v)=
(
v′ ∂

2φ̄h�T

∂θ∂θ′
(
θ0

)
v

)
1≤h≤H

� ∀v ∈ R
p�

p= n− 1 and n= dim(Yt). We let G and Ḡ be two (H�p2) matrices defined
such that Δ(v) =GVec(vv′) and Δ̄(v) = ḠVec(vv′) for all v ∈ R

p. By defini-
tion,

G=
(

Vec
(
∂2ρ1

∂θ∂θ′
(
θ0

))
�Vec

(
∂2ρ2

∂θ∂θ′
(
θ0

))
� � � � �Vec

(
∂2ρH

∂θ∂θ′
(
θ0

)))′

and Ḡ has the same expression but with φ̄h�T instead of ρh, h= 1� � � � �H.
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Lemmas B.1–B.6 below connect as follows in proving the main results in the
paper. Lemma B.1 is relevant thanks to Lemma 2.3 and is useful to derive the
rate of convergence as stated in Propositions 3.1 and 3.2. This lemma is also
useful to establish part of Lemma B.6. Lemma B.2 is useful to establish Propo-
sition 3.2. Lemma B.3 is used in the proof of Lemma B.5. Lemma B.5 is useful
to establish Lemma B.6, part (iii) of which essentially proves Theorem 3.1,
while Lemma B.4 is used in the proof of Theorem 3.2.

LEMMA B.1: If (Δ(v) = 0)⇒ (v = 0)), then there exists γ > 0 such that for
any v ∈R

p,∥∥Δ(v)∥∥ ≥ γ‖v‖2�

PROOF: The function Δ(v) is homogeneous of degree 2 with respect to v.
Therefore, for all v ∈ R

p,

∥∥Δ(v)∥∥ = ‖v‖2

∥∥∥∥Δ
(
v

‖v‖
)∥∥∥∥�

Define γ = inf‖v‖=1 ‖Δ(v)‖. From the compactness of {v ∈R
p :‖v‖ = 1} and the

continuity of Δ(v), there exists v∗ such that ‖v∗‖ = 1 and γ = ‖Δ(v∗)‖. Then
Δ(v∗) �= 0 since v∗ �= 0 and this shows the expected result. Q.E.D.

LEMMA B.2: Let {XT :T ∈N} and {εT :T ∈ N} be two sequences of real-valued
random variables such that εT converges in probability toward 0 and for all T ,
XT ≤ εT almost surely (a.s.). Then

lim sup
T→∞

Prob(XT ≤ ε)= 1� ∀ε > 0�

PROOF: Let ε > 0. We have

lim sup
T→∞

Prob(XT ≤ ε)= 1 − lim inf
T→∞

Prob(XT > ε)�

But

inf
n≥T

Prob(Xn > ε)≤ Prob(XT > ε)≤ Prob(εT > ε)→ 0

as T → ∞. This establishes the result. Q.E.D.

LEMMA B.3: Let {XT :T ∈ N} be a sequence of real-valued random variables,
letX a real-valued random variable, and let x ∈R. IfXT converges in distribution
toward X , then

∀ε > 0�∃Tε ∈ N: ∀T ≥ Tε�∣∣Prob(XT ≤ x)− Prob(X ≤ x)∣∣ ≤ Prob(X = x)+ ε�
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PROOF: Since infn≥T Prob(Xn ≤ x)≤ Prob(XT ≤ x)≤ supn≥T Prob(Xn ≤ x),
we can write∣∣Prob(XT ≤ x)− Prob(X ≤ x)∣∣

= max
(
Prob(XT ≤ x)− Prob(X ≤ x);

−Prob(XT ≤ x)+ Prob(X ≤ x))
≤ max

(
sup
n≥T

Prob(Xn ≤ x)− Prob(X ≤ x);

− inf
n≥T

Prob(Xn ≤ x)+ Prob(X ≤ x)
)

≤ max
(∣∣∣sup

n≥T
Prob(Xn ≤ x)− Prob(X ≤ x)

∣∣∣;
∣∣∣− inf

n≥T
Prob(Xn ≤ x)+ Prob(X ≤ x)

∣∣∣)�
Thus, to complete the proof, it suffices to show that for any ε > 0, there exists
Tε ∈ N: ∀T ≥ Tε, both∣∣∣sup

n≥T
Prob(Xn ≤ x)− Prob(X ≤ x)

∣∣∣ ≤ Prob(X = x)+ ε(B.1)

and ∣∣∣− inf
n≥T

Prob(Xn ≤ x)+ Prob(X ≤ x)
∣∣∣ ≤ Prob(X = x)+ ε(B.2)

hold.
To establish (B.1), we observe that supn≥T Prob(Xn ≤ x) → L =

lim supT→∞ Prob(XT ≤ x). Hence, there exists T1�ε ∈ N such that ∀T ≥
T1�ε� | supn≥T Prob(Xn ≤ x)−L|< ε.

Hence,

∀T ≥ T1�ε�∣∣∣sup
n≥T

Prob(Xn ≤ x)− Prob(X ≤ x)
∣∣∣ ≤ ε+ ∣∣Prob(X ≤ x)−L∣∣�

Now, since XT
d→ X , by the portmanteau lemma (Lemma 2.2(vi) of van der

Vaart (1998)), we have

L= lim sup
T→∞

Prob(XT ≤ x)≤ Prob(X ≤ x)�
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Hence, |Prob(X ≤ x)−L| = Prob(X ≤ x)−L. But

L≥ lim sup
T→∞

Prob(XT < x)≥ lim inf
T→∞

Prob(XT < x)≥ Prob(X < x)�

(The first two inequalities hold by definition, whereas the last one holds by the
portmanteau lemma (Lemma 2.2(v) of van der Vaart (1998)).) Thus∣∣Prob(X ≤ x)−L∣∣ = Prob(X ≤ x)−L

≤ Prob(X ≤ x)− Prob(X < x)= Prob(X = x)�
This establishes (B.1).

We establish (B.2) along similar lines: infn≥T Prob(Xn ≤ x) → l =
lim infT→∞ Prob(XT ≤ x). Hence, there exists T2�ε ∈ N such that ∀T ≥ T2�ε�
|− infn≥T Prob(Xn ≤ x)+ l|< ε. Hence,

∀T ≥ T2�ε�∣∣∣− inf
n≥T

Prob(Xn ≤ x)+ Prob(X ≤ x)
∣∣∣ ≤ ε+ ∣∣Prob(X ≤ x)− l∣∣�

Since Prob(X ≤ x) ≥ L = lim supT→∞ Prob(XT ≤ x), we can also claim that
Prob(X ≤ x)≥ l. Therefore, |Prob(X ≤ x)− l| = Prob(X ≤ x)− l. But

Prob(X ≤ x)= Prob(X < x)+ Prob(X = x)
≤ lim inf

T→∞
Prob(XT < x)+ Prob(X = x)

≤ l+ Prob(X = x)�
Thus Prob(X ≤ x) − l ≤ Prob(X = x). This establishes (B.2) and, therefore,
the lemma with Tε = max(T1�ε� T2�ε). Q.E.D.

LEMMA B.4: Under the same conditions as Theorem 3.2, there exists an (H�p)
matrix G1 (p= n− 1) and a (p�p2) matrix G2 such that

G=G1G2 and Rank(G)= Rank(G1)= Rank(G2)= p�

PROOF: Let θ∗ = (θ′�1 − ∑n−1
i=1 θi)

′, θ ∈ R
n−1. We recall that ρ(θ) =

E[zt((θ′
∗Yt+1)

2 − c(θ∗))]. We have

ρ(θ)= E
[(
zt −E(zt)

)(
θ′

∗Yt+1

)2] =E[(
zt −E(zt)

)(
θ′

∗Yt+1Y
′
t+1θ∗

)]
(B.3)

= E
[(
zt −E(zt)

)
E

(
θ′

∗Yt+1Y
′
t+1θ∗|Ft

)]
= E

[(
zt −E(zt)

)
θ′

∗ΛDtΛ
′θ∗

]
= E

[(
zt −E(zt)

)
tr

(
DtΛ

′θ∗θ′
∗Λ

)]
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= E
[(
zt −E(zt)

)
Diag′(Dt)

]
Diag

(
Λ′θ∗θ′

∗Λ
)

= Cov
(
zt�Diag(Dt)

)
Diag

(
Λ′θ∗θ′

∗Λ
)

≡G1 Diag
(
Λ′θ∗θ′

∗Λ
)
�

where G1 = Cov(zt�Diag(Dt)) is an (H�p) matrix of rank p by Assumption 3.
Then, by computing the second-order derivatives at θ0, we deduce that

G=G1G2

for some (p�p2) matrix G2. We now show that G2 has full row rank p. We
proceed by contradiction. If G2 does not have full row rank, G itself would be
of rank smaller than p and the null space of G would be of dimension larger
than p2 −p. This cannot be true since, by Lemma 2.3,

GVec
(
vv′) = 0 ⇒ v= 0

and, clearly, none of the p linearly independent vectors Vec(eie′
i)� i= 1� � � � �p,

where {ei : i = 1� � � � �p} is the canonical basis of R
p (all the components of

ei are zero except the ith one equal to 1), belongs to the null space of G.
Q.E.D.

LEMMA B.5: Let M̂T (v) andM(v) be two real-valued stochastic processes with
continuous sample paths indexed by R

p and let {VT :T ∈ N} be a nondecreasing
sequence of subsets of Rp such that

⋃
T≥0 VT = R

p. If
(i) M̂T (·) converges in distribution toward M(·) in �∞(K) for every compact

K ⊂ R
p, where �∞(K) is the set of all bounded real-valued functions on K, en-

dowed with the sup-norm,
(ii) there exists v̂T ∈ arg minv∈VT M̂T (v) that is uniformly tight, and
(iii) there exists v̂ ∈ arg minv∈Rp M(v) which is tight,

then

M̂T (v̂T )
d→M(v̂)�

PROOF: We show that Prob(M̂T (v̂T )≤ x)→ Prob(M(v̂)≤ x) as T → ∞ for
any continuity point x of the cumulative distribution of M(v̂). Let x ∈ R be
such a point and let ε > 0. Since v̂T is uniformly tight and v̂ is tight, there exists
mε > 0 such that

sup
T

Prob
(‖v̂T‖>mε

)
<
ε

4
and Prob

(‖v̂‖>mε

)
<
ε

4
�

and from condition (i) of the lemma, M̂T (·) converges toward M(·) in distri-
bution in �∞({v :‖v‖ ≤mε}). Since the function inf is continuous on �∞(K), for
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any nonempty compact K, we can apply the continuous mapping theorem and
deduce that

inf
‖v‖≤mε

M̂T (v)
d→ inf

‖v‖≤mε
M(v)�

Hence, from sample path continuity of M̂T (·) and M(·), we have

min
‖v‖≤mε

M̂T (v)
d→ min

‖v‖≤mε
M(v)�

Hence, from Lemma B.3, there exists Tε such that for all T > Tε, {v :‖v‖ <
mε} ⊂ VT and∣∣∣Prob

(
min

‖v‖≤mε
M̂T (v)≤ x

)
− Prob

(
min

‖v‖≤mε
M(v)≤ x

)∣∣∣
<
ε

4
+ Prob

(
min

‖v‖≤mε
M(v)= x

)
�

But, clearly,

Prob
(

min
‖v‖≤mε

M(v)= x
)

= Prob
(

min
‖v‖≤mε

M(v)= x�‖v̂‖ ≤mε

)
+ Prob

(
min

‖v‖≤mε
M(v)= x�‖v̂‖>mε

)
≤ Prob

(
min

‖v‖≤mε
M(v)= x�M(v̂)= min

‖v‖≤mε
M(v)

)
+ Prob

(
min

‖v‖≤mε
M(v)= x�‖v̂‖>mε

)
≤ Prob

(
M(v̂)= x) + Prob

(‖v̂‖>mε

)
≤ 0 + ε

4
�

It follows that ∀T > Tε,∣∣∣Prob
(

min
‖v‖≤mε

M̂T (v)≤ x
)

− Prob
(

min
‖v‖≤mε

M(v)≤ x
)∣∣∣< ε

2
�

Also, (
M̂T (v̂T )≤ x)
= (
M̂T (v̂T )≤ x; ‖v̂T‖ ≤mε

) ∪ (
M̂T (v̂T )≤ x; ‖v̂T‖>mε

)
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=
(

min
‖v‖≤mε

M̂T (v)≤ x; ‖v̂T‖ ≤mε

)
∪ (
M̂T (v̂T )≤ x; ‖v̂T‖>mε

)
=

[(
min

‖v‖≤mε
M̂T (v)≤ x

) ∖ (
min

‖v‖≤mε
M̂T (v)≤ x; ‖v̂T‖>mε

)]
∪ (
M̂T (v̂T )≤ x; ‖v̂T‖>mε

)
�

Thus,

Prob
(
M̂T (v̂T )≤ x) − Prob

(
min

‖v‖≤mε
M̂T (v)≤ x

)
≤ Prob

(‖v̂T‖>mε

)
�

We can actually replace M̂T (v̂T ) by min‖v‖≤mε M̂T (v) in the previous set opera-
tions and deduce that

Prob
(

min
‖v‖≤mε

M̂T (v)≤ x
)

− Prob
(
M̂T (v̂T )≤ x) ≤ Prob

(‖v̂T‖>mε

)
�

Therefore,∣∣∣Prob
(
M̂T (v̂T )≤ x) − Prob

(
min

‖v‖≤mε
M̂T (v)≤ x

)∣∣∣
≤ Prob

(‖v̂T‖>mε

)
<
ε

4
�

In the same way, we also have∣∣∣Prob
(
M(v̂)≤ x) − Prob

(
min

‖v‖≤mε
M(v)≤ x

)∣∣∣ ≤ Prob
(‖v̂‖>mε

)
<
ε

4
�

Now we observe that∣∣Prob
(
M̂T (v̂T )≤ x) − Prob

(
M(v̂)≤ x)∣∣

≤
∣∣∣Prob

(
M̂T (v̂T )≤ x) − Prob

(
min

‖v‖≤mε
M̂T (v)≤ x

)∣∣∣
+

∣∣∣Prob
(

min
‖v‖≤mε

M̂T (v)≤ x
)

− Prob
(

min
‖v‖≤mε

M(v)≤ x
)∣∣∣

+
∣∣∣Prob

(
min

‖v‖≤mε
M(v)≤ x

)
− Prob

(
M(v̂)≤ x)∣∣∣�

Hence, for any T > Tε, |Prob(M̂T (v̂T ) ≤ x) − Prob(M(v̂) ≤ x)| < 4ε/4. This
completes the proof. Q.E.D.

LEMMA B.6: Under the same conditions as Theorem 3.1, we have the following
situations.

(i) The stochastic process ĴW (·) converges in distribution toward JW (·) in
�∞(K) for every compact K ⊂R

p.
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(ii) Any v̂T ∈ arg minv∈HT Ĵ
W (v) and v̂ ∈ arg minv∈Rp J

W (v) is uniformly tight
and tight, respectively.

(iii) In particular, ĴW (v̂T )
d→ JW (v̂).

PROOF: We have

φ̄T
(
θ0 + T−1/4v

) = φ̄T
(
θ0

) + T−1/4 ∂φ̄T

∂θ′
(
θ0

)
v+ 1

2
T−1/2Δ̄(v)

and

ĴW (v)= Tφ̄′
T

(
θ0 + T−1/4v

)
WTφ̄T

(
θ0 + T−1/4v

)
= Tφ̄′

T

(
θ0

)
WTφ̄T

(
θ0

) + 2T 1/2φ̄′
T

(
θ0

)
WTT

1/4 ∂φ̄T

∂θ′
(
θ0

)
v

+ T 1/2φ̄′
T

(
θ0

)
WTḠVec

(
vv′) + T 1/2v′ ∂φ̄

′
T

∂θ

(
θ0

)
WT

∂φ̄T

∂θ′
(
θ0

)
v

+ T 1/4v′ ∂φ̄
′
T

∂θ

(
θ0

)
WTḠVec

(
vv′)

+ 1
4

Vec′(vv′)Ḡ′WTḠVec
(
vv′)�

Hence

ĴW (v)= Tφ̄′
T

(
θ0

)
W φ̄T

(
θ0

) + T 1/2φ̄′
T

(
θ0

)
WGVec

(
vv′)(B.4)

+ 1
4

Vec′(vv′)G′WGVec
(
vv′) + oP(1)�

where the oP(1) term is, in fact, uniformly negligible over any compact subset
of Rp.

(i) We apply Theorem 1.5.4 of van der Vaart and Wellner (1996). To de-
duce that the stochastic process ĴW (·) converges in distribution toward JW (·)
in �∞(K), this theorem requires the following conditions.

(a) The marginals (ĴW (v1)� � � � � Ĵ
W (vk)) converge in distribution toward

(JW (v1)� � � � � J
W (vk)) for every finite subset {v1� � � � � vk} of K.

(b) The random process ĴW (·) is asymptotically tight.
To show (a), we observe that since the oP(1) term in (B.4) is uniformly neg-

ligible over any compact, (ĴW (v1)� � � � � Ĵ
W (vk)) is asymptotically equivalent to

a continuous function of
√
Tφ̄T (θ

0) whose components are

Tφ̄′
T

(
θ0

)
W φ̄T

(
θ0

) + T 1/2φ̄′
T

(
θ0

)
WGVec

(
viv

′
i

)
+ 1

4
Vec′(viv′

i

)
G′WGVec

(
viv

′
i

)
� i= 1� � � � �k�
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By the continuous mapping theorem, this latter converges in distribution to-
ward (JW (v1)� � � � � J

W (vk)). This establishes (a).
To establish (b), we rely on Theorem 1.5.7 of van der Vaart and Wellner

(1996). This theorem gives some sufficient conditions for the random process
ĴW (·) to be asymptotically tight. From (a), ĴW (v) converges in distribution
toward JW (v) for any v ∈ K. In addition, as a compact subset, K equipped
with the usual metric on R

p is totally bounded. It remains to show that ĴW (·)
is asymptotically uniformly equicontinuous in probability. That is, for any
ε�η > 0, there exists δ > 0 such that

lim sup
T

Prob
(

sup
v1�v2∈K:‖v1−v2‖<δ

∣∣ĴW (v1)− ĴW (v2)
∣∣> ε)<η�

From (B.4), ĴW (v) is essentially a polynomial function of v and since K is
bounded, we can write∣∣ĴW (v1)− ĴW (v2)

∣∣ =XT‖v1 − v2‖ + oP(1)�(B.5)

where XT = OP(1). Let ε�η > 0. Since XT = OP(1), there exists mη > 0
such that supT Prob(|XT | > mη) < η. Let δ = ε/(2mη) and AT =
(supv1�v2∈K:‖v1−v2‖<δ |ĴW (v1)− ĴW (v2)|> ε)� We have

AT = (
AT� |XT |>mη

) ∪ (
AT� |XT | ≤mη

)
�

Because they are uniformly negligible over K, we can safely ignore the oP(1)
term in (B.5) and write

(
AT� |XT | ≤mη

) ⊂
(

sup
‖v1−v2‖<δ

|XT |‖v1 − v2‖> ε� |XT | ≤mη

)
⊂ (|XT |> 2mη� |XT | ≤mη

) = ∅�
Thus

Prob(AT)≤ Prob
(|XT |>mη

)
<η�

As a result, lim supT Prob(AT) < η and this completes the proof of (b) and
thus (i).

(ii) By definition, v̂T = T 1/4(θ̂T − θ0) and the uniform tightness of v̂T fol-
lows from Proposition 3.1. Next consider v̂ ∈ arg minv∈Rp J

W (v). Let ε > 0.
We have 0 ≤ minv∈Rp JW (v) ≤ JW (0)= OP(1); hence, there exists m1 > 0 such
that

Prob
(

min
v∈Rp

JW (v) >m1

)
<
ε

2
�



TESTING FOR COMMON CH FACTORS 13

Note that the leading term in JW (v) is Vec′(vv′)G′WGVec(vv′) and we know
from Lemma B.1 that γ‖v‖4 ≤ Vec′(vv′)G′WGVec(vv′), γ > 0. Therefore, for
‖v‖ large enough, we can make JW (v) as large as desired with arbitrarily large
probability. That is,

∀α�β > 0�∃m2 > 0: Prob
(

inf
‖v‖>m2

JW (v) > α
)
> 1 −β�

We apply this with α=m1 and β= ε
2 , and observe that

(‖v̂‖>m2

) = (‖v̂‖>m2� J
W (v̂) >m1

) ∪ (‖v̂‖>m2� J
W (v̂)≤m1

)
�

Thus

Prob
(‖v̂‖>m2

) ≤ Prob
(
JW (v̂) >m1

) + Prob
(

inf
‖v‖>m2

JW (v)≤m1

)

≤ ε

2
+ ε

2
= ε�

This shows that v̂ is tight.
(iii) This last point follows from Lemma B.5: since θ0 is an interior point for

Θ, the sequence HT verifies the condition of this lemma. Q.E.D.

PROOF OF LEMMA 2.1: Let θ ∈ R
n, θ �= 0. We know that

Var
(
θ′Yt+1|Ft

) = θ′ΛDtΛ
′θ+ θ′Ωθ�

If Λ′θ= 0, then Var(θ′Yt+1|Ft)= cst and θ is a common feature. Conversely, if
θ′ΛDtΛ

′θ+ θ′Ωθ= cst, writing c =Λ′θ, we have

K∑
k=1

c2
kDkk�t = cst�

Hence, we have a linear combination of the terms in Diag(Dt) that is con-
stant. From Assumption 1(ii), we necessarily have c2

k = 0, k = 1� � � � �K. Thus
Λ′θ= 0. Q.E.D.

PROOF OF COROLLARY 3.1: Note that

ψt(θ)= zt
((
θ′Yt+1

)2 − c(θ))
= (zt − z̄T )

((
θ′Yt+1

)2 − c̄T (θ)
)

+ (zt − z̄T )
(
c̄T (θ)− c(θ)) + z̄T

((
θ′Yt+1

)2 − c(θ))
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and thus,

√
Tψ̄T (θ)= √

Tφ̄T (θ)+ z̄T ·
(√

T

T

T∑
t=1

[(
θ′Yt+1

)2 − c(θ)]
)

= √
Tφ̄T (θ)+μz ·

(
1√
T

T∑
t=1

[(
θ′Yt+1

)2 − c(θ)]
)

+ (z̄T −μz)
(

1√
T

T∑
t=1

[(
θ′Yt+1

)2 − c(θ)]
)

= √
Tφ̄T (θ)− √

T v̄T (θ)+ oP(1)�
since

√
T(z̄T −μz)=OP(1) by Assumption 4. Hence,

√
Tφ̄T (θ)= √

Tψ̄T (θ)+ √
T v̄T (θ)+ oP(1)�(B.6)

√
T
∂ψ̄T

∂θ′ (θ)= √
T
∂φ̄T

∂θ′ (θ)+ √
T
∂v̄T

∂θ′ (θ)+ oP(1)�

The second equation in (B.6) is obtained similarly to the first one. For θ =
θ0, ψt(θ0) = zt((θ

0′
Yt+1)

2 − c(θ0)) and vt(θ0) = −μz((θ0′
Yt+1)

2 − c(θ0)) are
two martingale difference sequences with respect to Ft . Hence, the asymptotic
variance, Σ, of

√
Tφ̄T (θ

0) is equal to

Σ= Var
(
ψt

(
θ0

) + vt
(
θ0

))
= Var

(
ψt

(
θ0

)) + Var
(
vt

(
θ0

))
+ Cov

(
vt

(
θ0

)
�ψt

(
θ0

)) + Cov
(
ψt

(
θ0

)
� vt

(
θ0

))
= E

(
ψt

(
θ0

)
ψ′
t

(
θ0

)) +E(
vt

(
θ0

)
v′
t

(
θ0

))
+E(

vt
(
θ0

)
ψ′
t

(
θ0

)) +E(
ψt

(
θ0

)
v′
t

(
θ0

))
= E

(
ztz

′
t

((
θ0′
Yt+1

)2 − c(θ0
))2) +μzμ′

zE
((
θ0′
Yt+1

)2 − c(θ0
))2

−E(((
θ0′
Yt+1

)2 − c(θ0
))2
zt

)
μ′
z −μzE

(((
θ0′
Yt+1

)2 − c(θ0
))2
z′
t

)
= E

(
(zt −μz)(zt −μz)′

((
θ0′
Yt+1

)2 − c(θ0
))2)

�

Regarding the Jacobian, we mention that, under the conditions of the corol-
lary,

∂ψt

∂θ′
(
θ0

) = zt
((
θ0′
Yt+1

)
Y ′
t+1 −E((

θ0′
Yt+1

)
Y ′
t+1

))
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is a martingale difference sequence, and, thanks to Assumption 4, the cen-
tral limit theorem of Billingsley (1961) for stationary and ergodic martingale
difference sequences applies to

√
T ∂ψ̄T

∂θ′ (θ
0), which is asymptotically normal;

therefore,
√
T ∂ψ̄T

∂θ′ (θ
0)=OP(1). Q.E.D.

PROOF OF PROPOSITION 3.1: We want to show that v̂T = T 1/4(θ̂T − θ0) is
bounded in probability. We observe that as a second-order polynomial,

√
Tφ̄T (θ̂T )= √

Tφ̄T
(
θ0

) + √
T
∂φ̄T

∂θ′
(
θ0

)(
θ̂T − θ0

)
+ 1

2

√
TΔ̄

(
θ̂T − θ0

)
�

From Corollary 3.1,
√
Tφ̄T (θ

0) and
√
T∂φ̄T (θ

0)/∂θ′ are bounded in probabil-
ity. Hence,

√
Tφ̄T (θ̂T )= √

Tφ̄T
(
θ0

) + 1
2

√
TΔ̄

(
θ̂T − θ0

) + oP(1)
and

Tφ̄′
T (θ̂T )WT φ̄T (θ̂T )

= Tφ̄′
T

(
θ0

)
WTφ̄T

(
θ0

) + T

4
Δ̄′(θ̂T − θ0

)
WTΔ̄

(
θ̂T − θ0

)
+ TΔ̄′(θ̂T − θ0

)
WTφ̄T

(
θ0

) + oP
(∥∥√

TΔ̄
(
θ̂T − θ0

)∥∥) + oP(1)�
By definition,

Tφ̄′
T

(
θ0

)
WTφ̄T

(
θ0

) − Tφ̄′
T (θ̂T )WT φ̄T (θ̂T )≥ 0

and we can write

T

4
Δ̄′(θ̂T − θ0

)
WTΔ̄

(
θ̂T − θ0

)
(B.7)

≤ −TΔ̄′(θ̂T − θ0
)
WTφ̄T

(
θ0

) + oP
(∥∥√

TΔ̄
(
θ̂T − θ0

)∥∥) + oP(1)�
Let δ̂ ≡ Vec((θ̂T − θ0)(θ̂T − θ0)′). By definition, Δ̄(θ̂T − θ0) = Ḡδ̂ and we

have

Δ̄′(θ̂T − θ0
)
WTΔ̄

(
θ̂T − θ0

)
= δ̂′Ḡ′WTḠδ̂

= δ̂′G′WGδ̂+ δ̂′(Ḡ−G)′WTḠδ̂

+ δ̂′G′(WT −W )Ḡδ̂+ δ̂′G′W (Ḡ−G)δ̂�
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and from (B.7), we can write

T

4
δ̂′G′WGδ̂ ≤ −T δ̂′(Ḡ−G)′WTφ̄T

(
θ0

) − T δ̂′G′(WT −W )φ̄T
(
θ0

)
− T δ̂′G′W φ̄T

(
θ0

)
− T

4
δ̂′(Ḡ−G)′WTḠδ̂− T

4
δ̂′G′(WT −W )Ḡδ̂

− T

4
δ̂′G′W (Ḡ−G)δ̂+ oP

(‖√TḠδ̂‖) + oP(1)�

By the Cauchy–Schwarz inequality,

T

4
δ̂′G′WGδ̂ ≤ √

T‖δ̂‖‖Ḡ−G‖‖WT‖
∥∥√
Tφ̄T

(
θ0

)∥∥
+ √

T‖δ̂‖‖G‖‖WT −W ‖∥∥√
Tφ̄T

(
θ0

)∥∥
+ √

T‖δ̂‖‖G‖‖W ‖∥∥√
Tφ̄T

(
θ0

)∥∥
+ T

4
‖δ̂‖2

∥∥Ḡ′ −G′∥∥[‖WT‖‖Ḡ‖ + ‖W ‖‖G‖]
+ T

4
‖δ̂‖2‖G‖‖WT −W ‖‖Ḡ‖

+ √
T‖δ̂‖‖Ḡ‖oP(1)+ oP(1)�

Noting that ‖δ̂‖ = ‖θ̂T − θ0‖2 and that W is symmetric positive definite, and
also using Lemma B.1, we can write

δ̂′G′WGδ̂≥ γ0

∥∥δ̂′G′Gδ̂
∥∥ = γ0

∥∥Δ(
θ̂T − θ0

)∥∥2 ≥ γ∥∥θ̂T − θ0
∥∥4

for some γ0�γ > 0. Hence

γ‖v̂T‖4 ≤ 4‖v̂T‖2‖G‖‖W ‖∥∥√
Tφ̄T

(
θ0

)∥∥
+ ‖v̂T‖2oP(1)+ ‖v̂T‖4oP(1)+ oP(1)�

Dividing each side by ‖v̂T‖2 and after some rearrangements, we have

‖v̂T‖2
(
γ+ oP(1)

) ≤ 4‖G‖‖W ‖∥∥√
Tφ̄T

(
θ0

)∥∥ + oP(1)
‖v̂T‖2

+ oP(1)

and, for T large enough, we can write

‖v̂T‖2 ≤ 4
γ

‖G‖‖W ‖∥∥√
Tφ̄T

(
θ0

)∥∥ + oP(1)
‖v̂T‖2

+ oP(1)�
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Hence, for large values of ‖v̂T‖2, the term oP(1)/‖v̂T‖2 stays asymptotically
negligible in probability. Therefore, ‖v̂T‖2 is at most of the same asymptotic
order of magnitude as ‖√Tφ̄T (θ0)‖. This establishes that ‖v̂T‖2 = OP(1) or,
equivalently, ‖v̂T‖ =OP(1). Q.E.D.

PROOF OF PROPOSITION 3.2: Since ZT(θ
0) is a continuous function of√

Tφ̄T (θ
0), it suffices to show that the sequence (T 1/4(θ̂T − θ0)′�

√
Tφ̄T (θ

0)′)′

has a subsequence that converges in distribution. From Proposition 3.1,
T 1/4(θ̂T − θ0) is uniformly tight and

√
Tφ̄T (θ

0) is also uniformly tight follow-
ing Assumption 4. Thus, these two random vectors, which are measurable (we
implicitly assume θ̂T is measurable; this is a common assumption in the lit-
erature on extremum estimators) on the same probability space, are jointly
uniformly tight. Therefore, from the Prohorov’s theorem (see Theorem 2.4 of
van der Vaart (1998)), the joint sequence has a subsequence that converges in
distribution. This establishes the first part of the proposition.

Next we show that

0< Prob
(
Z(X)≥ 0

) ≤ 1
2
�

First note that for any vector d, we have

Prob
(
Z(X)≥ 0

) ≤ Prob
(
d′Z(X)d ≥ 0

)
�

Moreover, since Vec(Z(X)) is a Gaussian vector with zero mean, d′Z(X)d is
a Gaussian real random variable with zero mean. Therefore, we will deduce
the inequality Prob(Z(X)≥ 0)≤ 1/2 if we can show that, for at least one vec-
tor d, d′Z(X)d has a positive variance. However, an obvious implication of
Lemma 2.3 is that for all i= 1� � � � �p,

∂2ρ

∂θ2
i

(
θ0

) �= 0�(B.8)

Otherwise, if we had ∂2ρ

∂θ2
i

(θ0) = 0 for some specific component i, by consid-
ering a vector u ∈ R

p with all components equal to zero except the ith compo-
nent, we would have

u′ ∂
2ρh

∂θ∂θ′
(
θ0

)
u= 0� ∀h= 1� � � � �H�

This contradicts Lemma 2.3, since θ0 being in the interior of the set Θ, we
can always find θ �= θ0 such that θ ∈ Θ and (θ − θ0) is proportional to the
aforementioned vector u.
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From (B.8), we deduce that if d = ei, the vector of Rp with all components
equal to 0 except the ith component that is equal to 1, we have

d′Z(X)d = e′
iZ(X)ei =Zii(X)= ∂2ρ′

∂θ2
i

(
θ0

)
WX

and

Var
(
d′Z(X)d

) = ∂2ρ′

∂θ2
i

(
θ0

)
W Σ

(
θ0

)
W
∂2ρ

∂θ2
i

(
θ0

) �= 0

since the matrix W Σ(θ0)W is positive definite. Hence the announced upper
bound for Prob(Z(X) ≥ 0). The announced lower bound will be obtained by
showing that

Prob
(
Z(X)≥ 0

) ≥ Prob(X ∈U)(B.9)

for a nonempty open set U in R
H . Since X is an H-dimensional Gaussian

vector with a nonsingular variance matrix, we can be sure that it has a positive
probability to take values in any nonempty open set of RH , and, thus, inequality
(B.9) will give us the required lower bound for Prob(Z(X)≥ 0). The open set
U will be defined as

U = {
λ ∈ R

H : Cov
(
σ2
kt� λ

′zt
)
> 0�∀k= 1� � � � �K

}
�

That U is open is by an obvious continuity argument.
By Assumption 3, we know that the range of the matrix Cov(Diag(Dt)� zt) is

R
K . Therefore, if we consider any vector a in R

K , we can find λ ∈R
H such that

Cov
(
Diag(Dt)� zt

)
λ= a�

In particular, when choosing a with all components strictly positive, we get
λ in the open set U . Thus U is not empty. Hence, we just have to prove the
inequality (B.9). Of course, it is sufficient to prove that

U ⊂ {
λ ∈ R

H :Z(λ)≥ 0
}
�

We note that

Z(λ)=
(
∂2ρ′

∂θi ∂θj

(
θ0

)
λ

)
1≤i�j≤p

=
H∑
h=1

λh
∂2ρh

∂θ∂θ′
(
θ0

)
�

We recall that

ρh(θ)= E
((
zht −E(zht)

)(
δ′Yt+1

)2)
= E

((
zht −E(zht)

)(
(Lθ+ r)′Yt+1

)2)
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if we use the affine normalization condition

δ=Lθ+ r�
Hence

∂2ρh

∂θ∂θ′
(
θ0

) = 2 ×E((
zht −E(zht)

)
L′Yt+1Y

′
t+1L

)
�

By the law of iterated expectations, the expectation in this second derivative’s
expression is equal to

E
((
zht −E(zht)

)
L′E

(
Yt+1Y

′
t+1|Ft

)
L

)
=E((

zht −E(zht)
)
L′ Var(Yt+1|Ft)L

)
�

Recalling that Var(Yt+1|Ft) = ΛDtΛ
′ + Ω and that Dt is diagonal, we have

L′ΛDtΛ
′L= ∑K

k=1σ
2
ktlkl

′
k, where lk is the kth column of L′Λ. Thus,

E
((
zht −E(zht)

)
L′ Var(Yt+1|Ft)L

) =
K∑
k=1

E
((
zht −E(zht)

)
σ2
ktlkl

′
k

)

=
K∑
k=1

Cov
(
zht�σ

2
kt

)
lkl

′
k�

Hence,

H∑
h=1

λh
∂2ρh

∂θ∂θ′
(
θ0

) = 2 ×
K∑
k=1

Cov
(
λ′zt�σ2

kt

)
lkl

′
k�

This matrix is obviously positive semidefinite for all λ ∈U . This completes the
proof.

We now want to assess the probabilities Prob(V = 0|Z(X) ≥ 0) and
Prob(V = 0|(Z(X)≥ 0)). Let us start with the former.

Since θ̂T − θ0 =OP(T−1/4), we have
√
Tφ̄T (θ̂T )(B.10)

= √
Tφ̄T

(
θ0

)
+ 1

2

√
T

((
θ̂T − θ0

)′ ∂2ρh

∂θ∂θ′
(
θ0

)(
θ̂T − θ0

))
1≤h≤H

+ oP(1)�

In particular,
√
Tφ̄T (θ̂T )=OP(1) and, thus,

JT = Tφ̄′
T (θ̂T )W φ̄T (θ̂T )+ oP(1)�
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For the sake of expositional simplicity, we will consider W = IdH . This is not
restrictive as it amounts to rescaling φt�T (θ) by W 1/2. We keep φt�T (θ) for
W 1/2φt�T (θ) in the rest of this proof for economy of notation. Thus

JT = Tφ̄′
T (θ̂T )φ̄T (θ̂T )+ oP(1)

= Tφ̄′
T

(
θ0

)
φ̄T

(
θ0

) +Δ′(T 1/4
(
θ̂T − θ0

))√
Tφ̄T

(
θ0

)
+ 1

4
Δ′(T 1/4

(
θ̂T − θ0

))
Δ

(
T 1/4

(
θ̂T − θ0

)) + oP(1)�

By definition, JT ≤ Tφ̄′
T (θ

0)φ̄T (θ
0). Hence

Δ′(T 1/4
(
θ̂T − θ0

))√
Tφ̄T

(
θ0

)
(B.11)

+ 1
4
Δ′(T 1/4

(
θ̂T − θ0

))
Δ

(
T 1/4

(
θ̂T − θ0

)) ≤ oP(1)�

It is worth noting that

Δ′(T 1/4
(
θ̂T − θ0

))√
Tφ̄T

(
θ0

)
(B.12)

= (
T 1/4

(
θ̂T − θ0

))′
ZT

(
θ0

)(
T 1/4

(
θ̂T − θ0

))
�

Actually, each side of (B.12) is equal to

p∑
i�j=1

H∑
h=1

(
∂2ρh(θ

0)

∂θi ∂θj

√
Tφ̄T�h

(
θ0

))(
T 1/4

(
θ̂T�i − θ0

i

))(
T 1/4

(
θ̂T�j − θ0

j

))
�

Considering a subsequence of (T 1/4(θ̂T − θ0)′�Vec′(ZT(θ0)))′ that converges
in distribution toward a certain random vector (V ′�Vec′(Z(X)))′, we can write
(for the sake of simplicity, we do not make explicit the notation for a subse-
quence)

Δ′(T 1/4
(
θ̂T − θ0

))√
Tφ̄T

(
θ0

) d→ V ′Z(X)V �

From (B.11) and by Lemma B.2, we deduce that

lim sup
T→∞

Prob
(
Δ′(T 1/4

(
θ̂T − θ0

))√
Tφ̄T

(
θ0

)

+ 1
4
Δ′(T 1/4

(
θ̂T − θ0

))
Δ

(
T 1/4

(
θ̂T − θ0

)) ≤ ε
)

= 1
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for any ε > 0, and by the portmanteau lemma (Lemma 2.2(vi) of van der Vaart
(1998)), we have

Prob
(
V ′Z(X)V + 1

4
Δ′(V )Δ(V )≤ ε

)
= 1� ∀ε > 0�

We deduce, by right continuity of cumulative distribution functions, that

Prob
(
V ′Z(X)V + 1

4
Δ′(V )Δ(V )≤ 0

)
= 1�

In particular, if Z(X) is positive semidefinite, then

Δ′(V )Δ(V )= 0 almost surely

and, thus,∥∥Δ(V )∥∥ = 0 almost surely�

But, by Lemma B.1,∥∥Δ(V )∥∥ ≥ γ‖V ‖2�

Thus, V = 0 almost surely. In other words, we have shown that

Prob
(
V = 0|Z(X)≥ 0

) = 1�

Now let us establish that Prob(V = 0|(Z(X)≥ 0))= 0.
The necessary second-order condition for an interior solution for a mini-

mization problem implies that for any vector e ∈ R
p,

e′
(

∂2

∂θ∂θ′
(
φ̄′
T (θ)φ̄T (θ)

)∣∣∣∣
θ=θ̂T

)
e≥ 0�

This can be written

e′(Z̃T +NT)e≥ 0�(B.13)

where

Z̃T =
(
∂2φ̄′

T

∂θi ∂θj
(θ̂T )

√
Tφ̄T (θ̂T )

)
1≤i�j≤p

and

NT = √
T
∂φ̄′

T

∂θ
(θ̂T )

∂φ̄T

∂θ′ (θ̂T )�
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By a mean value expansion, we have

∂φ̄T

∂θi
(θ̂T )= ∂2φ̄T

∂θi ∂θ′ (θ̄)
(
θ̂T − θ0

) +OP
(
T−1/2

)
�(B.14)

with θ̄ ∈ (θ0� θ̂T ), which may differ from row to row, and i = 1� � � � �p. On the
other hand, thanks to Equation (B.10), we have

∂2φ̄′
T

∂θi ∂θj
(θ̂T )φ̄T (θ̂T )

= ∂2ρ′

∂θi ∂θj

(
θ0

)(
φ̄T

(
θ0

) + 1
2
Δ

(
θ̂T − θ0

)) + oP
(
T−1/2

)
�

Hence, with hij = ∂2ρ

∂θi∂θj
(θ0),

∂2φ̄′
T

∂θi ∂θj
(θ̂T )

√
Tφ̄T (θ̂T )

= h′
ij

√
Tφ̄T

(
θ0

) + 1
2
h′
ijΔ

(
T 1/4

(
θ̂T − θ0

)) + oP(1)�

Thus

Z̃T =ZT
(
θ0

) + 1
2
(
h′
ijΔ

(
T 1/4

(
θ̂T − θ0

)))
1≤i�j≤p + oP(1)

and

NT =
(
T 1/4

(
θ̂T − θ0

)′ ∂2ρ′

∂θi ∂θ

(
θ0

) ∂2ρ

∂θj ∂θ′
(
θ0

)
T 1/4

(
θ̂T − θ0

))
1≤i�j≤p

+ oP(1)�
From the inequality (B.13) and some successive applications of the Cauchy–
Schwarz inequality, we can find a constant A> 0 such that for any vector e ∈
R
p with unit norm,

−e′ZT
(
θ0

)
e≤A√

T
∥∥θ̂T − θ0

∥∥2 + oP(1)�
By Lemma B.2,

lim sup
T→∞

Prob
(−e′ZT

(
θ0

)
e−A√

T
∥∥θ̂T − θ0

∥∥2 ≤ ε) = 1� ∀ε > 0�

Considering again a subsequence along which (T 1/4(θ̂T − θ0)′�
√
Tφ̄T (θ

0)′)′

converges in distribution, we can write, using the portmanteau lemma (Lemma
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2.2(vi) of van der Vaart (1998)), that

Prob
(−e′Z(X)e−A‖V ‖2 ≤ ε) = 1� ∀ε > 0�

Thus, by right continuity of cumulative distribution functions,

Prob
(−e′Z(X)e−A‖V ‖2 ≤ 0

) = 1

and, consequently,

Prob
(

‖V ‖2 ≥ −e
′Z(X)e
A

∣∣∣Z(X)= z
)

= 1� PZ a.s.(B.15)

In particular, when Z(X)= z is nonpositive semidefinite, we can find a vector
e ∈ R

p with unit norm and such that e′Z(X)e < 0, and thus

Prob
(‖V ‖> 0|Z(X)= z) = 1�

Therefore, Prob(‖V ‖> 0|(Z(X)≥ 0))= 1. Q.E.D.

The proof of Theorem 3.1 follows from Lemma B.6(iii).

PROOF OF LEMMA 3.1: The first-order condition associated to (10) is

G′WX + 1
2
G′WGû= 0�

Moreover, we know from Lemma B.4 that we can decompose G=G1G2 with
G1 (resp. G2) full column rank (resp. full row rank) p. Since G′

2 is full column
rank, the above first-order conditions are equivalent to

G′
1WX + 1

2
G′

1WG1G2û= 0�

and since G1 is full column rank, we deduce

G2û= −2
(
G′

1WG1

)−1
G′

1WX�

Defining

X̃ =W 1/2X� G̃1 =W 1/2G1�

we see that

G̃1G2û= −2G̃1

(
G̃′

1G̃1

)−1
G̃′

1X̃ = −2P1X̃�
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where P1 stands for the matrix of orthogonal projection on the p-dimensional
subspace of RH spanned by the columns of G̃1. Plugging in (10), we deduce

L= X̃ ′X̃ + X̃ ′G̃1G2û+ 1
4
û′G′

2G̃
′
1G̃1G2û

= X̃ ′X̃ − 2X̃ ′P1X̃ + X̃ ′P1X̃ = X̃ ′(Id − P1)X̃�

Thus

L= ∥∥(Id − P1)X̃
∥∥2 ∼ χ2(H −p)

since, for W = Σ−1(θ0), X̃ = W 1/2X is a standardized Gaussian vector. Since
J(0)=X ′WX = ‖X̃‖2,

S = J(0)−L= ‖P1X̃‖2 ∼ χ2(p)�

Moreover, since P1X̃ and (Id −P1)X̃ are stochastically independent (orthogo-
nal projections of standard Gaussian vectors on two orthogonal subspaces), L
is independent of S and, of course, J(0)= S +L∼ χ2(H).

In addition, elementary computations give

Vec
(
Z(X)

) =G′
2G

′
1WX =G′

2

(
G̃′

1G̃1

)(
G̃′

1G̃1

)−1
G′

1WX

=G′
2G̃

′
1P1X̃�

Therefore, L is actually jointly independent of (S�Z(X)). Q.E.D.

PROOF OF THEOREM 3.2: By definition of the minimization problems, we
obviously have

L≤ J ≤ J(0)�
Moreover, from the alternative expression of J(v) given by (8), one can easily
see that when Z(X) ≥ 0, the minimum of J(v) is reached at v = 0, leading to
J = J(0).

Part (ii) of Theorem 3.2 will be proved in two steps:
Step 1. We show that there exists some ε > 0 such that

Prob
(
J > L+ ε�Z(X)≥ 0

)
> 0�

To see this, first note that since S = J(0)−L∼ χ2(p), Prob(J(0) > L)= 1.
Thus

Prob
(
J(0) > L�Z(X)≥ 0

) = Prob
(
Z(X)≥ 0

)
�
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But we know that

Z(X)≥ 0 ⇒ J = J(0)�
Therefore,

Prob
(
J > L�Z(X)≥ 0

) = Prob
(
Z(X)≥ 0

)
�

However,

Prob
(
J > L�Z(X)≥ 0

) = Prob
(⋃
n≥1

(
J > L+ 1

n

)
�Z(X)≥ 0

)

= lim
n→∞

Prob
(
J > L+ 1

n
�Z(X)≥ 0

)
�

Then

lim
n→∞

Prob
(
J > L+ 1

n
�Z(X)≥ 0

)
= Prob

(
Z(X)≥ 0

)
> 0

and we deduce that there exists n ∈ N such that

Prob
(
J > L+ 1

n
�Z(X)≥ 0

)
> 0�

Step 2. Following Remark 3.2, we actually show that

Prob
(
L> c�Z(X)≥ 0

)
< Prob

(
J > c�Z(X)≥ 0

) ∀c > 0�

Since we always have L≤ J, we have for any measurable part B of the sample
space,

Prob
(
L> c�

(
Z(X)≥ 0

) ∩B)
≤ Prob

(
J > c�

(
Z(X)≥ 0

) ∩B) ∀c > 0�

We will then obviously be able to deduce the announced strict inequality if
we show that

Prob
(
L> c�Z(X)≥ 0� J > L+ ε)

< Prob
(
J > c�Z(X)≥ 0� J > L+ ε) ∀c > 0�

But since again L≤ J, then

Prob
(
J > c�Z(X)≥ 0� J > L+ ε)

= Prob
(
L> c�Z(X)≥ 0� J > L+ ε)

+ Prob
(
L≤ c� J > c�Z(X)≥ 0� J > L+ ε)�
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Hence we only need to show that

Prob
(
L≤ c� J > c�Z(X)≥ 0� J > L+ ε)> 0 ∀c > 0�

Since when Z(X)≥ 0, J = J(0) and, thus, L= J − S, we want to show that

Prob
(
c− S < L≤ c�S > ε�Z(X)≥ 0

)
> 0�

Let FL�S�Z(X)(l� s� z) (resp. FL(l) and FS�Z(X)(s� z)) be the joint distribution of
(L�S�Z(X)) (resp. L, and (S�Z(X))) and let I(·) be the usual indicator func-
tion. We have

Prob
(
c− S < L≤ c�S > ε�Z(X)≥ 0

)
=

∫
I(c− s < l ≤ c� s > ε�z ≥ 0)dFL�S�Z(X)(l� s� z)

=
∫
I(c− s < l ≤ c� s > ε�z ≥ 0)dFL(l)dFS�Z(X)(s� z)

=
∫
s>ε�z≥0

(∫
c−s<l≤c

dFL(l)

)
dFS�Z(X)(s� z)

=
∫
s>ε�z≥0

(
Prob

(
c− s < χ2(H −p)≤ c))dFS�Z(X)(s� z)�

where second equality follows from the independence of L and (S�Z(X)), and
the last equality follows from the fact that L∼ χ2(H −p).

But

∀s > ε≥ 0 and ∀c�
Prob

(
c− s < χ2(H −p)≤ c) ≥ Prob

(
c− ε < χ2(H −p)≤ c)�

Hence, ∫
s>ε�z≥0

(
Prob

(
c− s < χ2(H −p)≤ c))dFS�Z(X)(s� z)

≥
∫
s>ε�z≥0

(
Prob

(
c− ε < χ2(H −p)≤ c))dFS�Z(X)(s� z)

= Prob
(
c− ε < χ2(H −p)≤ c)∫

s>ε�z≥0
dFS�Z(X)(s� z)

= Prob
(
c− ε < χ2(H −p)≤ c)Prob

(
S > ε�Z(X)≥ 0

)
�

Since, by continuity and positivity on the positive half line of the χ2(H −p)
distribution, Prob(c − ε < χ2(H − p) ≤ c) > 0 for all c�ε > 0 and Prob(S >
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ε�Z(X) ≥ 0) > 0 from the Step 1, we conclude that Prob(c − S < L ≤ c�S >
ε�Z(X)≥ 0) > 0, which concludes the proof. Q.E.D.

PROOF OF COROLLARY 3.2: Since p= 1,G is the column vector ∂2ρ

∂θ2 (θ
0) and

Lemma 2.3 guarantees that G �= 0. Also, J now has the expression

J = min
v∈R

(
X ′WX +X ′WGv2 + 1

4
G′WGv4

)
�

The first-order necessary condition for optimality gives v(2X ′WG +
G′WGv2) = 0, while the second-order sufficient condition for v = 0 to be a
solution is X ′WG > 0. If X ′WG < 0, we can say, from the first-order condi-
tion, that any solution v satisfies 2X ′WG + G′WGv2 = 0. In the event that
X ′WG= 0, it appears that v= 0 is a solution. In summary, we can write that if
X ′WG≥ 0, then

J = J(0)=X ′WX�

and if X ′WG< 0, J(v) is minimized at v2 = −2X ′WG/G′WG so that

J =X ′W 1/2
(
IdH −W 1/2G

(
G′WG

)−1
G′W 1/2

)
W 1/2X

≡X ′W 1/2PW 1/2X ≡L�
The variable P is the orthogonal projection matrix on the orthogonal of the

subspace generated by the column vectors of W 1/2G.
Letting z = X ′WG√

G′WG , z ∼N(0�1) and

J = I(z ≥ 0)J(0)+ I(z < 0)L�

Now we show that I(z ≥ 0) is independent of both J(0) and L.
We have Cov(z�PW 1/2X) = Cov( X ′WG√

G′WG�PW
1/2X) = 0. Thus, since X is a

Gaussian vector, z is independent of PW 1/2X , and so are I(z ≥ 0) and L.
To see that I(z ≥ 0) is independent of J(0), we writeW 1/2X in the orthonor-

mal basis(
W 1/2a1�W

1/2a2� � � � �W
1/2aH

)
of R

H such that a1 = G√
G′WG . (We choose a1 such that the first component

of W 1/2X in this new basis is z.) The coordinates of W 1/2X in this basis are
(a′

1WX�a
′
2WX� � � � � a

′
HW X) and by the invariance of the norm,

J(0)=X ′WX =
H∑
h=1

(
a′
hW X

)2
�
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Note that Cov(a′
jW X�a

′
jW X)= 0 for i �= j so that z = a′

1WX is independent
of a′

jW X , j = 2� � � � �H. Hence, to claim that I(z ≥ 0) is independent of J(0),
it is sufficient to show that (a′

1WX)
2 = z2 is independent of I(z ≥ 0). This

becomes obvious once we see that z ∼ N(0�1) has a symmetric distribution
about the origin. This completes the proof. Q.E.D.
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