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APPENDIX

This appendix consists of a shorter section that describes the added de-
tails with regard to the empirical work in the paper and a longer section that
presents asymptotic results for the realized Laplace transform for the case in
which volatility has a deterministic intraday component.

A.1. Empirical Documentation

FOR THE ANALYSIS of the empirical section in the paper as a measure for the
unobservable integrated variance,

∫ t

t−1 σ
2
s ds, we use truncated variation (TV),

originally proposed by Mancini (2001), which we construct in the manner

TV[t−1�t](α��) =
[t/Δn]∑

i=[(t−1)/Δn]+1

|Δn
i X|21{|Δn

i X|≤αΔ�
n }� α > 0�� ∈ (0�1/2)�(31)

where here � = 0�49 (i.e., very close to 1/2) and α is 4 × √
BV , where BV

denotes the bipower variation of Barndorff-Nielsen and Shephard (2004, 2006)
over the time interval [t − 1� t].

We next provide details on the calculation of the implied volatility densi-
ties in the right panel of Figure 1. We first recall (see, e.g., Barndorff-Nielsen
and Shephard (2001) and the references therein) that the generalized-inverse-
Gaussian (GIG) distribution that we use in the analysis is positively supported
and is controlled by three parameters (ν�δ�γ). If x ∼ GIG(ν�δ�γ), then the
density of x is given by(

γ

δ

)ν

2Kν(δγ)
xν−1 exp

(
−1

2
(δ2x−1 + γ2x)

)
� x > 0�(32)

where Kν is a modified Bessel function of the third kind.
The three-parameter GIG density is fitted to the observed S&P 500 realized

Laplace transform as follows. We select three abscissas, u1 = 0�10, u2 = 4�0,
and u3 = 8�0, which lie near the origin, in the central part, and in the up-
per part, respectively, of the effective domain [0�8] of the realized Laplace
transform. We then solve the three estimating equations VT (X�Δn�uj) −

LGIG(uj|θ) = 0� j = 1�2�3, to obtain θ̂, where LGIG(uj|θ) is the Laplace trans-
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FIGURE 2.—GIG model-implied log-Laplace transforms of the S&P 500 spot variance. The
figure shows the implied log-Laplace transform for the spot variance under the generalized-in-
verse-Gaussian distribution with the data-determined confidence interval for the nonparametric
estimate of the log transform.

form of the GIG distribution evaluated at uj given the 3×1 parameter vector θ.
The resulting point estimate remains unchanged for other values of u that lie
in the same general regions.

The fit of the GIG is essentially exact since LGIG(u|θ̂) and VT (X�Δn�u) agree
to within machine precision over u ∈ [0�8]. The quality of the fit is evident from
Figure 2, which indicates that LGIG(uj|θ̂) goes right through the middle of the
2σ confidence band of Figure 1.

By way of contrast, Figure 3 reveals the poor fit of the gamma distribu-
tion, which is the marginal distribution of the affine Cox–Ingersoll–Ross (CIR)
model, estimated similarly using two abscissas, u1 = 0�10 and u2 = 8�0. (The
gamma distribution is a special case of the GIG distribution with δ = 0 and
ν > 0 in (31).)

A.2. The Case of a Deterministic Intraday Component in Volatility

It is well recognized that financial volatility has a pronounced deterministic
intraday U-shaped pattern; see, for example, Andersen and Bollerslev (1998)
for an early account of this phenomenon. When this is the case, it is easy to
show that the infill asymptotic result of Theorem 1 remains the same (provided
the deterministic pattern is captured by a differentiable function). Therefore,
here we look only at the situation when a joint infill and long-span asymptotics
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FIGURE 3.—CIR model-implied log-Laplace transform of the S&P 500 spot variance. The
figure shows the implied log-Laplace transform for the spot variance under the gamma distri-
bution with the data-determined confidence interval for the nonparametric estimate of the log
transform.

is used, that is, the setting of Theorem 2. Also, for simplicity we look only at the
case of k = 0 and v = 0 for μ̂k(u� v), which in this case is simply 1

T
VT (X�Δn�u).

To this end, we suppose that the underlying process, which we now denote
with X̃ , has the dynamics

dX̃t = αt dt + σ̃t dWt +
∫

R

δ(t−�x)μ(ds�dx)�(33)

where σ̃2
t = f (t−[t])×σ2

t for some deterministic 0�5-Hölder continuous func-
tion f with f (t) > 0 and

∫ 1
0 f (s)ds = 1; the processes αt and σt , the measure μ,

and the stochastic function δ(t�x) are all defined as in equation (3). In other
words, the only change from the original setup is that the stochastic volatility
process σ̃2

t now has a deterministic component. We think, without loss of gen-
erality, that the unit time interval represents a day, so that f (t) captures the
intraday deterministic pattern of volatility. In this case, the limit of our realized
Laplace transform under the joint long-span and infill asymptotics (T → ∞
and Δn → 0) when Assumptions A, B, and C hold is

1
T
VT(X̃�Δn�u)

P−→
∫ 1

0
E
(
e−uf(s)σ2

s
)
ds =

∫ 1

0
Lσ2(uf (s))ds�(34)

Lσ2(u) = E
(
e−uσ2

t
)
� u≥ 0�
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In other words, when the volatility has a deterministic intraday pattern, the
realized Laplace transform is an estimator for the integrated-over-the-day
Laplace transform of volatility.

Further, it is easy to show that under Assumptions A, B, and C, and provided
T ↑ ∞ and Δn ↓ 0 with

√
TΔ1−β/2−ι

n → 0 for ι > 0 arbitrarily small (and the
additional requirement that f (t) is differentiable), we have

√
T

(
1
T
VT(X̃�Δn�u)−

∫ 1

0
Lσ2(uf (s))ds

)
L−→ Ψ̃ ′(u)�(35)

where Ψ̃ ′(u) is a Gaussian process with variance–covariance
∑∞

l=−∞ E(Z̃t(u)×
Z̃t−l(v)) for

Z̃t(u) =
∫ t

t−1

(
e−uf(s−[s])σ2

s − E
(
e−uf(s−[s])σ2

s
))
ds for t ∈ N�

Most of the times our interest is in the properties of σt and not σ̃t , and there
is a simple nonparametric procedure to “clean” the intraday component of the
volatility that we now present.

Set Δn = 1/n for n ∈ N and it = t − 1 + i − [i/n]n for t = 1� � � � � T and i =
1� � � � � nT . We define

ĝi = n

T

T∑
t=1

∣∣Δn
it
X̃
∣∣21
(∣∣Δn

it
X̃
∣∣≤ αΔ�

n

)
� i = 1� � � � � nT�(36)

ĝ = 1
n

n∑
i=1

ĝi�

f̂i = ĝi

ĝ
1{ĝ �=0}� i = 1� � � � � nT�α > 0�� ∈ (0�1/2)�

Intuitively, ĝi is our estimator of the average variance over a particular high-
frequency interval of the day and, as a result, note that ĝi = ĝj for |i− j| = n. ĝ
is our estimator for the mean of the integrated variance over the day. Thus the
ratio f̂i is an estimate for the intraday deterministic component of volatility.

We then define our estimator of the empirical Laplace transform of σ2
t ,

which “cleans” for the deterministic intraday patterns in volatility as

V̂T (X̃�Δn�u)= 1
n

nT∑
i=1

cos
(√

2unf̂−1/2
i 1{f̂i �=0}Δ

n
i X̃

)
�(37)

Intuitively, we rescale the high-frequency increments, corresponding to the
time of day they belong to, with our estimate for the deterministic intraday
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component of volatility. Note that we do not need to make any assumption re-
garding the possible presence of a deterministic component in the jump com-
pensator, as our realized Laplace transform estimator is robust to jumps.

We show that our time-of-day adjusted V̂T (X̃�Δn�u) is a consistent estimate
of Lσ2(u) (contrast this with the limit in (34)). Our further goal is to quantify
the asymptotic effect on V̂T (X̃�Δn�u) from the cleaning of the deterministic
component of volatility, that is, to compare this feasible estimator with the
infeasible one

VT(X�Δn�u)= 1
n

nT∑
i=1

cos(
√

2unΔn
i X)�(38)

where the unobservable process X (defined on the original probability space)
has the dynamics

dXt = αt dt + σt dWt +
∫

R

δ(t−�x)μ(ds�dx)�(39)

that is, exactly as the observable process X̃ but with no intraday deterministic
component of volatility. The next theorem makes this comparison and hence
characterizes the asymptotic behavior of V̂T (X̃�Δn�u).

THEOREM 3: Suppose the observable process X̃ has dynamics given by (33)
and X has dynamics given in (39) (both defined on the same probability space).
Assume that Assumptions A, B, and C hold. Assume further that for any t ≥ 0
and any p> 0,

E

(
|αt |p + |σt |p +

∫
R

|δ(t�x)|pν(x)dx+ |vt |p + |v′
t |p(40)

+
∫

R

|δ′(t�x)|pν(dx)
)
<C�

where C > 0 is some constant that does not depend on t.
(a) Then if T → ∞ and Δn → 0 such that

√
TΔ[(2−β)�−ι]∧1/2

n → 0 for some
arbitrary small ι > 0, we have for any u≥ 0,

√
T

(
1
T
V̂T (X̃�Δn�u)− 1

T
VT(X�Δn�u)

)
(41)

− 0�5E(G(uσ2
t ))

E(σ2
t )

1√
T

∫ T

0
(σ2

s − σ̃2
s ) ds

P−→ 0�

where we denote the function G(x) = √
2xe−x.
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(b) In addition, under the same conditions we have

√
T

(
1
T
VT(X�Δn�u)− E

(
e−uσ2

t
)
�

1
T

∫ T

0
(σ2

s − σ̃2
s ) ds

)
(42)

L−→ Σ(u)1/2 ×Ξ�

where Ξ is a 2 × 1 standard normal vector and Σ(u) is 2 × 2 matrix of constants
given by

Σ(u)= E(zt(u)z′
t(u))+

∞∑
k=1

(
E(zt(u)z′

t+k(u))+ E(zt+k(u)z′
t(u))

)
(43)

for zt(u) = (
∫ t

t−1(e
−uσ2

s − E(e−uσ2
t )) ds�

∫ t

t−1(σ
2
s − σ̃2

s ) ds)
′.

(c) Consistent estimate for Σ(u) is given by

Σ̂(u)= Ĉ0(u)+ 2
LT∑
i=1

ω(i�LT)Ĉi(u)�(44)

Ĉi(u) = 1
T

T∑
t=i+1

(̂zt−i(u)̂z′
t(u)+ ẑt(u)̂z′

t−i(u))�

where for some η > 0 such that LTT
η−1/2 → 0, α > 0, and � ∈ (0�1/2), ẑt(u) is

defined as

ẑt(u) =

⎛⎜⎜⎜⎜⎝
1
n

tn+n∑
j=tn+1

(
cos

(√
2unf̂−1/2

j 1{f̂j �=0}Δ
n
j X̃

)− 1
T
V̂T (X̃�Δn�u)

)
tn+n∑

j=tn+1

(f̂−1
j ∧ Tη − 1)(Δn

j X̃)21(|Δn
j X̃| ≤ αΔ�

n )

⎞⎟⎟⎟⎟⎠ �

Furthermore, the sequences LT and ω(i�LT) are defined as in Theorem 2 and
satisfy the conditions of that theorem.

A consistent estimator for E(G(uσ2
t ))/E(σ

2
t ) is given by

1
nT

nT∑
j=1

(
√

2un(f̂−1/2
j ∧ Tη/2)Δn

j X̃) sin(
√

2un(f̂−1/2
j ∧ Tη/2)Δn

j X̃)

ĝ
�(45)

Part (a) of the above theorem shows that 1
T
V̂T (X̃�Δn�u) is a consistent esti-

mator for our object of interest, that is, E(e−uσ2
t ). It further characterizes the

asymptotic effect of using an estimate from the data for the intraday pattern
of volatility on our precision of estimating the Laplace transform of σ2

t . It is
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controlled by 1
T

∫ T

0 (σ2
s − σ̃2

s ) ds, which implies the rather intuitive observation
that this effect is larger for wider deterministic intraday variations in volatility.

Part (b) of the theorem derives the joint distribution of the error from es-
timating the intraday pattern and the error associated with the empirical pro-
cess for estimating the Laplace transform of volatility. Finally, part (c) of the
theorem provides an easy to construct feasible estimate for the asymptotic
variance–covariance Σ(u). This provides a feasible way to quantify the pre-
cision of estimating E(e−uσ2

t ) using 1
T
V̂T (X̃�Δn�u).

We apply the result of Theorem 3 to the same data set used in the empir-
ical application in the paper, that is, 1-minute level data on the S&P 500 fu-
tures index spanning the period January 1, 1990 to December 31, 2008. Our
choice for the parameters α and � for the construction of ĝi is similar to the
values of these parameters that we use for computing the truncated variation
estimator TVt(α��) in the paper: α = 4

√
BV and � = 0�49. Figure 4 shows

the effect of cleaning the possible presence of a diurnal volatility pattern on
estimating the Laplace transform of volatility. It compares our original esti-
mate 1

T
V (X̃�Δn�u) with the one corrected for the deterministic pattern, that

is, 1
T
V̂ (X̃�Δn�u).1 As seen from the figure, the effect from cleaning for the

deterministic pattern is relatively small, especially when compared with the
wedge between the Laplace transform of spot and integrated volatility.

PROOF OF THEOREM 3: As in the proof of Theorems 1 and 2, in the proof
of Theorem 3, C denotes a positive constant that does not depend on T and
Δn, and further can change from line to line. We also use the shorthand E

n
i−1

for E(·|F(i−1)Δn). We start with some preliminary results that we need for the
proof.

Preliminary results. We start by introducing the auxiliary estimators for the
intraday average variances:

g̃i = n

T

T∑
t=1

σ̃2
(it−1)Δn

∣∣Δn
it
W
∣∣2� i = 1� � � � � nT ; g̃ = 1

n

n∑
i=1

g̃i;(46)

f̃i = g̃i

g̃
1{g̃ �=0}� i = 1� � � � � nT�

These estimators are formed the same way as ĝi with the only difference that
we use σ̃(i−1)ΔnΔ

n
i W in their construction instead of the observable truncated

increment Δn
i X̃1{|Δn

i X̃|≤αΔ�
n }. Intuitively, the truncation makes the effect of the

jumps on ĝi negligible, and hence ĝi and g̃i are close, as we show now.

1Note that due to the possible presence of an intraday deterministic component of volatility,
we denote the observable process as X̃ and not X . Of course, X̃ and X coincide when f (t)≡ 1.
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FIGURE 4.—Observed log-Laplace transforms with and without cleaning for an intraday deter-
ministic volatility component. The log-Laplace transforms are estimated using 1-minute S&P 500
stock index data for 1990–2008. The solid line corresponds to 1

T
VT (X̃�Δn�u) (original estimate in

Figure 1); the bold (heavy) line corresponds to the estimator 1
T
V̂T (X̃�Δn�u) introduced here that

cleans the deterministic component of volatility; the dashed line corresponds to the empirical
Laplace transform of the daily truncated variance.

We can make the decomposition

(Δn
i X̃)21(|Δn

i X̃| ≤ αΔ�
n )− σ̃2

(i−1)Δn
(Δn

i W )2 =
4∑

j=1

εi(j)�(47)

i = 1� � � � � nT�

εi(1)=
[
(Δn

i X̃)2 −
(
σ̃(i−1)ΔnΔ

n
i W +

∫ iΔn

(i−1)Δn

∫
R

δ(s−�x)μ(ds�dx)

)2]
× 1(|Δn

i X̃| ≤ αΔ�
n )�

εi(2)= −(σ̃(i−1)ΔnΔ
n
i W

)2
1(|Δn

i X̃| >αΔ�
n )�

εi(3)=
(∫ iΔn

(i−1)Δn

∫
R

δ(s−�x)μ(ds�dx)

)2

1(|Δn
i X̃| ≤ αΔ�

n )�

εi(4)= 2σ̃(i−1)ΔnΔ
n
i W

∫ iΔn

(i−1)Δn

∫
R

δ(s−�x)μ(ds�dx)1(|Δn
i X̃| ≤ αΔ�

n )�
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Using Hölder’s inequality, the Burkholder–Davis–Gundy inequality, and As-
sumption B for the process σt , as well as the smoothness property of f (t), we
have for any p ∈ [1�2],

E
n
i−1|εi(1)|p ≤ C(i−1)ΔnΔ

3p/2
n � i�= 1� � � � � nT�(48)

where the constant C(i−1)Δn is adapted to F(i−1)Δn and all its (positive) powers
are integrable.

Next, Hölder’s inequality implies

E
n
i−1|εi(2)|p ≤ C(i−1)ΔnΔ

p+(1−βω)−ι
n � i = 1� � � � � nT�(49)

where β is defined in Assumption A, ι > 0 is arbitrarily small, and C(i−1)Δn is
defined as above.

For εi(3), we trivially have for any p ∈ [1�2],
E

n
i−1|εi(3)|p ≤ C(i−1)ΔnΔ

1+(2p−β)ω−ι
n � i = 1� � � � � nT�(50)

where ι > 0 is arbitrarily small and C(i−1)Δn is as defined above.
Finally, we obviously have |εi(4)| ≤ |εi(2)|+ |εi(3)| and so the above bounds

can be used to bound E
n
i−1|εi(3)|p for any p ∈ [1�2].

Combining the above bounds and using successive conditioning and Hölder’s
inequality (together with the integrability condition (40)), we have

E|̂gi − g̃i| ≤ CΔ[(2−β)�−ι]∧1/2
n and E|̂g − g̃| ≤CΔ[(2−β)�−ι]∧1/2

n �(51)

i = 1� � � � � n�∀ι > 0�

and

E|̂gi − g̃i|2 ≤ CΔ[(4−2β)�−ι]∧1
n and E|̂g − g̃|2 ≤ CΔ[(4−2β)�−ι]∧1

n �(52)

i = 1� � � � � n�∀ι > 0�

Parts (a) and (b). We first make the decomposition

1
nT

nT∑
i=1

cos
(√

2unf̂−1/2
i 1{f̂i �=0}Δ

n
i X̃

)− E
[
e−uσ2

t
]=

5∑
i=1

Ai�(53)

A1 = 1
nT

nT∑
i=1

cos
(√

2unσ(i−1)ΔnΔ
n
i W

)− E
[
e−uσ2

t
]
�(54)

A2 = 1
nT

nT∑
i=1

{
cos

(√
2unf̃−1/2

i 1{f̃i �=0}f
1/2
i−[i/n]nσ(i−1)ΔnΔ

n
i W

)
− cos

(√
2unσ(i−1)ΔnΔ

n
i W

)}
1{Bi}�
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A3 = 1
nT

nT∑
i=1

{
cos

(√
2unf̃−1/2

i 1{f̃i �=0}f
1/2
i−[i/n]nσ(i−1)ΔnΔ

n
i W

)
− cos

(√
2unσ(i−1)ΔnΔ

n
i W

)}
1{Bc

i }�

A4 = 1
nT

nT∑
i=1

{
cos

(√
2unf̂−1/2

i 1{f̂i �=0}Δ
n
i X̃

)
− cos

(√
2unf̃−1/2

i 1{f̃i �=0}σ̃(i−1)ΔnΔ
n
i W

)}
1{Bi∪Ci}�

A5 = 1
nT

nT∑
i=1

{
cos

(√
2unf̂−1/2

i 1{f̂i �=0}Δ
n
i X̃

)
− cos

(√
2unf̃−1/2

i 1{f̃i �=0}σ̃(i−1)ΔnΔ
n
i W

)}
1{Bc

i ∩Cc
i }�

where the sets Bi and Ci are defined as

Bi =
{
g̃i ≥ (1 + τ)fi−[i/n]nE(σ2

t )∪ g̃i ≤ (1 − τ)fi−[i/n]nE(σ2
t )∪ g̃

≥ (1 + τ)E(σ2
t )∪ g̃ ≤ (1 − τ)E(σ2

t )
}
�

Ci =
{
ĝi ≥ (1 + τ)fi−[i/n]nE(σ2

t )∪ ĝi ≤ (1 − τ)fi−[i/n]nE(σ2
t )∪ ĝ

≥ (1 + τ)E(σ2
t )∪ ĝ ≤ (1 − τ)E(σ2

t )
}

for i = 1� � � � � nT and some constant τ ∈ (0�1).
From the proof of Theorem 2, the first component, A1, is the leading term of

1
T
VT (X�Δn�u)− E[e−uσ2

t ]. The other components in the above decomposition
are due to the cleaning for the diurnal pattern (and the presence of jumps
and a drift term in the price increments as well as the time variation in the
volatility). The main difficulty in the proof of parts (a) and (b) of the theorem
comes from the fact that f̂i and f̃i use information from the whole time span
[0�T ], and further are not bounded from below and above. In the rest of the
proof, we further decompose each of the terms in (54) so as to extract the
leading components in the asymptotic expansion of 1

T
V̂T (X̃�Δn�u) − E[e−uσ2

t ]
and bound the asymptotically negligible parts.

We start with A3. Using a second-order Taylor expansion of the function
h(x� y) = cos(a

√
y/x) with a = √

2unσ̃(i−1)ΔnΔ
n
i W , x = g̃i, and y = g̃ around

(fi−[i/n]nE(σ2
t )�E(σ2

t )) (note that on the set Bc
i , g̃i is strictly positive and g̃

is strictly positive and bounded), we can decompose A3 as A3 = ∑6
j=1 A3(j),

where

A3(1) = 0�5μ
n

n∑
i=1

g̃i − fi−[i/n]nE(σ2
t )

fi−[i/n]nE(σ2
t )

− 0�5μ
g̃ − E(σ2

t )

E(σ2
t )

�(55)
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A3(2) = 0�5
nT

nT∑
i=1

{
sin
(√

2unσ(i−1)ΔnΔ
n
i W

)√
2unσ(i−1)ΔnΔ

n
i W −μ

}
×
(
g̃i − fi−[i/n]nE(σ2

t )

fi−[i/n]nE(σ2
t )

)
�

A3(3) = −0�5
nT

(
g̃ − E(σ2

t )

E(σ2
t )

) nT∑
i=1

{
sin
(√

2unσ(i−1)ΔnΔ
n
i W

)
× √

2unσ(i−1)ΔnΔ
n
i W −μ

}
�

A3(4) = −0�5
nT

nT∑
i=1

{
sin
(√

2unσ(i−1)ΔnΔ
n
i W

)√
2unσ(i−1)ΔnΔ

n
i W

}
×
(
g̃i − fi−[i/n]nE(σ2

t )

fi−[i/n]nE(σ2
t )

)
1{Bi}�

A3(5) = 0�5
nT

(
g̃ − E(σ2

t )

E(σ2
t )

) nT∑
i=1

{
sin
(√

2unσ(i−1)ΔnΔ
n
i W

)
× √

2unσ(i−1)ΔnΔ
n
i W

}
1{Bi}�

A3(6) = 1
nT

nT∑
i=1

{
H11

(√
2unσ̃(i−1)ΔnΔ

n
i W ; ˜̃gi� ˜̃g)(g̃i − fi−[i/n]nE(σ2

t )
)2

+H12

(√
2unσ̃(i−1)ΔnΔ

n
i W ; ˜̃gi� ˜̃g)

× (
g̃i − fi−[i/n]nE(σ2

t )
)
(g̃ − E(σ2

t ))

+H22

(√
2unσ̃(i−1)ΔnΔ

n
i W ; ˜̃gi� ˜̃g)(g̃ − E(σ2

t ))
2
}
1{Bc

i }�

where we denote μ = E(G(uσ2
t )) (recall G(x) = √

2xe−x), ˜̃gi is between g̃i and
fi−[i/n]nE(σ2

t ), ˜̃g is between g̃ and E(σ2
t ) (and is different for i = 1� � � � � nT ), and

˜̃
fi = ˜̃gi/ ˜̃g, and finally

H11(a;x� y)= −1
4

cos

(
a

√
y

x

)
a2y

x3
− 3

4
sin

(
a

√
y

x

)
ay1/2

x5/2
�(56)

H22(a;x� y)= −1
4

cos

(
a

√
y

x

)
a2

xy
+ 1

4
sin

(
a

√
y

x

)
a

x1/2y3/2
�
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H12(a;x� y)= 1
4

cos

(
a

√
y

x

)
a2

x2
+ 1

4
sin

(
a

√
y

x

)
a

x3/2y1/2
�

For A3(1), using the definition of g̃i and g̃, we have, further,

A3(1) = 0�5μ
E(σ2

t )
× 1

nT

nT∑
i=1

(
σ2

(i−1)Δn
− σ̃2

(i−1)Δn

)
n(Δn

i W )2(57)

= 0�5μ
E(σ2

t )
× (

A(a)
3 (1)+A(b)

3 (1)+A(c)
3 (1)

)
�

A(a)
3 (1) = 1

T

T∑
t=1

∫ t

t−1
(σ2

s − σ̃2
s ) ds�(58)

A(b)
3 (1) = 1

nT

nT∑
i=1

(
σ2

(i−1)Δn
− σ̃2

(i−1)Δn

)− 1
T

T∑
t=1

∫ t

t−1
(σ2

s − σ̃2
s ) ds�

A(c)
3 (1) = 1

nT

nT∑
i=1

(
σ2

(i−1)Δn
− σ̃2

(i−1)Δn

)
(n(Δn

i W )2 − 1)�

Then using Assumption B and the fact that f (t) is 0�5-Hölder continuous, we
have

E
∣∣A(b)

3 (1)
∣∣≤ C

√
Δn�(59)

and, further, for the martingale process we have

E
∣∣A(c)

3 (1)
∣∣≤ C

√
Δn√
T

�(60)

Turning to A1, we can decompose it as A1 =A1(1)+A1(2), where

A1(1)= 1
T

T∑
t=1

(∫ t

t−1
e−uσ2

s ds − E
[
e−uσ2

t
])

�(61)

A1(2)= 1
T

nT∑
i=1

(
Δn cos

(√
2unσ(i−1)ΔnΔ

n
i W

)−
∫ iΔn

(i−1)Δn

e−uσ2
s ds

)
�

Using the proof of Theorems 1 and 2, we have that

A1(2)= Op

(√
Δn

T
+Δn

)
�(62)
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Then using the stationarity, ergodicity, and mixing conditions, we have
√
T
(
A1(1)�A

(a)
3 (1)

) L−→ Σ(u)1/2 ×Ξ�(63)

From the proof of Theorem 2, the difference between 1
T
VT (X�Δn�u)−E[e−uσ2

t ]
and the term A1 is op(1/

√
T). Therefore, the above result shows (42) in The-

orem 3.
Since g̃i = g̃j for |i− j| = n, we can rewrite A3(2) as

A3(2) = 0�5
n

n∑
i=1

{
1
T

T∑
t=1

(
sin
(√

2unσ(it−1)ΔnΔ
n
it
W
)

(64)

× √
2unσ(it−1)ΔnΔ

n
it
W −μ

)}{ g̃i − fi−[i/n]nE(σ2
t )

fi−[i/n]nE(σ2
t )

}
�

Using Assumption C, the fact that G(x) is bounded, and Lemma VIII.3.102
in Jacod and Shiryaev (2003), we have (recall the definition of the constant μ
above)

E
n
i−1

(
sin
(√

2unσ(i−1)ΔnΔ
n
i W

)√
2unσ(i−1)ΔnΔ

n
i W −G

(
uσ2

(i−1)Δn

))= 0�(65)

i = 1� � � � � nT�

E
∣∣En

j−1

(
G
(
uσ2

(i−1)Δn

)−μ
)∣∣≤ C

(
αmix
(i−j)/n

)1−ι
�

j� i = 1� � � � � nT� j ≤ i� ι > 0 arbitrarily small�

Therefore

E

(
1
T

T∑
t=1

(
sin
(√

2unσ(it−1)ΔnΔ
n
it
W
)√

2unσ(it−1)ΔnΔ
n
it
W −μ

))2

(66)

≤ C

T

∫ ∞

0
(αmix

s )1−ι ds�

Similar analysis shows

E

(
1
nT

nT∑
i=1

(
sin
(√

2unσ(i−1)ΔnΔ
n
i W

)√
2unσ(i−1)ΔnΔ

n
i W −μ

))2

(67)

≤ C

T

∫ ∞

0
(αmix

s )1−ι ds�

E
(
g̃i − fi−[i/n]nE(σ2

t )
)2 ≤ C

T

∫ ∞

0
(αmix

s )1−ι ds� i = 1� � � � � n�
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E(g̃ − E(σ2
t ))

2 ≤ C

T

∫ ∞

0
(αmix

s )1−ι ds +CΔn�

where for the last bound we made use of the fact that f (t) is a 0�5-Hölder
continuous function. Using Chebychev’s inequality and the above results, we
also easily get

P(Bi)≤ CE
(
g̃i − fi−[i/n]nE(σ2

t )
)2 +CE(g̃ − E(σ2

t ))
2 ≤

(
C

T
+CΔn

)
�(68)

The bounds in (66) and (67) and an application of Cauchy–Schwarz inequal-
ity give

E|A3(2)+A3(3)| ≤ C

T
+ C

√
Δn√
T

�(69)

Turning to A3(4), we first can decompose it as

Aa
3(4) = −0�5

n

n∑
i=1

(
1
T

T∑
t=1

(
sin
(√

2unσ(it−1)ΔnΔ
n
it
W
)

(70)

× √
2unσ(it−1)ΔnΔ

n
it
W −μ

))( g̃i − fi−[i/n]nE(σ2
t )

fi−[i/n]nE(σ2
t )

)
1{Bi}�

Ab
3(4) = −0�5μ

n

n∑
i=1

(
g̃i − fi−[i/n]nE(σ2

t )

fi−[i/n]nE(σ2
t )

)
1{Bi}�

Then we can use the results in (66) and (67) (and Chebychev’s inequality for
Ab

3(4)) to conclude

E|A3(4)| ≤ C

T
+ C

√
Δn√
T

�(71)

Similar analysis can be used to show

E|A3(5)| ≤ C

T
+ C

√
Δn√
T

�(72)

Turning to A3(6), first using the fact that on the set Bc
i , g̃i is bounded from

below and g̃ is bounded from below and above, we have∣∣H11

(√
2unσ̃(i−1)ΔnΔ

n
i W ; ˜̃gi� ˜̃g)∣∣+ ∣∣H22

(√
2unσ̃(i−1)ΔnΔ

n
i W ; ˜̃gi� ˜̃g)∣∣(73)

+ ∣∣H12

(√
2unσ̃(i−1)ΔnΔ

n
i W ; ˜̃gi� ˜̃g)∣∣

≤ ∣∣√2unσ̃(i−1)ΔnΔ
n
i W

∣∣2 ∨ ∣∣√2unσ̃(i−1)ΔnΔ
n
i W

∣∣� i = 1� � � � � nT�
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Then combining this with the above bounds in (66) and (67) and using the
integrability condition in (40) together with Hölder’s inequality we get

E|A3(6)| ≤
(
C

T
+CΔn

)1−ι

� ι > 0 arbitrarily small.(74)

We continue next with A2 and A4. We can use the trivial inequalities

P
(
ĝi ≤ (1 − τ)fi−[i/n]nE(σ2

t )
)≤ P

(
g̃i ≤ (1 − τ/2)fi−[i/n]nE(σ2

t )
)

(75)

+ P
(|̂gi − g̃i| ≥ τfi−[i/n]nE(σ2

t )/2
)
�

P
(
ĝi ≥ (1 + τ)fi−[i/n]nE(σ2

t )
)≤ P

(
g̃i ≥ (1 + τ/2)fi−[i/n]nE(σ2

t )
)

+ P
(|̂gi − g̃i| ≥ τfi−[i/n]nE(σ2

t )/2
)
�

P(ĝ ≤ (1 − τ)E(σ2
t ))≤ P(g̃ ≤ (1 − τ/2)E(σ2

t ))

+ P(|̂g − g̃| ≥ τE(σ2
t )/2)�

P(ĝ ≥ (1 + τ)E(σ2
t ))≤ P(g̃ ≥ (1 + τ/2)E(σ2

t ))

+ P(|̂g − g̃| ≥ τE(σ2
t )/2)�

and the bound for P(Bi) derived in (68), together with the first absolute-
moment restrictions for the differences ĝi − g̃i and ĝ − g̃ in (51), to get

E(|A2| + |A4|)≤ C

T
+CΔ[(2−β)�−ι]∧1/2

n ∀ι > 0�(76)

We are left with A5. First, using the definition of the set Bc
i ∩ Cc

i and
a first-order Taylor expansion of the function h(x� y) = x

y
, we have for i =

1� � � � � nT ,∣∣cos
(√

2unf̂−1/2
i Δn

i X̃
)− cos

(√
2unf̃−1/2

i σ̃(i−1)ΔnΔ
n
i W

)∣∣1{Bc
i ∩Cc

i }(77)

≤ C
∣∣√2unΔn

i X̃ − √
2unσ̃(i−1)ΔnΔ

n
i W

∣∣β+ι

+C
∣∣√2unσ(i−1)ΔnΔ

n
i W

∣∣|̂gi − g̃i|1{Bc
i ∩Cc

i }

+C
∣∣√2unσ(i−1)ΔnΔ

n
i W

∣∣|̂g − g̃|1{Bc
i ∩Cc

i } ∀ι ∈ (0�1 −β]�

Using this inequality, we can bound |A5| ≤ C
∑5

j=1 A5(j), where

A5(1)= 1
nT

nT∑
i=1

∣∣√2unΔn
i X̃ − √

2unσ̃(i−1)ΔnΔ
n
i W

∣∣β+ι
�(78)
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A5(2)= √
2u

1
n

n∑
i=1

{
1
T

T∑
t=1

√
n
∣∣σ(it−1)ΔnΔ

n
it
W
∣∣−√

2
π

E|σt |
}

(79)

× |̂gi − g̃i|1{Bc
i ∩Cc

i }�

A5(3)= √
2u

√
2
π

E|σt |1
n

n∑
i=1

|̂gi − g̃i|1{Bc
i ∩Cc

i }�(80)

A5(4)= √
2u

{
1
nT

nT∑
i=1

√
n
∣∣σ(i−1)ΔnΔ

n
i W

∣∣−√
2
π

E|σt |
}

(81)

× |̂g − g̃|1{|̂g−g̃|≤4τE(σ2
t )}�

A5(5)= √
2u

√
2
π

E|σt ||̂g − g̃|1{|̂g−g̃|≤4τE(σ2
t )}�(82)

First, it is easy to show that

E
∣∣√nΔn

i X̃ − √
nσ̃(i−1)ΔnΔ

n
i W

∣∣β+ι ≤ CΔ1−β/2−ι/2
n ∀ι ∈ (0�1 −β]�(83)

and, therefore,

E(A5(1))≤ CΔ1−β/2−ι/2
n ∀ι ∈ (0�1 −β]�(84)

For A5(3) and A5(5), we can use (51) to get

E(A5(3)+A5(5))≤ CΔ[(2−β)�−ι]∧1/2
n ∀ι > 0�(85)

For A5(2) and A5(4), we can derive a bound on E( 1
T

∑T

t=1

√
n|σ(it−1)ΔnΔ

n
it
W | −√

2
π
E|σt |)2 for i = 1� � � � � n and E( 1

nT

∑nT

i=1

√
n|σ(i−1)ΔnΔ

n
i W | −

√
2
π
E|σt |)2 ex-

actly as in (66) (using the integrability conditions on σt of the theorem
and Assumption C), and then apply Cauchy–Schwarz inequality and (51) to
get

E
(|A5(2)| + |A5(4)|

)≤ CΔ[(1−β/2)�−ι]∧1/4
n /

√
T ∀ι > 0�(86)

Therefore, overall we have the bound

E|A5| ≤CΔ[(2−β)�−ι]∧1/2
n +CΔ[(1−β/2)�−ι]∧1/4

n /
√
T ∀ι > 0�(87)

Combining all of the above bounds, we get that

E

∣∣∣∣ 1
T
V̂T (X̃�Δn�u)− E

[
e−uσ2

t
]−A1(1)−A(a)

3 (1)
∣∣∣∣

≤ C

(
1

T 1−ι
+ Δ[(1−β/2)�−ι]∧1/4

n √
T

+Δ[(2−β)�−ι]∧1/2
n

)
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for ι > 0 arbitrarily small. This together with (63) establishes the results in (41)
and (42) in parts (a) and (b) of the theorem.

Part (c). We first show that Σ̂(u) is consistent for Σ(u) under the conditions
of the theorem. Using the assumptions of the theorem and Proposition 1 in
Andrews (1991), we have

C0(u)+ 2
LT∑
i=1

ω(i�LT)Ci(u)
P−→ Σ(u)�(88)

Ci(u) = 1
T

T∑
t=i+1

(zt−i(u)z′
t(u)+ zt(u)z′

t−i(u))�

where zt(u) is defined in part (b) of the theorem. Therefore, we are left with
bounding the difference Σ̂(u) − (C0(u) + 2

∑LT
i=1 ω(i�LT)Ci(u)). For this we

use the bound

‖zt(u)− ẑt(u)‖ ≤ C

6∑
j=1

∣∣̃z(j)
t

∣∣�(89)

where

z̃(1)
t = 1

n

tn+n∑
j=tn+1

cos
(√

2unf̂−1/2
j 1{f̂j �=0}Δ

n
j X̃

)−
∫ t+1

t

e−uσ2
s ds�(90)

z̃(2)
t = 1

T
V̂T (X̃�Δn�u)− E

(
e−uσ2

t
)
�(91)

z̃(3)
t =

tn+n∑
j=tn+1

(f̂−1
j ∧ Tη − 1)

[
(Δn

j X̃)21(|Δn
j X̃| ≤ αΔ�

n )−
∫ jΔn

(j−1)Δn

σ̃2
s ds

]
�(92)

z̃(4)
t =

tn+n∑
j=tn+1

(
f̂−1
j ∧ Tη − f−1

j−[j/n]n
)
1{Bc

j∩Cc
j }

∫ jΔn

(j−1)Δn

σ̃2
s ds�(93)

z̃(5)
t =

tn+n∑
j=tn+1

(
f̂−1
j ∧ Tη − f−1

j−[j/n]n
)
1{Bj∪Cj }

∫ jΔn

(j−1)Δn

σ̃2
s ds�(94)

z̃(6)
t =

tn+n∑
j=tn+1

∫ jΔn

(j−1)Δn

(
f−1
j−[j/n]nσ̃

2
s − σ2

s

)
ds�(95)

In what follows we bound the second-order moments of each of the terms
z̃
(j)
t . From the proof of parts (a) and (b) of the theorem, using the boundedness
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of z̃(1)
t and z̃(2)

t as well as the relative speed condition between T and Δn of the
theorem, we have

E
∣∣̃z(1)

t + z̃(2)
t

∣∣2 ≤ C√
T
�(96)

For z̃(3)
t , we have

E
∣∣̃z(3)

t

∣∣2 ≤ CT 2η
E

(
tn+n∑

j=tn+1

∣∣∣∣(Δn
j X̃)21(|Δn

j X̃| ≤ αΔ�
n )−

∫ jΔn

(j−1)Δn

σ̃2
s ds

∣∣∣∣
)2

�(97)

Then for i �= j, using successive conditioning, the decomposition in (47) above,
and Hölder’s inequality together with the integrability conditions in (40), we
get

E

{∣∣∣∣(Δn
i X̃)21(|Δn

i X̃| ≤ αΔ�
n )−

∫ iΔn

(i−1)Δn

σ̃2
s ds

∣∣∣∣(98)

×
∣∣∣∣(Δn

j X̃)21(|Δn
j X̃| ≤ αΔ�

n )−
∫ jΔn

(j−1)Δn

σ̃2
s ds

∣∣∣∣}≤ CΔ2+[(4−2β)�−ι]∧1
n

for ι > 0 arbitrarily small. Similar calculations give

E

∣∣∣∣(Δn
i X̃)21(|Δn

i X̃| ≤ αΔ�
n )−

∫ iΔn

(i−1)Δn

σ̃2
s ds

∣∣∣∣2 ≤ CΔ1+(4−β)�−ι
n ∀ι > 0�(99)

Combining these inequalities, we get

E
∣∣̃z(3)

t

∣∣2 ≤ CT 2ηΔ[(4−2β)�−ι]∧1
n ∀ι > 0�(100)

Turning to z̃(4)
t , using the definition of the sets Bi and Ci, as well as first-order

Taylor expansion, we have

∣∣̃z(4)
t

∣∣ ≤ C

tn+n∑
j=tn+1

{[|̂gj − g̃j| + |̂g − g̃| + ∣∣̃gj − fj−[j/n]nE(σ2
t )
∣∣(101)

+ |̃g − E(σ2
t )|
]
1{Bc

j∩Cc
j }

∫ jΔn

(j−1)Δn

σ̃2
s ds

}
�

Using the bounds in (52) and Hölder’s inequality, as well as the integrability
conditions in (40), we get

E
∣∣̃z(4)

t

∣∣2 ≤ C

(
1
T

+Δ[(4−2β)�−ι]∧1
n

)1−ι

∀ι > 0�(102)
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Turning to z̃(5)
t , using the definition of the sets Bi and Ci as well as the trivial

bound in (75), we get

E
∣∣̃z(5)

t

∣∣2 ≤ CT 2η

(
1
T

+Δ[(4−2β)�−ι]∧1
n

)1−ι

∀ι > 0�(103)

Finally, for z̃(6)
t we can write, using the 0.5-Hölder continuity of the func-

tion f ,

E
∣∣̃z(6)

t

∣∣2 ≤ CΔn�(104)

Using the above bounds, the square integrability of zt(u) (which follows from
the integrability conditions of the theorem), an application of Cauchy–Schwarz
inequality, and the relative speed conditions between LT , T , and Δn in the
theorem, we get∥∥∥∥∥Σ̂(u)−

(
C0(u)+ 2

LT∑
i=1

ω(i�LT)Ci(u)

)∥∥∥∥∥≤ CLTT
η−1/2�(105)

This result combined with (88) proves the consistency of Σ̂(u).
Finally, we prove

1
nT

nT∑
j=1

(
√

2un(f̂−1/2
j ∧ Tη/2)Δn

j X̃) sin(
√

2un(f̂−1/2
j ∧ Tη/2)Δn

j X̃)

ĝ
(106)

P−→ E(G(uσ2
t ))

E(σ2
t )

�

First, from (67) and (52), we have ĝ
P−→ E(σ2

t ). Hence we only need to show

1
nT

nT∑
j=1

(√
2un

(
f̂−1/2
j ∧ Tη/2

)
Δn

j X̃
)

sin
(√

2un
(
f̂−1/2
j ∧ Tη/2

)
Δn

j X̃
)

(107)

P−→ E(G(uσ2
t ))�

By a law of large numbers, we have

1
nT

nT∑
j=1

(√
2unσ(j−1)ΔnΔ

n
jW

)
sin
(√

2unσ(j−1)ΔnΔ
n
jW

) P−→ E(G(uσ2
t ))�(108)
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and further we can make the decomposition

1
nT

nT∑
j=1

(√
2un

(
f̂−1/2
j ∧ Tη/2

)
Δn

j X̃
)

sin
(√

2un
(
f̂−1/2
j ∧ Tη/2

)
Δn

j X̃
)

(109)

− 1
nT

nT∑
j=1

(√
2unσ(j−1)ΔnΔ

n
jW

)
sin
(√

2unσ(j−1)ΔnΔ
n
jW

)

= 1
nT

nT∑
j=1

(
ζ(1)
j + ζ(2)

j + ζ(3)
j

)
for

ζ(1)
j = (√

2un
(
f̂−1/2
j ∧ Tη/2

)
Δn

j X̃
)

sin
(√

2un
(
f̂−1/2
j ∧ Tη/2

)
Δn

j X̃
)

(110)

− (√
2un

(
f̂−1/2
j ∧ Tη/2

)
σ̃(j−1)ΔnΔ

n
jW

)
× sin

(√
2un

(
f̂−1/2
j ∧ Tη/2

)
σ̃(j−1)ΔnΔ

n
jW

)
�

ζ(2)
j = {(√

2un
(
f̂−1/2
j ∧ Tη/2

)
σ̃(j−1)ΔnΔ

n
jW

)
(111)

× sin
(√

2un
(
f̂−1/2
j ∧ Tη/2

)
σ̃(j−1)ΔnΔ

n
jW

)
− (√

2unσ(j−1)ΔnΔ
n
jW

)
sin
(√

2unσ(j−1)ΔnΔ
n
jW

)}
1{Bc

j ∩Cc
j }�

ζ(3)
j = {(√

2un
(
f̂−1/2
j ∧ Tη/2

)
σ̃(j−1)ΔnΔ

n
jW

)
(112)

× sin
(√

2un
(
f̂−1/2
j ∧ Tη/2

)
σ̃(j−1)ΔnΔ

n
jW

)
− (√

2unσ(j−1)ΔnΔ
n
jW

)
sin
(√

2unσ(j−1)ΔnΔ
n
jW

)}
1{Bj∪Cj }�

For ζ(1)
j , using the result in (83), we have

E
∣∣ζ(1)

j

∣∣≤ Tη
√
Δn�(113)

For ζ(2)
j , we can use the bounds in (51), use the integrability condition in (40),

and apply Hölder’s inequality to get

E
∣∣ζ(2)

j

∣∣ ≤ CE
{[|̂gj − g̃j|+ |̂g− g̃| + ∣∣̃gj − fj−[j/n]nE(σ2

t )
∣∣+ |̃g − E(σ2

t )|
]

(114)

× 1{Bc
j ∩Cc

j }
[∣∣√nσ(j−1)ΔnΔ

n
jW

∣∣∨ ∣∣√nσ(j−1)ΔnΔ
n
jW

∣∣2]}
≤ C

(
1√
T

+Δ[(2−β)�−ι]∧1/2
n

)1−ι

∀ι > 0�



REALIZED LAPLACE TRANSFORM OF VOLATILITY 21

For ζ(3)
j , we can use Chebychev’s inequality and proceed as above to get

E
∣∣ζ(3)

j

∣∣≤ CTη/2

(
1√
T

+Δ[(2−β)�−ι]∧1/2
n

)1−ι

∀ι > 0�(115)

Taking into account the restriction on η in the theorem, we altogether get
that 1

nT

∑nT

j=1(ζ
(1)
j + ζ(2)

j + ζ(3)
j ) is asymptotically negligible and hence we are

done. Q.E.D.
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