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APPENDIX B: FURTHER OMITTED PROOFS
B.1. Structure of the Set of Reduced-Form Auctions

We provide the proof of Theorem 4 in Remark 2, which shows that the two
functions ¥ and @ that set an upper bound and lower bound for the set of
reduced-form auctions, respectively, form a paramodular pair.

PROOF OF THEOREM 4: We first observe that the operation (6, -) as a func-
tion of 7" preserves the union, intersection, and complement of sets: that is, for
any 0 € @ and T, 7" C D, [(6,TNT") =10, T)NI6,T), 1(6,TUT") =
10, TYUI(6,T),and I(6, T\T)=1(0,T)\1(6,T"). To see that the com-
plement is preserved, for instance, note that i € I(6, 7 \ T") if and only if
0, € T\ T ,thatis, 0, € T and 6; ¢ T’, which is equivalent to having i € I (6, T)
and i ¢ 1(0,T'), thatis, i € I(6,T) \ 1(0,T"). The other equalities can be
checked similarly.

Given this, paramodularity of ¥ and & holds due to the fact that the
paramodularity of C and L is not affected by the expectation operator. For
instance, the compliance holds since for any 7, 7" C D,

W(T') - &(T)
=Y [C(I(6,T")) = L(1(6,T))] p(6)

0O

> > [C(1(6, T)\1(6,T)) — L(I1(6, T)\1(6,T"))] p(6)

0cO

=Y _[CI(6, T'\T))—L(1(6, T\ T))] p(6)

0cO
—W(T'\T) - &(T\T).
The first and last equalities follow from the fact that
W(T)= Y C(I(6,T))p(6)=)_ C(I(6,T))p(6)
0eY(T) 0O

and

O(T)= Y L(I(6,T))p(6) = L(I(6,T))p(6)

0eY(T) 0O
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since, forany 0 e @\ Y(T),1(6,T)=0,s0 C(U(6,T))=L{I(0,T)) =0.The
next to last equality follows from the observation in the previous paragraph
while the inequality follows from the compliance of C and L. An analogous
argument can be used to show the sub- and supermodularity of ¥ and @, re-
spectively. Q.E.D.

B.2. General Type Distributions

For the proof of Theorem 5, we denote the set of ex post allocation rules
that respect (C, L) by Qy(C, L) and denote the set of implementable interim
allocation rules for given (C, L) by Q(C, L).

PROOF OF THEOREM 5: Let A: Qy(C, L) — Q(C, L) be the function that
maps an ex post allocation rule to its reduced form. Note that since g €
Qy(C, L) is bounded and p is a probability measure, Q,(C, L) and Q(C, L)
are subsets of the Hilbert space L,(0, u, R). Along the lines of Lemma 5.4 in
Border (1991), one can show that Qy(C, L) and Q(C, L) are weakly compact
and the linear mapping A is weakly continuous.

If 0:0 — [0, C(I)]" satisfies (B°), it is bounded and hence there exists a
sequence of simple functions (Q": @ — [0, C(I)]""),ey with Q7(6) = Q1(6,),
such that for n — oo, Q" converges uniformly to Q and Q' < Q? < Q® <
--- < @. Since convergence is uniform, there is a sequence (&,),en, €, > 0 such
that &, — 0 for n — oo, and such that for all T = (T}),.;, T; € A,

(e)) / L, (I(6,T))du(0) <y / Q16 dpui(6))
Y(T) T;

iel
< / C(1(6, T)) du(6),
Y(T)

where L., (1(0,T)) =max{L(I(6,T)) — &,,0}.
As Q" is a simple function, we can write Q7 as
K}
Q1) = ajxan (0),

k=1

where o € [0, C(1)], {A}}, is a partition of @, such that each A4/, € A;, and
X 4 1s the indicator function of A. 5
Next, for given n and each i € I, we define a discretized type space O! :=

,,,,,

ﬁ(A'llkl’ T Alnllkm) = M(A';h XX A\n’\km)'
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Let Q" be the interim allocation rule for the discrete type space @" defined
by

0y (A3) = et

We have chosen Q" such that 0" is implementable for the relaxed constraints
(C, L —¢,). Hence, for each n, there exists an allocation rule g for the discrete
type space that respects (C, L — ¢,) and has reduced form 0. Hence we can
define an allocation rule g” for the continuous type space that respects (C, L —
&,) and has reduced form Q" If 6 € A}, x --- x A, , we define

gr(0) =G (Al Al )-

So we have shown that 0" € Q(C, L — &,).

Next, we take the limit n — oo to show that Q € Q(C, L). Since ¢" €
Qu(C,0) for all n and Qy(C, L) is weakly compact, there is a weakly con-
vergent subsequence with limit g € Qy(C, L). Moreover, since g" respects
(C,L — &,) and g, — 0, then g respects (C, L), that is, g € Qy(C, L). By con-
tinuity of A, there exists Q' such that Q(6) = Q'(6) for almost every 6. Since
Q(C, L) is a compact set, Q' € Q(C, L). As in the proof of Proposition 3.1 in
Border (1991), one can show that also Q € Q(C, L). O.E.D.

B.3. Border Characterization in the Partitional Constraint Structure

PROOF OF THEOREM 8: We first derive the effective constraints for arbitrary
sets G C 1. For any G C I, define

HE =[G eHIG' c G} and HS:={G eHIG' NG 4}

First, we show that C(G) = ¢ (HE) = min{ZG,eHg Cs,Cr — ZG,EQ\HE L}
To begin, observe that C(G) < ¢ (HE). This follows from the fact that for any
qeP,

(B.1) th‘f Z Z%S Z Cos

ieG G'ent €6’ G'eHé
(B.2) E q;<Cr— E q;<Cr— E E q; <Cr— E Lg,
ieG iel\G G’e’):t\’}-tg ieG’ G’e’i:t\’Hg

where the first inequality in (B.1) and the second inequality in (B.2) hold since
GC UG,eﬂg G’ and ¢g; > 0 Vi. We construct an allocation g € P to show that
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¢ (HE) can be attained as a maximum of (3), so C(G) = ¢ (HE). To this end,
note that

B3) DY Le<¢(HE) < Y. Ca,

("e’}-tC C/EHC

(B4)  dH)+ Y Le=<C=¢HH)+ Y Ca,

G'eH\HE G'ef\HE

which follows from the definition of ¢ and the assumption that C > Lo VG’ €
Hand ) ;Lo <L; <Cr <) 5.5 Co. These two inequalities imply that
there are Aq, A, € [0, 1] such that

B5)  dHS) =D [MLo+ (1 —A)Co],

C
G'eHg,

G'eH\HE
Now define g as follows: for each G' € HE, ~q,» = % ifieG' NG,
while ¢; =0 if i € G'\ G; for each G’ € H \ H and all i € G, let ¢q; =
2L t0-0)C  Given this,

|G|
MLg + (1= A)Co
ITEDNPITED M C e

ieG G'enS, i€GNG’ Gren, i€GnG’

= Z [)\1L(;/ + (1 - Al)CG’]a

G’e?—tg
4= doat D Y a= ) )4
ie\G G’GH(C; ieG'\G G’E?—l\Hg ieG’ G’E"FL\H(C; ieG’
= Y [bLe+0—-1)Co].
G'eH\HE

Given (B.5) and (B.6), these equalities mean ), ;q; = ¢(HS) and Y., q; =
C;. Thus, it only remains to verify that g € P. The fact that ), ,¢;=C; > L,
means that the capacity constraint for G = I is satisfied. For each G’ € HE, we
have ) ... qi=MLg + (1 — AM)Cq € [Lg, Csl, so the capacity constraint is
satisfied. Analogously, the capacity constraint is satisfied for each G’ € F\ HE.

Since establishing L(G) = (HL) is analogous, we only provide a sketch
of the proof. First, it is easy to see that L(G) > (H%), following a similar
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derivation as in (B.1) and (B.2). Also, (B.3)-(B.6) hold with ¢, HE, and C;
being replaced by ¢, H%, and L, respectively, and with some Ay, A, € [0, 1].
Construct an allocation g € P that achieves y(H5 ), as follows: for each G’ €
HEiandallie G, q; = % for each G/G/H\HG, qi= MLG‘+C;<71\GA‘2>CG/
ifie G’'\ G, while g; =0 if i € G’ G. Given this, it is straightforward to see
that . ;i = ZG'eHg [MLe+(1—A)Coland }, ;g = ZG'eﬂ\Hg [A2Le +
(1 —A2)Cq]. The rest of the proof is parallel to that in the previous paragraph.

To summarize, we have shown that for any G C I, the effective constraints
are given by L(G) = ¢y(H%) and C(G) = ¢ (HE). Lemma 1 implies that the
effective constraints (C, L) are paramodular. Now we are ready to prove the
theorem.

(i) Fix any 6 = (0,);; and define T = ||,

it T, where T; = [6;, 6;]. For any
profile, we have C(/ (6,7)) = b (HE 165, T)) Inserting this into (the general type-

space version of) (BU) in Theorem 6 and noting that C(I(,T)) =0 if 6 ¢
Y (T), we get

Z/ Q(s)dF<s></ fC(I(é,T))dFl(él)---dF|1|<é,)
(€]

iel [l

Z¢ ) Pr{HS, = H)

HCH
=> ¢(H) [[(-Fa0)- [] Falo).
H'CH GeH' GeH\H'

Meanwhile, consider T = | |, T;, where T; = [6,, 6;]. We have LU0, T)) =
(M o) Inserting this into (the general type-space version of) (BL) in The-
orem 6, we have

Z/ Q(s,)dF<sl>>f [ L@ )R- aFu o)
e

iel ¥ =i U1

Z 1/1 Pr HIL(H T) 7—[/}

H/CH
=Y w(H) []Fe®)- [ (1—Fa(0).
HCH GeH' GeH\H/

(ii) Last, the proof of (ii) follows from application of Corollary 3 to (i).
Q.E.D.
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APPENDIX C: THE ROLE OF THE COMPLIANCE PROPERTY

The compliance condition ensures that the submodular upper bounds and
supermodular lower bounds constitute effective bounds in the following sense.

LEMMA 2—Frank and Tardos (1988, p. 502, Proposition 2.3): If (C, L)
is paramodular, then C(G) = max{)_,_;q:|q = (q;)ics respects (C,L)} and
L(G)=min{} ,_; qilq = (q:)ie1 respects (C, L)} foreach G C I.

Furthermore, there is a sense in which compliance constitutes a weakest suf-
ficient condition or a maximal domain for submodular upper bounds and su-
permodular lower bounds to be effective. Note first that a violation of compli-
ance can only occur for sets G, G’ C I such that G N G’ # @, because otherwise
C(G'\G) — L(G\ G') =C(G") — L(G). Suppose that the four constraints
C(G"), C(G'\ G), L(G), and L(G \ G') are given for sets G, G’ C I with
G N G’ # ¥, and compliance is violated for these sets. The following lemma
shows that if it is possible to extend the constraints to all subsets such that C is
submodular, L is supermodular, and the set of feasible allocations is nonempty,
then there exists such an extension for which at least one constraint is not effec-
tive.

LEMMA 3: Let G,G' € I with GNG' # @ and let C(G"), C(G'\ G), L(G),
L(G\G") eR, suchthat C(G')— L(G) < C(G'\ G) — L(G\ G). If there exists
an extension (C (G), L(G))@C ; Of these constraints to 2 such that C is submodu-
lar, L is supermodular, and P := {x € RK'lL(G) <D ieXxi < C(G),VG C I} #
@, then there also exists an extension with these properties for which C(G'\ G) >
max{}_; ;g Xilx € Plor L(G\ G') <min{}_,_; ¢ Xilx € P}.

PROOF: Note first that (a) if C(G') < C(G'\ G), then C(G" \ G) is not
effective; (b) if G € G, the violation of compliance implies C(G' \ G) >
C(G") — L(G) so that C(G" \ G) is not effective; and (c) if G’ C G, then
L(G\ @) is ineffective because L(G \ G') < L(G) — C(G’). Hence the state-
ment of the lemma follows in all three cases.

Second, supermodularity of L implies that L is monotonic. Therefore, we
can assume that L(G) > L(G \ G’), because otherwise no supermodular ex-
tension exists.

After these preliminary considerations, we only have to consider the case
that G ¢ G',G' ¢ G, C(G") > C(G'\G),and L(G) > L(G\ G"). For this case,
we define C(GNG')=L(GNG")=C(G") — C(G'\ G). Then the violation of
compliance implies that C(GNG') = C(G") — C(G'\G) < L(G) — L(G\ G")
and hence L(G\ G') < L(G) — C(G N G’), which means that L(G \ G’) is not
effective.

The proof will be complete once we define (C, L) for the remaining sets. We
simplify notation by denoting G, =G'\ G, G, =G\ G, and G; =GN G'. We
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fix a large number K that is greater than the sum of all upper and lower bounds
imposed on these sets, and define for any H C I,

Y CGy, itHCG,
CH):= ke(1,3):GLNH#AD
K, otherwise,
and
L(Gy), if?##GyCH forsomeke{2,3}andGZ H.
L(H):=1L(G), ifGCH,
0, if G, ¢ H for all k € {2, 3.

It is easy to check that the upper and lower bounds defined here are consistent
with those given above. It is also easy to check that C(H) > L(H) for any
H c I, while both C and L are monotonic, that is, C(H) < C(H’) for any H C
H' C I, and similarly for L. To see that P is nonempty, choose an element i; €
G, for each k =1,2,3 and define x € RK' by assigning x;, = C(G') — C(G N
G)=C(G'\G),x,=K=C(G\G)=L(G\G), x;; =L(GNG)=C(GN
G'),and x; =0foreachi € I\ {iy, i», i3}. It is then straightforward to verify that
x satisfies (C, L), so x € P.

We next show that C is submodular: for any two sets H and H' D H, and
anyie I\ H, C(H' U{i}) — C(H') < C(HU{i}) — C(H). This is immediate
if H’ §7£ G’ or i ¢ G’ since in the former case, C(H' U {i}) = C(H') = K and
C(H U {i}) = C(H), while in the latter case, C(H' U {i}) = C(H U {i}) = K and
C(H') > C(H). Thus we assume from now on that H Cc H' Cc G’ and i € G'.
Then i € Gy for some k =1,3. If H N G, =@, then C(H' U {i}) — C(H') =
C(Gy)=CHU{i}) —CH).It HNG#@,then C(H' U{i}) —C(H')=0<
C(HU{i}) — C(H).

Last, we show that L is supermodular: for any two sets H and H' > H, and
anyiel\ H, L(H'U{i}) — L(H") > L(H U {i}) — L(H). Observe first that
for any such H C I and i € I, we have L(H U {i}) — L(H) =0 unless G, ¢ H
and G, C (H U {i}) for some k =2, 3, in which case we have either (i) i € Gy,
G \{i)cHNG,and HNG # G\ {i} or (ii) i € Gy and H N G = G\ {i}. This
implies that to show the supermodularity, it suffices to consider the two cases
(i) and (ii). If (i) holds and H'NG # G\ {i}, then L(HU{i})—L(H) =L(G}) =
L(H'U{i}) — L(H’), as desired. If (i) holds and H' N G = G\ {i}, then we have
Gy ¢ H, Gy C H' for k' € {2,3}\ {k}, and G = G, U G C H' U {i}, which
implies L(H U {i}) — L(H) = L(G}) < L(G) — L(Gy) = L(H'U{i}) — L(H").
Here the strict inequality follows from the fact that L(G) > L(G\ G')+ L(GN
G") = L(Gy)+ L(Gy). Finally, in case (ii) holds, we have L(HU{i}) — L(H) =
L(G)—-L(Gy)=L(H U{i}) — L(H"), as desired. Q.E.D.
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APPENDIX D: THE CONNECTION WITH BUDISH, CHE, KOJIMA, AND
MILGROM (2013)

The characterization of feasible interim allocation rules we study has a con-
nection with the characterization of implementable expected allocations stud-
ied by Budish et al. (2013) (hereafter BCKM). BCKM studied the constraint
structure—the set of agent—object pairs whose assignment probability must
obey some arbitrary integer-valued ceiling and floor constraints—that permits
any expected assignment that satisfies these constraints to be implemented by
a lottery of deterministic assignments, each of which satisfies the same con-
straints. As mentioned in that paper, that requirement boils down to requiring
that the set of feasible fractional assignments, which forms a bounded poly-
tope, have integer-valued extreme points. While both characterizations deal
with implementability of some marginals via some joint distribution, there are
several differences: (i) The integrality of the feasible set is the main issue in
BCKM’s characterization, but it is not an issue in the current characteriza-
tion, (ii) our main challenge arises from the fact that there are different types
of each agent, whereas no such problem arises in BCKM, and (iii) BCKM
adopted the notion of “universal implementation,” which requires implemen-
tation to hold for all arbitrary quotas for the identified constraint structures.
In contrast to this, we allow for arbitrary constraint structures, but require the
effective constraints to be paramodular. For the specific case of a hierarchical
constraint structure, our Lemma 1 shows that paramodularity of the effective
constraints is universal, that is, it holds for arbitrary constraints on the hierar-
chical family. This is similar to BCKM, except their corresponding condition is
that the constraint sets form a pair of hierarchies.

Despite the differences, these two results have a common mathematical
foundation, which is provided by Edmonds’ polymatroid intersection theorem.
This connection will also explain why the universal implementation in BCKM
can be attained by bi-hierarchical constraint sets, whereas it can be attained
only by hierarchical constraint sets in the current context. For simplicity, we
focus on the case in which the constraints are only in the upper bounds. This
assumption can be dropped in most of the discussion, except for Appendix E.

To begin, let us define a polymatroid. Let (2 be a finite set, called the ground
set, and consider a weight function x: {2 — R, . Let X denote all such functions.
A bounded convex set

P= {xeX‘ZX(a)) ff(U),VU62”}

welU

is said to be a polymatroid if f :2? — R, is submodular.
Edmonds’ polymatroid intersection theorem?®' has the following results:

31See, for instance, Theorem 46.1 and Corollary 46.1a of Schrijver (2000).
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THEOREM 9: Let P and P’ be two polymatroids defined by f and f'.

(i) Primal Integrality (PI). All extreme points of P NP are integer-valued
whenever f and f' are integer-valued.

(ii) Total Dual Integrality (TDI). For any integer-valued n-vector c, the dual
of maximizing c'x over x € P N'P’, where f and [’ are rationals, has an integer
optimal solution.

We now show how the characterizations given by these two papers relate
to the two distinct parts of this theorem: BCKM relates to part (i) and our
characterization relates to part (ii) of Theorem 9.

D.1. BCKM

It is easy to see how Theorem 9(i) implies the universal implementation
characterization result of BCKM. In their model, the set {2= N x O is simply
a set of agent—object pairs, with N representing the set of agents and O repre-
senting the set of objects, and for each (i, 0) € (2, the weight function x(i, o)
describes a (fractional) assignment of the object to agent i. BCKM then con-
sidered an arbitrary family 7 C 22 of subsets of {2 and required the fractional
assignment to be in the set

Q:= {x e X[ x(w) sf(U),VUe}'}.

wel

Their universal implementation result then boils down to the statement that
every extreme point of Q is integer-valued for any integer-valued f if F comprises
a pair of disjoint hierarchies, that is, 7 = H UH', where H and H' are hierarchies.
To see how Theorem 9(i) implies this statement, observe first that, given the
hypothesis,

Q=PnP,
where
P = {xeX‘Zx(w) §f(U),VUeH}
welU
and
P = {x € X‘Zx(w) Sf(U),VUe”H/}.
welU

To see now that the desired universal implementation characterization holds, it
suffices to recall Lemma 1, which asserts that P and P’ (each set generated by
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quotas defined on hierarchical sets) are polymatroids. Hence, BCKM’s main
result follows from Theorem 9(i).

This perspective provides a new mathematical insight on BCKM. More in-
terestingly, it suggests a way to extend BCKM. Suppose the assignment must
satisfy upper bounds f:2? — Z, and lower bounds g : 2% — Z,. We say that
(f, g) is bi-paramodular if there exist (f;, g1) and (f2, g&2) such that (f;, g:)i=1.2
is paramodular, and f = min{f;, f>} and g = max{g, g.}. Then we get the fol-
lowing result.

THEOREM 10: Any fractional assignment x is implementable with respect to
(f, &) if (f, g) is bi-paramodular.

D.2. The Current Paper

The connection of Theorem 9 with the current paper is much more difficult
to see; so far, we have been able to establish it only for the upper bound case.
The upshot is that at least in the case of upper bound only, we can see why
Theorem 9(ii) implies that the type of characterization as in Theorem 3 should
obtain.

To begin, let g;(0) = q;(6) p(0) and g = (§i(0))cr.6c0- For any interim allo-
cation rule O, consider the linear programming problem

(P max » G,()

T iel,he®
subject to
(D.1) ) gi(6) <C(G)p(B), YGCI,Voeo, [x(G, 6)]
ieG
and
(D2) Y Gi6i,0-) <06 pi(6), VO €O, Viel, [z, 6],
0_,e0_;

where each variable in the square brackets is the dual variable for the cor-
responding constraint. The constraints (D.1) correspond to the capacity con-
straints we have in our model for subsets of agents. The constraints (D.2) cor-
respond to the requirement that Q is a reduced form (or implementable).

Note that given the last constraint, the optimal value of this problem cannot
exceed the aggregate interim allocation probability, thatis, > ", , >~ o,co, Pi(0i) X
Q;(6;). Note also that the interim allocation rule (Q;(0;))g.co,,ics is @ reduced
form if and only if the optimal value equals } ., >, .o pi(0:)Qi(6;).

To see how this program is related to our characterization, observe that the
coefficients in the primal objective function are all 1’s. Hence, if the feasible
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set associated with constraints (D.1) and (D.2) are TDI, then the dual of (P1)
has an optimal integer solution, as implied by Theorem 9(ii). It turns out that
this implication gives rise to a Border type characterization, which will be es-
tablished in the next section, Appendix E.

Hence, the important question with regard to our characterization boils
down to whether the feasible set associated with constraints (D.1) and (D.2)
is TDI. The answer to this question is given by observing that each constraint
gives rise to a polymatroid.

LEMMA 4: Each of the constraints (D.1) and (D.2) gives rise to a polymatroid
with 2 =1 x O as a ground set.

PROOF: Given the groundset 2 =1 x @, foreach w = (i, ) e 2and U C (2,
let x(w) =g;(0) and x(U) =), x(w).

We first show that the set of ¢’s that satisfy (D.1) is a polymatroid. To do
so, define a weight function f;:2? — R, as follows: For each U C £, let
a(0,U) :={iel|(i,0) € U} and

U= C(a(6, 1)) p(0).
0O

Letting P, :={x € R'f L x(U) < fi1(U)}, it is straightforward to check that P; is
equivalent to the set of allocations that satisfy (D.1), which is thus a polyma-
troid if f; is submodular. To show this, consider any subsets U, U’ C 2 with U C
U’ and any w = (i, 0) ¢ U'. Then we have f;(U U{w}) — fi(U) =[C(a(0, U)U
{i}) — C(a(6, U))]p(0) = [C(a(0,U") U {i}) — C(a(8, U"))Ip(0) = fL(U" U
{w}) — fi(U"), where the inequality holds due to the fact that «a(6,U) C
(0, U’) and C is submodular.

We next show that the set of g’s that satisty (D.2) is a polymatroid. To do
so, define another weight function f,:2? — R, as follows: For each U C {2, let
(i, 0;, 0_)) ={(i, 6;,0_,): 0_; € ®_;} (by some abuse of notation) and let

AWUY= " Y pi6)Qi(6).

(,0;):(,0;,0_)NU#H

Letting P, := {x e R'?": x(U) < f,(U)}, it is again straightforward to check that
‘P, is equivalent to the set of allocations that satisfy (D.2), which is thus a poly-
matroid if f, is submodular. To show this, consider any subsets U, U’ C {2
with U C U’ and any w = (i, 6;,0_;) ¢ U'. If (i,60;,,0_,) N U # @, then we
have f,(U U{w}) — L(U)=0= /LU U{o}) - LWU).1f (1, 60,0_)NU=0
and (i,0;,0_;) NU" # @, then fL,(U' U {w}) — L(U) =0 < pi(6)0:(0;) =
LWU U{w})) = LWU). If (1,6;,0_,) N U =9, then f/L,(U U {w}) — /L(U) =
pi(0)Qi(0;) = L(U' U {w}) — L(U"). Q.E.D.
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REMARK 4—Universal Implementation: When the sets of agents facing
quota constraints form a hierarchy, we have a universal implementation in
the sense that regardless of the specific values of the quotas, the Border type
characterization, specifically Theorem 3, holds. The reason for this is that by
Lemma 1, the quota constraints (D.1) form a polymatroid regardless of the
specific values of the quotas. The reason that we cannot accommodate more
(e.g., bihierarchy), as also proven by Remark 1, is because we have already
used up another polymatroid in our reduced-form requirement (D.2). This is
precisely the reason why bihierarchy is possible under BCKM but not in our
case; they did not face additional constraints such as (D.2) that we have to deal
with.

APPENDIX E: POLYMATROID METHOD FOR
THE BORDER CHARACTERIZATION

In this subsection, we show that the polymatroid optimization problem
stated in (P1) provides an alternative way to obtain the Border characteriza-
tion. As mentioned earlier, this result is established by using the fact that the
constraints of (P1) are TDI, so the dual problem has an integer solution. For
this argument, we need to assume that p and Q are all rational numbers. We
note that the argument below is not readily adaptable to the general case with
both upper and lower bound constraints. This illustrates the advantage of us-
ing our network-flow approach to obtain the generalized characterization as in
Theorem 3.

To begin, let us write the dual problem to (P1) as

(Dual-1) min Y~ p(OIC(G)¥(G, )+ D~ [Qi(6)pi(8)=(i, 6))]

Gcl,0e0 iel 6;€0;

subject to

(ED) > x(G,0)+z(,0)>1, Viel,VocO

G:ieG

and x(G, 0), z(i, 0;) > 0 VG, 0, i, 0. To show the sufficiency of the Border con-
dition for implementability of Q,*? suppose that Q is not a reduced form, which
means that the optimal value of the primal, and thus the dual, problem is
smaller than )", > 0,0, Pi(0:)Qi(8;). We show that this leads to the violation

of the upper bound condition in (B) for some 7' C D.%

32The proof of necessity is straightforward and thus is omitted.

3The duality argument we use below is similar to that in Cai, Daskalakis, and Weinberg (2011).
Unlike Cai, Daskalakis, and Weinberg (2011), however, our argument exploits the TDI prop-
erty to yield the Border characterization, which is much tighter than the characterization in Cai,
Daskalakis, and Weinberg (2011).
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To this end, recall first that the constraints of (P1) are TDI, so its dual
(Dual-1) has an integer solution, which then implies z(i, ;) = 0 or 1 for all
(i, 0;), since otherwise one could reduce z(i, 6;), and thereby the value of the
objective function, without violating (E.1).

Given any such optimal z(-), the dual problem (Dual-1) can be decomposed
into the following subproblems: for each 6 € 6,

(Dual-2) min p(6) > C(G)x(G, )
Gcl
subject to
(E2) Y p(®)x(G,0) > p(O)[1—z(i, 6)], Viel
G:ieG
With (i, 6) denoting the dual variable for the constraint (E.2), the dual prob-

lem to (Dual-2) can be written as

(P2) n(lag)iz PO[1— 23, )]G, )

subject to
(E3) D v(,0)<C(G), VYGCI
ieG

To solve (P2), let T; = {6; € ©,|z(i, 6;) = 0} for each i € I, so z(i, 6;) = 1 for
any 0; € ©;\ T;. Recall that with T =| |._, T;, I(0, T) = {i € I|6; € T;}. Then the
objective function of (P2) becomes

Y. p(O)yG, 0)=p6) > v(,6),

i:2(i,0;)=0 iel(6,T)

iel

which clearly attains its maximum when Ziel(”) v(i,0) = C((0,T)), given
the constraint (E.3). Plug this into the objective function of (Dual-1) to obtain

D pOCIO,T))+ > pi(6:)Qi(6)z(i, 0;).
0cO iel 0;€0;
Noting that this expression must be smaller than ), Zo,-e@,» p:(6:)0:(6;) by

assumption, we get

0> p(OCIO. D)+ D" pi0)Q:i(0)[2G, 6) —1]

0O iel 0;€0;

= > pOCIO,T) =Y pi(6)Qi(6),

0eY(T) iel 0;eT;
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which means that (B) is violated for 7', as desired.

E.1. A Characterization for General Constraints

Without assuming supermodularity of the upper bounds, Cai, Daskalakis,
and Weinberg (2011) derived a characterization that involves a continuum of
constraints. To state their result, we define

AC) = {x e [0, 17" in <C(G),YG CI}

ieG

as the set of allocations that is feasible for given upper bounds C:2! — [0, n].
In the following theorem, C need not be submodular.

THEOREM 11—Cai, Daskalakis, and Weinberg (2011): Let Q be an interim
allocation rule. The allocation rule Q is the reduced form of an allocation rule that
respects (C, 0) if and only if for all weights (W;(6;))ic1,,co, € [0, 112191,

(E4) DD W) pi(6:)Qi(6)] < nga}g){;we,-)x,—}.

iel 6;€0; 0c®

This characterization is obtained from the dual linear program (Dual-1)
and the weights W are the dual variables z. Therefore, submodularity im-
plies that (E.4) has to be checked only for integer-valued weights. But
for (W;(0:))icr.0,co, € {0, 1}2:191, (E.4) is equivalent to (B) with T = {6, €
DIW,(6:) =1}.

Conversely, if submodularity is violated, some of the constraints in (E.4) in-
duced by noninteger weights are binding. To see this, consider the first example
in Table I in Remark 1. If we maximize the objective function subject to (B),
a maximizer is given by Q7 (6,) = 13/8 and Q;*(E,«) =9/4 for all i € I. For this
interim allocation rule, (E.4) is, for example, violated for weights W;(68,) =1/2
and W;(6;) = 1 forall i € I. Indeed, a straightforward calculation shows that for
these weights and the interim allocation rule Q*, the LHS of (E.4) is 147/32,
whereas the RHS is 9/2, which is strictly smaller. This demonstrates that the
additional constraints can, in general, not be neglected and the characteriza-
tion obtained in the absence of submodularity is much less tractable than our
characterization in Theorem 3.
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