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APPENDIX

THIS SUPPLEMENT PROVIDES proofs of Theorem 3.1 and Lemma 4.1.

PROOF OF THEOREM 3.1: To show (5) it is sufficient to prove the derivative
formula (A.1) for ∇1, the partial derivative with respect to the first element
of x, that is,

∇1

∫
M(x�u)IM(x)dμ(u)(A.1)

=
∫

∇1M(x�u)IM(x)dμ(u)−H(x)∇1GH(x)−L(x)∇1GL(x)�

The left-hand side of (A.1) is written as

lim
ε→0

[∫
M(x+ εe1�u)IM(x+ εe1)dμ(u)

−
∫

M(x�u)IM(x)dμ(u)

]/
ε

= lim
ε→0

∫
[M(x+ εe1�u)−M(x�u)]IM(x+ εe1)dμ(u)/ε

+ lim
ε→0

∫
M(x�u)[IM(x+ εe1)− IM(x)]dμ(u)/ε

= T1 + T2�

where e1 = ±(1�0� � � � �0). Assumptions 2, 4, and 5 imply limε→0 IM(x+ εe1) =
IM(x) a.s. Thus, Assumption 4 and the Lebesgue dominated convergence the-
orem imply that T1 = ∫ ∇1M(x�u)IM(x)dμ(u). We now consider T2. By the
definition of IM and Assumption 2,

IM(x+ εe1)− IM(x)

= [
I{L(x+ εe1) <M(x+ εe1�U)}
+ I{M(x+ εe1�U) <H(x+ εe1)}

]
− [

I{L(x) <M(x�U)} + I{M(x�U) <H(x)}]
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a.s. for all ε sufficiently close to zero. So, T2 can be written as

T2 = lim
ε→0

∫
M(x�u)

[
I{L(x+ εe1) <M(x+ εe1�u)}

− I{L(x) <M(x�u)}]dμ(u)/ε
+ lim

ε→0

∫
M(x�u)

[
I{M(x+ εe1�u) <H(x+ εe1)}

− I{M(x�u) <H(x)}]dμ(u)/ε�
Since I{L(x + εe1) < M(x + εe1�u)} = 1 − I{M(x + εe1�u) ≤ L(x + εe1)}
for all ε sufficiently close to zero, the following lemma completes the proof.

Q.E.D.

LEMMA A.1: Under Assumptions 1–5,

lim
ε→0

∫
M(x�u)

[
I{M(x+ εe1�u) <H(x+ εe1)}(A.2)

− I{M(x�u) <H(x)}]dμ(u)/ε
= −H(x)∇1GH(x)�

PROOF: It is sufficient to show that both an upper bound and a lower bound
of the left-hand side of (A.2) converge to the right-hand side as ε → 0. The
left-hand side of (A.2) equals

lim
ε→0

∫
M(x�u)I{M(x+ εe1�u) <H(x+ εe1)}(A.3)

× I{M(x�u) ≥H(x)}dμ(u)/ε�
− lim

ε→0

∫
M(x�u)I{M(x+ εe1�u) ≥H(x+ εe1)}

× I{M(x�u) <H(x)}dμ(u)/ε�
Since the argument is analogous, we only show the result for an upper bound.

For any small ε > 0 that satisfies the neighborhood condition in Assump-
tion 4, by the mean value theorem there exists 0 < ε̃ < ε such that M(x +
εe1�U)=M(x�U)+ ∇M(x+ ε̃e1�U)ε a.s. Thus, by Assumption 4,

M(x+ εe1�U) ≤ M(x�U)+ sup
0<ε̃<ε

∇M(x+ ε̃e1�U)ε

≤ M(x�U)+ sup
x′∈N(x�ε)

∇M(x′�U)ε

≤ M(x�U)+B(U)ε



ESTIMATING DERIVATIVES IN NONSEPARABLE MODELS 3

a.s., where N(x�ε) is a neighborhood around x with radius ε. Analogously by
replacing the supremum with the infimum, we can show that M(x+ εe1�U)≥
M(x�U)−B(U)ε a.s.

By these inequalities, (A.3) can be bounded from above by

lim
ε→0

∫
H(x+ εe1)I{M(x+ εe1�u) <H(x+ εe1)}

× I{M(x�u) ≥H(x)}dμ(u)/ε
+ lim

ε→0

∫
B(u)I{M(x+ εe1�u) <H(x+ εe1)}

× I{M(x�u) ≥H(x)}dμ(u)
− lim

ε→0

∫
H(x+ εe1)I{M(x+ εe1�u) ≥H(x+ εe1)}

× I{M(x�u) <H(x)}dμ(u)/ε
+ lim

ε→0

∫
B(u)I{M(x+ εe1�u) ≥H(x+ εe1)}

× I{M(x�u) <H(x)}dμ(u)�
By Assumptions 2, 4, and 5, the Lebesgue dominated convergence theorem
implies that the second term and the fourth term converge to zero. The first
term and the third term can be rewritten as

lim
ε→0

H(x+ εe1)

∫ [
I{M(x+ εe1�u) <H(x+ εe1)}

− I{M(x�u) <H(x)}]dμ(u)/ε�
which is the right-hand side of (A.2) under Assumptions 2 and 3. The conclu-
sion is obtained. Q.E.D.

PROOF OF LEMMA 4.1: The basic idea of the proof is as follows. First, inde-
pendently from x, we pick any strictly increasing distribution functions F1 and
F2 with continuous densities f1 and f2 such that

sup
x

|H(x)−L(x)|{F−1
j (pH)− F−1

j (pL)} max
ũj∈[F−1

j (pL)�F
−1
j (pH)]

fj(ũj)(A.4)

< 2ε(p2 −p1)

for j = 1�2, where p1, p2, pL, and pH satisfy Assumption 3′ and ε satisfies As-
sumption 2′. Since supx |H(x)−L(x)| is bounded by a constant from Assump-
tion 3′, it is possible to choose such F1 and F2. We set the joint density of Ũ
as fŨ(ũ1� ũ2) = f1(ũ1)f2(ũ2). Second, we pick any point x. Third, for the given
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x, we show the existence of (M̃0(x)� M̃1(x)� M̃2(x)) satisfying the equivalence
Ψ(x) = E[M(X�U)|X = x� IM(X) = 1] = E[M̃(X� Ũ)|X = x� IM(X) = 1].
Fourth, observe that we can apply this argument for any x with the same F1

and F2 above to show the equivalence on Ψ(x) for all x (note: F1 and F2

do not depend on x by definition). Finally, showing that M̃(x� ũ) is differ-
entiable in x (for almost every ũ) implies E[∇M(X�U)|X = x� IM(X) = 1] =
E[∇M̃(X� Ũ)|X = x� IM(X)= 1]. Hereafter, we show the third and final steps.

The third step. For given x, we want to find (M̃0(x)� M̃1(x)� M̃2(x)) such that
M̃(x� ũ) = M̃0(x) + M̃1(x)ũ1 + M̃2(x)ũ2, GL(x) = Pr{M̃(X� Ũ) ≤ L(X)|X =
x}, GH(x) = Pr{M̃(X� Ũ) ≥ H(X)|X = x}, and Ψ(x) = E[M̃(X� Ũ)|IM(X) =
1�X = x]. For notational convenience, we hereafter drop the arguments x

from functions and suppress the tilde, denoting (M̃0(x)� M̃1(x)� M̃2(x)) as
(M0�M1�M2) and (ũ1� ũ2) as (u1�u2). Note that

GL =
∫ ∞

−∞
f1(u1)F2

(
L−M0 −M1u1

M2

)
du1(A.5)

=
∫ ∞

−∞
f2(u2)F1

(
L−M0 −M2u2

M1

)
du2�

1 −GH =
∫ ∞

−∞
f1(u1)F2

(
H −M0 −M1u1

M2

)
du1(A.6)

=
∫ ∞

−∞
f2(u2)F1

(
H −M0 −M2u2

M1

)
du2�

ΨGM = M0GM(A.7)

+M1

∫ ∞

−∞
u1f1(u1)

×
[
F2

(
H −M0 −M1u1

M2

)
− F2

(
L−M0 −M1u1

M2

)]
du1

+M2

∫ ∞

−∞
u2f2(u2)

×
[
F1

(
H −M0 −M2u2

M1

)
− F1

(
L−M0 −M2u2

M1

)]
du2�

Reparameterize so that λ= M1/M2. By holding λ constant, we can find M∗
0 (λ)

and M∗
2 (λ) that solve (A.5) and (A.6) with respect to M0 and M2, respec-

tively. Let lλ and hλ denote the solutions to GL = ∫ ∞
−∞ f1(u1)F2(lλ − λu1)du1

and 1 − GH = ∫ ∞
−∞ f1(u1)F2(hλ − λu1)du1, respectively. Then by the defini-

tions, M∗
0 (λ) and M∗

2 (λ) are written as M∗
0 (λ) = hλL−lλH

hλ−lλ
and M∗

2 (λ) = H−L
hλ−lλ

.
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By substituting these solutions, the right-hand side of the expression for ΨGM

above can be regarded as a function of λ (denote the function by m(λ)). Thus,
for the conclusion, it is sufficient to check the existence of λ∗ > 0 that solves
ΨGM = m(λ). Note that m(λ) is continuous in λ because of the continuity of
F1 and F2. Thus, by the intermediate value theorem and Assumption 2′, the
existence of λ∗ can be verified by showing

lim
λ→0

m(λ) < (L+ ε)GM� lim
λ→∞

m(λ) > (H − ε)GM(A.8)

for some ε > 0 satisfying Assumption 2′.
We now show the first statement of (A.8). Note that hλ → h0 and lλ → l0

as λ → 0, where h0 and l0 solve F2(h0) = 1 − GH and F2(l0) = GL, respec-
tively, and that m(λ) →LGM + H−L

h0−l0

∫ h0
l0
(u− l0)f2(u)du as λ → 0. Since GM >

p2 − p1 by Assumption 3′, the requirement (A.4) on F2 implies the first state-
ment of (A.8). Similarly, since m(λ) →HGM − H−L

h∞−l∞

∫ h∞
l∞ (h∞ − u)f1(u)du as

λ → ∞ (where h∞ and l∞ solve F1(h∞) = 1 − GH and F1(l∞) = GL, respec-
tively), the requirement (A.4) on F1 implies the second statement of (A.8).
This completes the proof of the third step.

The final step. Since (M̃0(x)� M̃1(x)� M̃2(x)) satisfies (A.5)–(A.7) for all
x and Assumptions 2′–4′ guarantee the differentiability of (M̃0(x)� M̃1(x),
M̃2(x)), it follows that M̃(x� ũ) is differentiable in x for almost every ũ.

Q.E.D.
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