
Econometrica Supplementary Material

SUPPLEMENT TO “DISTORTIONS OF ASYMPTOTIC CONFIDENCE
SIZE IN LOCALLY MISSPECIFIED MOMENT

INEQUALITY MODELS”
(Econometrica, Vol. 80, No. 4, July 2012, 1741–1768)

BY FEDERICO A. BUGNI, IVAN A. CANAY, AND PATRIK GUGGENBERGER

THIS SUPPLEMENT CONTAINS the lemmas (and their proofs) that are used in
the proofs of Theorems 3.1 and 3.2 of the paper in Sections S1 and S2; the
proof of Corollary 3.1 in Section S2; a missing data example and Monte Carlo
simulations in Section S3; the verification of Assumptions A.6 and A.7 in two
leading examples in Section S4; a discussion of the intuition behind Theo-
rem 3.2 in Section S5; and details of the computations carried out in Table I in
Section S6.

S1. AUXILIARY LEMMAS

LEMMA S1.1: Assume that the parameter space is given by Fn in Eq. (2.5) and
that S satisfies Assumption A.1. Under any sequence {γωn�h}n≥1 = {θωn�h�Fωn�h}n≥1

defined in Definition A.1 for a subsequence {ωn}n≥1 and h = (h1�h2), it follows
that

Tωn

(
θωn�h

) →d Jh ∼ S
(
h1/2

2 Z + h1�h2

)
�(S1.1)

where Tn(·) is the test statistic associated with S and Z = (Z1� � � � �Zk) ∼
N(0k� Ik).

LEMMA S1.2: For any a ∈ (0�1) and ρ ∈ [−1 + a�1 − a], define

f (z1� z2�ρ)(S1.2)

≡ (1 − ρ2)−1

× min
(t1�t2)∈R

2+�+∞
{(z1 − t1)

2 + (z2 − t2)
2 − 2ρ(z1 − t1)(z2 − t2)}�

Then f (z1� z2�ρ) takes values according to the following four cases:
(i) Let z1 ≥ 0 and z2 ≥ 0. Then, f (z1� z2�ρ)= 0.

(ii) Let z1 ≥ 0 and z2 < 0. If ρ≤ z1/z2, then

f (z1� z2�ρ)= (1 − ρ2)−1[(z1 − z2)
2 + 2(1 − ρ)z1z2]�(S1.3)

If ρ > z1/z2, then f (z1� z2�ρ)= z2
2 .

(iii) Let z1 < 0 and z2 ≥ 0. If ρ ≤ z2/z1, then Eq. (S1.3) holds. Otherwise,
f (z1� z2�ρ)= z2

1 .
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(iv) Let z1 < 0 and z2 < 0. If ρ ≤ min{z1/z2� z2/z1}, then Eq. (S1.3) holds.
Otherwise, f (z1� z2�ρ)= max{z2

1� z
2
2}.

LEMMA S1.3: Suppose that k = p = 2 and fix β > 0. For ε > 0, let ρε =
−√

1 − ε, h2�ε = [ 1
ρε

ρε
1

]
, and

Hβ ≡ {h1 ∈ R
2 :h1�1 ≤ −β�h1�2 ≤ 0}�(S1.4)

Define the set Aε�β ≡Aa
ε�β ∪Ab

ε�β ∪Ac
ε�β ⊆ R

2, where

Aa
ε�β ≡ {z ∈ R

2 :z1 ≥ 0� z2 < 0�0 < z1 − ρεz2 ≤ β/2}�(S1.5)

Ab
ε�β ≡ {z ∈ R

2 :z1 < 0� z2 ≥ 0�0 < z2 − ρεz1 ≤ β/2}�(S1.6)

Ac1
ε�β ≡ {z ∈ R

2 :z1 ≥ 0� z2 < 0� z1 − ρεz2 ≤ 0}�(S1.7)

Ac2
ε�β ≡ {z ∈ R

2 :z1 < 0� z2 ≥ 0� z2 − ρεz1 ≤ 0}�(S1.8)

and Ac
ε�β ≡ Ac1

ε�β ∪ Ac2
ε�β. Let Zh2�ε ∼ N(0�h2�ε). Then there exists a real-valued

function τε(z�h1) :Aε�β ×Hβ → R+ such that

S2(z + h1�h2�ε)= S2(z�h2�ε)+ 1
1 − ρ2

ε

τε(z�h1)�(S1.9)

∀z ∈Aε�β�∀h1 ∈Hβ�

and ∀η�C > 0, ∃ε > 0 such that

inf
h1∈Hβ

Pr
(

1
1 − ρ2

ε

τε
(
Zh2�ε � h1

)
>C�Zh2�ε ∈Aε�β

)
≥ 1 −η�(S1.10)

S2. PROOF OF LEMMAS AND COROLLARIES

PROOF OF LEMMA S1.1: The proof follows along the lines of the proof
of Theorem 1 in Andrews and Guggenberger (2009; AG from now on). By
Lemma 1 in AG, we have, for any s ∈ N,

Ts(θs)= S
(
D̂−1/2

s (θs)s
1/2m̄s(θs)� D̂

−1/2
s (θs)Σ̂s(θs)D̂

−1/2
s (θs)

)
�(S2.1)

For j = 1� � � � �k, define As�j = σ−1
Fs�j

(θs)s
1/2(m̄s�j(θs) − EFsm̄s�j(θs)). As in

Lemma 2 in AG, we have

(i) Aωn = (
Aωn�1� � � � �Aωn�k

)′ →d Zh2(S2.2)

= (
Zh2�1� � � � �Zh2�k

)′ ∼N(0k�h2) as n→ ∞�
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(ii) σ̂ωn�j

(
θωn�h

)
/σFωn�h�j

(
θωn�h

) →p 1

as n → ∞ for j = 1� � � � �k�

(iii) D̂−1/2
ωn

(
θωn�h

)
Σ̂ωn

(
θωn�h

)
D̂−1/2

ωn

(
θωn�h

) →p h2 as n → ∞�

under any sequence γωn�h = {θωn�h�Fωn�h}n≥1. These results follow from com-
pleting the sequence γωn�h, that is, from defining the sequence γs�h = {θs�h�
Fs�h}s≥1 in the following fashion. For s ∈ N, define the sequence {θs�Fs}s≥1 as
follows. For any s ≤ ω1, (θs�Fs) = (θω1�h�Fω1�h). For any s > ω1 and since
{ωn}n≥1 is a subsequence of N, there exists a unique m ∈ N such that ωm−1 <
s ≤ ωm. For every such s, set (θs�Fs) = (θωm�h�Fωm�h). Now let {Wi}i≤n be
i.i.d. under Fs . By construction, ∀s ∈ N, (θs�Fs) ∈ Fωm for some m ∈ N and
CorrFs (m(Wi�θs)) → h2. Then, the results (i)–(iii) of Eq. (S2.2) hold by trian-
gular array versions of central limit theorems and the law of large numbers
with ωn, θωn�h, and Fωn�h replaced by s, θs, and Fs, respectively. But the conver-
gence results along {θs�Fs}s≥1 then imply convergence along the subsequence
{θωn�h�Fωn�h}n≥1, as by construction the latter coincides with the former on in-
dices s =ωn.

From Eq. (S2.2), the jth element of D̂−1/2
ωn

(θωn�h)ω
1/2
n m̄ωn(θωn�h) equals

(Aωn�j + ω1/2
n EFωn�h

m̄ωn�j(θωn�h)/σFωn�h�j
(θωn�h))(1 + op(1)). We next consider

a k-vector-valued function of D̂−1/2
ωn

(θωn�h)ω
1/2
n m̄ωn(θωn�h) that converges in dis-

tribution whether or not some elements of h1 equal ∞. Write the right hand
side (RHS) of Eq. (S2.1) as a continuous function of this k-vector and apply
the continuous mapping theorem. Let G(·) be a strictly increasing continu-
ous distribution function (d.f.) on R, such as the standard normal d.f., and let
G(∞)= 1. For j = 1� � � � �k, we have

Gωn�j ≡ G
(
σ̂−1

ωn�j

(
θωn�h

)
ω1/2

n m̄ωn�j

(
θωn�h

))
(S2.3)

= G
(
σ̂−1

ωn�j

(
θωn�h

)
σFωn�h�j

(
θωn�h

)
× [

Aωn�j +ω1/2
n EFωn�h

m̄ωn�j

(
θωn�h

)
/σFωn�h�j

(
θωn�h

)])
�

If h1�j <∞, then

Gωn�j →d G
(
Zh2�j + h1�j

)
(S2.4)

by Eqs. (S2.3) and (S2.2), the definition of γωn�h, and the continuous mapping
theorem. If h1�j = ∞ (which can only happen for j = 1� � � � �p), then

Gωn�j = G
(
σ̂−1

ωn�j

(
θωn�h

)
ω1/2

n m̄ωn�j

(
θωn�h

)) →p 1(S2.5)

by Eq. (S2.3), Aωn�j = Op(1), and G(x) → 1 as x → ∞. The results in Eqs.
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(S2.4) and (S2.5) hold jointly and combine to give

Gωn ≡ (
Gωn�1� � � � �Gωn�k

)′
(S2.6)

→d

(
G

(
Zh2�1 + h1�1

)
� � � � �G

(
Zh2�k + h1�k

))′ ≡G∞�

where G(Zh2�j + h1�j) = 1 by definition when h1�j = ∞. Let G−1 denote
the inverse of G. For x = (x1� � � � � xk)

′ ∈ R
p
+∞ × R

v, let G(k)(x) = (G(x1)�
� � � �G(xk))

′ ∈ (0�1]p × (0�1)v. For y = (y1� � � � � yk)
′ ∈ (0�1]p × (0�1)v,

let G−1
(k)(y) = (G−1(y1)� � � � �G

−1(yk))
′ ∈ R

p
+∞ × R

v. Define S∗(y�Ω) =
S(G−1

(k)(y)�Ω) for y ∈ (0�1]p × (0�1)v and Ω ∈ Ψ . By Assumption A.1(d),
S∗(y�Ω) is continuous at all (y�Ω) for y ∈ (0�1]p × (0�1)v and Ω ∈ Ψ . We
now have

Tωn

(
θωn�h

) = S
(
G−1

(k)

(
Gωn

)
� D̂−1/2

ωn

(
θωn�h

)
Σ̂ωn

(
θωn�h

)
D̂−1/2

ωn

(
θωn�h

))
(S2.7)

= S∗(Gωn� D̂
−1/2
ωn

(
θωn�h

)
Σ̂ωn

(
θωn�h

)
D̂−1/2

ωn

(
θωn�h

))
→d S

∗(G∞�h2)

= S
(
G−1

(k)(G∞)�h2

)
= S

(
Zh2 + h1�h2

) ∼ Jh�

where the convergence holds by Eqs. (S2.2) and (S2.6) and the continuous
mapping theorem, the last equality holds by the definitions of G−1

(k) and G∞,
and the last line hold by definition of Jh. Q.E.D.

PROOF OF LEMMA S1.2: The FOC associated with the minimizers t1 and t2
in Eq. (S1.2) are

−(z1 − t1)+ ρ(z2 − t2)≥ 0� u1[−(z1 − t1)+ ρ(z2 − t2)] = 0�(S2.8)

t1 ≥ 0�

−(z2 − t2)+ ρ(z1 − t1)≥ 0� u2[−(z2 − t2)+ ρ(z1 − t1)] = 0�(S2.9)

t2 ≥ 0�

The SOC are immediately satisfied, as the function on the RHS of Eq. (S1.2)
is strictly convex for ρ ∈ [−1 + a�1 − a].

Consider Case (i). In this case, t1 = z1 and t2 = z2 satisfies Eqs. (S2.8) and
(S2.9) and f (z1� z2�ρ)= 0 regardless of the value of ρ.

Now consider Case (ii). First we note that t1 ≥ 0, t2 > 0 is not a feasible
solution. This is because t2 > 0 and Eq. (S2.9) imply ρ2(z1 − t1) = ρ(z2 − t2),
and this, together with Eq. (S2.8), results in ρ2(z1 −t1)≥ (z1 −t1), which implies
t1 = z1. This results in t2 = z2 < 0, which is a contradiction. The solution must
then be of the form t1 ≥ 0 and t2 = 0. Then, it follows from the first conditions
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in Eq. (S2.8) that t1 ≥ z1 − ρz2, so that t1 = max{z1 − ρz2�0} and t2 = 0 is the
solution. This is a strictly convex optimization problem, and so the solution
exists and is unique. Then, if ρ ≤ z1/z2, the unique solution is (t1� t2) = (0�0)
and the objective function is given by Eq. (S1.3). On the other hand, if ρ <
z1/z2, (t1� t2)= (z1 − ρz2�0) is the unique solution and

f (z1� z2�ρ)(S2.10)

= (1 − ρ2)−1{(z1 − z1 + ρz2)
2 + z2

2 − 2ρ(z1 − z1 + ρz2)(z2)} = z2
2�

Case (iii) is exactly analogous to Case (ii) by exchanging the subindices 1
and 2.

Consider Case (iv) then. First, we note again that t1 > 0 and t2 > 0 is not
a feasible solution by the same arguments as before. Second, we note that
(t1� t2) = (0�0) is a solution provided ρ ≤ min{z1/z2� z2/z1}, as this condi-
tion implies the correct sign of the derivatives in Eqs. (S2.8) and (S2.9). The
remaining case is either ρ > z1/z2 or ρ > z2/z1. By steps similar to those
used in Case (ii), it follows that the solutions for these cases are (t1� t2) =
(z1 − ρz2�0), f (z1� z2�ρ) = z2

2 and (t1� t2) = (0� z2 − ρz1), f (z1� z2�ρ) = z2
1 , re-

spectively. Q.E.D.

PROOF OF LEMMA S1.3: Note that, for z̄j = zj + h1�j , j = 1�2,

S2(z + h1�h2�ε)(S2.11)

= (1 − ρ2
ε)

−1 min
t∈R

2+�+∞
{(z̄1 − t1)

2 + (z̄2 − t2)
2 − 2ρε(z̄1 − t1)(z̄2 − t2)}�

The RHS of Eq. (S2.11) is the same optimization problem as the one in
Lemma S1.2. For z ∈ Aε�β and h1 ∈ Hβ, Case (i) of Lemma S1.2 cannot occur
and Cases (ii)–(iv) always end up with the subcase that leads to Eq. (S1.3). This
is because β/2 ≤ ρεh1�2 −h1�1 and, for ε < 1/2, β/2 ≤ −h1�2 + ρεh1�1. It follows
from Lemma S1.2 that the solution of Eq. (S2.11) for z ∈ Aε�β and h1 ∈ Hβ is

S2(z + h1�h2�ε)(S2.12)

= (1 − ρ2
ε)

−1

× [(z1 + h1�1 − z2 − h1�2)
2 + 2(1 − ρε)(z1 + h1�1)(z2 + h1�2)]�

In addition, it follows from Lemma S1.2 that the solution when h1�1 = h1�2 = 0
is given by S2(z�h2�ε) = z2

2 for z ∈ Aa
ε�β, S2(z�h2�ε) = z2

1 for z ∈ Ab
ε�β, and

S2(z�h2�ε) = z2
1 + (z2 − ρεz1)

2/(1 − ρ2
ε) for z ∈ Ac

ε�β. By some algebra, it fol-
lows that

S2(z + h1�h2�ε)= S2(z�h2�ε)+ 1
1 − ρ2

ε

τε�l(z�h1)�(S2.13)

∀z ∈Al
ε�β�∀h1 ∈Hβ� l ∈ {a�b� c}�
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where

τε�a(z�h1) = (z1 + h1�1 − ρε(z2 + h1�2))
2 + (1 − ρ2

ε)(h
2
1�2 + 2z2h1�2)�(S2.14)

τε�b(z�h1) = (z2 + h1�2 − ρε(z1 + h1�1))
2 + (1 − ρ2

ε)(h
2
1�1 + 2z1h1�1)�(S2.15)

τε�c(z�h1) = (h1�1 − h1�2)
2 + 2((z2 − ρεz1)(h1�2 − ρεh1�1)(S2.16)

+ h1�1z1(1 − ρ2
ε)+ (1 − ρε)h1�1h1�2)�

Additional algebra shows that τε�a(z�h1) ≥ β2/4 on Aa
ε�β × Hβ, τε�b(z�h1) ≥

β2/6 on Ab
ε�β ×Hβ for ε < 1/2, and τε�c(z�h1)≥ β2 on Ac

ε�β ×Hβ. Thus, letting

τε(z�h1)≡
∑

l∈{a�b�c}
τε�l(z�h1)I(z ∈ Al

ε�β)�(S2.17)

it follows that τε(z�h1) ≥ β2/6 on Aε�β × Hβ. We can conclude that, for any
constant C ∈ (0�∞), there exists ε ∈ (0�1/2) such that

inf
h1∈Hβ

Pr
(

1
1 − ρ2

ε

τε
(
Zh2�ε � h1

)
>C�Zh2�ε ∈Aε�β

)
(S2.18)

≥ Pr
(

β2

6(1 − ρ2
ε)

> C�Zh2�ε ∈ Aε�β

)
�

= Pr
(
Zh2�ε ∈ Aε�β

)
�

Finally, define the set Aac1
ε�β ≡ Aa

ε�β ∪ Ac1
ε�β. Note that we can write Zh2�ε�1 −

ρεZh2�ε�2 = √
1 − ρ2

εW for Zh2�ε�2 ⊥ W ∼ N(0�1). Then,

Pr
(
Zh2�ε ∈ Aac1

ε�β

)
(S2.19)

= Pr
(
Zh2�ε�2 ≤ min

{
0�

√
1 − ρ2

εW

−ρε

}
�W ≤ β

2
√

1 − ρ2
ε

)

→ 1/2� as ρε → −1�

The same applies for the set Abc2
ε�β ≡ Ab

ε�β ∪Ac2
ε�β. By continuity in ρε, it follows

that ∀η> 0, ∃ε > 0 such that

Pr
(
Zh2�ε ∈ Aε�β

) ≥ 1 −η�(S2.20)

The result then follows from Eqs. (S2.18) and (S2.20). Q.E.D.

PROOF OF COROLLARY 3.1: Let ε > 0. Define the test function S̃2�ε(m�Σ)
as in Eq. (3.5) and the parameter space Ψ2�ε. Let fε :Ψ1 → Vk×k be defined as

fε(Ω) ≡Ω+ max{ε− det(Ω)�0}Ik�(S2.21)
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and note that fε(·) is a continuous function. By construction, the matrix fε(Ω)
has a determinant that is bounded away from zero, that is, ∃C > 0 such that
infΩ∈Ψ1 det(fε(Ω)) ≥ C. As

S̃2�ε(m�Ω)= inf
t=(t1�0v):t1∈R

p
+�+∞

(m− t)′fε(Ω)−1(m− t)�(S2.22)

it follows that S̃2�ε(m�Ω) is continuous at all Ω ∈Ψ1, and so it satisfies Assump-
tions A.1–A.3. By Lemmas S1.1 and B.1, it follows that

AsySz(2̃�ε)PA = inf
h=(h1�h2)∈H

Pr
(
S̃2�ε

(
Zh2 + h1�h2

) ≤ c0(h2�1 − α)
)
�(S2.23)

Next, note that, for all h2 ∈ Ψ2�ε, we have fε(h2) = h2, and so it follows that
S̃2�ε(m�h2)= S2(m�h2) for all m ∈ R

p
+∞ ×R

v and h2 ∈Ψ2�ε. Since Ψ2�ε ⊂Ψ1, we
have

AsySz(2̃�ε)PA ≤ AsySz(2)PA �(S2.24)

It follows from Theorem 3.2 that, for every η > 0, ∃ε > 0 such that
AsySz(2̃�ε)PA ≤ η. By the proof of Theorem 3.1, AsySz(2̃�ε)PA ≥ AsySz(2̃�ε)SS ≥
AsySz(2̃�ε)GMS. Q.E.D.

S3. MISSING DATA EXAMPLE WITH SIMULATIONS

EXAMPLE S3.1—Missing Data: Suppose that the economic model indicates
that

EF0(Y |X = x) =G(x�θ0)� ∀x ∈ SX�(S3.1)

where θ0 is the true parameter value and SX = {xl}dxl=1 is the (finite) support
of X . The sample is affected by missing data on Y . Denote by Z the binary
variable that takes a value of 1 if Y is observed and zero if Y is missing. Con-
ditional on X = x, Y has logical lower and upper bounds given by YL(x) and
YH(x), respectively. The observed data are {Wi}ni=1, where ∀i = 1� � � � � n, Wi =
(YiZi�Zi�Xi). When the observed data come from the model in Eq. (S3.1), the
true θ0 satisfies the following inequalities for l = 1� � � � � dx:

EF0ml�1(Wi� θ0)(S3.2)

≡EF0

[
(YZ +YH(xl)(1 −Z)−G(xl� θ0))I(X = xl)

] ≥ 0�

EF0ml�2(Wi� θ0)

≡EF0

[
(G(xl� θ0)−YZ −YL(xl)(1 −Z))I(X = xl)

] ≥ 0�
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Notice that when {Y |X = xl} is fully observed (i.e., Pr(Z|X = xl) = 1),
Eq. (S3.2) implies the equation

EF0ml(Wi�θ0)≡EF0

[
(Y −G(xl� θ0))I(X = xl)

] = 0�(S3.3)

Now suppose that, in fact, the data come from a local perturbation Fn of the
hypothesized model F0 such that

EFn(Y |X = xl)=Gn(xl� θ0)� ∀l = 1� � � � � dx�(S3.4)

and for a vector r ∈ R
dx+ ,

|Gn(xl� θ0)−G(xl� θ0)| ≤ rln
−1/2� ∀l = 1� � � � � dx�(S3.5)

This last condition says that the true function Gn is not too distant from the
model G used by the researcher. After a few manipulations, it follows that, for
l = 1� � � � � dx,

EFnml�1(Wi� θ0)(S3.6)

=EFn

[
(YZ +YH(xl)(1 −Z)−G(xl� θ0))I(X = xl)

] ≥ −rln
−1/2�

EFnml�2(Wi� θ0)

=EFn

[
(G(xl� θ0)−YZ −YL(xl)(1 −Z))I(X = xl)

] ≥ −rln
−1/2�

and when {Y |X = xl} is fully observed, Eq. (S3.5) implies the moment condi-
tion

EFnml(Wi� θ0)=EFn

[
(Y −G(xl� θ0))I(X = xl)

] ≤ rln
−1/2�(S3.7)

Therefore, under the perturbed distribution of the data, the original moment
conditions, Eqs. (S3.2) and (S3.3), may be locally violated at θ0.

S3.1. Numerical Simulations

In this section, we describe a small simulation study to assess the finite
sample relevance of the asymptotic results in Theorem 3.1. We simulate
data according to Example S3.1, using the following parameterization for the
data generating process: θ0 = (0�1�−0�5), SX = {(1�0)� (0�1)} (i.e., dx = 2),
Pr(X = (1�0)) = Pr(X = (0�1)) = 0�5, Y ∈ {0�1} is a binary random vari-
able, G(x�θ) = �(θ′x), where �(·) denotes the standard normal cumula-
tive distribution function (i.e., F0 implies that this is a Probit model), and
Pr(Z = 1|X = x) = I(x = (1�0)) + 0�5I(x = (0�1)). According to the param-
eterization, Y is always observed when X = (1�0). The model then results in
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two moment inequalities and one moment equality (i.e., p = 2 and k = 3).1
We compare PA, subsampling, and GMS critical values, together with the test
function S1 from Eq. (2.9).

The remaining parameters of the simulation are as follows. The sample size
is n = 1,000 and the number of Monte Carlo simulations is MC = 500. All
of the critical values are approximated by simulation and, in every case, a to-
tal of B = 200 simulations are used. The subsampling block size b is allowed
to be 2n/25, (2n/25 + n1/2)/2, and n1/2, resulting in three subsampling pro-
cedures: SS1, SS2, and SS3, respectively. The GMS tuning parameter κn is
allowed to be ln lnn, (ln lnn+ lnn)/2, and lnn, resulting in three GMS proce-
dures: GMS1, GMS2, and GMS3, respectively. Finally, we take rl = r∗ ≥ 0 for
l = 1�2�3, where r∗n−1/2 is allowed to be any number in an equally spaced grid
of numbers from 0 to 0�1.2

For simplicity, instead of focusing on the distortions in the confidence size
of the CSs, we look at the distortions in the size of tests for the null hypothesis
H0 :θ0 = (0�1�−0�5). This substitution simplifies the computations significantly
and provides conclusions that can also be applied to the confidence size of CSs,
as explained in Remark 2.3. Under the null hypothesis, it follows that

EF0(Y |X = (1�0))= 0�54 and EF0(Y |X = (0�1))= 0�31�(S3.8)

A perturbation F ′ of F0 results in different values of the expectations
EF ′(Y |X = x).3 In our simulation exercise, we consider the set of all distri-
butions F ′ that would result in values of EF ′(Y |X = x) that are in a small
neighborhood of the predictions of the model under the null hypothesis. In
particular, for any r∗ ≥ 0, we consider the set of models Fr∗ defined as

Fr∗ ≡
⎧⎨
⎩F ′ ∈ P :

⎧⎨
⎩

[EF ′m1(Wi� θ0)/σF ′�1(θ0)]− ≤ r∗n−1/2

[EF ′m2(Wi� θ0)/σF ′�2(θ0)]− ≤ r∗n−1/2

|EF ′m3(Wi� θ0)/σF ′�3(θ0)| ≤ r∗n−1/2

⎫⎬
⎭

⎫⎬
⎭ �(S3.9)

where P is the set of all distributions that satisfy the restrictions of the data
generating process and

m1(Wi� θ0)= (YZ + (1 −Z)−G(Xi�θ0))I(Xi = (0�1))�(S3.10)

m2(Wi� θ0)= (G(Xi�θ0)−YZ)I(Xi = (0�1))�

m3(Wi� θ0)= (Y −G(Xi�θ0))I(Xi = (1�0))�

1For simplicity, we also assume that the distributions of X and Z are known and fixed by design
and, thus, the researcher is effectively conducting inference about the (conditional) distribution
of Y .

2For r∗n−1/2 ≥ 0�1, all of the inferential methods are 100% distorted.
3For example, if the model was a Logit model, then EF ′(Y |X = (1�0)) = Λ(0�1) = 0�53 and

EF ′(Y |X = (0�1)) = Λ(−0�5) = 0�37, where Λ denotes the logistic cumulative distribution func-
tion.
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TABLE S.I

MAXIMUM REJECTION PROBABILITY OVER CORRECTLY
SPECIFIED MODELS (I.E., r∗n−1/2 = 0)a

PA SS1 SS2 SS3 GMS1 GMS2 GMS3

0.07 0.065 0.035 0.005 0.105 0.105 0.105

aSimulation parameters: n = 1,000, MC = 500, B = 200, b = {2n/25�
(2n/25 + n1/2)/2� n1/2}, κn = {ln lnn� (ln lnn+ lnn)/2� lnn}, and α= 0�10.

Given a value of r∗ ≥ 0, we explore all models that are in Fr∗ and compare the
maximum rejection probabilities across inferential methods. That is, we report

sup
F∈Fr∗

PrF(Tn(θ0) > cn(θ0�1 − α))(S3.11)

for each choice of critical value, which involves simulating data from all F ′ ∈
Fr∗ .4

Under correct specification (i.e., r∗ = 0) and in the limit, the hypothesis tests
based on PA are conservative, whereas the ones based on subsampling and
GMS are size correct. Table S.I reports the empirical rejection rates under
correct specification for each inferential method for a size of α = 0�10. As ex-
pected, PA appears to be conservative and GMS appear to be size correct,
whereas subsampling is unexpectedly very conservative. These differences be-
tween the rejection rates and size under correct specification will complicate
the comparison across methods as we allow for misspecification. To make the
results comparable, we size correct the maximum rejection probabilities so that
they are all equal to the size. Finally, we also report the noncorrected results
for PA, as it is actually conservative.

The results are reported in Table S.II. The results reveal that the noncor-
rected PA has a smaller maximum rejection probability than subsampling or
GMS for all levels of misspecification. Furthermore, the corrected PA, sub-
sampling, and GMS have very similar maximum rejection probabilities for all
levels of misspecification. In particular, the finite sample rejection probabilities
of GMS and subsampling are very similar, and the differences are not statis-
tically significant given the MC = 500 simulations. All these results are in line
with Theorem 3.1. Finally, the table also illustrates that the robustness of PA

4The optimization problem in Eq. (S3.11) was solved numerically. The details of this compu-
tation are as follows. We selected a fine grid of 15,000 points in Θ = [0�1]2; 10,201 of them were
chosen equidistantly and the remaining ones were chosen at random using a distribution with
a high concentration around F0. For all of these points, we computed the rejection probability.
Finally, to compute Eq. (S3.11) for a particular value of r∗, we determined which subset of the
15,000 points belongs to Fr∗ and reported the maximum value attained in this subset.
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TABLE S.II

SIZE-CORRECTED MAXIMUM REJECTION PROBABILITY OVER MODELS WITH A MAXIMUM
MISSPECIFICATION OF r∗n−1/2 a

r∗n−1/2 PA noncorr. PA SS1 SS2 SS3 GMS1 GMS2 GMS3

0 0.07 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.005 0.08 0.12 0.11 0.15 0.35 0.12 0.12 0.12
0.010 0.11 0.14 0.14 0.16 0.37 0.14 0.14 0.14
0.015 0.16 0.18 0.21 0.21 0.37 0.19 0.19 0.19
0.020 0.17 0.23 0.23 0.25 0.37 0.25 0.25 0.25
0.025 0.24 0.30 0.31 0.30 0.38 0.30 0.30 0.30
0.030 0.28 0.35 0.35 0.34 0.38 0.35 0.35 0.35
0.035 0.39 0.43 0.44 0.42 0.38 0.43 0.43 0.43
0.040 0.40 0.49 0.48 0.48 0.38 0.52 0.52 0.52
0.045 0.52 0.61 0.62 0.61 0.40 0.62 0.62 0.62
0.050 0.63 0.68 0.69 0.69 0.49 0.69 0.69 0.69
0.055 0.71 0.76 0.77 0.77 0.60 0.78 0.78 0.78
0.060 0.75 0.81 0.81 0.81 0.64 0.82 0.82 0.82
0.065 0.88 0.91 0.91 0.91 0.75 0.91 0.91 0.91
0.070 0.91 0.93 0.95 0.93 0.81 0.93 0.93 0.93
0.075 0.93 0.96 0.96 0.94 0.86 0.96 0.96 0.96
0.080 0.97 0.98 0.98 0.98 0.93 0.99 0.99 0.99
0.085 0.98 0.99 1.00 0.99 0.96 1.00 1.00 1.00
0.090 0.99 1.00 1.00 1.00 0.97 1.00 1.00 1.00
0.095 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
0.100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

aSimulation parameters: n= 1,000, MC = 500, B = 200, b = {2n/25� (2n/25 +n1/2)/2� n1/2}, κn = {ln lnn� (ln lnn+
lnn)/2� lnn}, and α = 0�10.

is related to the fact that the method is conservative under correct specifica-
tion.

S4. VERIFICATION OF ASSUMPTIONS IN THE EXAMPLES

S4.1. Example S3.1

We start by writing the example using the notation in Definition 2.1 and using
the following primitive assumption. For the assumption, we use the following
notation. Prn denotes the probability with respect to the distribution Fn, Il ≡
I(X = xl), pl�n = Prn(X = xl), πl�n = Prn(Z = 1|X = xl), El�n = EFn(Y |Z =
1�X = xl), Hl�n =EFn(Y

2|Z = 1�X = xl), and Gl�n =G(xl� θn).

ASSUMPTION S4.1: Assume that, for c1� c2� c3� c4 ∈ R, (i) pl�n ≥ c1 > 0,
(ii) Hn�l ≤ c2 < ∞, Hn�l − E2

n�l ≥ c3 > 0, and πl�n ≥ c4 > 0 for all n ≥ 1 and
l = 1� � � � � dx.

For simplicity, assume that YL(xl) and YH(xl) are both finite for all l =
1� � � � � dx. Without loss of generality, assume that YL(xl) = 0 and YH(xl) = 1,
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so that

γ1�l�1�n ≡ σ−1
Fn�l�1EFnm1�l(Wi� θn)(S4.1)

= σ−1
Fn�l�1EFn

[
(YZ −G(xl� θn)+ 1 −Z)Il

]
= σ−1

Fn�l�1(πl�nEl�n −Gl�n + (1 −πl�n))pl�n ≥ −rl�1n
−1/2�

γ1�l�2�n ≡ σ−1
Fn�l�2EFnm2�l(Wi� θn)= σ−1

Fn�l�2EFn

[
(G(xl� θn)−YZ)Il

]
(S4.2)

= σ−1
Fn�l�2(Gl�n −El�nπl�n)pl�n ≥ −rl�2n

−1/2�

where σ2
Fn�l�j

≡ VFn(mj�l(Wi� θn)), for j = 1�2 and l = 1� � � � � dx, is given by

σ2
Fn�l�1 = pl�nπl�n[(Hl�n −E2

l�n)+ (1 −πl�n)(1 −El�n)
2]�(S4.3)

σ2
Fn�l�2 = pl�nπl�n[(Hl�n −E2

l�n)+ (1 −πl�n)(El�n − 2Gl�n)
2]�(S4.4)

Also, for l = 1� � � � � dx,

ρ12�l�n ≡ EFn(m1�l(Wi� θn)m2�l(Wi� θn))(S4.5)

= EFn[(YZ −Gl�n + 1 −Z)(Gl�n −YZ)Il]
= (1 −πl�n)pl�n[Gl�n(1 −pl�n)+El�nπl�npl�n] − σ2

Fn�l�2�(S4.6)

This model satisfies the relationship

ml�1(Wi� θn)+ml�2(Wi� θn) = (1 −Z)Il�(S4.7)

for l = 1� � � � � dx, so that

γ1�l�1�n = σ−1
Fn�l�1(1 −πl�n)pl�n − σ−1

Fn�l�1σFn�l�2γ1�l�2�n�(S4.8)

S4.1.1. On Assumption A.5

We begin with the case dx = 1 and cover the case dx > 1 afterward. By Defini-
tion A.1, γωn�g1�h denotes a sequence of parameter vectors θωn and distributions
Fωn for Wi such that ω1/2

n γ1�j�ωn → h1�j and b1/2
ωn
γ1�j�ωn → g1�j for j ∈ {1�2}.

For a given γωn�g1�h, denote by J the set of j ∈ {1�2} that satisfy h1�j = ∞ and
g1�j < ∞. By Assumption S4.1, there are constants 0 < B1 < B2 < ∞ such that
σFn�j ∈ [B1�B2] for all j ∈ {1�2} and n ∈ N, which implies that EFnmj(Wi�θn) =
o(1) for all j ∈ J. When J is empty, there is nothing to show. We are therefore
left with Cases (I) J = {1}, (II) J = {2}, and (III) J = {1�2}. We start with the
case J = {1} and consider two subcases. In Case (a), h1�2 <∞, while in Case (b),
we have h1�2 = ∞ and g1�2 = ∞. To simplify notation, we write n rather than
ω̃n and b instead of bω̃n .

Case (I)(a). Since h1�2 <∞, it follows by previous arguments that EFnm2(Wi�
θn)= o(1). By Eq. (S4.7), (1 −πn)= o(1) and En =Gn + o(1). It then follows
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that ρ12�n → −1. Consider an alternative sequence of parameters {θ′
n�F

′
n}n≥1

such that θ′
n = θn (so G′

n = Gn), H ′
n = Hn, π ′

n and E′
n given by

π ′
n = (

1 − (lnb)b−1/2
) → 1�(S4.9)

E′
n = (

Gn + h1�2σFn�2n
−1/2 − (lnb)b−1/2

)(
1 − (lnb)b−1/2

)−1
(S4.10)

=En + o(1)�

This implies

(1 −π ′
n)= (lnb)b−1/2 = o(1)�(S4.11)

(G′
n −π ′

nE
′
n)= −h1�2σFn�2n

−1/2 + (lnb)b−1/2 = o(1)�(S4.12)

and σF ′
n�jσ

−1
Fn�j

= 1 + o(1) for j = 1�2. As a result,

b1/2σ−1
F ′
n�1
EF ′

n
m1(Wi� θ

′
n)= σ−1

F ′
n�1

(−b1/2
(
h1�2σFn�1

)
n−1/2 + lnb

) → ∞�(S4.13)

n1/2σ−1
F ′
n�2
EF ′

n
m2(Wi� θ

′
n)= σ−1

F ′
n�2

(
h1�2σFn�1

) → h1�2�(S4.14)

Finally, by π ′
n → 1 and Assumption S4.1, ρ′

12�n ≡ CorrF ′
n
(m1(Wi� θ

′
n)�m2(Wi�

θ′
n))→ −1.
Case (I)(b). Since σFn�2 ∈ [B1�B2], it follows that limEFnm2(Wi� θn) ∈ [0�∞].

In this case, lim(1 − πn) ∈ [0�1]. Consider an alternative sequence of param-
eters {θ′

n�F
′
n}n≥1 such that θ′

n = θn (so G′
n = Gn), H ′

n = Hn, π ′
n and E′

n given
by

π ′
n = πn − 2(lnb)b−1/2 = πn + o(1)�(S4.15)

E′
n = (

πnEn − (lnb)b−1/2
)(
πn − 2(lnb)b−1/2

)−1 =En + o(1)�(S4.16)

where we used πn ≥ c4 > 0. This implies σF ′
n�jσ

−1
Fn�j

= 1 + o(1) for j = 1�2. It
then follows that

b1/2σ−1
F ′
n�1
EF ′

n
m1(Wi� θ

′
n)(S4.17)

= b1/2σ−1
Fn�1EFnm1(Wi� θn)+ σ−1

F ′
n�1

lnb+ o(1)→ ∞�

b1/2σ−1
F ′
n�2
EF ′

n
m2(Wi� θ

′
n)(S4.18)

= b1/2σ−1
Fn�2EFnm2(Wi� θn)+ σ−1

F ′
n�2

lnb+ o(1)→ ∞�

Finally, Assumption S4.1 and Eq. (S4.6) imply

ρ′
12�n ≡ CorrF ′

n
(m1(Wi� θ

′
n)�m2(Wi� θ

′
n))= ρ12�n + o(1)�(S4.19)

Case (II). This case is analogous to Case (I) and is therefore omitted.
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Case (III). By Eq. (S4.7), (1 − πn) = o(1) and En = Gn + o(1). As a conse-
quence of this and Assumption S4.1, it follows that ρ12�n → −1. Consider an
alternative sequence of parameters {θ′

n�F
′
n}n≥1 such that θ′

n = θn (so G′
n = Gn),

H ′
n = Hn, π ′

n and E′
n given by Eqs. (S4.15) and (S4.16). Then, Eqs. (S4.17)–

(S4.19) follow, and this concludes the proof for the case dx = 1.
Now consider the case dx > 1. Notice that in the case with dx = 1, we consid-

ered a sequence of parameters {θ′
n�F

′
n}n≥1 such that θ′

n = θn and

σ−1
F ′
n�1
EF ′

n
m1(Wi� θ

′
n)= σ−1

Fn�1EFnm1(Wi� θn)+ o(1)�(S4.20)

σ−1
F ′
n�2
EF ′

n
m2(Wi� θ

′
n)= σ−1

Fn�2EFnm2(Wi� θn)+ o(1)�(S4.21)

lim CorrF ′
n
(m1(Wi� θ

′
n)�m2(Wi� θ

′
n))(S4.22)

= lim CorrFn(m1(Wi� θn)�m2(Wi� θn))�

When dx > 1, we consider an alternative sequence of parameters {θ′
n�F

′
n}n≥1

such that, for each l = 1� � � � � dx, we set p′
l�n = pl�n, θ′

n = θn (so G′
l�n = Gl�n), and

the rest of the choices of the alternative distribution would be chosen according
to the corresponding case in the previous part. According to this, it follows that,
for every l = 1� � � � � dx,

σ−1
F ′
n�1�l

EF ′
n
m1�l(Wi� θ

′
n)= σ−1

Fn�1�lEFnm1�l(Wi� θn)+ o(1)�(S4.23)

σ−1
F ′
n�2�l

EF ′
n
m2�l(Wi� θ

′
n)= σ−1

Fn�2�lEFnm2�l(Wi� θn)+ o(1)�(S4.24)

lim CorrF ′
n
(m1�l(Wi� θ

′
n)�m2�l(Wi� θ

′
n))(S4.25)

= lim CorrFn(m1�l(Wi� θn)�m2�l(Wi� θn))�

To conclude the proof, we notice that, for l1� l2 = 1� � � � � dx with l1 �= l2 and
a1� a2 ∈ {1�2},

CorrF ′
n

(
ma1�l1(Wi� θ

′
n)�ma2�l2(Wi� θ

′
n)

)
(S4.26)

= −σ−1
F ′
n�a1�l1

EF ′
n
ma1�l1(Wi� θ

′
n)σ

−1
F ′
n�a2�l2

EF ′
n
ma2�l2(Wi� θ

′
n)+ o(1)

= −σ−1
Fn�a1�l1

EFnma1�l1(Wi� θn)σ
−1
Fn�a2�l2

EFnma2�l2(Wi� θn)+ o(1)

= CorrFn
(
ma1�l1(Wi� θn)�ma2�l2(Wi� θn)

) + o(1)�

S4.1.2. On Assumption A.6

We verify Assumption A.6 for r∗ > 0. For simplicity, consider the case dx = 1.
Choose a sequence of parameters {θn�Fn}n≥1 with 1 − πn = o(1) and limiting
parameter h∗

1�1 < 0. By Eq. (S4.8), h∗
1�2 = −h∗

1�1 > 0 and h∗
2 is a 2 × 2 matrix

equal to [1�−1;−1�1].
First, consider the test function S1. Let c0(h

∗
2�1 −α) be the 1 −α quantile of

S1

(
Zh∗

2
�h∗

2

) = [Z1]2
− + [−Z1]2

− = Z2
1� Zh∗

2
= (Z1�Z2)∼N(0�h∗

2)�(S4.27)
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Note that

S1

(
Zh∗

2
+ h∗

1�h
∗
2

) = [Z1 + h∗
1�1]2

− + [−Z1 − h∗
1�1]2

− = (Z1 + h∗
1�1)

2�(S4.28)

and since Pr((Z1 + h∗
1�1)

2 ≤ x) < Pr(Z2
1 ≤ x) for h∗

1�1 < 0, Pr((Z1 + h∗
1�1)

2 ≤
c0(h

∗
2�1 − α)) < 1 − α. Assumption A.6 then holds.

Second, consider the test function S2. We consider the version of S2 in
Eq. (3.5), as here the limit correlation matrix is singular (i.e., the test function
should be defined on Ψ1). Using the definition of Σ̃ε in Eq. (3.15), it follows
that

Ω̃∗
ε =

[
1 + ε −1
−1 1 + ε

]
and Ω̃∗�−1

ε = a(ε)

[
1 + ε 1

1 1 + ε

]
�(S4.29)

where a(ε)= [(1 + ε)2 − 1]−1. As a result,

S̃2

(
Zh∗

2
� Ω̃∗

ε

)
(S4.30)

= (1 + ε)a(ε)

× inf
t1≥0�t2≥0

{(Z1 − t1)
2 + (Z2 − t2)

2 + 2(1 + ε)−1(Z1 − t1)(Z2 − t2)}
= (1 + ε)a(ε)

× inf
t1≥0�t2≥0

{(Z1 − t1)
2 + (Z1 + t2)

2 − 2(1 + ε)−1(Z1 − t1)(Z1 + t2)}

= 1
1 + ε

Z2
1�

where the first equality holds by definition, the second equality holds because
Zh∗

2
is such that Z2 = −Z1, and the third equality holds by solving the optimiza-

tion. Since Z2 + h∗
1�2 = −Z1 − h∗

1�1 we also have

S̃2

(
Zh∗

2
+ h∗

1� Ω̃
∗
ε

) = 1
1 + ε

(Z1 + h∗
1�1)

2�(S4.31)

where h∗
1�1 < 0. Let c0(h

∗
2�1 − α) be the 1 − α quantile of S̃2(Z� Ω̃∗

ε) in
Eq. (S4.30). Since Pr((Z1 + h∗

1�1)
2 ≤ x) < Pr(Z2

1 ≤ x) for h∗
1�1 < 0, Pr((1 +

ε)−1(Z1 +h∗
1�1)

2 ≤ c0(h
∗
2�1−α)) < 1−α. Assumption A.6 then holds. The gen-

eral case where dx > 1 follows by applying the previous argument to each pair
of moment inequalities.

S4.2. Example 2.1

We start again by writing the example using the notation in Definition 2.1.
For simplicity of the argument, we assume that the distribution G is uniform,
as stated below.
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ASSUMPTION S4.2: Under the distribution G, ui = (u1�i� u2�i) is uniformly dis-
tributed on [0�1]2.

Let θn = (θ1�n� θ2�n) be the true parameter vector, Prn(·) be the probability
with respect to the distribution Fn of Wi, prs�n ≡ Prn(W1�i = r�W2�i = s) for r� s ∈
{0�1}, and ρjj′�n ≡ CorrFn[mj(Wi�θn)�mj′(Wi� θn)] for j� j′ ∈ {1�2�3}. As defined
in the text, Gn denotes the true distribution of ui for sample size n. Under
Assumption S4.2, we have

γ1�1�n ≡ σ−1
Fn�1EFn[G1(θn)−W1�i(1 −W2�i)] = σ−1

Fn�1(θ2�n −p10�n)�(S4.32)

γ1�2�n ≡ σ−1
Fn�2EFn[W1�i(1 −W2�i)−G2(θn)]

= σ−1
Fn�2(p10�n − (1 − θ1�n)θ2�n)�

γ1�3�n ≡ σ−1
Fn�3EFn[W1�iW2�i −G3(θn)]

= σ−1
Fn�3(p11�n − (1 − θ1�n)(1 − θ2�n))�

By simple calculations, we have

σ2
Fn�1 = σ2

Fn�2 = VarFn[m1(Wi� θn)] = p10�n(1 −p10�n) ∈ (0�1/4]�(S4.33)

σ2
Fn�3 = VarFn[m3(Wi� θn)] = p11�n(1 −p11�n) ∈ (0�1/4]�

ρ12�n = −1� ρ13�n = p10�np11�n

σFn�1σFn�3
� and ρ23�n = −ρ13�n�

where zero variances have been ruled out by Definition 2.1(iv). By Defini-
tion A.1, γωn�g1�h denotes a sequence of parameter vectors θωn and distributions
Fωn for Wi such that ω1/2

n γ1�j�ωn → h1�j and b1/2
ωn
γ1�j�ωn → g1�j , for j ∈ {1�2�3}. Re-

call that γωn�g1�h defines θωn = (θ1�ωn� θ2�ωn) and thus defines G1(θωn)�G2(θωn),
and G3(θωn).

S4.2.1. On Assumption A.5

For a given γωn�g1�h, denote by J the set of j ∈ {1�2} that satisfy h1�j = ∞
and g1�j <∞. When J is empty, there is nothing to show. We are therefore left
with the cases J = {1}, J = {2}, and J = {1�2}. We start with the case J = {1}
and consider two subcases. In Case (I), h1�2 < ∞, while in Case (II), we have
h1�2 = ∞ and g1�2 = ∞. For each subcase, we consider two further subcases: in
Case (a), ρ13�n → 0, while in Case (b), ρ13�n → ρ13 ∈ (0�1]. To simplify notation,
we write n rather than ω̃n and b instead of bω̃n .

REMARK S4.1: Note that, for any positive numbers a10, a01, a11 whose
sum equals 1 and θ = (θ1� θ2) ∈ (0�1)2, there exists a random variable ui =
(u1�i� u2�i) on [0�1]2 with continuous distribution such that Pr(u1�i > θ1 and
u2�i < θ2) = a10, Pr(u1�i < θ1 and u2�i > θ2) = a01, and Pr(u1�i > θ1 and u2�i >
θ2)= a11 (and consequently Pr(u1�i < θ1 and u2�i < θ2)= 0).
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Letting a10, a01, a11 play the role of p10�n, p01�n, p11�n, Remark S4.1 implies
that, for a given vector θn = (θ1�n� θ2�n), any desired outcome probabilities p10�n,
p01�n, p11�n can be generated by a random variable ui = (u1�i� u2�i) that has a
continuous distribution Gn.

Case (I)(a). We have to produce a sequence γn�g̃1�h for which g̃1�1 = ∞, h1�2 is
a specific finite number, and the upper right element of h2 equals 0. Define

p′
10�n = b−3/7�(S4.34)

Let θ′
n = (θ′

1�n� θ
′
2�n) for θ′

1�n and θ′
2�n defined next. Pick θ′

2�n ∈ (0�1) such that

G1(θ
′
n)= θ′

2�n = p′
10�n + b−1/2(p′

10�n(1 −p′
10�n))

1/2b2/7�(S4.35)

and pick θ′
1�n ∈ (0�1) such that

G2(θ
′
n)= (1 − θ′

1�n)θ
′
2�n = p′

10�n − n−1/2(p′
10�n(1 −p′

10�n))
1/2h1�2�(S4.36)

This is clearly possible because p′
10�n → 0, |n−1/2(p′

10�n(1−p′
10�n))

1/2h1�2|<p′
10�n,

and b−1/2(p′
10�n(1 − p′

10�n))
1/2b2/7 → 0. We have G1(θ

′
n) = θ′

2�n = 2b−3/7(1 +
o(1)), G2(θ

′
n) = b−3/7(1 + o(1)). Now

b−3/7(1+o(1))=G2(θ
′
n)= (1−θ′

1�n)θ
′
2�n = 2(1−θ′

1�n)b
−3/7(1+o(1))�(S4.37)

which implies that θ′
1�n cannot converge to 1. Without loss of generality, we can

therefore assume that θ′
1�n → θ′

1 for some θ′
1 ∈ [0�1). We then have

G3(θ
′
n)= (1 − θ′

1�n)(1 − θ′
2�n)→ (1 − θ′

1)�(S4.38)

Consider the function

f (x) ≡ x− h1�3n
−1/2(x(1 − x))1/2(S4.39)

for x ∈ [0�1]. The function f is continuous and satisfies f (0)= 0 and f (1)= 1.
Therefore, for given G3(θ

′
n), the intermediate value theorem implies that there

exists a value p′
11�n such that

G3(θ
′
n)= p′

11�n − h1�3n
−1/2(p′

11�n(1 −p′
11�n))

1/2�(S4.40)

Define p′
11�n to be any value in (0�1) that satisfies Eq. (S4.40). It cannot be

the case that p′
11�n → 1, as otherwise we would have G3(θ

′
n)→ 1, contradicting

Eq. (S4.38). Therefore, without loss of generality, p′
11�n → p′

11 for some p′
11 ∈

[0�1). Note that p′
10�n → 0 and p′

11 ∈ [0�1) imply that

ρ′
13�n = p′

10�np
′
11�n

σ ′
Fn�1σ

′
Fn�3

→ 0�(S4.41)
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For these given choices of p′
10�n, p′

11�n, and θ′
n = (θ′

1�n� θ
′
2�n), Remark S4.1 im-

plies that there exists a continuous distribution G′
n for the random variable

ui = (u1�i� u2�i) such that Pr(u1�i > θ′
1�n and u2�i < θ′

2�n) = p′
10�n, Pr(u1�i < θ′

1�n

and u2�i > θ′
2�n)= 1 −p′

10�n −p′
11�n, and Pr(u1�i > θ′

1�n and u2�i > θ′
2�n)= p′

11�n. By
construction, all requirements are fulfilled under the sequence θ′

n and G′
n.

Case (I)(b). We have to produce a sequence γn�g̃1�h for which g̃1�1 = ∞, h1�2 <
∞, and the upper right element of h2 equals ρ13 ∈ (0�1]. Assume first that
ρ13 ∈ (0�1). Define

p′
10�n = cb−1/7(S4.42)

for some constant c > 0, and define (θ′
1�n� θ

′
2�n) ∈ (0�1)2 as in Eqs. (S4.35) and

(S4.36). We then have θ′
2�n = cb−1/7 + c1/2b−2/7(1 + o(1)) and (1 − θ′

1�n)θ
′
2�n =

cb−1/7 + o(b−2/7) and thus

θ′
1�n = 1 − cb−1/7 + o(b−2/7)

cb−1/7 + c1/2b−2/7(1 + o(1))
= c−1/2b−1/7(1 + o(1))�(S4.43)

Next,

G3(θ
′
n) = (1 − θ′

1�n)(1 − θ′
2�n)(S4.44)

= (
1 − c−1/2b−1/7(1 + o(1))

)(
1 − cb−1/7(1 + o(1))

)
= 1 − (

c−1/2 + c
)
b−1/7(1 + o(1))�

Arguing as in Case (I)(a), there is a value p′
11�n ∈ (0�1) such that

G3(θ
′
n)= p′

11�n − h1�3n
−1/2(p′

11�n(1 −p′
11�n))

1/2�(S4.45)

As G3(θ
′
n)→ 1, we have p′

11�n → 1. More precisely,

p′
11�n = G3(θ

′
n)+ h1�3n

−1/2(p′
11�n(1 −p′

11�n))
1/2(S4.46)

= 1 − (
c−1/2 + c

)
b−1/7(1 + o(1))�

Therefore,

ρ′
13�n ≡

(
p′

10�np
′
11�n

(1 −p′
10�n)(1 −p′

11�n)

)1/2

(S4.47)

=
(

cb−1/7(1 − (c−1/2 + c)b−1/7)

(1 − cb−1/7)((c−1/2 + c)b−1/7)

)1/2

(1 + o(1))

→ (
c/

(
c−1/2 + c

))1/2
�
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The function (c/(c−1/2 + c))1/2 is continuous for c > 0 and converges to 1 as
c → ∞ and to 0 as c → 0. There is therefore c > 0 such that (c/(c−1/2 +c))1/2 =
ρ13. The proof is then concluded as in Case (I)(a). If ρ13 = 1, the same proof
applies once the constant c in Eq. (S4.42) is replaced by the sequence cn = lnb
that slowly converges to infinity.

Case (II)(a). We have to produce a sequence γn�g̃1�h for which g̃1�1 = g̃1�2 = ∞
and the upper right element of h2 equals zero. Define

p′
10�n = b−3/7�(S4.48)

Let θ′
n = (θ′

1�n� θ
′
2�n) ∈ (0�1)2 be defined as follows. Let θ′

2�n ∈ (0�1) be such that

G1(θ
′
n)= θ′

2�n = p′
10�n + b−1/2(p′

10�n(1 −p′
10�n))

1/2b2/7�(S4.49)

and pick θ′
1�n ∈ (0�1) such that

G2(θ
′
n)= (1 − θ′

1�n)θ
′
2�n = p′

10�n − b−1/2(p′
10�n(1 −p′

10�n))
1/2b1/7�(S4.50)

As in Case (I)(a), we have G1(θ
′
n) = 2b−3/7(1 + o(1)) and G2(θ

′
n) = b−3/7(1 +

o(1)). Using the same steps as in Case (I)(a), we have θ′
1�n → θ′

1 for some
θ′

1 ∈ [0�1) and thus that G3(θ
′
n) converges to a number smaller than 1. Then

again, there exists p′
11�n such that G3(θ

′
n) = p′

11�n − h1�3n
−1/2(p′

11�n(1 −p′
11�n))

1/2

and p′
11�n → p′

11 for some p′
11 ∈ [0�1). Therefore, we have again that ρ′

13�n → 0
and the proof concludes as in Case (I)(a).

Case (II)(b). We have to produce a sequence γn�g̃1�h for which g̃1�1 = g̃1�2 = ∞
and the upper right element of h2 equals ρ13 ∈ (0�1]. The proof follows along
the same lines as Case (I)(b) with the one difference that G2(θ

′
n) is defined as

in Eq. (S4.50).
That concludes the verification of the assumption for the case J = {1}. Re-

garding the other cases, note that the case J = {1�2} is covered by Cases (II)(a)
and (II)(b) above. The verification of the assumption in case J = {2} is also par-
tially covered by Cases (II)(a) and (II)(b), and the remaining cases for J = {2}
are similar to Cases (I)(a) and (I)(b) above for J = {1}, and therefore omitted.

S4.2.2. On Assumption A.6

The verification of Assumption A.6 follows almost identical steps to those
used in Section S4.1.2 and is therefore omitted.

S5. ADDITIONAL DISCUSSION ON THEOREM 3.2

To understand the intuition behind Theorem 3.2, it is enough to consider the
case with two moment inequalities, p = k = 2, together with the limit of the PA
critical value. In this case it follows from Lemma S1.1 that

AsySz(1)PA ≤ Pr([Z�
1 − r1]2

− + [−Z�
1]2

− ≤ c0(Ω�1 − α))�(S5.1)
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where Z� ∼ N(0�Ω) and Ω ∈ Ψ1 is a correlation matrix with off-diagonal ele-
ments ρ= −1. Theorem 3.2 shows that AsySz(1)PA is strictly positive provided the
amount of misspecification is not too big, that is, r∗ ≤ B. The reason why some
condition on r∗ must be placed is evident: if the amount of misspecification
is really big, there is no way to bound the asymptotic distortion. To illustrate
this, suppose r1 > (2c0(Ω�1 − α))1/2 and let A ≡ [Z�

1 − r1]2
− and B ≡ [−Z�

1]2
−

so that the RHS of Eq. (S5.1) is Pr(A + B ≤ c0(Ω�1 − α)). On the one hand,
if Z�

1 /∈ [0� r1], it follows that either B = 0 and A> c0(Ω�1 − α) or A = 0 and
B > c0(Ω�1 −α). On the other hand, if Z�

1 ∈ [0� r1], A+B = (Z�
1 − r1)

2 +Z�2
1 ≥

r2
1/2 > c0(Ω�1 − α). We can then conclude that

Pr([Z�
1 − r1]2

− + [−Z�
1]2

− ≤ c0(Ω�1 − α))= 0�(S5.2)

meaning that AsySz(1)PA = 0 when r∗ > (2c0(Ω�1 − α))1/2. For this level of r∗,
AsySz(2)PA = 0 as well, so both test statistics suffer from the maximum amount of
distortion. Therefore, to get nontrivial results, we must restrict the magnitude
of r∗ as in Theorem 3.2.

In addition, Theorem 3.2 shows that AsySz(2)PA can be arbitrarily close to zero
when ε in the space Ψ2�ε is small. What drives this result is the possibility that
at least two inequalities are violated (or one is violated and the other one is
binding) and strongly negatively correlated. To illustrate this, consider again
the case where p = k = 2 together with the limit of the PA critical value. By
Ω ∈ Ψ2�ε, the off-diagonal element ρ of the correlation matrix Ω has to lie in
[−(1 − ε)1/2� (1 − ε)1/2]. It follows from Lemma S1.1 that

AsySz(2)PA ≤ Pr(S2(Z
�� r1�Ωε)≤ c0(Ωε�1 − α))�(S5.3)

where Z� ∼N(0�Ωε), Ωε is a matrix with ρ= −(1 − ε)1/2, and

S2(Z
�� r1�Ωε) = 1

ε
inf

t∈R
2+�+∞

{
2∑

j=1

(Z�
j − r1 − tj)

2(S5.4)

+ 2(1 − ε)1/2(Z�
1 − r1 − t1)(Z

�
2 − r1 − t2)

}
�

The solution to the above optimization problem can be divided in four cases
(see Lemma S1.2 for details), depending on the value of the realizations
(Z�

1�Z
�
2). However, there exists a set A ⊂ R

2 such that, for all (z1� z2) ∈A,

S2(z� r1�Ωε)≥ S2(z�0�Ωε)+ 2
ε
[r2

1 − z1 − z2]�(S5.5)

with [r2
1 − z1 − z2] > 0, and Pr(Z� ∈ A) → 1 as ε → 0. It is immediate from

Eq. (S5.5) that small distortions r1 > 0 can produce a value of S2(Z
�� r1�Ωε)
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that is arbitrarily high on the set A by allowing ε to be arbitrarily close to zero,
that is, correlation close to −1. Since c0(Ωε�1−α) can be shown to be bounded
in Ψ2�ε, it follows that

Pr(S2(Z
�� r1�Ωε) ≤ c0(Ωε�1 − α)|A)→ 0�(S5.6)

as ε → 0. Therefore, Eq. (S5.3) implies that CSs based on S2 have asymptotic
confidence size arbitrarily close to zero when ε is small.

S6. DETAILS OF THE NUMERICAL COMPUTATIONS IN TABLE I

Table I reports a numerical approximation to the AsySz of the CSs based on
S1 and S2 (with a PA critical value) using the formula in Lemma B.1, that is,

AsySzPA = inf
h=(h1�h2)∈H

Pr(S(Zh + h1�h2)≤ c0(h2�1 − α))�(S6.1)

where Zh ∼ N(0p�h2). Table I reports the cases where p ∈ {2�4�8�10}, k = p,
ε ∈ {0�10�0�05}, and r∗ ∈ {0�25�0�50�1�00}. Therefore, the parameter space H
is given by all the p vectors h1 such that h1�j ≥ −r∗ (i.e., rj = r∗) for all j =
1� � � � �p, and h2 ∈Ψ1 (or Ψ2�ε) for S1 (or S2).

Having defined the parameter space H, we now describe how we compute
the minimizer in Eq. (S6.1). By the nature of the parameter space H, the prob-
lem can be broken down into finding the worst subvectors h1 and h2. In the
case of h1, it is not hard to show that the worst subvector is given by h1�j = −r∗

(i.e., all the inequalities are as violated as possible). The case of h2 is not as
simple, as it is not clear which correlation matrix is the worst case correlation
when p> 2. In the results presented in Table I we use the following three types
of correlation matrix structures:

(a) Matrices h2 of the form

h2 =
[

A 02×(p−2)

0(p−2)×2 Ip−2

]
� where A =

[
1 ρ
ρ 1

]
�(S6.2)

and 0l�s denotes an l× s matrix of zeros. This is the structure used in the proof
of Theorem 3.2. For the test function S2, we set ρ = −√

1 − ε, as we know this
is the worse correlation structure for this test function. For the test function S1,
we consider a grid of 20 points in [−1�1] for ρ and compute Eq. (S6.1) taking
the minimum on this grid. This method generates one probability for S1 and
another one for S2.

(b) Matrices h2 of the form

h2 =

⎡
⎢⎢⎣
A 0 · · · 0

0 A · · · ���
���

� � �
0 · · · A

⎤
⎥⎥⎦ �(S6.3)
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For the test function S2, we set ρ = −√
1 − ε2/p, as we know this is the worse

correlation structure for this test function. For the test function S1, we consider
a grid of 20 points in [−1�1] for ρ and compute Eq. (S6.1) taking the minimum
on this grid. This method again generates one probability for S1 and another
one for S2.

(c) Matrices h2 equal to a random matrix generated by the method of
Marsaglia and Olkin (1984). We generate 15,000 random correlation matri-
ces from Ψ1 for the test function S1, and for the test function S2 we adjust the
correlation matrix so as to satisfy the restriction det(h2) ≥ ε if the randomly
generated matrix has a determinant below ε. We then compute Eq. (S6.1) tak-
ing the minimum of the 15,000 randomly generated matrices. Once more, the
end result is one probability for S1 and another one for S2.

What Table I presents is the minimum value, for each test function S1 and
S2, of the three probabilities derived in each of the above cases. Note that for
each matrix h2 in cases (a), (b), and (c) above (e.g., for each of the 15,000
in case (c)), we approximate the probability in Eq. (S6.1) by generating 2,000
random variables with distribution N(0p�h2).
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