Econometrica Supplementary Material

SUPPLEMENT TO "TESTING FOR SMOOTH STRUCTURAL CHANGES IN TIME SERIES MODELS VIA NONPARAMETRIC REGRESSION" (Econometrica, Vol. 80, No. 3, MAY 2012, 1157–1183)

BY BIN CHEN AND YONGMIAO HONG

MATHEMATICAL APPENDIX

THROUGHOUT THIS APPENDIX, $C \in (1, \infty)$ denotes a generic bounded constant.

PROOF OF THEOREM 1: First we decompose $Th^{1/2}\hat{Q}$:

$$Th^{1/2}\hat{Q} = h^{1/2} \sum_{t=1}^{T} (\mathbf{X}_{t}'\hat{\alpha}_{t} - \mathbf{X}_{t}'\alpha)^{2} + h^{1/2} \sum_{t=1}^{T} (\mathbf{X}_{t}'\hat{\alpha} - \mathbf{X}_{t}'\alpha)^{2} + 2h^{1/2} \sum_{t=1}^{T} (\mathbf{X}_{t}'\hat{\alpha}_{t} - \mathbf{X}_{t}'\alpha) (\mathbf{X}_{t}'\alpha - \mathbf{X}_{t}'\hat{\alpha}) = \hat{J}_{1} + \hat{J}_{2} + \hat{J}_{3}.$$

The Theorem 1 proof consists of the proofs of Theorem A.1–A.3 below, which show that the nonparametric estimation determines the asymptotic mean and variance of $Th^{1/2}\hat{Q}$, and the estimation uncertainty of the parametric estimation is asymptotically negligible. *Q.E.D.*

THEOREM A.1: Under the conditions of Theorem 1, $\hat{H}_1 \equiv (\hat{J}_1 - \hat{A}_H) / \sqrt{\hat{B}_H} \xrightarrow{d} N(0, 1).$

THEOREM A.2: Under the conditions of Theorem 1, $\hat{J}_2 \xrightarrow{p} 0$.

THEOREM A.3: Under the conditions of Theorem 1, $\hat{J}_3 \xrightarrow{p} 0$.

PROOF OF THEOREM A.1: To show $\hat{H}_1 \xrightarrow{d} N(0, 1)$, it suffices to show the following three propositions.

PROPOSITION A.1: Under the conditions of Theorem 1, $T^{-1}h^{-1} \times \sum_{s=1}^{T} k_{st} (\frac{s-t}{Th})^{j} \mathbf{X}_{s} \mathbf{X}'_{s} \xrightarrow{p} \mathbf{M} \int_{-1}^{1} u^{j} k(u) du.$

PROPOSITION A.2: Under the conditions of Theorem 1,

$$\hat{J}_1 = \hat{A}_H + 2\tilde{U} + o_P(1),$$

© 2012 The Econometric Society

DOI: 10.3982/ECTA7990

where

$$\tilde{U} = T^{-1}h^{-1/2}\sum_{s=2}^{T}\sum_{t=1}^{s-1}\varepsilon_s\varepsilon_t\mathbf{X}_t'\mathbf{M}^{-1}\mathbf{X}_sw_{ts}$$

and $w_{ts} = \int_{-1}^{1} k(u)k(u + \frac{r-s}{Th}) du$.

PROPOSITION A.3: Under the conditions of Theorem 1, $2\tilde{U}/\sqrt{\hat{B}_H} \xrightarrow{d} N(0,1)$.

PROOF OF PROPOSITION A.1: The proof is similar to the proof of (15.8) of Robinson (1989). Let X_{ps} be the *p*th element of \mathbf{X}_s and let M_{pr} be the (p, r)th element of \mathbf{M} . For any p, r, we have

$$\begin{split} E \left| T^{-1}h^{-1} \sum_{s=1}^{T} k \left(\frac{s-t}{Th} \right) \left(\frac{s-t}{Th} \right)^{j} (X_{ps}X_{rs} - M_{pr}) \right| \\ &\leq T^{-1}h^{-1} \left\{ E \left[\sum_{|s-t| \leq Th} k \left(\frac{s-t}{Th} \right) \left(\frac{s-t}{Th} \right)^{j} (X_{ps}X_{rs} - M_{pr}) \right]^{2} \right\}^{1/2} \\ &\leq T^{-1}h^{-1} \left[\sum_{|s-t| \leq Th} k^{2} \left(\frac{s-t}{Th} \right) \left(\frac{s-t}{Th} \right)^{2j} E(X_{ps}^{2}X_{rs}^{2}) \right. \\ &+ \sum_{|s-t| \leq Th} \sum_{|s'-t| \leq Th, s \neq s'} \left| k \left(\frac{s-t}{Th} \right) k \left(\frac{s'-t}{Th} \right) \left(\frac{s-t}{Th} \right)^{j} \left(\frac{s'-t}{Th} \right)^{j} \right| \\ &\times (E|X_{ps}X_{rs}|^{2+\delta/2})^{4/(4+\delta)} \beta(|s-s'|)^{\delta/(4+\delta)} \right]^{1/2} \\ &\leq C \left\{ (Th)^{-1/2} + T^{-1}h^{-1} \left[Th \sum_{j \leq Th} \beta(j)^{\delta/(4+\delta)} \right]^{1/2} \right\} = o(1). \end{split}$$

Proposition A.1 follows by the Riemann sum approximation of an integral. Q.E.D.

PROOF OF PROPOSITION A.2: We first decompose

(A1)
$$\hat{J}_{1} = T^{-2}h^{-3/2}\sum_{t=1}^{T}\sum_{s=1}^{T}\varepsilon_{t}^{2}\mathbf{Q}_{tst}k_{st}^{2} + 2T^{-2}h^{-3/2}\sum_{t=1}^{Th}\sum_{s=-T}^{T}\varepsilon_{t}^{2}\mathbf{Q}_{tst}k_{ts}k\left(\frac{t+s}{Th}\right)$$
$$+ T^{-2}h^{-3/2}\sum_{t\neq s\neq r}\varepsilon_{t}\varepsilon_{s}\mathbf{Q}_{srt}k_{rs}k_{rt} + 2T^{-2}h^{-3/2}\sum_{t\neq s}\varepsilon_{t}\varepsilon_{s}\mathbf{Q}_{stt}k_{st}k(0)$$

2

$$+2T^{-2}h^{-3/2}\sum_{s=-T}^{-1}\sum_{t=-T,t\neq\pm s}^{2T}\sum_{r=1}^{T}\varepsilon_{t}\varepsilon_{s}\mathbf{Q}_{srt}k_{rs}k_{rt}+o_{P}(1)$$
$$=C_{1}+C_{2}+U_{1}+R_{1}+R_{2}+o_{P}(1),$$

where $\mathbf{Q}_{srt} = \mathbf{X}'_{s}\mathbf{M}^{-1}\mathbf{X}_{r}\mathbf{X}'_{r}\mathbf{M}^{-1}\mathbf{X}_{t}$. We show that the first two terms determine the asymptotic mean, the third term determines the asymptotic variance, and the remainders are higher order terms.

We further decompose the first term as

(A2)
$$C_{1} = T^{-1}h^{-3/2} \sum_{j=1-T}^{T-1} (1 - |j|/T)k^{2} \left(\frac{j}{Th}\right) C(j) + \left[T^{-2}h^{-3/2} \sum_{t=1}^{T} \sum_{s=1}^{T} \varepsilon_{t}^{2} \mathbf{Q}_{tst} k_{st}^{2} - T^{-1}h^{-3/2} \sum_{j=1-T}^{T-1} (1 - |j|/T)k^{2} \left(\frac{j}{Th}\right) C(j)\right] = C_{11} + R_{3},$$

where $C(j) = E(\varepsilon_{t-|j|}^2 \mathbf{Q}_{t-|j|,t,t-|j|}) = E(\varepsilon_t^2 \mathbf{X}_t' \mathbf{M}^{-1} \mathbf{X}_t) + E[\varepsilon_{t-|j|}^2 \mathbf{X}_{t-|j|}' \mathbf{M}^{-1} (\mathbf{X}_t \mathbf{X}_t' - \mathbf{M}) \mathbf{M}^{-1} \mathbf{X}_{t-|j|}]$. Similarly, we rewrite the second terms as

(A3)
$$C_{2} = T^{-1}h^{-1/2}\sum_{j=1-T}^{T-1} (1-|j|/T)C(j)k\left(\frac{j}{Th}\right)\int_{-1}^{1} k\left(\frac{j}{Th}+2u\right)du$$
$$+ \left\{2T^{-2}h^{-3/2}\sum_{t=1}^{Th}\sum_{s=-T}^{T}\varepsilon_{t}^{2}\mathbf{Q}_{tst}k_{ts}k\left(\frac{t+s}{Th}\right)\right.$$
$$- T^{-1}h^{-1/2}\sum_{j=1-T}^{T-1} (1-|j|/T)C(j)k\left(\frac{j}{Th}\right)\int_{-1}^{1} k\left(\frac{j}{Th}+2u\right)du\right\}$$
$$= C_{21} + R_{4}.$$

We note that $C_{11} + C_{21} = h^{-1/2}C_A E(\varepsilon_t^2 \mathbf{X}_t' \mathbf{M}^{-1} \mathbf{X}_t)[1 + o_P(1)]$, where we have used the mixing inequality for the β -mixing process.

Next, we decompose U_1 . Define

$$\phi(\xi_s, \xi_r, \xi_t) \equiv \varepsilon_t \varepsilon_s \mathbf{Q}_{srt} k_{rs} k_{rt} + \varepsilon_s \varepsilon_r \mathbf{Q}_{rts} k_{tr} k_{ts} + \varepsilon_r \varepsilon_t \mathbf{Q}_{tsr} k_{st} k_{sr}$$
$$\phi_t(\xi_s, \xi_r) \equiv \int \phi(\xi_s, \xi_r, \xi_t) \, dP(\xi_t) = \varepsilon_s \varepsilon_r \mathbf{X}_r' \mathbf{M}^{-1} \mathbf{X}_s k_{tr} k_{ts},$$

where $\xi_s = (\varepsilon_s, \mathbf{X}'_s)$. We can rewrite U_1 as

(A4)
$$U_{1} = \frac{1}{3}T^{-2}h^{-3/2}\sum_{t\neq s\neq r}\phi_{srt} - 2T^{-2}h^{-3/2}\sum_{s\neq t}\varepsilon_{s}\varepsilon_{t}\mathbf{X}_{t}'\mathbf{M}\mathbf{X}_{s}k(0)k_{st}$$
$$+ T^{-2}h^{-3/2}\sum_{s\neq t}\varepsilon_{s}\varepsilon_{t}\mathbf{X}_{t}'\mathbf{M}^{-1}\mathbf{X}_{s}\left(\frac{1}{Th}\sum_{r=1}^{T}k_{rt}k_{rs} - w_{ts}\right)$$
$$+ T^{-2}h^{-3/2}\sum_{s\neq t}\varepsilon_{s}\varepsilon_{t}\mathbf{X}_{t}'\mathbf{M}^{-1}\mathbf{X}_{s}w_{ts},$$
$$= R_{5} - R_{6} + R_{7} + 2\tilde{U},$$

where $\phi_{srt} = [\phi(\xi_s, \xi_r, \xi_t) - \phi_t(\xi_s, \xi_r) - \phi_s(\xi_r, \xi_t) - \phi_r(\xi_s, \xi_t)]$. Proposition A.2 follows from the following lemma.

LEMMA A.1: Let R_i be defined as in (A1)–(A4), where i = 1 - 7. Then $R_i = o_P(1)$.

PROOF: The proofs of $R_i = o_P(1)$ are tedious. To save space, we only provide the proof for i = 5, which is the most involved. Other proofs are straightforward and available on request. We note that

$$ER_5^2 = CT^{-4}h^{-3}\sum_{1 \le i_1 < i_2 < i_3 \le T}\sum_{1 \le i_4 < i_5 < i_6 \le T} E\phi_{i_1i_2i_3}\phi_{i_4i_5i_6}.$$

First we consider the case where all indices are different from each other. Given the order of i_s , there are 20 different combinations. We consider the case where $1 \le i_1 < i_2 < i_3 < i_4 < i_5 < i_6 \le T$; other cases are similar. Let d_c be the *c*th largest difference among the adjacent indices. We have

$$\begin{split} &\sum_{\substack{1 \le i_1 < i_2 < i_3 < i_4 < i_5 < i_6 \le T \\ i_2 - i_1 = d_1}} \left| E \phi_{i_1 i_2 i_3} \phi_{i_4 i_5 i_6} \right| \\ &\le \sum_{\substack{1 \le i_1 < i_2 < i_3 \le i_4 < i_5 < i_6 \le T \\ i_2 - i_1 = d_1}} C \beta^{\delta/(1+\delta)}(d_1) W_{i_1 \cdots i_6} \\ &\le CT \sum_{j=1}^T j^4 \beta^{\delta/(1+\delta)}(j), \end{split}$$

where $W_{i_1\dots i_6} = k_{i_1i_2}k_{i_1i_3}k_{i_4i_5}k_{i_4i_6} + k_{i_1i_2}k_{i_1i_3}k_{i_6i_5}k_{i_6i_4} + k_{i_1i_2}k_{i_1i_3}k_{i_5i_6}k_{i_5i_4} + k_{i_3i_1}k_{i_3i_2}k_{i_4i_5}k_{i_4i_6} + k_{i_3i_1}k_{i_3i_2}k_{i_5i_6}k_{i_5i_4} + k_{i_2i_3}k_{i_2i_1}k_{i_4i_5}k_{i_4i_6} + k_{i_3i_1}k_{i_3i_2}k_{i_5i_6}k_{i_5i_4} + k_{i_2i_3}k_{i_2i_1}k_{i_4i_5}k_{i_4i_6} + k_{i_3i_1}k_{i_3i_2}k_{i_5i_6}k_{i_5i_4} + k_{i_3i_1}k_{i_3i_2}k_{i_5i_6}k_{i_5i_4} + k_{i_3i_1}k_{i_3i_2}k_{i_4i_5}k_{i_4i_6} + k_{i_3i_1}k_{i_3i_2}k_{i_5i_6}k_{i_5i_4} + k_{i_3i_1}k_{i_3i_2}k_{i_5i_6}k_{i_5i_4} + k_{i_3i_1}k_{i_5i_2}k_{i_6i_5}k_{i_6i_6} + k_{i_5i_1}k_{i_6i_5}k_{i_6i_6} + k_{i_5i_1}k_{i_6i_5}k_{i_6i_6} + k_{i_6i_6}k_{i_6i_6} +$

 $k_{i_2i_3}k_{i_2i_1}k_{i_6i_5}k_{i_6i_4} + k_{i_2i_3}k_{i_2i_1}k_{i_5i_6}k_{i_5i_4i_4i_6}$ and we have used the mixing inequality for the β -mixing process, Assumptions 1, 2, 4 and 5. Similarly,

$$\begin{split} &\sum_{\substack{1 \leq i_1 < i_2 < i_3 < i_4 < i_5 < i_6 \leq T \\ i_6 - i_5 = d_1}} \left| E \phi_{i_1 i_2 i_3} \phi_{i_4 i_5 i_6} \right| \leq CT \sum_{j=1}^T j^4 \beta^{\delta/(1+\delta)}(j), \\ &\sum_{\substack{1 \leq i_1 < i_2 < i_3 < i_4 < i_5 < i_6 \leq T \\ i_2 - i_1 = d_2 \text{ or } i_6 - i_5 = d_2}} \left| E \phi_{i_1 i_2 i_3} \phi_{i_4 i_5 i_6} \right| \leq CT^2 h \sum_{j=1}^T j^3 \beta^{\delta/(1+\delta)}(j), \\ &\sum_{\substack{1 \leq i_1 < i_2 < i_3 < i_4 < i_5 < i_6 \leq T \\ i_2 - i_1 = d_3 \text{ or } i_6 - i_5 = d_3}} \left| E \phi_{i_1 i_2 i_3} \phi_{i_4 i_5 i_6} \right| \leq CT^3 h^2 \sum_{j=1}^T j^2 \beta^{\delta/(1+\delta)}(j), \\ &\sum_{\substack{1 \leq i_1 < i_2 < i_3 < i_4 < i_5 < i_6 \leq T \\ (i_2 - i_1, i_6 - i_5) = (d_4, d_5)}} \left| E \phi_{i_1 i_2 i_3} \phi_{i_4 i_5 i_6} \right| \\ &\leq \sum_{\substack{1 \leq i_1 < i_2 < i_3 < i_4 < i_5 < i_6 \leq T \\ (i_2 - i_1, i_6 - i_5) = (d_4, d_5)}} C \left[\beta^{\delta/(1+\delta)}(i_3 - i_2) + \beta^{\delta/(1+\delta)}(i_4 - i_3) \right. \\ &+ \beta^{\delta/(1+\delta)}(i_5 - i_4) \right] \\ &\leq CT^3 h^2 \sum_{j=1}^T j^2 \beta^{\delta/(1+\delta)}(j). \end{split}$$

and

For the cases where indices are not distinct from each other, we have

$$\sum_{\substack{1 \le s, t, r, i, j \le T\\ s, t, r, i, j} \text{ different}} |E\phi_{str}\phi_{sij}| \le CT^3h^2\sum_{j=1}^T j\beta^{\delta/(1+\delta)}(j),$$
$$\sum_{\substack{1 \le s, t, r, i \le T\\ s, t, r, i} \text{ different}} |E\phi_{str}\phi_{sti}| \le CT^3h^2\sum_{j=1}^T \beta^{\delta/(1+\delta)}(j),$$

and $\sum_{1 \le s < t < r \le T} |E\phi_{str}^2| = O(T^3h^2)$. Then $R_5 = o_P(1)$ follows from Chebyshev inequality. *Q.E.D.*

This completes the proof of Proposition A.2. Q.E.D.

PROOF OF PROPOSITION A.3: Let

$$R_{s} = T^{-1}h^{-1/2}\sum_{r=1}^{s-1}\varepsilon_{s}\varepsilon_{r}\mathbf{X}_{r}'M^{-1}\mathbf{X}_{s}w_{rs} = T^{-1}h^{-1/2}\sum_{r=1}^{s-1}\varphi_{rs}w_{rs},$$

where $\varphi_{rs} = \varepsilon_s \varepsilon_r \mathbf{X}'_r \mathbf{M}^{-1} \mathbf{X}_s$. We apply Brown's (1971) martingale limit theorem, which states $\operatorname{var}(2\tilde{U})^{-1/2} 2\tilde{U} \xrightarrow{d} N(0, 1)$ if

(A5)
$$\operatorname{var}(2\tilde{U})^{-1} \sum_{s=1}^{I} (2R_s)^2 \mathbf{1} [|2R_s| > \eta \cdot \operatorname{var}(2\tilde{U})^{1/2}] \to 0 \quad \forall \eta > 0,$$

(A6)
$$\operatorname{var}(2\tilde{U})^{-1} \sum_{s=1}^{I} E[(2R_s)^2 | \mathcal{F}_{s-1}] \xrightarrow{p} 1.$$

First, we compute the variance

(A7)
$$\operatorname{var}(2\tilde{U}) = 4T^{-2}h^{-1}\sum_{s=1}^{T}\sum_{r=1}^{s-1}E(\varepsilon_{r}^{2}\varepsilon_{s}^{2}\mathbf{X}_{r}'\mathbf{M}^{-1}\mathbf{X}_{s}\mathbf{X}_{s}'\mathbf{M}^{-1}\mathbf{X}_{r}w_{rs}^{2}) + 4T^{-2}h^{-1} \times \sum_{s=1}^{T}\sum_{r_{1}=1}^{s-1}\sum_{r_{2}=1,r_{1}\neq r_{2}}^{s-1}E(\varepsilon_{s}^{2}\varepsilon_{r_{1}}\varepsilon_{r_{2}}\mathbf{X}_{r_{1}}'\mathbf{M}^{-1}\mathbf{X}_{s}\mathbf{X}_{s}'\mathbf{M}^{-1}\mathbf{X}_{r_{2}}w_{r_{1}s}w_{r_{2}s}) = V_{1} + V_{2}.$$

For the first term, we have

(A8)
$$V_{1} = 4T^{-2}h^{-1}\sum_{s=1}^{T}\sum_{r=1}^{s-1}w_{rs}^{2}\operatorname{trace}(\Omega M^{-1}\Omega M^{-1}) + 4T^{-2}h^{-1} \times \sum_{s=1}^{T}\sum_{r=1}^{s-1}w_{rs}^{2}\operatorname{trace}\left\{E[\mathbf{M}^{-1}(\varepsilon_{s}^{2}\mathbf{X}_{s}\mathbf{X}_{s}'-\Omega)\mathbf{M}^{-1}(\varepsilon_{r}^{2}\mathbf{X}_{r}\mathbf{X}_{r}'-\Omega)]\right\} = 4C_{B}\operatorname{trace}(\Omega M^{-1}\Omega M^{-1}) + o(1),$$

where we have used the change of variables and the mixing inequality. For the second term,

(A9)
$$V_{2} = 4T^{-1}h^{-1}\sum_{j=1}^{T-1}\sum_{l=1, j\neq l}^{T-1} (1-j/T)(1-l/T)\operatorname{trace}[C(j,l)]$$
$$\times \int_{-1}^{1}k(u)k\left(u+\frac{j}{Th}\right)du\int_{-1}^{1}k(u)k\left(u+\frac{l}{Th}\right)du = o(1),$$

where $C(j, l) = E[\mathbf{M}^{-1}(\varepsilon_s^2 \mathbf{X}_s \mathbf{X}'_s - \Omega)\mathbf{M}^{-1}\varepsilon_{s-j}\mathbf{X}_{s-j}\varepsilon_{s-l}\mathbf{X}'_{s-l}]$, and we have used the change of variables and the mixing inequality. Given (A8) and (A9), we have $var(2\tilde{U}) = O(1)$.

We now verify condition (A5). Since we have

$$\sum_{s=2}^{T} E(R_s^4) = T^{-4} h^{-2} \sum_{s=2}^{T} E\left(\sum_{i=1}^{s-1} \varphi_{is}^4 w_{is}^4 + 6 \sum_{1 \le i < j < s} \varphi_{is}^2 \varphi_{js}^2 w_{is}^2 w_{js}^2 + 4 \sum_{t=1}^{s-1} \sum_{1 \le i < j < s} \varphi_{ts}^2 \varphi_{is} \varphi_{js} w_{ts}^2 w_{is} w_{js} + 4 \sum_{1 \le i < j < s, 1 \le t < r < s} \varphi_{is} \varphi_{js} \varphi_{is} \varphi_{rs} w_{is} w_{js} w_{ts} w_{rs}\right)$$
$$= O(T^{-2} h^{-1}) + O(T^{-1}) + O(h) + O(h),$$

 $[\operatorname{var}(2\tilde{U})]^{-2} \sum_{s=1}^{T} E(R_s^4) \to 0 \text{ and } (A5) \text{ holds.}$ Next we verify condition (A6). Let $Q_s = \sum_{r=1}^{s-1} \varepsilon_r \mathbf{X}'_r w_{ts}$. Then we have

(A10)
$$E(R_{s}^{2}|\mathcal{F}_{s-1}) = T^{-2}h^{-1}Q_{s}\mathbf{M}^{-1}E(\varepsilon_{s}^{2}\mathbf{X}_{s}\mathbf{X}_{s}'|\mathcal{F}_{s-1})\mathbf{M}^{-1}Q_{s}'$$
$$= T^{-2}h^{-1}Q_{s}\mathbf{M}^{-1}[E(\varepsilon_{s}^{2}\mathbf{X}_{s}\mathbf{X}_{s}'|\mathcal{F}_{s-1}) - \Omega]\mathbf{M}^{-1}Q_{s}'$$
$$+ T^{-2}h^{-1}Q_{s}\mathbf{M}^{-1}\Omega M^{-1}Q_{s}'$$

$$=V_{1s}+R_{1s}, \quad \text{say.}$$

We further decompose

(A11)
$$R_{1s} = T^{-2}h^{-1}[Q_{s}\mathbf{M}^{-1}\Omega M^{-1}Q'_{s} - E(Q_{s}\mathbf{M}^{-1}\Omega M^{-1}Q'_{s})] + T^{-2}h^{-1}E\left(\sum_{r=1}^{s-1}\varepsilon_{r}^{2}\mathbf{X}'_{r}\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r}w_{rs}^{2}\right)$$
$$= R_{2s} + T^{-2}h^{-1}\operatorname{trace}(\Omega M^{-1}\Omega M^{-1})\sum_{r=1}^{s-1}w_{rs}.$$

Then we write

(A12)
$$R_{2s} = T^{-2}h^{-1}\sum_{r=1}^{s-1} [\varepsilon_r^2 \mathbf{X}_r' \mathbf{M}^{-1} \Omega M^{-1} \mathbf{X}_r - E(\varepsilon_r^2 \mathbf{X}_r' \mathbf{M}^{-1} \mathbf{X}_r)] w_{rs}^2$$
$$+ 2T^{-2}h^{-1}\sum_{r_1=1}^{s-1}\sum_{r_2=1}^{r_1} \varepsilon_{r_1} \mathbf{X}_{r_1}' \mathbf{M}^{-1} \Omega M^{-1} \mathbf{X}_{r_2} \varepsilon_{r_2} w_{r_1s} w_{r_2s}$$
$$= V_{2s} + V_{3s}, \quad \text{say.}$$

B. CHEN AND Y. HONG

It follows from (A10)–(A12) that $\sum_{s=1}^{T} \{E[(2R_s)^2 | \mathcal{F}_{s-1}] - E[(2R_s)^2]\} = \sum_{i=1}^{3} \sum_{s=1}^{T} 4V_{is} + V_1$. It suffices to show Lemmas A.2–A.4 below, which imply $E|\sum_{s=1}^{T} E[(2R_s)^2 | \mathcal{F}_{s-1}] - E[(2R_s)^2]|^2 = o(1)$. Thus, condition (A6) holds, and so $2\tilde{U}/\sqrt{\hat{B}_H} \to {}^d N(0, 1)$ by Brown's (1971) theorem. *Q.E.D.*

This completes the proof of Theorem A.1. Q.E.D.

LEMMA A.2: Let V_{1s} be defined as in (A10). Then $E(\sum_{s=1}^{T} V_{1s})^2 = o(1)$.

LEMMA A.3: Let V_{2s} be defined as in (A11). Then $E(\sum_{s=1}^{T} V_{2s})^2 = o(1)$.

LEMMA A.4: Let V_{3s} be defined as in (A12). Then $E(\sum_{s=1}^{T} V_{3s})^2 = o(1)$.

PROOF OF LEMMA A.2: Let

$$\begin{split} \Omega(\zeta_{r_1}, \zeta_s, \zeta_{r_2}) \\ &= \varepsilon_{r_1} \mathbf{X}'_{r_1} \mathbf{M}^{-1} [E(\varepsilon_s^2 \mathbf{X}_s \mathbf{X}'_s | \mathcal{F}_{s-1}) - \Omega] \mathbf{M}^{-1} \mathbf{X}_{r_2} \varepsilon_{r_2} w_{r_1 s} w_{r_2 s} \\ &+ \varepsilon_{r_2} \mathbf{X}'_{r_2} \mathbf{M}^{-1} [E(\varepsilon_{r_1}^2 \mathbf{X}_{r_1} \mathbf{X}'_{r_1} | \mathcal{F}_{r_1 - 1}) - \Omega] \mathbf{M}^{-1} \mathbf{X}_s \varepsilon_s w_{r_1 r_2} w_{r_1 s} \\ &+ \varepsilon_s \mathbf{X}'_s \mathbf{M}^{-1} [E(\varepsilon_{r_2}^2 \mathbf{X}_{r_2} \mathbf{X}'_{r_2} | \mathcal{F}_{r_2 - 1}) - \Omega] \mathbf{M}^{-1} \mathbf{X}_{r_1} \varepsilon_{r_1} w_{r_2 s} w_{r_1 r_2}, \end{split}$$

where $\zeta_s = (\mathbf{X}_s, \varepsilon_s)$.

Then we have

$$E\left(\sum_{s=1}^{T} V_{1s}\right)^{2} = CT^{-4}h^{-2}E\left[\sum_{s\neq r_{1}\neq r_{2}} \Omega(\zeta_{r_{1}}, \zeta_{s}, \zeta_{r_{2}})\right]^{2} = O(T^{-1}) = o(1),$$

where we have used a similar argument as that for $R_5 = o_P(1)$. Q.E.D.

PROOF OF LEMMA A.3: We have

$$E\left(\sum_{s=1}^{T} V_{2s}\right)^{2}$$

$$= T^{-4}h^{-2}E$$

$$\times \left\{\sum_{r=1}^{T} \sum_{r=1}^{s-1} [\varepsilon_{r}^{2}\mathbf{X}_{r}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r} - E(\varepsilon_{r}^{2}\mathbf{X}_{r}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r})]w_{rs}^{2}\right\}^{2}$$

$$= T^{-2}E\left\{\sum_{r=1}^{T} [\varepsilon_{r}^{2}\mathbf{X}_{r}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r} - E(\varepsilon_{r}^{2}\mathbf{X}_{r}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r})]$$

$$\times T^{-1}h^{-1}\sum_{j=1}^{T-1} \left(1 - \frac{j}{T}\right)w^{2}\left(\frac{j}{Th}\right) \right\}^{2}$$

$$= T^{-2}E\sum_{r=1}^{T} \left[\varepsilon_{r}^{2}\mathbf{X}_{r}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r} - E\left(\varepsilon_{r}^{2}\mathbf{X}_{r}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r}\right)\right]^{2}$$

$$\times \int w^{2}(u) du$$

$$+ T^{-2}\sum_{r \neq s} E\left[\varepsilon_{r}^{2}\mathbf{X}_{r}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r} - E\left(\varepsilon_{r}^{2}\mathbf{X}_{r}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r}\right)\right]$$

$$\times \left[\varepsilon_{s}^{2}\mathbf{X}_{s}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{s} - E\left(\varepsilon_{s}^{2}\mathbf{X}_{s}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{s}\right)\right] + o(1)$$

$$= O(T^{-1}) = o(1). \qquad Q.E.D.$$

PROOF OF LEMMA A.4: We have

$$\begin{split} E\left(\sum_{s=1}^{T} V_{3s}\right)^{2} \\ &= T^{-4}h^{-2}E\left(\sum_{s=1}^{T}\sum_{r_{1}=1}^{s-1}\sum_{r_{2}=1}^{r_{1}-1}\varepsilon_{r_{1}}\mathbf{X}_{r_{1}}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r_{2}}\varepsilon_{r_{2}}w_{r_{1}s}w_{r_{2}s}\right)^{2} \\ &= T^{-2}E\left(\sum_{r_{1}=1}^{T-1}\sum_{r_{2}=1}^{r_{1}-1}\varepsilon_{r_{1}}\mathbf{X}_{r_{1}}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r_{2}}\varepsilon_{r_{2}}a_{r_{1}r_{2}}\right) + o(1) \\ &= T^{-2}E\sum_{r_{1}=1}^{T-1}\sum_{r_{2}=1}^{r_{1}-1}\varepsilon_{r_{1}}^{2}\mathbf{X}_{r_{1}}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r_{2}}\mathbf{X}_{r_{2}}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r_{1}}\varepsilon_{r_{2}}^{2}a_{r_{1}r_{2}}^{2} \\ &+ T^{-2}E\sum_{r_{1}=1}^{T-1}\sum_{r_{2}=1}^{r_{1}-1}\sum_{r_{3}=1,r_{3}\neq r_{2}}^{r_{1}-1}\varepsilon_{r_{1}}^{2}\mathbf{X}_{r_{2}}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r_{1}}\mathbf{X}_{r_{1}}'\mathbf{M}^{-1}\Omega M^{-1}\mathbf{X}_{r_{3}} \\ &\times \varepsilon_{r_{2}}\varepsilon_{r_{3}}a_{r_{1}r_{2}}a_{r_{1}r_{3}} \\ &= O(h) + O(T^{-1}) = o(1), \end{split}$$

where $a_{r_1r_2} = \int \int k(u)k(u+v) \, du \int k(u)k(u+v+\frac{r_1-r_2}{Th}) \, du \, dv.$ Q.E.D.

PROOF OF THEOREM A.2: We have

$$\hat{J}_2 = h^{1/2} \sqrt{T} (\hat{\alpha} - \alpha)' \mathbf{M}_T \sqrt{T} (\hat{\alpha} - \alpha)$$
$$= o_P(1),$$

where $\mathbf{M}_T = \frac{1}{T} \sum_{t=1}^T \mathbf{X}_t \mathbf{X}_t'$ and we have used the fact $\sqrt{T}(\hat{\alpha} - \alpha) = O_P(1)$ and $\frac{1}{T} \sum_{t=1}^T \mathbf{X}_t \mathbf{X}_t' = O_P(1)$. Q.E.D.

PROOF OF THEOREM A.3: We have

$$\begin{split} \hat{J}_3 &= -2h^{1/2}\sqrt{T}(\hat{\alpha} - \alpha)' \\ &\times \left(\frac{1}{Th}\sum_{t=1}^T k_{st}\mathbf{X}_t\mathbf{X}_t'\right) \left(\frac{1}{Th}\sum_{s=1}^T k_{st}\mathbf{X}_s\mathbf{X}_s'\right)^{-1} \left(\frac{1}{\sqrt{T}}\sum_{s=1}^T \varepsilon_s\mathbf{X}_s'\right)' \\ &= o_P(1), \end{split}$$

where we have used the fact $\sqrt{T}(\hat{\alpha} - \alpha) = O_P(1)$, $\mathbf{M}_T = O_P(1)$, and $\frac{1}{Th} \times \sum_{t=1}^T k_{st} \mathbf{X}_t \mathbf{X}_t = O_P(1)$. Q.E.D.

PROOF OF THEOREM 2: Under the alternative hypothesis,

(A13)
$$\hat{Q} = \frac{1}{T} \sum_{t=1}^{T} (\hat{\alpha} - \alpha_t)' \mathbf{X}_t \mathbf{X}_t' (\hat{\alpha} - \alpha_t) + \frac{1}{T} \sum_{t=1}^{T} (\hat{\alpha}_t - \alpha_t)' \mathbf{X}_t \mathbf{X}_t' (\hat{\alpha}_t - \alpha_t) - \frac{2}{T} \sum_{t=1}^{T} (\hat{\alpha}_t - \alpha_t)' \mathbf{X}_t \mathbf{X}_t' (\hat{\alpha} - \alpha_t) = \hat{J}_4 + \hat{J}_5 + \hat{J}_6.$$

The first term in (A13) is related to the parametric estimator

$$\begin{split} \hat{J}_4 &= \frac{1}{T} \sum_{t=1}^T (\alpha^* - \alpha_t)' \mathbf{X}_t \mathbf{X}_t' (\alpha^* - \alpha_t) + \frac{2}{T} \sum_{t=1}^T (\alpha^* - \alpha_t)' \mathbf{X}_t \mathbf{X}_t' (\hat{\alpha} - \alpha^*) \\ &+ (\hat{\alpha} - \alpha^*)' \mathbf{M}_T (\hat{\alpha} - \alpha^*) \\ &= \alpha^{*'} \mathbf{M}_T \alpha^* - \frac{2}{T} \sum_{t=1}^T \alpha_t' \mathbf{X}_t \mathbf{X}_t' \alpha^* + \frac{1}{T} \sum_{t=1}^T \alpha_t' \mathbf{X}_t \mathbf{X}_t' \alpha_t \\ &+ \frac{2}{\sqrt{T}} \bigg[\frac{1}{T} \sum_{t=1}^T (\alpha^* - \alpha_t)' \mathbf{X}_t \mathbf{X}_t' \bigg] \sqrt{T} (\hat{\alpha} - \alpha^*) \\ &+ \frac{1}{T} \sqrt{T} (\hat{\alpha} - \alpha^*)' \mathbf{M}_T \sqrt{T} (\hat{\alpha} - \alpha^*) \\ &= \alpha^{*'} \mathbf{M} \alpha^* - 2 \int_0^1 \alpha'(u) \, du \, \mathbf{M} \alpha^* + \int_0^1 \alpha'(u) \mathbf{M} \alpha(u) \, du + o_P(1), \end{split}$$

where $\alpha^* = p \lim_{T \to \infty} \hat{\alpha}$ as defined in Assumption 4. The second term in (A13) is related to the nonparametric estimator

$$\begin{split} \hat{J}_{5} &= \frac{1}{T} \sum_{t=1}^{T} \left[W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \mathbf{X}_{s}' (\alpha_{s} - \alpha_{t}) \right]' \\ &\times \mathbf{X}_{t} \mathbf{X}_{t}' \left[W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \mathbf{X}_{s}' (\alpha_{s} - \alpha_{t}) \right] \\ &+ \frac{2}{T} \sum_{t=1}^{T} \left[W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \mathbf{X}_{s}' (\alpha_{s} - \alpha_{t}) \right]' \\ &\times \mathbf{X}_{t} \mathbf{X}_{t}' \left[W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \mathbf{X}_{s}' (\alpha_{s} - \alpha_{t}) \right]' \\ &+ \frac{1}{T} \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \mathbf{x}_{s} \varepsilon_{s} \right)' \\ &+ \frac{1}{T} \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \varepsilon_{s} \varepsilon_{s} \varepsilon_{s} \right) \\ &+ 2 \sum_{t=1}^{T} \left(W_{t}^{-1} \sum_{s=t-\lfloor Th$$

where $W_t = \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_s \mathbf{X}'_s$. For \hat{J}_{51} , we have

$$E \left\| \frac{1}{Th} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \mathbf{X}'_{s} (\alpha_{s} - \alpha_{t}) \right\|$$

$$\leq \sup_{|s-t| \leq Th} \|\alpha_{s} - \alpha_{t}\| \frac{1}{Th} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \operatorname{trace}(\mathbf{M}),$$

which converges to 0 if t/T belongs to continuity points and to *C* if t/T belongs to discontinuity points. By noting that the number of discontinuity points is finite, we have $\hat{J}_{51} = o_P(1)$. Similarly, we have $\hat{J}_{52} = o_P(1)$. Following the proof of Theorem A.1, we have $\hat{J}_{53} = o_P(1)$. Using a similar argument, we can show that the cross-product term in (A13) vanishes to 0 asymptotically. Moreover, it is easy to see $T^{-1}h^{-1/2}\hat{A}_H = o_P(1)$ and $\hat{B}_H = O_P(1)$. Hence, it follows that for any sequence $\{M_T = o(T\sqrt{h})\}$, we have $P(\hat{H} > M_T) \rightarrow 1$.

PROOF OF THEOREM 3: The proof is similar to that of Theorem 2, but we make use of the local specifications.

(i) As $\alpha(u) = \alpha + j_T g(u)$ for all $u \in [0, 1]$, it holds for t/T. For notational simplicity, we use α_t and g_t to denote a(t/T) and g(t/T), respectively. The first term in (A13) is related to the OLS estimator

$$(A14) T \hat{J}_{4} = \sum_{t=1}^{T} \left[j_{T}g_{t} - \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s=1}^{T} \mathbf{X}_{s} \mathbf{X}_{s}' g_{s} j_{T} \right) \right. \\ \left. - \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s=1}^{T} \mathbf{X}_{s} \varepsilon_{s} \right) \right]' \mathbf{X}_{t} \mathbf{X}_{t}' \\ \times \left[j_{T}g_{t} - \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s=1}^{T} \mathbf{X}_{s} \mathbf{X}_{s}' g_{s} j_{T} \right) - \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s=1}^{T} \mathbf{X}_{s} \varepsilon_{s} \right) \right] \right] \\ = \sum_{t=1}^{T} j_{T} \left[g_{t} - \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s=1}^{T} \mathbf{X}_{s} \mathbf{X}_{s}' g_{s} \right) \right]' \\ \times \mathbf{X}_{t} \mathbf{X}_{t}' \left[g_{t} - \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s=1}^{T} \mathbf{X}_{s} \mathbf{X}_{s}' g_{s} \right) \right] \\ \left. - 2j_{T} \sum_{t=1}^{T} \left[g_{t} - \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s=1}^{T} \mathbf{X}_{s} \mathbf{X}_{s}' g_{s} \right) \right] \right| \\ \left. + \mathbf{X}_{t} \mathbf{X}_{t}' \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s=1}^{T} \mathbf{X}_{s} \varepsilon_{s} \right) \\ \left. + T^{-1} \left(\sum_{s=1}^{T} \mathbf{X}_{s} \varepsilon_{s} \right)' \mathbf{M}_{T}^{-1} \left(\sum_{s=1}^{T} \mathbf{X}_{s} \varepsilon_{s} \right) \\ = L_{11} + L_{12} + L_{13}. \end{aligned}$$

For the first term in (A14), we have

(A15)
$$L_{11} = j_T^2 \sum_{t=1}^T g_t' \mathbf{X}_t \mathbf{X}_t' g_t - 2j_T^2 T^{-1} \left(\sum_{s=1}^T \mathbf{X}_s \mathbf{X}_s' g_s \right)' \mathbf{M}_T^{-1} \left(\sum_{s=1}^T \mathbf{X}_s \mathbf{X}_s' g_s \right) + j_T^2 T^{-2} \left(\sum_{s=1}^T \mathbf{X}_s \mathbf{X}_s' g_s \right)' \mathbf{M}_T^{-1} \left(\sum_{t=1}^T \mathbf{X}_t \mathbf{X}_t' \right) \mathbf{M}_T^{-1} \left(\sum_{s=1}^T \mathbf{X}_s \mathbf{X}_s' g_s \right)$$

$$= Tj_T^2 \left(T^{-1} \sum_{t=1}^T g_t' \mathbf{X}_t \mathbf{X}_t' g_t \right) - 2Tj_T^2 \left(T^{-1} \sum_{s=1}^T \mathbf{X}_s \mathbf{X}_s' g_s \right)'$$

$$\times \mathbf{M}_T^{-1} \left(T^{-1} \sum_{s=1}^T \mathbf{X}_s \mathbf{X}_s' g_s \right)$$

$$+ Tj_T^2 \left(T^{-1} \sum_{s=1}^T \mathbf{X}_s \mathbf{X}_s' g_s \right) \mathbf{M}_T^{-1} \left(T^{-1} \sum_{s=1}^T \mathbf{X}_s \mathbf{X}_s' g_s \right)$$

$$= h^{-1/2} \delta_1 + o_P (h^{-1/2}),$$

where the first term yields the noncentrality parameter under $\mathbb{H}_{1A}(j_T)$.

The cross-product term in (A14) is

$$\begin{split} L_{12} &= -2j_T \left(\sum_{t=1}^T g_t' \mathbf{X}_t \mathbf{X}_t' \right) \mathbf{M}_T^{-1} \left(T^{-1} \sum_{s=1}^T \mathbf{X}_s \boldsymbol{\varepsilon}_s \right) \\ &- 2j_T T^{-1} \left(\sum_{s=1}^T g_s' \mathbf{X}_s \mathbf{X}_s' \right) \mathbf{M}_T^{-1} \left(\sum_{s=1}^T \mathbf{X}_s \boldsymbol{\varepsilon}_s \right) \\ &= O_P(\sqrt{T} j_T) = O_P(h^{-1/4}), \end{split}$$

and $L_{13} = O_P(1)$.

The second term in (A13) is related to the nonparametric estimation

$$T\hat{J}_{5} = \left\{ \sum_{t=1}^{T} \left\{ j_{T}W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st}\mathbf{X}_{s}\mathbf{X}_{s}' \right\}$$

$$\times \left[dg_{t}(u)/du \left(\frac{s-t}{T} \right) + d^{2}g_{\bar{s}}(u)/du^{2} \left(\frac{s-t}{T} \right)^{2} \right] \right\}'$$

$$\times \mathbf{X}_{t}\mathbf{X}_{t}' \left\{ j_{T}W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st}\mathbf{X}_{s}\mathbf{X}_{s}' \right\}$$

$$\times \left[dg_{t}(u)/du \left(\frac{s-t}{T} \right) + d^{2}g_{\bar{s}}(u)/du^{2} \left(\frac{s-t}{T} \right)^{2} \right] \right\}$$

$$+ 2\sum_{t=1}^{T} \left\{ j_{T}W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st}\mathbf{X}_{s}\mathbf{X}_{s}' \right\}$$

B. CHEN AND Y. HONG

$$\times \left[\frac{dg_{t}(u)}{du} \left(\frac{s-t}{T} \right) + \frac{d^{2}g_{\bar{s}}(u)}{du^{2}} \left(\frac{s-t}{T} \right)^{2} \right] \right]^{\prime}$$

$$\times \mathbf{X}_{t} \mathbf{X}_{t}^{\prime} W_{t}^{-1} \sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s}$$

$$+ \sum_{t=1}^{T} \left(\sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right)^{\prime} W_{t}^{-1} \mathbf{X}_{t} \mathbf{X}_{t}^{\prime} W_{t}^{-1} \left(\sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \right]$$

$$\times \left[1 + o_{P}(1) \right]$$

$$= O_{P}(Th^{4}j_{T}^{2}) + O_{P}(T^{1/2}h^{3/2}j_{T}) + \sum_{t=1}^{T} \left(\sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right)^{\prime}$$

$$\times W_{t}^{-1} \mathbf{X}_{t} \mathbf{X}_{t}^{\prime} W_{t}^{-1} \left(\sum_{s=t-\lfloor Th \rfloor}^{t+\lfloor Th \rfloor} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right),$$

where the last term determines the asymptotic mean and variance under \mathbb{H}_0 . The last term in (A13) is a cross-product term,

$$T\hat{J}_{6} = 2\sum_{t=1}^{T} \left[j_{T}g_{t} - \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s=1}^{T} \mathbf{X}_{s} \mathbf{X}_{s}' g_{s} j_{T} \right) - \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s=1}^{T} \mathbf{X}_{s} \varepsilon_{s} \right) \right]' \mathbf{X}_{t} \mathbf{X}_{t}'$$

$$\times \left\{ j_{T} W_{t}^{-1} \sum_{s} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right\}$$

$$\times \left[dg_{t}(u) / du \left(\frac{s-t}{T} \right) + d^{2}g_{s}(u) / du^{2} \left(\frac{s-t}{T} \right)^{2} \right] + W_{t}^{-1} \left(\sum_{s} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \right\}$$

$$= O_{P}(Th^{2}j_{T}^{2}) + O_{P}(Th^{2}j_{T}^{2}) + O_{P}(T^{1/2}h^{2}j_{T}) + O_{P}(1)$$

$$= o_{P}(h^{-1/2}),$$

and hence Theorem 3(i) follows.

(ii) Similar to (i), we have

$$(A16) T \hat{J}_4 = \sum_t b_T^2 \left[f_{t,t_0} - \mathbf{M}_T^{-1} \left(T^{-1} \sum_s \mathbf{X}_s \mathbf{X}'_s f_{s,t_0} \right) \right]' \\ \times \mathbf{X}_t \mathbf{X}'_t \left[f_{t,t_0} - \mathbf{M}_T^{-1} \left(T^{-1} \sum_s \mathbf{X}_s \mathbf{X}'_s f_{s,t_0} \right) \right] \\ - 2b_T \sum_t \left[f_{t,t_0} - \mathbf{M}_T^{-1} \left(T^{-1} \sum_s \mathbf{X}_s \mathbf{X}'_s f_{s,t_0} \right) \right]' \\ \times \mathbf{X}_t \mathbf{X}'_t \mathbf{M}_T^{-1} \left(T^{-1} \sum_s \mathbf{X}_s \varepsilon_s \right) \\ + T^{-1} \left(\sum_s \mathbf{X}_s \varepsilon_s \right)' \mathbf{M}_T^{-1} \left(\sum_s \mathbf{X}_s \varepsilon_s \right) \\ = h^{-1/2} \delta_2 + o_P (h^{-1/2}) + o_P (h^{-1/4}) + O_P (1).$$

The second term in (A13) under $\mathbb{H}_{2A}(b_T, r_T)$ is

$$(A17) \quad T\hat{J}_{5} = \sum_{t} \left\{ b_{T}W_{t}^{-1}\sum_{s}k_{st}\mathbf{X}_{s}\mathbf{X}_{s}' \\ \times \left[df_{t,t_{0}}(z)/dz \left(\frac{s-t}{Tr_{T}}\right) + d^{2}f_{\bar{s},t_{0}}(z)/dz^{2} \left(\frac{s-t}{Tr_{T}}\right)^{2} \right] \right\}' \\ \times \mathbf{X}_{t}\mathbf{X}_{t}' \left\{ b_{T}W_{t}^{-1}\sum_{s}k_{st}\mathbf{X}_{s}\mathbf{X}_{s}' \\ \times \left[df_{t,t_{0}}(z)/dz \left(\frac{s-t}{Tr_{T}}\right) + d^{2}f_{\bar{s},t_{0}}(z)/dz^{2} \left(\frac{s-t}{Tr_{T}}\right)^{2} \right] \right\} \\ + 2\sum_{t} \left\{ b_{T}W_{t}^{-1}\sum_{s}k_{st}\mathbf{X}_{s}\mathbf{X}_{s}' \\ \times \left[df_{t,t_{0}}(z)/dz \left(\frac{s-t}{Tr_{T}}\right) + d^{2}f_{\bar{s},t_{0}}(z)/dz^{2} \left(\frac{s-t}{Tr_{T}}\right)^{2} \right] \right\}' \\ \times \mathbf{X}_{t}\mathbf{X}_{t}'W_{t}^{-1}\sum_{s}k_{st}\mathbf{X}_{s}\varepsilon_{s} + \sum_{t} \left(\sum_{s}k_{st}\mathbf{X}_{s}\varepsilon_{s} \right)'W_{t}^{-1} \\ \times \mathbf{X}_{t}\mathbf{X}_{t}'W_{t}^{-1} \left(\sum_{s}k_{st}\mathbf{X}_{s}\varepsilon_{s} \right) \right)$$

$$= O_P(Th^4b_T^2r_T^{-3}) + O_P(T^{1/2}h^2b_Tr_T^{-3/2}) + \sum_t \left(\sum_s k_{st}\mathbf{X}_s\boldsymbol{\varepsilon}_s\right)' W_t^{-1}$$
$$\times \mathbf{X}_t \mathbf{X}_t' W_t^{-1} \left(\sum_s k_{st}\mathbf{X}_s\boldsymbol{\varepsilon}_s\right),$$

where the last term determines the asymptotic mean and variance under \mathbb{H}_0 . The last term in (A13) is

(A18)
$$T\hat{J}_{6} = 2\sum_{t} \left[b_{T}f_{t,t_{0}} - \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s} \mathbf{X}_{s} \mathbf{X}_{s}' f_{s,t_{0}} b_{T} \right) - \mathbf{M}_{T}^{-1} \left(T^{-1} \sum_{s} \mathbf{X}_{s} \varepsilon_{s} \right) \right]' \mathbf{X}_{t} \mathbf{X}_{t}'$$

$$\times \left\{ b_{T} W_{t}^{-1} \sum_{s} k_{st} \mathbf{X}_{s} \mathbf{X}_{s}'$$

$$\times \left[df_{t,t_{0}}(z) / dz \left(\frac{s-t}{Tr_{T}} \right) + d^{2} f_{\bar{s},t_{0}}(z) / dz^{2} \left(\frac{s-t}{Tr_{T}} \right)^{2} \right] + W_{t}^{-1} \left(\sum_{s} k_{st} \mathbf{X}_{s} \varepsilon_{s} \right) \right\}$$

$$= o_{P}(1) + O_{P}(Th^{2}b_{T}^{2}r_{T}^{-1}) + O_{P}(Th^{2}b_{T}^{2}r_{T}^{-1}) + O_{P}(T^{1/2}h^{2}b_{T}r_{T}^{-1}) + O_{P}(b_{T}T^{1/2}r_{T}^{1/2}) + O_{P}(T^{1/2}b_{T}r_{T}) + O_{P}(1).$$

Hence, Theorem 3(ii) follows from (A16)–(A18). Q.E.D.

PROOF OF THEOREM 4: (i) Following a similar proof as that of Theorem 3(i), we can show that under $\mathbb{H}_{1A}(j_T)$, the generalized Chow test $\hat{C} \to^d N(\delta_1/\sqrt{B_C}, 1)$ as $T \to \infty$, where $B_C = 4 \operatorname{trace}(\mathbf{M}^{-1}\Omega\mathbf{M}^{-1}\Omega) \int_0^1 [2k(v) - \int_{-1}^1 k(u)k(u+v) du]^2 dv$.

The Pitman asymptotic relative efficiency of the \hat{H} test over the \hat{C} test is the limit of sample sizes for the two tests to have the same asymptotic power at the same significance level and under the same local alternative (see Pitman (1979, Chapter 7)). Specifically, suppose T_1 and T_2 are the sample sizes for the \hat{H} test and the \hat{C} test, respectively. Then Pitman asymptotic relative efficiency of \hat{H} to \hat{C} is defined as

$$\operatorname{RE}(\hat{H}:\hat{C}) = \lim_{T_1, T_2 \to \infty} \frac{T_2}{T_1}$$

under the condition that \hat{H} and \hat{C} have the same asymptotic power when the local alternatives

$$\lim_{T_1, T_2 \to \infty} \frac{j_{T_1} g_1(u)}{j_{T_2} g_2(u)} = 1.$$

Assuming $h_j = CT_j^{-\lambda}$ for j = 1, 2, we have

(A19)
$$\lim_{T_1, T_2 \to \infty} \left(\frac{T_1}{T_2}\right)^{-(2-\lambda)/4} = \frac{g_2(u)}{g_1(u)},$$

and to have the same asymptotic power, we have

(A20)
$$\frac{\int_{0}^{1} g_{1}(u)' \mathbf{M} g_{1}(u) du - \int_{0}^{1} g_{1}(u)' du \mathbf{M} \int_{0}^{1} g_{1}(u) du}{\sqrt{4 \operatorname{trace}(\mathbf{M}^{-1} \Omega \mathbf{M}^{-1} \Omega) \int_{0}^{1} \left[\int_{-1}^{1} k(u)k(u+v) du\right]^{2} dv}} = \frac{\int_{0}^{1} g_{2}(u)' \mathbf{M} g_{2}(u) du - \int_{0}^{1} g_{2}(u)' du \mathbf{M} \int_{0}^{1} g_{2}(u) du}{\sqrt{4 \operatorname{trace}(\mathbf{M}^{-1} \Omega \mathbf{M}^{-1} \Omega) \int_{0}^{1} \left[2k(v) - \int_{-1}^{1} k(u)k(u+v) du\right]^{2} dv}}.$$

Combining (A19) and (A20), we have

$$\lim_{T_1, T_2 \to \infty} \left(\frac{T_1}{T_2}\right)^{-(2-\lambda)/2} = \left(\frac{\int_0^1 \left[2k(v) - \int_{-1}^1 k(u)k(u+v) \, du\right]^2 dv}{\int_0^1 \left[\int_{-1}^1 k(u)k(u+v) \, du\right]^2 dv}\right)^{1/2}$$

Rearranging terms, we get

$$\operatorname{RE}(\hat{H}:\hat{C}) = \lim_{T_1, T_2 \to \infty} \frac{T_2}{T_1}$$
$$= \left(\frac{\int_0^1 \left[2k(v) - \int_{-1}^1 k(u)k(u+v) \, du\right]^2 dv}{\int_0^1 \left[\int_{-1}^1 k(u)k(u+v) \, du\right]^2 dv}\right)^{1/(2-\lambda)}$$

B. CHEN AND Y. HONG

Following a similar proof as that of Theorem 3(ii), we can show that under $\mathbb{H}_{2A}(b_T, r_T)$, the generalized Chow test $\hat{C} \to {}^d N(\delta_2/\sqrt{B_C}, 1)$ as $T \to \infty$.

From the same local alternative, we have

$$\lim_{T_1, T_2 \to \infty} \frac{b_{T_1} f_1\left(\frac{u - u_0}{r_{T_1}}\right)}{b_{T_2} f_2\left(\frac{u - u_0}{r_{T_2}}\right)} = 1$$

for all $u \in [0, 1]$. Therefore, we can integrate out u and have

$$\lim_{T_1, T_2 \to \infty} \frac{b_{T_1}^2 \int_0^1 f_1 \left(\frac{u - u_0}{r_{T_1}}\right)' \mathbf{M} f_1 \left(\frac{u - u_0}{r_{T_1}}\right) du}{b_{T_2} \int_0^1 f_2 \left(\frac{u - u_0}{r_{T_2}}\right)' \mathbf{M} f \left(\frac{u - u_0}{r_{T_2}}\right) du}$$
$$= \lim_{T_1, T_2 \to \infty} \frac{b_{T_1}^2 r_{T_1} \int_{-u_0/r_1}^{(1 - u_0)/r_{T_1}} f_1(z)' \mathbf{M} f_1(z) dz}{b_{T_2}^2 r_{T_2} \int_{-u_0/r_2}^{(1 - u_0)/r_{T_2}} \int_0^1 f_2(z)' \mathbf{M} f_2(z) dz}$$
$$= \lim_{T_1, T_2 \to \infty} \frac{b_{T_1}^2 r_{T_1} \int_{-\infty}^{\infty} f_1(z)' \mathbf{M} f_1(z) dz}{b_{T_2}^2 r_{T_2} \int_{-\infty}^{\infty} f_2(z)' \mathbf{M} f_2(z) dz}$$
$$= \lim_{T_1, T_2 \to \infty} \frac{T_1^{-(2 - \lambda)/4} \int_{-\infty}^{\infty} f_1(z)' \mathbf{M} f_1(z) dz}{T_2^{-(2 - \lambda)/4} \int_{-\infty}^{\infty} f_2(z)' \mathbf{M} f_2(z) dz} = 1,$$

where we have used the fact that $\frac{1-u_0}{r_{T_j}} \to \infty$ and $-\frac{u_0}{r_{T_j}} \to -\infty$ as $T_j \to \infty$ for j = 1, 2. It follows that

(A21)
$$\lim_{T_1, T_2 \to \infty} \left(\frac{T_1}{T_2}\right)^{-(2-\lambda)/4} = \frac{\int_{-\infty}^{\infty} f_2(z)' \mathbf{M} f_2(z) \, dz}{\int_{-\infty}^{\infty} f_1(z)' \mathbf{M} f_1(z) \, dz},$$

18

and to have the same asymptotic power, we have

(A22)
$$\frac{\int f_1(z)' \mathbf{M} f_1(z) dz}{\sqrt{4 \operatorname{trace}(\mathbf{M}^{-1} \Omega \mathbf{M}^{-1} \Omega) \int_0^1 \left[\int_{-1}^1 k(u) k(u+v) du \right]^2 dv}} = \frac{\int f_2(z)' \mathbf{M} f_2(z) dz}{\sqrt{4 \operatorname{trace}(\mathbf{M}^{-1} \Omega \mathbf{M}^{-1} \Omega) \int_0^1 \left[2k(v) - \int_{-1}^1 k(u) k(u+v) du \right]^2 dv}}.$$

Combining (A21) and (A22), we have

$$\operatorname{RE}(\hat{H}:\hat{C}) = \lim_{T_1, T_2 \to \infty} \frac{T_2}{T_1}$$
$$= \left(\frac{\int_0^1 \left[2k(v) - \int_{-1}^1 k(u)k(u+v) \, du\right]^2 dv}{\int_0^1 \left[\int_{-1}^1 k(u)k(u+v) \, du\right]^2 dv}\right)^{1/(2-\lambda)}.$$

Thus \hat{H} is more efficient than \hat{C} if

(A23)
$$\int_{-1}^{1} \left[2k(v) - \int_{-1}^{1} k(u)k(u+v) du \right]^{2} dv$$
$$> \int_{-1}^{1} \left[\int_{-1}^{1} k(u)k(u+v) du \right]^{2} dv.$$

Equation (A23) was shown in Hong and Zhang (2006). Now we verify this condition:

$$\int_{-1}^{1} \left[2k(v) - \int_{-1}^{1} k(u)k(u+v) \, du \right]^2 dv$$

$$- \int_{-1}^{1} \left[\int_{-1}^{1} k(u)k(u+v) \, du \right]^2 dv$$

$$= 4 \left[\int_{-1}^{1} k^2(v) \, dv - \int_{-1}^{1} \int_{-1}^{1} k(v)k(u)k(u+v) \, du \, dv \right]$$

$$\ge 4 \left\{ \int_{-1}^{1} k^2(v) \, dv \right\}$$

$$-\int_{-1}^{1} k(u) \left[\int_{-1}^{1} k^{2}(v) dv \right]^{1/2} \left[\int_{-1}^{1} k^{2}(v+u) dv \right]^{1/2} du \right\}$$

> $4 \left[\int_{-1}^{1} k^{2}(v) dv - \int_{-1}^{1} k(u) du \int_{-1}^{1} k^{2}(v) dv \right]$
= 0.

(ii) By Theorem 1 in Chen and Hong (2008), \hat{C} and \hat{H} are asymptotic N(0, 1) under \mathbb{H}_0 . Hence their asymptotic *p*-values are $1 - \Phi(\hat{C})$ and $1 - \Phi(\hat{H})$, respectively, where $\Phi(\cdot)$ is the cumulative distribution function of N(0, 1). Using Theorem 2 in Chen and Hong (2008), we have

(A24)
$$-2T^{-2}h^{-1}\ln[1 - \Phi(\hat{C})] = \left\{ 4\operatorname{trace}(\mathbf{M}^{-1}\Omega\mathbf{M}^{-1}\Omega) \int_{0}^{1} \left[2k(v) - \int_{-1}^{1}k(u)k(u+v) \, du \right]^{2} dv \right\}^{-1} \\ \times \left(\alpha^{*'}\mathbf{M}\alpha^{*} - 2\int_{0}^{1}\alpha'(u) \, du \, \mathbf{M}\alpha^{*} + \int_{0}^{1}\alpha'(u)\mathbf{M}\alpha(u) \, du \right) + o_{P}(1)$$

and

(A25)
$$-2T^{-2}h^{-1}\ln[1-\Phi(\hat{H})]$$
$$= \left\{4\operatorname{trace}(\mathbf{M}^{-1}\Omega\mathbf{M}^{-1}\Omega)\int_{0}^{1}\left[\int_{-1}^{1}k(u)k(u+v)\,du\right]^{2}dv\right\}^{-1}$$
$$\times \left(\alpha^{*'}\mathbf{M}\alpha^{*}-2\int_{0}^{1}\alpha'(u)\,du\,\mathbf{M}\alpha^{*}+\int_{0}^{1}\alpha'(u)\mathbf{M}\alpha(u)\,du\right)$$
$$+o_{P}(1).$$

Following Bahadur (1960), {4 trace($\mathbf{M}^{-1}\Omega\mathbf{M}^{-1}\Omega$) $\int_{0}^{1} [2k(v) - \int_{-1}^{1} k(u)k(u + v) du]^{2} dv$ }⁻¹($\alpha^{*'}\mathbf{M}\alpha^{*} - 2\int_{0}^{1} \alpha'(u) du \mathbf{M}\alpha^{*} + \int_{0}^{1} \alpha'(u)\mathbf{M}\alpha(u) du$) and {4 × trace($\mathbf{M}^{-1}\Omega\mathbf{M}^{-1}\Omega$) $\int_{0}^{1} [\int_{-1}^{1} k(u)k(u + v) du]^{2} dv$ }⁻¹($\alpha^{*'}\mathbf{M}\alpha^{*} - 2\int_{0}^{1} \alpha'(u) du \times \mathbf{M}\alpha^{*} + \int_{0}^{1} \alpha'(u)\mathbf{M}\alpha(u) du$) can be regarded as the "asymptotic slope" of the tests \hat{C} and \hat{H} . Given (A24) and (A25), and $h = cT^{-\lambda}$ for $\lambda \in (0, 1)$, Bahadur's asymptotic relative efficiency RE($\hat{H} : \hat{C}$) of \hat{H} to \hat{C} is

$$\operatorname{RE}(\hat{H}:\hat{C}) = \left\{ \frac{\int_{-1}^{1} \left[2k(v) - \int_{-1}^{1} k(u)k(u+v) \, du \right]^2 dv}{\int_{-1}^{1} \left[\int_{-1}^{1} k(u)k(u+v) \, du \right]^2 dv} \right\}^{1/(2-\lambda)}$$

and \hat{H} is more efficient than \hat{C} in terms of the Bahadur asymptotic efficiency criterion given (A23). Q.E.D.

FIGURES AND ADDITIONAL TABLES

TABLE A.I
EMPIRICAL LEVELS OF TESTS ^a

	ε_l	\sim i.i.d. $N(0$, 1)	ε	$t \sim \text{ARCH}($	1)	$\varepsilon_t X_t \sim N(0, f(X_t))$				
Test ^b	100	250	500	100	250	500	100	250	500		
<i>Ĥ</i> -het	0.095	0.078	0.053	0.116	0.087	0.066	0.120	0.092	0.071		
\hat{C} -het	0.066	0.053	0.042	0.077	0.060	0.051	0.081	0.061	0.048		
Ĥ	0.079	0.071	0.047	0.097	0.080	0.062	0.350	0.428	0.471		
Ĉ	0.052	0.047	0.035	0.067	0.050	0.048	0.243	0.288	0.328		
CUSUM MOSUM	0.034	0.045 0.044	0.044	$0.046 \\ 0.045$	$0.048 \\ 0.048$	0.050 0.057	0.020 0.033	0.032	0.028 0.046		
LM1-het LM2-het LM3-het LM1 LM2 LM3 Sup-LM-het Exp-LM-het Ave-LM-het Sup-LM Exp-LM	$\begin{array}{c} 0.030\\ 0.043\\ 0.040\\ 0.029\\ 0.046\\ 0.054\\ 0.049\\ 0.018\\ 0.033\\ 0.044\\ 0.029\\ 0.044\\ \end{array}$	$\begin{array}{c} 0.044\\ 0.054\\ 0.049\\ 0.046\\ 0.054\\ 0.049\\ 0.053\\ 0.035\\ 0.049\\ 0.053\\ 0.043\\ 0.051\\ \end{array}$	$\begin{array}{c} 0.030\\ 0.048\\ 0.047\\ 0.046\\ 0.049\\ 0.048\\ 0.049\\ 0.043\\ 0.049\\ 0.050\\ 0.045\\ 0.048\\ \end{array}$	$\begin{array}{c} 0.043\\ 0.044\\ 0.036\\ 0.029\\ 0.052\\ 0.060\\ 0.065\\ 0.013\\ 0.030\\ 0.042\\ 0.048\\ 0.056\end{array}$	$\begin{array}{c} 0.046\\ 0.047\\ 0.043\\ 0.041\\ 0.048\\ 0.052\\ 0.059\\ 0.029\\ 0.041\\ 0.046\\ 0.050\\ 0.056\\ \end{array}$	$\begin{array}{c} 0.057\\ 0.053\\ 0.047\\ 0.045\\ 0.052\\ 0.055\\ 0.056\\ 0.037\\ 0.050\\ 0.052\\ 0.055\\ 0.057\\ \end{array}$	0.035 0.045 0.032 0.028 0.150 0.194 0.218 0.010 0.026 0.035 0.205 0.229	$\begin{array}{c} 0.035\\ 0.045\\ 0.042\\ 0.042\\ 0.168\\ 0.219\\ 0.258\\ 0.022\\ 0.036\\ 0.046\\ 0.282\\ 0.280\\ \end{array}$	$\begin{array}{c} 0.040\\ 0.050\\ 0.045\\ 0.045\\ 0.045\\ 0.177\\ 0.247\\ 0.290\\ 0.034\\ 0.043\\ 0.049\\ 0.330\\ 0.311 \end{array}$		
Ave-LM UD-het UD-het UD	0.043 0.138 0.225 0.051	0.053 0.085 0.125 0.052	0.050 0.067 0.089 0.050	0.047 0.153 0.214 0.095	0.049 0.082 0.109 0.072	0.055 0.066 0.079 0.068	0.178 0.260 0.374 0.338	0.210 0.132 0.191 0.393	0.227 0.096 0.120 0.431		
wD qLL-het qLL	0.058 0.060 0.065	0.055 0.050 0.055	0.051 0.051 0.052	$0.104 \\ 0.081 \\ 0.088$	0.076 0.067 0.074	0.068 0.055 0.061	0.413 0.060 0.454	0.483 0.058 0.503	0.537 0.054 0.514		

^a5000 iterations; 5% significance level.

		$t_1 = 0.1T$			t = 0.3T		t = 0.5T			
Test ^b	100	250	500	100	250	500	100	250	500	
\hat{H} -het	0.181	0.350	0.669	0.416	0.857	0.990	0.498	0.916	1.00	
\hat{C} -het	0.143	0.302	0.575	0.314	0.728	0.972	0.402	0.820	0.997	
\hat{H}	0.173	0.354	0.676	0.431	0.867	0.991	0.529	0.917	1.00	
Ĉ	0.141	0.302	0.583	0.352	0.731	0.972	0.414	0.838	0.998	
CUSUM MOSUM	$0.099 \\ 0.080$	$0.137 \\ 0.124$	$\begin{array}{c} 0.218\\ 0.185\end{array}$	$0.087 \\ 0.124$	$\begin{array}{c} 0.141 \\ 0.236 \end{array}$	$0.245 \\ 0.382$	$\begin{array}{c} 0.072\\ 0.144\end{array}$	$0.099 \\ 0.249$	0.176 0.415	
LM1-het LM2-het LM3-het LM1 LM2 LM3	$\begin{array}{c} 0.104 \\ 0.089 \\ 0.105 \\ 0.144 \\ 0.169 \\ 0.181 \end{array}$	0.220 0.236 0.220 0.271 0.392 0.417	0.384 0.504 0.546 0.470 0.643 0.714	0.404 0.349 0.290 0.458 0.429 0.354	0.814 0.833 0.763 0.853 0.878 0.819	0.993 0.995 0.986 0.993 0.998 0.989	$\begin{array}{c} 0.610 \\ 0.480 \\ 0.423 \\ 0.647 \\ 0.504 \\ 0.495 \end{array}$	0.954 0.915 0.901 0.958 0.927 0.923	1.00 0.998 0.999 1.00 0.999 1.00	
Sup-LM-het Exp-LM-het Ave-LM-het Sup-LM Exp-LM Ave-LM	$\begin{array}{c} 0.083 \\ 0.093 \\ 0.093 \\ 0.150 \\ 0.148 \\ 0.126 \end{array}$	0.195 0.208 0.211 0.327 0.306 0.262	0.454 0.436 0.369 0.608 0.563 0.437	0.427 0.443 0.409 0.501 0.517 0.498	0.888 0.898 0.861 0.923 0.932 0.887	0.999 0.999 0.997 1.00 1.00 0.998	0.583 0.633 0.616 0.622 0.656 0.668	0.949 0.958 0.956 0.951 0.960 0.963	$\begin{array}{c} 0.999 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	
UD-het WD-het UD WD	0.118 0.107 0.138 0.117	0.269 0.235 0.328 0.297	0.528 0.527 0.607 0.568	0.393 0.325 0.494 0.438	0.871 0.803 0.922 0.893	0.996 0.994 1.00 0.998	$0.488 \\ 0.404 \\ 0.608 \\ 0.532$	0.932 0.908 0.949 0.939	0.999 0.999 1.00 0.999	
qLL-het qLL	$0.151 \\ 0.172$	0.365 0.382	0.615 0.637	$0.376 \\ 0.428$	0.865 0.873	0.996 0.996	0.492 0.554	0.937 0.950	$\begin{array}{c} 1.00\\ 1.00\end{array}$	

TABLE A.II Powers of Tests Under DGP P.1: Single Structural Break^a

^a1000 iterations; 5% significance level.

	$(\alpha_{01}, (1$	$\alpha_{11}, \alpha_{02}, \alpha_{0$	(12) = 3)	(α ₀₁ , (0	α ₁₁ , α ₀₂ , α 0.6, 0.3, 1.5,	12) = 1)	$\begin{aligned} (\alpha_{01}, \alpha_{11}, \alpha_{02}, \alpha_{12}) = \\ (1.5, 1, 1.5, 1) \end{aligned}$				
Test ^b	100	250	500	100	250	500	100	250	500		
\hat{H} -het	0.296	0.688	0.988	0.308	0.646	0.954	0.147	0.431	0.889		
\hat{C} -het	0.280	0.702	0.989	0.276	0.615	0.942	0.168	0.568	0.950		
\hat{H}	0.301	0.712	0.989	0.306	0.665	0.957	0.150	0.472	0.906		
Ĉ	0.302	0.728	0.991	0.296	0.621	0.949	0.182	0.595	0.956		
CUSUM	0.112	0.180	0.340	0.090	0.174	0.322	0.066	0.089	0.197		
MOSUM	0.157	0.295	0.512	0.143	0.277	0.509	0.074	0.115	0.185		
LM1-het	0.074	0.059	0.065	0.052	0.054	0.061	0.079	0.085	0.111		
LM2-het	0.117	0.119	0.247	0.108	0.168	0.349	0.065	0.116	0.187		
LM3-het	0.157	0.206	0.351	0.139	0.221	0.419	0.079	0.111	0.184		
LM1	0.082	0.071	0.078	0.053	0.045	0.061	0.085	0.105	0.141		
LM2	0.105	0.127	0.249	0.119	0.203	0.374	0.085	0.148	0.228		
LM3	0.153	0.191	0.363	0.132	0.230	0.443	0.090	0.135	0.209		
Sup-LM-het	0.123	0.218	0.512	0.115	0.231	0.478	0.085	0.157	0.372		
Exp-LM-het	0.115	0.213	0.500	0.107	0.219	0.513	0.081	0.141	0.324		
Ave-LM-het	0.095	0.150	0.355	0.070	0.144	0.393	0.078	0.108	0.162		
Sup-LM	0.191	0.336	0.638	0.145	0.286	0.554	0.120	0.213	0.449		
Exp-LM	0.187	0.319	0.645	0.142	0.279	0.591	0.107	0.202	0.407		
Ave-LM	0.130	0.207	0.475	0.095	0.180	0.449	0.095	0.145	0.207		
UD-het	0.166	0.343	0.738	0.183	0.400	0.773	0.099	0.174	0.385		
WD-het	0.206	0.490	0.917	0.218	0.494	0.890	0.149	0.371	0.809		
UD	0.242	0.525	0.917	0.240	0.556	0.914	0.135	0.299	0.663		
WD	0.300	0.679	0.977	0.290	0.658	0.962	0.189	0.563	0.931		
qLL-het	0.237	0.668	0.957	0.217	0.637	0.928	0.119	0.363	0.768		
qLL	0.330	0.723	0.975	0.297	0.657	0.942	0.192	0.464	0.845		

TABLE A.III POWERS OF TESTS UNDER DGP P.2: MULTIPLE STRUCTURAL BREAKS^a

^a1000 iterations; 5% significancel level.

TABLE A.IV
POWERS OF TESTS UNDER DGP P.3: NONPERSISTENT TEMPORAL STRUCTURAL BREAKS ^a

	$t_1 =$	$0.2T, t_2 =$	0.4T	$t_1 =$	$0.4T, t_2 =$	0.6 <i>T</i>	$t_1 = 0.6T, t_2 = 0.8T$			
Test ^b	100	250	500	100	250	500	100	250	500	
\hat{H} -het	0.304	0.735	0.988	0.319	0.748	0.990	0.300	0.728	0.988	
\hat{C} -het	0.295	0.703	0.977	0.306	0.693	0.971	0.283	0.696	0.979	
\hat{H}	0.316	0.740	0.988	0.325	0.765	0.987	0.316	0.749	0.989	
\hat{C}	0.305	0.704	0.978	0.330	0.700	0.977	0.296	0.703	0.980	
CUSUM	0.116	0.244	0.462	0.096	0.198	0.399	0.078	0.136	0.337	
MOSUM	0.152	0.296	0.580	0.138	0.292	0.519	0.152	0.321	0.596	
LM1-het	0.142	0.253	0.521	0.059	0.058	0.059	0.123	0.266	0.479	
LM2-het	0.148	0.300	0.590	0.164	0.435	0.764	0.132	0.292	0.598	
LM3-het	0.218	0.514	0.903	0.164	0.364	0.701	0.194	0.499	0.881	
LM1	0.139	0.263	0.532	0.046	0.050	0.046	0.129	0.270	0.492	
LM2	0.139	0.325	0.604	0.183	0.488	0.791	0.129	0.298	0.614	
LM3	0.261	0.591	0.938	0.174	0.413	0.731	0.252	0.593	0.918	
Sup-LM-het	0.183	0.415	0.811	0.129	0.330	0.665	0.175	0.422	0.795	
Exp-LM-het	0.184	0.421	0.832	0.127	0.329	0.702	0.175	0.436	0.813	
Ave-LM-het	0.162	0.395	0.784	0.088	0.229	0.609	0.153	0.395	0.749	
Sup-LM	0.206	0.469	0.868	0.143	0.348	0.708	0.203	0.486	0.843	
Exp-LM	0.215	0.467	0.883	0.145	0.362	0.733	0.219	0.494	0.849	
Ave-LM	0.192	0.433	0.813	0.096	0.256	0.633	0.187	0.439	0.787	
UD-het	0.255	0.660	0.976	0.236	0.634	0.973	0.241	0.651	0.970	
WD-het	0.271	0.687	0.985	0.255	0.667	0.987	0.258	0.689	0.984	
UD	0.289	0.745	0.990	0.262	0.736	0.993	0.295	0.735	0.989	
WD	0.317	0.810	0.993	0.303	0.784	1.00	0.308	0.784	0.995	
qLL-het	0.235	0.713	0.966	0.222	0.709	0.968	0.247	0.696	0.964	
qLL	0.295	0.749	0.970	0.324	0.734	0.976	0.310	0.733	0.976	

^a1000 iterations; 5% significance level.

	Mor Stru	notonic Sm actural Char	ooth nges	Nonm Stru	ionotonic S ictural Chai	mooth nges	High-Frequency Smooth Structural Changes				
Test ^b	100	250	500	100	250	500	100	250	500		
\hat{H} -het	0.400	0.824	0.988	0.443	0.884	0.998	0.293	0.678	0.964		
\hat{C} -het	0.370	0.782	0.980	0.378	0.786	0.992	0.238	0.550	0.904		
\hat{H}	0.401	0.824	0.988	0.452	0.886	0.998	0.287	0.701	0.964		
Ĉ	0.381	0.780	0.979	0.401	0.793	0.992	0.251	0.555	0.910		
CUSUM	0.059	0.086	0.187	0.320	0.681	0.943	0.243	0.481	0.807		
MOSUM	0.105	0.243	0.442	0.374	0.780	0.966	0.393	0.764	0.971		
LM1-het	0.229	0.513	0.817	0.065	0.055	0.059	0.194	0.379	0.705		
LM2-het	0.235	0.631	0.949	0.520	0.946	0.999	0.315	0.708	0.957		
LM3-het	0.214	0.647	0.970	0.427	0.903	0.996	0.316	0.720	0.976		
LM1	0.318	0.612	0.861	0.074	0.072	0.063	0.195	0.384	0.706		
LM2	0.424	0.804	0.978	0.548	0.964	0.999	0.312	0.735	0.965		
LM3	0.474	0.884	0.993	0.492	0.919	0.997	0.317	0.737	0.979		
Sup-LM-het	0.248	0.584	0.935	0.215	0.598	0.942	0.267	0.614	0.926		
Exp-LM-het	0.242	0.558	0.922	0.193	0.572	0.940	0.279	0.627	0.941		
Ave-LM-het	0.223	0.482	0.799	0.132	0.422	0.891	0.241	0.578	0.930		
Sup-LM	0.404	0.783	0.981	0.281	0.675	0.964	0.263	0.608	0.925		
Exp-LM	0.389	0.746	0.973	0.259	0.650	0.969	0.282	0.633	0.950		
Ave-Livi	0.305	0.575	0.862	0.177	0.475	0.910	0.207	0.588	0.931		
UD-het	0.293	0.680	0.954	0.258	0.683	0.978	0.212	0.567	0.938		
WD-het	0.261	0.591	0.944	0.269	0.708	0.985	0.178	0.545	0.944		
UD	0.391	0.789	0.981	0.345	0.781	0.989	0.283	0.640	0.954		
WD	0.356	0.746	0.969	0.361	0.804	0.990	0.258	0.643	0.955		
qLL-het	0.388	0.798	0.988	0.418	0.892	0.997	0.282	0.740	0.977		
qLL	0.408	0.792	0.987	0.440	0.897	0.997	0.292	0.748	0.981		

TABLE A.V POWERS OF TESTS UNDER DGP P.4: SMOOTH STRUCTURAL CHANGES^a

^a1000 iterations; 5% significance level.

		Slope			Intercept		Both				
Test ^b	100	250	500	100	250	500	100	250	500		
<i>Ĥ</i> -het	0.414	0.874	0.994	0.342	0.828	0.990	0.617	0.983	1.00		
\hat{C} -het	0.359	0.851	0.991	0.305	0.789	0.972	0.555	0.982	1.00		
\hat{H}	0.417	0.885	0.996	0.333	0.832	0.991	0.626	0.987	1.00		
Ĉ	0.369	0.853	0.992	0.292	0.786	0.972	0.564	0.985	1.00		
CUSUM MOSUM	$0.063 \\ 0.080$	$\begin{array}{c} 0.051 \\ 0.104 \end{array}$	$0.082 \\ 0.139$	$0.260 \\ 0.387$	0.691 0.813	0.931 0.948	$0.277 \\ 0.395$	0.622 0.745	0.897 0.929		
LM1-het	0.349	0.692	0.831	0.344	0.674	0.826	0.557	0.889	0.971		
LM2-het	0.326	0.769	0.939	0.342	0.777	0.926	0.567	0.946	0.995		
LM3-het	0.304	0.786	0.966	0.325	0.808	0.963	0.558	0.956	0.998		
LM1	0.390	0.722	0.851	0.354	0.675	0.832	0.585	0.896	0.972		
LM2	0.397	0.808	0.950	0.334	0.781	0.925	0.609	0.960	0.995		
LM3	0.399	0.844	0.973	0.332	0.811	0.960	0.616	0.971	0.999		

0.366

0.376

0.362

0.362

0.377

0.379

0.284

0.240

0.368

0.328

0.371

0.362

0.955

0.953

0.935

0.956

0.957

0.936

0.999

1.00

0.999

1.00

0.986

0.985

0.563

0.595

0.576

0.623

0.635

0.625

0.524

0.483

0.631

0.596

0.613

0.645

0.945

0.950

0.943

0.964

0.967

0.952

0.785

0.777

0.815

0.822

0.979

0.983

0.779

0.787

0.747

0.781

0.792

0.754

0.959

0.963

0.972

0.976

0.849

0.849

0.999

0.999

0.999

0.999

0.999

0.999

0.966

0.981

0.978

0.985

1.00

1.00

TABLE A.VI POWERS OF TESTS UNDER DGP P.5: UNIT ROOT IN PARAMETER^a

^a1000 iterations; 5% significance level.

0.334

0.350

0.355

0.408

0.418

0.409

0.345

0.336

0.421

0.394

0.378

0.438

0.791

0.796

0.757

0.841

0.840

0.798

0.814

0.812

0.868

0.873

0.865

0.879

0.957

0.955

0.939

0.977

0.974

0.954

0.977

0.988

0.987

0.994

0.991

0.992

 $^{b}\hat{H}$ and \hat{C} are the generalized Hausman and Chow tests; CUSUM and MOSUM are Brown, Durbin, and Evans' (1975) CUSUM and Hackl's (1980) MOSUM tests, respectively; LM1-3 are Lin and Teräsvirta's (1994) LM tests; Sup-LM is Andrews' (1993) supremum LM test; Exp-LM and Ave-LM are Andrews and Ploberger's (1994) exponential and average LM tests; UDMax and WDMax are Bai and Perron's (1998) double maximum tests; qLL is Elliott and Müller's (2006) efficient test based on a quasilocal level model. *-het denotes the heteroscedasticity-robust version of the corresponding * test.

Sup-LM-het

Exp-LM-het

Ave-LM-het

Sup-LM

Exp-LM

Ave-LM

UD-het

WD-het

qLL-het

UD

WD

qLL

			DGF	P S.1: ε_t	~ i.i.d. <i>N</i>	(0,1)		DGP S.2: $\varepsilon_t \sim \text{ARCH}(1)$						DGP S.3: $\varepsilon_t X_t \sim N(0, f(X_t))$					
		10	00	2:	50	50	00	10	00	2	50	5	00	1	00	2:	50	5	00
	Test ^b	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV
c = 1/1.5	\hat{H} -het	0.075	0.196	0.061	0.126	0.070	0.079	0.080	0.225	0.067	0.140	0.048	0.097	0.087	0.215	0.068	0.149	0.068	0.107
	Ĉ-het	0.071	0.118	0.057	0.069	0.062	0.054	0.080	0.136	0.063	0.085	0.052	0.066	0.080	0.125	0.066	0.088	0.070	0.065
	Ĥ	0.084	0.159	0.071	0.106	0.078	0.068	0.086	0.188	0.074	0.124	0.054	0.085	0.131	0.508	0.105	0.579	0.094	0.625
	Ĉ	0.080	0.085	0.065	0.051	0.066	0.045	0.086	0.109	0.070	0.070	0.054	0.061	0.129	0.331	0.100	0.377	0.096	0.406
c = 1	\hat{H} -het	0.065	0.095	0.059	0.078	0.038	0.053	0.071	0.116	0.059	0.087	0.048	0.066	0.083	0.120	0.061	0.092	0.062	0.071
	\hat{C} -het	0.069	0.066	0.060	0.053	0.046	0.042	0.071	0.077	0.063	0.060	0.056	0.051	0.081	0.081	0.056	0.061	0.062	0.048
	\hat{H}	0.070	0.079	0.066	0.071	0.040	0.047	0.079	0.097	0.063	0.080	0.050	0.062	0.117	0.350	0.084	0.428	0.084	0.471
	\hat{C}	0.073	0.052	0.066	0.047	0.046	0.035	0.079	0.067	0.069	0.050	0.060	0.048	0.118	0.243	0.080	0.288	0.078	0.328
c = 1.5	\hat{H} -het	0.065	0.057	0.059	0.052	0.066	0.039	0.065	0.062	0.051	0.055	0.054	0.047	0.071	0.074	0.054	0.063	0.062	0.053
	\hat{C} -het	0.065	0.040	0.058	0.034	0.054	0.030	0.060	0.049	0.050	0.041	0.064	0.039	0.066	0.052	0.051	0.040	0.058	0.036
	\hat{H}	0.068	0.048	0.062	0.049	0.074	0.037	0.068	0.059	0.056	0.054	0.050	0.046	0.095	0.241	0.066	0.308	0.070	0.346
	\hat{C}	0.072	0.033	0.061	0.031	0.052	0.028	0.065	0.043	0.054	0.036	0.064	0.037	0.089	0.168	0.064	0.221	0.074	0.261
c = 2	\hat{H} -het	0.061	0.050	0.048	0.040	0.040	0.035	0.063	0.059	0.053	0.041	0.082	0.038	0.066	0.061	0.056	0.047	0.060	0.042
	\hat{C} -het	0.061	0.038	0.050	0.032	0.044	0.205	0.060	0.044	0.056	0.035	0.048	0.030	0.065	0.046	0.057	0.035	0.068	0.034
	\hat{H}	0.065	0.044	0.049	0.038	0.046	0.032	0.066	0.053	0.056	0.038	0.074	0.038	0.087	0.214	0.065	0.230	0.066	0.266
	\hat{C}	0.063	0.032	0.053	0.029	0.044	0.025	0.064	0.039	0.056	0.032	0.058	0.028	0.085	0.159	0.066	0.180	0.078	0.212
CV	\hat{H} -het	0.071	0.079	0.051	0.061	0.063	0.047	0.076	0.094	0.055	0.070	0.044	0.057	0.070	0.127	0.057	0.090	0.055	0.064
	\hat{C} -het	0.070	0.121	0.046	0.111	0.059	0.099	0.083	0.137	0.054	0.116	0.041	0.113	0.066	0.156	0.057	0.130	0.051	0.110
	\hat{H}	0.070	0.070	0.055	0.055	0.064	0.042	0.078	0.083	0.055	0.065	0.048	0.054	0.089	0.232	0.068	0.247	0.064	0.234
	\hat{C}	0.077	0.108	0.051	0.101	0.061	0.094	0.087	0.123	0.062	0.110	0.043	0.109	0.089	0.311	0.081	0.363	0.065	0.374

 TABLE A.VII

 EMPIRICAL LEVELS OF TESTS WITH DIFFERENT BANDWIDTHS^a

^a5000 iterations; 5% significance level. BCV and ECV denote results based on bootstrap critical values and empirical critical values, respectively; *c* denotes the scaling parameter in the rule-of-thumb bandwidth selection, $h = c(1/\sqrt{12})T^{-1/5}$; CV denotes the cross-validation method.

 $^{b}\hat{H}$ and \hat{C} are the generalized Hausman and Chow tests; *-het denotes the heteroscedasticity-robust version of the corresponding * test.

TESTING FOR SMOOTH STRUCTURAL CHANGES

				DG	P P.1			DGP P.2						DGP P.3					
				t = 0).3 <i>T</i>			(4	$\alpha_{01}, \alpha_{11}, \alpha_{1$	α_{02}, α_{12}) = (0.6,	0.3, 1.5, 1	1)		t	1 = 0.4T	$t_2 = 0.62$	Т	
		10	00	25	50	50	00	10	100		250 500		00	100		25	50	50	00
	Test ^b	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV
c = 1/1.5	\hat{H} -het	0.370	0.347	0.783	0.779	0.981	0.982	0.344	0.334	0.726	0.706	0.972	0.972	0.345	0.319	0.769	0.753	0.989	0.985
	\hat{C} -het	0.300	0.267	0.637	0.664	0.947	0.961	0.302	0.309	0.676	0.675	0.966	0.965	0.293	0.270	0.656	0.684	0.969	0.969
	\hat{H}	0.398	0.371	0.797	0.793	0.984	0.988	0.376	0.354	0.746	0.707	0.975	0.973	0.365	0.333	0.791	0.774	0.990	0.990
	Ĉ	0.322	0.293	0.670	0.678	0.951	0.969	0.332	0.318	0.711	0.700	0.969	0.969	0.317	0.275	0.690	0.709	0.973	0.968
c = 1	\hat{H} -het	0.399	0.416	0.847	0.857	0.998	0.990	0.293	0.308	0.673	0.646	0.951	0.954	0.324	0.319	0.770	0.748	0.977	0.990
	\hat{C} -het	0.320	0.314	0.751	0.728	0.975	0.972	0.269	0.276	0.676	0.615	0.955	0.942	0.304	0.306	0.729	0.693	0.968	0.971
	\hat{H}	0.418	0.431	0.855	0.867	0.998	0.991	0.319	0.306	0.694	0.665	0.953	0.957	0.343	0.325	0.788	0.765	0.977	0.987
	\hat{C}	0.337	0.352	0.761	0.731	0.979	0.972	0.286	0.296	0.690	0.621	0.961	0.949	0.321	0.330	0.746	0.700	0.970	0.977
c = 1.5	\hat{H} -het	0.463	0.467	0.890	0.896	0.997	0.994	0.210	0.209	0.588	0.564	0.901	0.916	0.278	0.273	0.674	0.674	0.969	0.963
	\hat{C} -het	0.386	0.397	0.822	0.814	0.984	0.983	0.239	0.254	0.552	0.521	0.838	0.851	0.282	0.275	0.721	0.715	0.967	0.972
	\hat{H}	0.474	0.478	0.893	0.905	0.997	0.996	0.220	0.224	0.606	0.574	0.906	0.920	0.298	0.277	0.689	0.692	0.971	0.967
	\hat{C}	0.396	0.404	0.829	0.817	0.984	0.983	0.255	0.263	0.564	0.539	0.842	0.863	0.301	0.289	0.735	0.725	0.968	0.977
c = 2	\hat{H} -het	0.463	0.486	0.888	0.908	0.998	0.997	0.152	0.157	0.424	0.422	0.830	0.817	0.227	0.213	0.604	0.582	0.924	0.932
	\hat{C} -het	0.399	0.403	0.832	0.847	0.994	0.984	0.215	0.208	0.510	0.520	0.824	0.826	0.234	0.225	0.638	0.634	0.950	0.958
	\hat{H}	0.485	0.499	0.891	0.912	0.998	0.996	0.164	0.172	0.437	0.431	0.844	0.833	0.239	0.230	0.615	0.609	0.930	0.932
	\hat{C}	0.416	0.431	0.838	0.865	0.994	0.985	0.225	0.219	0.521	0.549	0.830	0.831	0.243	0.228	0.649	0.669	0.950	0.957
CV	\hat{H} -het	0.406	0.423	0.862	0.871	0.992	0.995	0.283	0.255	0.637	0.604	0.946	0.943	0.290	0.255	0.717	0.692	0.970	0.957
	\hat{C} -het	0.373	0.378	0.837	0.857	0.991	0.993	0.289	0.259	0.657	0.642	0.958	0.952	0.302	0.256	0.737	0.730	0.983	0.971
	\hat{H}	0.426	0.431	0.871	0.879	0.992	0.996	0.301	0.261	0.643	0.615	0.946	0.944	0.305	0.261	0.724	0.707	0.971	0.964
	\hat{C}	0.396	0.404	0.845	0.867	0.991	0.995	0.307	0.273	0.678	0.641	0.961	0.955	0.310	0.273	0.750	0.735	0.984	0.972

 TABLE A.VIII

 EMPIRICAL POWERS OF TESTS WITH DIFFERENT BANDWIDTHS^a

^a1000 iterations; 5% significance level. BCV and ECV denote results based on bootstrap critical values and empirical critical values, respectively; *c* denotes the scaling parameter in the rule-of-thumb bandwidth selection, $h = c(1/\sqrt{12})T^{-1/5}$; CV denotes the cross-validation method.

 $^{b}\hat{H}$ and \hat{C} are the generalized Hausman and Chow tests; *-het denotes the heteroscedasticity-robust version of the corresponding * test.

B. CHEN AND Y. HONG

			No	DG nmonotonic	P P.4 Smooth Chai	nges		DGP P.5 Intercept and Slope							
		1	00	2	50	5	00	1	00	2	50	5	500		
	Test ^b	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV	BCV	ECV		
c = 1/1.5	\hat{H} -het	0.405	0.358	0.823	0.834	0.993	0.994	0.599	0.553	0.986	0.987	1.00	1.00		
	\hat{C} -het	0.331	0.302	0.706	0.723	0.962	0.973	0.538	0.495	0.979	0.975	1.00	1.00		
	\hat{H}	0.444	0.380	0.838	0.841	0.993	0.995	0.627	0.569	0.989	0.989	1.00	1.00		
	\hat{C}	0.364	0.310	0.734	0.746	0.966	0.980	0.573	0.520	0.979	0.979	1.00	1.00		
c = 1	\hat{H} -het	0.484	0.443	0.889	0.884	0.997	0.998	0.636	0.617	0.988	0.983	1.00	1.00		
	\hat{C} -het	0.406	0.378	0.799	0.786	0.984	0.992	0.560	0.555	0.983	0.982	1.00	1.00		
	\hat{H}	0.512	0.452	0.900	0.886	0.997	0.998	0.654	0.626	0.989	0.987	1.00	1.00		
	\hat{C}	0.428	0.401	0.809	0.793	0.985	0.992	0.589	0.564	0.985	0.985	1.00	1.00		
c = 1.5	\hat{H} -het	0.499	0.437	0.901	0.910	0.998	0.999	0.658	0.615	0.983	0.983	1.00	1.00		
	\hat{C} -het	0.453	0.437	0.851	0.867	0.994	0.998	0.602	0.597	0.979	0.971	1.00	1.00		
	\hat{H}	0.511	0.449	0.905	0.909	0.999	0.999	0.669	0.631	0.984	0.987	1.00	1.00		
	\hat{C}	0.478	0.445	0.861	0.869	0.994	0.997	0.618	0.601	0.983	0.972	1.00	1.00		
c = 2	\hat{H} -het	0.440	0.395	0.885	0.891	1.00	0.999	0.619	0.609	0.974	0.977	1.00	0.999		
	\hat{C} -het	0.470	0.425	0.879	0.900	0.996	0.999	0.582	0.578	0.967	0.964	1.00	0.998		
	\hat{H}	0.459	0.407	0.882	0.894	0.998	0.999	0.626	0.631	0.977	0.982	1.00	0.999		
	\hat{C}	0.476	0.440	0.882	0.901	0.996	0.998	0.593	0.598	0.968	0.968	1.00	0.998		
CV	\hat{H} -het	0.384	0.348	0.824	0.838	0.987	0.995	0.605	0.620	0.982	0.989	1.00	1.00		
	\hat{C} -het	0.408	0.387	0.848	0.875	0.996	0.998	0.594	0.626	0.981	0.990	1.00	1.00		
	\hat{H}	0.405	0.357	0.830	0.840	0.989	0.995	0.626	0.640	0.983	0.990	1.00	1.00		
	\hat{C}	0.437	0.402	0.858	0.883	0.996	0.998	0.615	0.640	0.982	0.990	1.00	1.00		

TABLE VIII—Continued