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A.1. TRUE IMPULSE RESPONSES OF THE OBSERVABLES IN THE
EXAMPLE ECONOMY

See Figure A.1 for impulse responses.

FIGURE A.1.—True impulse responses of the observables in the example economy.

A.2. IDENTIFIABILITY IN THE EXAMPLE ECONOMY: THE ISKREV TEST

The example economy of Section 2 in Schmitt-Grohé and Uribe (2012) can
be written in vector form as

Xt+1 = hxXt +ηνt+1�

Yt = gxXt�

where Xt = [yt−1 xt ε1
t ε2

t ε2
t−1]′, Yt = [xt vt]′, νt is a 3 × 1 vector of i.i.d.

shocks with variance/covariance matrix equal to the identity, and

hx =

⎡
⎢⎢⎢⎣
ρy 0 1 0 0
0 ρx 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎦ �
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gx =
[

0 1 0 0 0
ρy 0 1 1 0

]
�

and

η=

⎡
⎢⎢⎢⎣

0 0 0
σ0 0 0
0 σ1 0
0 0 σ2

0 0 0

⎤
⎥⎥⎥⎦ �

Iskrev’s (2010) test consists in checking whether the derivative of the autoco-
variogram of Yt with respect to the vector of estimated parameters, which we
denote by θ ≡ [σ2

0 σ2
1 σ2

2 ], has full column rank. It turns out that, in our ex-
ample economy, it suffices to examine the derivative of the autocovariogram
of orders 0, 1, and 2. This derivative is given by

⎡
⎢⎢⎢⎢⎢⎣

∂ vechEYtY
′
t

∂θ
∂ vecEYtY

′
t+1

∂θ
∂ vecEYtY

′
t+2

∂θ

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1/
(
ρ2
x − 1

) −1/
(
ρ2
x − 1

) −1/
(
ρ2
x − 1

)
0 −ρy/(ρxρyρy − 1) 0
0 1 − ρ2

y/
(
ρ2
y − 1

)
1

−ρx/
(
ρ2
x − 1

) −ρx/
(
ρ2
x − 1

) −ρx/
(
ρ2
x − 1

)
0 1 − (ρxρyρy)/(ρxρyρy − 1) 0
0 −ρ2

y/(ρxρyρy − 1) 0
0 ρy − ρ3

y/
(
ρ2
y − 1

)
0

−ρ2
x/

(
ρ2
x − 1

) −ρ2
x/

(
ρ2
x − 1

) −ρ2
x/

(
ρ2
x − 1

)
0 ρx − (

ρ2
xρyρy

)
/(ρxρyρy − 1) 1

0 −ρ3
y/(ρxρyρy − 1) 0

0 ρ2
y − ρ4

y/
(
ρ2
y − 1

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

To see that this matrix has full column rank, consider first the case ρy = 0.
In this case, rows 1, 3, and 9 of this matrix form a square matrix of order 3
whose determinant equals 1/(1+ρx), which is always different from zero. Next,
consider the case ρy �= 0. In this case, rows 1, 2, and 3 form a square matrix of
order 3 whose determinant equals ρy/[(ρ2

x − 1)(ρxρy − 1)], which is always
nonzero.
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A.3. TECHNICAL NOTES ON APPLYING ISKREV’S TEST TO THE BASELINE
DSGE MODEL

Implementing Iskrev’s test consists in checking whether the derivative of the
predicted autocovariogram of the vector of observables with respect to the vec-
tor of estimated parameters has a rank equal to the length of the vector of
estimated parameters. Formally, let

m(t)≡ ∂ vecE(dtd
′
0)

∂θ
�

for t = 0� � � � �T − 1, where dt is the theoretical counterpart of the vector of
observables used to estimate the model, θ is a vector of model parameters
whose identifiability the test establishes, and T is the sample size. Let

M ≡
⎡
⎢⎣

m(0)
���

m(T − 1)

⎤
⎥⎦ �

Then the estimated parameter θ is identifiable if M has full column rank.1
Using the notation in Schmitt-Grohé and Uribe (2004), we can write the

solution of the DSGE model up to first order as

yt = gxxt

and

xt+1 = hxxt +ηεt+1�

where yt is a vector of endogenous controls, xt is a vector of endogenous
and exogenous states, and εt+1 is a white noise vector with identity vari-
ance/covariance matrix. The elements of the vector of observables are a subset
of the elements of the vector of endogenous controls. The two vectors are re-
lated by an expression of the form

dt = Dyt�

where D is a selection matrix with one unit element per row and at most one
unit element per column and the remaining elements equal to zero. This rela-
tion implies that

vec
(
Edtd

′
0

) = (D⊗D) vec
(
Eyty

′
0

)
�

1The test is performed by our Matlab code iskrev_test.m.
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and therefore

m(t)= (D⊗D)
∂ vecE(yty ′

0)

∂θ
�

Given the structure of the solution of the linearized DSGE model, we can
write

E
(
yty

′
0

) = gxh
t
xΣxg

′
x�

where Σx ≡ Extx
′
t and satisfies

Σx = hxΣxh
′
x +ηη′�

Taking the derivative of vecE(yty ′
0) with respect to θ, we obtain

∂ vec(gxh
t
xΣxg

′
x)

∂θ
= (

Iy ⊗ gxh
t
xΣx

)
dg′

x + (
gx ⊗ gxh

t
x

)
dΣx

+ (gxΣx ⊗ gx)d
(
ht
x

) + (
gxΣxh

′t
x ⊗ Iy

)
dgx�

In this expression, the object dgx denotes ∂vec(gx)/∂θ, and is a matrix of order
nynx × nθ, where ny , nx, and nθ are the lengths of yt , xt , and θ, respectively.
Similar notation applies to other objects.

A.3.1. Deriving dgx and dhx

Up to first order, the reduced form of the DSGE model can be written as

[ fy′ fx′ ]Et

[
yt+1

xt+1

]
= − [ fy fx ]

[
yt
xt

]
�

Using the solution to the linearized model in the linearized equilibrium condi-
tions, we obtain

[ fy′gxhx fx′hx ]
[
xt

xt

]
= − [ fygx fx ]

[
xt

xt

]
�

which implies that

fy′gxhx + fx′hx = −fygx − fx�

Taking derivative with respect to θ, we obtain

(Ix ⊗ fy′gx)dhx + (
h′
x ⊗ fy′

)
dgx + (

h′
xg

′
x ⊗ In

)
dfy′

+ (Ix ⊗ fx′)dhx + (
h′
x ⊗ In

)
dfx′

= −(Ix ⊗ fy)dgx − (
g′
x ⊗ In

)
dfy − dfx�
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Let

A≡ (
h′
x ⊗ fy′

) + (Ix ⊗ fy)�

B ≡ (Ix ⊗ fy′gx)+ (Ix ⊗ fx′)�

and

C ≡ −(
h′
xg

′
x ⊗ In

)
dfy′ − (

h′
x ⊗ In

)
dfx′ − (

g′
x ⊗ In

)
dfy − dfx�

Then, we can write

[A B ]
[
dgx

dhx

]
= C�

which can be solved to obtain[
dgx

dhx

]
= [A B ]−1 C�

We now explain how to obtain the objects dfx, dfx′ , dfy , and dfy′ . We explain
in detail how to obtain dfx; the other derivations are identical. We view fx
as a function of the parameter vector θ and of the vector z(θ) ≡ [y(θ)′ x(θ)′]′,
which is the steady state of the vector [y ′

t x′
t]′ . Thus, we write fx(θ� z(θ)). Then,

we have2

dfx = ∂fx

∂θ
+ ∂fx

∂z

∂z(θ)

∂θ
�

Now, we explain how to obtain ∂z(θ)

∂θ
. We can write the steady state of the model

as f (θ� z) = 0, which implicitly defines z(θ). Differentiating, we get

∂f (θ� z(θ))

∂θ
+ ∂f (θ� z(θ))

∂z

∂z(θ)

∂θ
= 0�

which can be solved to obtain3

∂z(θ)

∂θ
= −

[
∂f (θ� z(θ))

∂z

]−1
∂f (θ� z(θ))

∂θ
�

2The objects ∂fx
∂θ

and ∂fx
∂z

are produced analytically by our Matlab code iskrev_anal_deriv.m. To
facilitate the numerical evaluation of these symbolic expressions, the code writes these derivatives
to a Matlab script file called filename_iskrev_anal_ deriv.m, where the prefix filename is an input
of iskrev_anal_deriv.m chosen by the user.

3The code iskrev_anal_deriv.m writes this formula into the Matlab script filename_
iskrev_anal_deriv.m.
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Deriving dg′
x and dh′

x

Let Rh be a matrix such that

vec
(
h′
x

) =Rh vec(hx)�

The matrix Rh is a permutation matrix of order n2
x. Its unitary elements are

located in row i column fix((i−1)/nx)+1+ rem(i−1� nx)nx, for i = 1� � � � � n2
x.

Then we have that

dh′
x = Rh dhx�

Similarly, we can deduce that

dg′
x =Rg dgx�

where the matrix Rg is a permutation matrix (i.e., a square matrix with only
one element equal to unity per row and per column and all remaining elements
equal to zero) of order nxny . Its unitary elements are located in row i column
fix((i− 1)/nx)+ 1 + rem(i− 1� nx)ny , for i = 1� � � � � nxny .

A.3.2. Deriving dΣx

Using the expression for Σx obtained above, we can write its derivative with
respect to θ as

dΣx = (hx ⊗ hx)dΣx + (hxΣx ⊗ Ix)dhx + (Ix ⊗ hxΣx)dh
′
x + d

(
ηη′)�

Solving for dΣx, we obtain4

dΣx = [
In2

x
− (hx ⊗ hx)

]−1

× [
(hxΣx ⊗ Ix)dhx + (Ix ⊗ hxΣx)dh

′
x + d

(
ηη′)]�

A.3.3. Deriving dht
x

For t = 1, it is dhx, which we already derived. For t ≥ 2, we proceed itera-
tively, noticing that ht

x = ht−1
x hx, whose derivative is given by

dht
x = (

Ix ⊗ ht−1
x

)
dhx + (

h′
x ⊗ Ix

)
dht−1

x �

4The object d(ηη′) is produced symbolically by iskrev_anal_deriv.m and then written to the
script file filename_iskrev_anal_deriv.m.
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A.3.4. What if M Is Not Full Column Rank

Suppose M is less than full column rank at a parameter value θ0. Then, we
conclude that, with the selected observables and sample size, the parameter θ
is not identifiable in the vicinity of θ0. This essentially means that, in this case,
there will be an infinite number of parameter vectors θ that will give rise to the
same autocovariogram as θ0. When θ is not identifiable, we can establish what
linear combinations of the elements of θ will deliver the same autocovariogram
as θ0.

Let V (θ�T) be the vectorized covariogram of the vector of observables, dt ,
of order T . That is,

V (θ) =
⎡
⎢⎣

vech
(
Ed0d

′
0

)
���

vec
(
EdT−1d

′
0

)

⎤
⎥⎦ �

Then, Taylor-expanding around θ0 up to first order, we obtain

V (θ) ≈ V (θ0)+M(θ0)(θ− θ0)�

If M(θ0) has full column rank, then V (θ) = V (θ0) if and only if θ = θ0 in
the neighborhood of θ0. If, on the other hand, M(θ0) is rank deficient, then
there exists an infinite number of vectors θ in the vicinity of θ0 satisfying
V (θ) = V (θ0). To obtain these vectors, perform a singular value decomposi-
tion of M(θ0)

′. That is, find matrices U , S, and V such that

M(θ)U = V S′�

where U and V are unitary (i.e., UU ′ = I and V V ′ = I) and S is diagonal with
its diagonal elements nonnegative and decreasing. The matrix S has as many
rows as M(θ) and as many columns as the length of θ. Now partition the matrix
U as [U1 U2], where U2 has as many columns as S has zero diagonal elements.
Then, we have that any vector θ of the form

θ = θ0 + u2α

delivers the same autocovariogram as θ0 for any (small) scalar α and any vector
u2 taken from the columns of U2.

A.4. AUTOREGRESSIVE REPRESENTATION OF ANTICIPATED SHOCKS

The law of motion of the exogenous process xt can be written recursively as
a first-order linear stochastic difference equation of the form

x̃t+1 =Mx̃t +ηνx�t+1�
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where x̃t = [ln(xt/x) ε4
x�t ε4

x�t−1 ε4
x�t−2 ε4

x�t−3 ε8
x�t ε8

x�t−1 ε8
x�t−2 ε8

x�t−3 ε8
x�t−4

ε8
x�t−5 ε8

x�t−6 ε8
x�t−7],

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

η=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ0
x 0 0

0 σ4
x 0

0 0 0
0 0 0
0 0 0
0 0 σ8

x

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; and νx�t =
⎡
⎣ν0

x�t

ν4
x�t

ν8
x�t

⎤
⎦ �

The vector of innovations νx�t is normal i.i.d. with mean zero and variance-
covariance matrix equal to the identity matrix. An alternative, but equivalent,
specification, which was suggested to us by an anonymous referee, is given by

ln(xt/x)= ρx ln(xt−1/x)+ ν0
x�t + ε1

t−1�

ε1
t = ε2

t−1�

ε2
t = ε3

t−1�

ε3
t = ε4

t−1�

ε4
t = ε5

t−1 + ν4
x�t�

ε5
t = ε6

t−1�
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ε6
t = ε7

t−1�

ε7
t = ε8

t−1�

ε8
t = ν8

x�t �

An advantage of this recursive representation is that it involves only as many
state variables as the longest anticipation horizon, which in our case is eight.
A further advantage is that, if one were to consider, in addition to shocks antic-
ipated 4 and 8 quarters, shocks anticipated 1, 2, 3, 5, 6, and 7 quarters, then the
number of state variables would not change. One would simply add innovations
ν1
x�t , ν

2
x�t , ν

3
x�t , ν

5
x�t , ν

6
x�t , and ν7

x�t , respectively.

A.5. ESTIMATED SOURCES OF UNCERTAINTY

Table A.I addresses a standard question in business-cycle analysis, namely,
what is the contribution of the different sources of uncertainty considered
in this study to explaining business-cycle fluctuations? We group the sources
of uncertainty into three categories: technology shocks, aggregate demand
shocks, and wage-markup shocks. Technology shocks consist of stationary neu-

TABLE A.I

SHARE OF UNCONDITIONAL VARIANCE EXPLAINED BY TECHNOLOGY, DEMAND, AND
WAGE-MARKUP SHOCKSa

Posterior Shares Prior Shares

Y C I h Y C I h

Technology Shocks
Mean 58 17 86 25 63 46 84 60
Median 58 17 86 25 68 44 93 67
5th percentile 52 11 83 19 14 5 38 8
95th percentile 64 24 90 30 97 93 100 97

Demand Shocks
Mean 25 65 2 7 36 53 16 29
Median 25 65 2 7 30 55 7 20
5th percentile 21 56 1 6 2 6 0 1
95th percentile 29 73 3 9 86 95 61 85

Wage-Markup Shocks
Mean 18 18 12 68 1 1 0 10
Median 17 18 12 68 0 0 0 4
5th percentile 14 13 9 62 0 0 0 0
95th percentile 22 24 15 75 5 4 1 44

aY , C , I, and h refer, respectively, to the growth rates of output, consumption, investment, and hours. Estimates
are based on 500,000 draws from the posterior distribution. Technology shocks are εit , for i = 0�4�8 and j = z�x� zI �a.
Demand shocks are εij , for i = 0�4�8 and j = g�ζ. Wage-markup shocks are εiμ , for i = 0�4�8.
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tral productivity shocks, zt , permanent neutral productivity shocks, Xt , sta-
tionary investment-specific productivity shocks, zI

t , and permanent investment-
specific productivity shocks, At . Aggregate demand shocks consist of govern-
ment spending shocks, gt , and preference shocks, ζt . Table A.I presents the
share of the overall predicted variance of the variables of interest attributed
to each of the three categories of shocks. It shows that the majority of the
variances of output and investment are accounted for by technology shocks.
Consumption is explained mostly by aggregate demand shocks, and hours are
driven to a large extent by wage-markup shocks. These findings are in line with
variance decompositions reported in related studies. For instance, Justiniano,
Primiceri, and Tambalotti (2008, Table 4) reported that technology shocks ac-
count for 71 percent of variations in output and 92 percent of variations in
investment. At the same time, these authors found that the majority of fluctu-
ations in consumption and hours are accounted for by, respectively, aggregate
demand shocks (57 percent), and markup shocks (70 percent).

Among the anticipated sources of uncertainty, the most relevant is ε4
μ, the

four-quarter anticipated innovation in wage markups (see Table III in the
main paper). This disturbance may reflect the macroeconomic effects of an-
ticipated news regarding protracted wage negotiations of major labor unions.
The reason this shock is favored by our data sample is that it helps account
for the observed regularity that output and the main components of aggre-
gate demand (consumption and investment spending) all lead employment.
Figure A.2 displays the correlations of output, consumption, and investment
with current and future values of hours. All of these cross correlations are
positive, indicating that employment lags the other macroeconomic indicators.
The figure also shows the predictions of our estimated DSGE model for these
cross correlations.5 In addition, the figure displays the predicted cross correla-
tions when the variance of the shock ε4

μ is set to zero. Clearly, the anticipated
wage-markup shock contributes to making output, consumption, and invest-
ment leading indicators of employment.

Figure A.3 provides a flavor for why this is the case and for why the unan-
ticipated component of wage markups does not play this role. The figure dis-
plays the impulse responses of output, consumption, investment, and hours to
a four-quarter anticipated increase in the wage markup. In response to this an-
ticipated negative cost-push shock, firms immediately cut investment spending
and capital utilization, and, likewise, households cut consumption spending.
Hours, however, are relatively little changed after the announcement and prior
to the materialization of the shock. This is because the estimated wealth effect
of labor supply (captured by the parameter γ) is virtually nil. Hours fall signifi-
cantly but only four quarters after the announcement. As a result, the reactions
of output, consumption, and investment all precede that of employment.

5The DSGE model is parameterized at the posterior median of the parameter estimate.



WHAT’S NEWS IN BUSINESS CYCLES 11

FIGURE A.2.—The cross correlogram of hours.

We note in addition that, as is clear from Figure A.2, the four-quarter an-
ticipated wage-markup shock helps explain the observed positive autocorrela-
tion in employment growth. When we shut the four-quarter anticipated wage-
markup shock, the model predicts virtually no autocorrelation in employment
growth.

A.6. ANTICIPATED SHOCKS IN THE FREQUENCY DOMAIN

In Schmitt-Grohé and Uribe (2012), we analyzed the role of anticipated
shocks using the time domain. Here, we conduct a brief exploration of the
significance of anticipated shocks from the perspective of the frequency do-
main. Figure A.4 displays the population spectra of the anticipated compo-
nent (solid lines) and the unanticipated components (broken lines) of output
growth, hours growth, consumption growth, and investment growth. The popu-
lation spectra were computed at the posterior mean of the vector of estimated
parameters. Business-cycle frequencies, defined as 8 to 32 quarters, are marked
by two dotted vertical lines. The fact that the spectra associated with the antic-
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FIGURE A.3.—Impulse responses to an increase in the wage markup. —: Unanticipated.
−�−�: Four-quarter anticipated.

ipated and the unanticipated components have different shapes suggests that
these two components play distinct roles in explaining business cycles. For in-
stance, for hours worked, the spectrum of the anticipated component is down-
ward sloping, whereas the spectrum of the unanticipated component is upward
sloping. This means that anticipated shocks are estimated to be relatively more
important at the lower range of business-cycle frequencies. In the case of out-
put and investment, even though the spectra of both the anticipated and the
unanticipated components are downward sloping, the one associated with the
anticipated component has more density around the lower end of the business-
cycle spectrum, indicating again that anticipated shocks are relatively more
important in explaining lower frequency business-cycle movements. Finally,
the consumption spectrum shows that movements in consumption at business-
cycle frequencies are accounted for by anticipated and unanticipated shocks in
equal parts.
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FIGURE A.4.—The population spectrum. —: Anticipated component. – – –: Unanticipated
component. Computed at the mean of the posterior distribution. The two vertical dotted lines
mark frequencies between 8 and 32 quarters.

A.7. A PARSIMONIOUS SHOCK SPECIFICATION

In this subsection, we address two potential issues regarding the shock struc-
ture and observability assumptions maintained thus far. In regard to the shock
structure of the model analyzed in previous sections, a potential concern is
that it contains a number of nonstructural and ad hoc sources of uncertainty.
Among these are the preference shock, ζt , the wage-markup shock, μt , and the
shock shifting the law of motion of the capital stock, zI

t . Although these shocks
are customarily included in estimated medium-scale DSGE models, it is of in-
terest to ascertain whether the importance of anticipated shocks is robust to
omitting them. For this reason, in this section, we estimate a special case of
our model in which we set

σi
k = 0�

for k= zI� ζ�μ and i = 0�4�8.
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A second potential concern with our baseline estimation is the inclusion of
total factor productivity as an observable variable. In particular, the construc-
tion of an empirical measure of TFP requires the use of data on the capital
stock, which, as is well known, is difficult to measure accurately. Consequently,
in this section, we omit TFP from the set of observables.

We estimate the resulting parsimonious version of the model using Bayesian
methods. For the parameters that are estimated, we impose priors identical to
those used in the baseline estimation. In line with the findings of the extensive
literature devoted to fitting DSGE models to quarterly postwar data, the exclu-
sion of the nonstructural shocks results in a weakening of the model’s ability to
fit the data. The central question for our purposes, however, concerns the pre-
dictions of the estimated model regarding the importance of anticipated dis-
turbances. The estimated parsimonious model predicts that about two thirds
of the variances of output, consumption, investment, and hours is accounted
for by anticipated shocks. The exact shares are 0.68, 0.68, 0.69, and 0.69, re-
spectively. It follows that our central result, namely, that anticipated shocks
are important drivers of business cycles, is robust to doing away with the set
of nonstructural or ad hoc shocks that are customarily used to fit medium-
scale macroeconomic models to the data. The facts that the model allows for
fewer sources of uncertainty and that the set of observables excludes TFP nat-
urally result in a significant increase in the importance of TFP shocks. Indeed,
more than 90 percent of the volatility of output growth is now explained by
stationary and nonstationary neutral productivity shocks. Of the two types of
TFP shocks, nonstationary neutral TFP shocks are the single most important
source of fluctuations, explaining about 70 percent of the volatility of output
growth. Further, the single most important component of nonstationary TFP
shocks are eight-quarter anticipated innovations, which alone explain almost
50 percent of movements in output, consumption, investment, and hours. This
result is in line with the findings of Beaudry and Portier (2006) obtained in the
context of an empirical VAR model. In the next section, we explore further
the connection between the predictions of our estimated parsimonious DSGE
model and those stemming from empirical VAR models.

A.8. RELATING MODEL-BASED TO VAR-BASED ESTIMATES OF
ANTICIPATED SHOCKS

Beaudry and Portier (2006; hereafter, BP) estimated the importance of an-
ticipated permanent TFP shocks using an empirical vector error correction
model (VECM). Their identification strategy was designed to uncover antic-
ipated permanent changes in total factor productivity. Specifically, these au-
thors imposed two conditions for an innovation in TFP growth to be an antici-
pated shock: First, the shock must affect TFP in the long run (we refer to this
restriction as the long-run identification scheme), and second, the shock can-
not affect TFP contemporaneously (we refer to this restriction as the short-run
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identification scheme). The shocks that satisfy both BP identification schemes
in our model are the anticipated components of the nonstationary neutral pro-
ductivity shock, that is, ε4

x�t and ε8
x�t . We note, however, that our DSGE model

does not have a VAR representation of the type considered in BP. One reason
for the lack of a BP-style VAR representation is that the number of innovations
we consider is larger than the number of observables included in the VARs
considered by BP. It follows that the shocks identified by the BP methodology
cannot be interpreted as ε4

x�t , or ε8
x�t , or a combination thereof. We therefore

interpret the BP empirical results as a particular filtering of the data that can
be compared to a similar filtering performed on artificial data generated by our
theoretical model.

Figure A.5 displays impulse responses of adjusted TFP—that is, ztX
1−αk
t —

and the value of the firm applying the Beaudry–Portier long- and short-run

FIGURE A.5.—Beaudry–Portier-style impulse response functions model generated data. Solid
lines correspond to mean point estimates and broken lines to point estimates ± two standard-de-
viation bands. Impulse responses are computed from a bivariate VAR in the growth rates of TFP
and the value of the firm. Artificial data are generated from the parsimonious specification of the
model. The VAR is estimated 1000 times. Each time, an artificial time series of length 1212 is
created, but only the last 212 observations are used in the estimation of the VAR.
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identification schemes to a VAR in the growth rates of TFP and the value of
the firm estimated on artificial data generated using the parsimonious speci-
fication of the model. We use this version of the model because it assigns a
relatively large role to anticipated permanent TFP shocks. We generate ar-
tificial data of length 1212 quarters and discard the first 1000 elements. The
remaining time series are of equal length as those used in the empirical work
of BP. We repeat the estimation of the VAR 1000 times and report the mean
and standard deviation of the BP-style impulse responses. The figure shows
that, in response to a BP-style innovation, TFP and the value of the firm dis-
play a significant increase. In this sense, the predictions of our estimated model
are consistent with the empirical results of BP. We reiterate our hesitation to
interpret the shocks identified in this exercise as being anticipated TFP shocks
because, as explained above, our theoretical model does not imply a bivariate
VAR representation.
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