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APPENDIX B

IN THIS APPENDIX, we provide the proofs of theoretical results and techni-
cal lemmas that were omitted in the paper. We first give, in Section B.1, the
proof of Lemma A.1. Then, in Section B.2, we give a detailed proof of con-
sistency of the XMM estimator (see Appendix A.1.3). In Sections B.3-B.6, we
prove Lemma A.2, Corollary 6, Lemma A.3, and Corollary 8, respectively. In
Section B.7, we discuss regularity conditions for XMM estimation when the
DGTP is the stochastic volatility model of Section 3.2. In Section B.8, we derive
the risk-neutral distribution in the stochastic volatility model. In Section B.9,
we prove Lemma A.4. Finally, in Section B.10, we provide the Fourier trans-
form methods used for option pricing and cross-sectional calibration in the
stochastic volatility model. We use the notation K; and K, to denote the di-
mensions of functions g; and g, respectively. Further, g, denotes function

& =(8,1)=(8,4d,1).

B.1. Proof of Lemma A.1
B.1.1. Conditions for Weak Convergence of the Kernel Empirical Process

The process ¥r(6), 6 € O, can be written as
VT(E[g1(0)] - E[g:1(8)]) )
~ , 0€0,
VThE(Elg5(0)|x0] — E[g5(6)]x0])

where g5 denotes function g5 = (g5, a’)’. Let us rewrite the second component
of Wr(6). For 0 € O, let us define (see Assumption A.12)

(B1) (0= (

@©(0) == @(x0; 0) = E[g5(0)]x0]f (x0)

and the corresponding kernel estimator

~ 1 a " Xt — Xo
@(O)ZWZ&(M;@)K< Ity )

T =1
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We have
J Th(Elg5(0)|x0] — E[83(0)1x0])
P0)  o(0)
= Jrhe( 22 _ )
T(f(xo) f(xo)
1 Elg3(0)]xo]
Thi (o6 9)) — —o22 71701
= FoV THH@O) — () - =2
The (ELg;(6)Ix0] — Elg5(0)1x01) (F (x0) — £ (x0)).

Thi.(F(x0) — f(x0))

1
 f(xo)
This can be rewritten as

B2) Th‘%(f[gé(ﬂ)le] — E[g5(60)|x,]) [1 + ﬁ(f(xo) —flx 0)):|

E[g5(6)|x0]
Thi(g(6 0) - ———
f( " 7(@(0) — @(6)) F(xo)

Under Assumptions A.5-A.9, we have (see Bosq (1998, Theorem 2.3))
(B3)  flx) = fxo) =0,(D).

From (B.1)-(B.3) we get

(B4)  W(0) = Hy(0);(0)(1+0,(1)), 0€0,

Thé(f(x0) — f(x0)).

where process v;.(0) is defined by
VT(E(gi(0)] - E[g1(6)])
(B5)  vi(0) = ( JThE@(9) — ¢(0)) ) , 0€0,
VTRE(f(x0) = f(x0))
matrix Hy(0) is given by

Hy(6) (Id’“ 0 0 ) beo
= e ,
: 0 Fxo )IdKﬁL f(xO)E[g2(0)|x0]

K, :=dim(g,), K, := dim(g,), and the o0,(1) term is uniform in 6 € . The
following lemma shows that process v;.(6) is asymptotically equivalent to a
zero-mean empirical process plus a bias function.

LEMMA B.1: Under Assumptions A.4, A.6, A.8, A.9, and A.12,

(B.6) ( JTh‘HE[f(e)] —¢(0)) >
' VTHEL(ELf (x0)] — f(x0))

_ ,/lim Tht]iﬂ+2mw (Am¢(x0; 0)

m A" (x0) > +o(1) uniformlyin 0 € 6.
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PROOF: From a standard bias expansion and Assumption A.8, we have

R 1 X —
E[3(0)] — ¢(0) = h—dE[wX; 0>K( th°)] — (0)
T
- / [o(xo+ hytt; ) — o (xo; 0)IK (u) du

hm
= ;T‘ Z /V“go(xo—i—hrﬁ; OHu“K(u)du,

©alal=m

where & is an intermediary point (depending on u). Since V% is uni-
formly continuous on X x @ (Assumption A.12), and @ is compact (As-
sumption A.4), we have that fV“go(xo + hrii; 0)u*K(u)du converges to
Veo(xp; 0) [ u“K (u) du uniformly in 6 € O for any a € N? with |a| = m. A sim-
ilar argument applies for £ [f\(xo)] — f(xo). Since K is a product kernel of order
m (Assumption A.8), the conclusion follows. Q.E.D.

From (B.4)-(B.6), we deduce
(B.7)  Wr(0) =[Ho(0)vr(0) +b() + o()I(1+0,(1)), 6€0,
uniformly in # € ®, where the empirical process vy(8) is defined as

VT (E[1(6)] - E[g1(0)])
vr(0)=| VThi(@®)—E@®) |, oeo.
VThE(f(x0) — ELf (x0)])

Lemma A.1 follows if the empirical process vy (8) converges weakly
(B.8) vr(0)=v(0), 6c0O,
where v(0) is a Gaussian process on @ with covariance operator
156, 7)
So(6, 7) 0 0
= 0 W f(x0)E(g5(0)g5(1)1x0)  w*f(x0)E(g5(0)Ixo) |,

0 wf(x0)E(g3(7)'1X0) w’ f (xo)
0,7€0,

and

So(8, ) =Y Covigi(X,, Yi; 0), &1(X, s, Yii; 1]

k=—00
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To prove the weak convergence (B.8) of empirical process vr(8), let us note
that

T
vr(0) =T (v,7(0) — E[v.7(0)]), 0€0,
=1

where

a2~ (X —x0\)
v,,T<0)=(g1<Xf,Y,;e>/,hT”’/2g2<K;e)K( - "))

T

and g, denotes function g, = (g3, 1)’. From Theorem 10.2 of Pollard (1990),
the weak convergence of v7(0) to Gaussian process v(6) over ® C R? compact
is implied by conditions (i) and (ii) of Proposition B.2.

PROPOSITION B.2: The following conditions are satisfied:

(i) Under Assumptions A.1, A.5-A.15,forany 6,, ..., 0, € R, n € N, the vec-
tor (vr(601),...,vr(8,)) is asymptotically normally distributed with mean zero,
and asymptotic variance—covariance matrix such that

AsCov(vr(6;), vr(6;)) = Iy(6;, o), Lj=1,...,n

(ii) Under Assumptions A.4, A.5, A8, A.9, and A.16-A.18, the empirical pro-
cess vr(0) is stochastically equicontinuous, that is,Ve, n > 0,36 > 0,

limsup [ sup v (®) —wr(D) = ] =,

T—o0 0,7€0:d(0,7)<8

where d(-, -) is a metric on @ and P* denotes the outer probability.

These conditions imply the weak convergence of empirical process vr (and,
thus, the weak convergence of ¥r). Conditions (i) and (ii) of the previous
proposition are verified in Sections B.1.2 and B.1.3, respectively.

B.1.2. Finite-Dimensional Convergence

To prove condition (i) of Proposition B.2, we use the Cramer—Wold device
and follow an approach similar to Bosq (1998, Theorems 2.3 and 3.4), and Ten-
reiro (1995, Theorem 1.3.10). Let A = (X}, ..., A,)’ € R*&1+K2++D and define
the zero-mean triangular array

"1
Zr=Y_ —=Nv.r(0) — Elv.r(0)]), ¢<T,T>1.
i=1 ﬁ
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Then we can write
T
(01, ..., vr(0,))A=Y_Z. 1.
t=1

Let m = mr and g = g7 be sequences of integer numbers such that
mr=0(T"), qr=0(T"), O0O<b<a<l,

and let us define k = k; = | T/(my + gr)]. In particular, k; = O(T'“). Let
us divide the sample into 2k + 1 blocks, whose length is equal to m for blocks
1,3,...,2k — 1, equal to g for blocks 2,4, ...,2k,and equal to T — k(m + q)
for the last block. More specifically, define

Yir=Zir+ -+ Zur1, YLT =Zpir+ -+ Zoigr,

!
Yor=Zugnr+ -+ Zomigrs  Yor=Zomigur+ -+ Zomiogr,

Yir = Zoa-vymrpr1.r + -+ Zimsk-1)q.7>

4
Yir = Zimik-vgrr + -+ Limikg.r-

Thus, we can write

k k
(B.9) (VT(QI)/,""VT(Gn)/))\=ZY1>T+21]I/,T+Y}/’

=1 =1

where Y7 = Zyinig11,7 + - - + Zrr. Then we will prove that the first term in
the decomposition is asymptotically normal and that the last two terms are
negligible.

B.1.2.1. The First Term Is Asymptotically Normal.

LEMMA B.3: Under Assumptions A.1, A.5-A.9, and A.11-A.14, there exist
independent and identically distributed (i.i.d.) randomvariables Y/, =1, ..., k,

such that Y}, LY, l=1,...,k and S Y — S Yir=o0,(1).

PROOF: Let ¢ := E[(Y,,7)*]V? and 0 < &7 < ¢r. From Bradley’s lemma
(e.g., Bosq (1998, Lemma 1.2)), there exist i.i.d. random variables Y/, [ =
1,...,k,suchthat Y7, £ Y, r,/=1,...,k, and

P(|YITT —Yir|> &) < 11(CT/§T)2/56¥(CIT)4/5, I=1,...,k,
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where a(-) are the mixing coefficients of process (X, Y/)". It will be proved
below (see Lemma B.4) that ¢; = O((m/T)"?). Let & > 0 be given and let
&r:=g/ky =0((m/T)"V?). Thus, we have

P(Y}, = Y1l > e/kr) = O(ki>(m/T)Pa(qr)*?), 1=1,..., k.
We deduce

k
Y Y=Y Yir

=1 =1

k
> e) < P(DY:T ~Yirl > s>
=1

=~

<) PUY =Y r|>e/kr)

=1

Ok (m/T)" P a(qr)*?).

Since a(-) has geometric decay by Assumption A.5, 0(k7T/ *(m) D' a(gr)*’) =
o(1). The proof is concluded. O.E.D.

Thus, we have
k k
(B10) > Yir=) Y +o,D).
=1 =1
The asymptotic normality of
k
> Y -5 N, o),
=1

where o > 0 is given below, is proved by using the Liapunov CLT (Billingsley
(1965)). For this purpose we show that

k k
Y EWY )= 0 Y ENY)1—0.
I=1 =1

These two conditions are verified in Lemmas B.4 and B.5, respectively.

LEMMA B.4: Under Assumptions A.1, A.5-A.9, and A.11-A.14, we have

k
Y ELY[ )1 — N3,

=1
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where 3 = (2) is the matrix with blocks

> Cov(gi(X,, Yii 0), 81(X i, Yk 0)))

k=—00

2,']' ==
0

0
w f(x0)E[§2(Y; 00)8(Yi; 0)) |1 X, = xo])

PROOF: We have

k
D ENY )]
=1

i=1 t=1

km < 1 & 1 ¢
= — )\/C E— t Oi s T — 0 )\‘.
a E i ov[ﬁ ?:1 v,7(6;) NG ;Zl V.7 ( ;)} j

ij=1

n m 1
=kVI[Y}, )= kV[Z > ﬁ)\;vﬂ(ei)}

Since km/T — 1, it is sufficient to prove that

1 & 1 &
ET,ij = COV[ﬁ ;vt,T(Oi), «/—ﬁ ;UI,T(OJ'):|

—>2,'j, i,j=1,...,n.

Let us write

Su s
T, T,
Er,ij = ( Y 7,

21 22
ET, ij ZT, ij

where

1 & 1 &
ZlTli' = COV(— Zgl(Xt, Y 0:), — Zgl(Xt, Y, 0j)>,
] vm vm iz

t=1

, 1 &
12 21 .
2=y = COV(W ;&(Xn Y. 0)),

R —d/2~ X, — X
— n; %Y, 0)K ,
ﬂ; T gz( t j) ( hT ))
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— X
2%"2,111' = COV( E h, d/zgz(Yt, 0; )K< hT O>,
1 “ —d/2~ Xt — X0
— E h P8 (Y 0H)K | —= )|,
\/ﬁ — T g2( t j) < hT ))

and derive the limit of each term for 7" — oc.
(i) For 3}, we have

3y = Covgi(X,, Yi: 6), 81(X,, Yi: 6)))
+ Z (1 - —) Cov(g1( X, Yi; 0:), §1( X1, Yi45 6))).
I|l=1
From Assumption A.11 and Cauchy-Schwarz inequality, we get
E[llgi(X., Yi; 0)1] < o0

for 7 > 2. Then, by the Davidov inequality (Bosq (1998, Corollary 1.1)) and
Assumption A.5, we get

|Cov(gi(X,, Yy: 6,), g1(Xit, Yior: 6))]
/7 /7
= O(p'E[llg1(X., Yis 001'] " E[llgi (X, Yis 0p11])
for some 0 < p < 1. Thus, the cross-autocovariances are summable and
Jim = > Cov(gi1(Xo, Y ), 81(Xot, Yieri 6))).
l=—00

(i) Let us now consider 37°,. We have

X, —
(B.11) 2%%i,=Cov(hT"/2§2<x;&)K( - x“),

T

d/2~ — Xo
mo(52)

m—1
|

1A dj2 X, — xo)
+Z(1 m)CV(h gz(Y,,G)K< )

Ll|=1

X,
hy %Y, 11 6 )K(—x"))
Iy

— /
—I—E)sz"_ Z(l_u> IT,ij+

Lll=1
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Let us first consider the covariance term Iyr ;. The functions E[g,(Y}; 6;)]

X, =-1f(-) and E[2,(Y}; 0)8:(Ys; 6,)'|X, = -1f(-) are Lebesgue-integrable. In-
deed, by twice applying the Cauchy—Schwarz inequality, we get

/ |Elg; (Ye; 0)g5 (Vs 7YX, = x| f(x) dx

S/E[Hgﬁ(Yz; 0)I21X, = x]PE[llg; (Y DIPIX, = x] £ (x) dx
172
= (/E[Ilgz(Yt; 0)°1X, =x]f(x)dx>

1/2
x ( / E[Ilg;(Ye: DIPIX, = x]f (x) dx)
= E[Ilg; (Y 01P) “E[llg5 (Y DI < o0
by Assumption A.11 and, similarly,

1/2

/HE[g;(Yt; 0)1X, = x1|| f(x) dx < E[llg;(Ys: 0)I2]" < 00

Since the functions E[g(Y:; 0,)|X, = -1f(-) and E[g:(Y;; 6,)8:(Y:; 60,)|
X, = -1f(-) are Lebesgue-integrable and continuous at x = x, (Assump-
tions A.12 and A.13), we can apply Bochner’s lemma (e.g., Bosq and Lecoutre
(1987, p. 61)) to deduce that

X,—xo
hy

E[h;dgz Y Oj)K< )] =E[g:(Y:; 0)|1X, = x0lf (x0) + 0o(1),

—d 3 o ’ Xt_x(] ?
h°E| 8,(Y:; 0)8,(Ys; 0,)'K 7
T

=wE[Z:(Y,; 0)8:(Y,; 0,)| X, = xolf (x0) + o(1).

Then

~ ~ o Xi—x :
Iorii = h}dE[gz(Yﬁ 0:)8:,(Y; 0)) K( th 0) i|+0(h‘;)

T

=wf(x0)E[82(Y:; 0)8:(Yy; 0,) X, = x0] + o(1).

Let us now consider the term Zm; 1- ';”)F,T,,-j in equation (B.11). By repeat-
ing the argument used by Bosq (1998, proof of Theorem 2.3), in the case of the
density estimator, it is possible to prove that Assumptions A.5-A.9, A.11, and
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A.14 imply (see Section B.1.4 for the detailed derivation)

m—1 l
Z (1 - u)nr,i]’ =o0(1).
m

Ljl=1
Finally, we conclude

lim 37, = w’f (x0) E[82(Y:: 0)8(Y: 0))'1 X, = xol.

(iii) Finally, let us consider 37,. By a similar argument as for 37, the
cross-terms are negligible. Thus, using Assumptions A.1, A.8, A.9, A.13, and
Bochner’s lemma, we get

—d/2~ X, —x
2;%ij=00v(gl(x,,yt;0i),hrd/2g2(Y,; ej)K( ‘h 0>>+0(1)
T

- - , X, —x
= hr"/zE[gl(X,, Y, 0)2:(Y5: 6;) K( . °>] +o(1)

T
= h{Pw f (x0) Elgi (X, Yis 098(Yi: 6,)'1X, = X0l + (1)
=o(1).
The proof is concluded. Q.E.D.

LEMMA B.5: Under the assumptions of Lemma B.4 and Assumption A.15, the
Liapunov condition holds:

k
> ELY[)1— 0.
=1
PROOF: By Cauchy-Schwarz, we have

k
S EW(Y;) = KE(Y; 1)*] < (KEL(Y; ) D2 (KEL(YT 1)),

I=1

Since kE [(Yﬁr)z] = O(1) by Lemma B.4, it is sufficient to prove

KE[(Y! )'1=o(1).

Since
(KEL(Yy )"
n 1 m 4 1/4
/\i kE T = t 01’ —E t 01‘ ,
S;H ||( [ﬁ;(w( ) — E[vir(6)]) D
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we have to show

- 4=
1 m
(B.12) kE_ ﬁt;(uﬁ(o,-)—E[vﬁ(oi)]) _:0(1) Vi=1,...,n.
‘We have
- ;o 4 K =l m 4
B.13) kE||— 0,) — E[v,7(6; = _—F Vir,i
(B.13) _ ﬁ;(w ) — E[v,r(6)]1) |=7 X_; i, }
— 4
k m
< E (anu) }
L \ =1
where Vi :=v,r(6;) — E[v,r(6;)]. Moreover,
m 4
(B.14) E[(Z ||Vtr,,«||> } =D EllVir"
=1 t
+ > E[Viril Vs (Wil + [Viral)]
n#n
+ 3 E[Varil Woril Visrl]
n#OFL
+ > E[Ward VorilIWVeril IVaral ],
n#LFFEY

where summations are over 1,..., m. Let us now derive the orders of the dif-
ferent terms. Since

IWVirill < v (811 + E[llvir (8)11],

b

_ - X, —x
v (01 < g1 ( Xy, Yo 01| + B3 122 (Y 0,->||‘K< ‘h “)
T

Elllvr (6111 = O(1),
by Assumption A.11, the leading terms are either of O(1) or the terms involv-

ing the highest power of h}d/2||§2(Yt; O NINK(X: — xo/ hr)l.
(i) We have

~ X, — xo\*
ElllVir,I :0<h;2dE|:||gz(Yz; e,->||41<< = 0) D
T

5)l))

= 0<hT2"||K||;E[||§z(K; o)l
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From Assumption A.15,

—d ~ 4 Xt_xo
i E[ K( 7 ”
- / E[IZ:(Ys: 00 1°1X, = xo + hruf (xo + hra) K ()| du

=0(1).

t> Ui

Thus, we get
(B.15)  E[IViril*l= O(hy*).

(ii) We have

1V P17 = i [ s ) P,

Xt — Xy X[ — Xy
K| — K| — .
From Assumption A.15,

| v ) Plavs oK (F5 2 ) e (o) |

= /E[HEZ(YH; 65) ” ”§2(Yt2; 61') |||Xf1 =X+ hru, X\, = X0+ hTU]

X f.0 (X0 + hru, xo + hv) | K (u) K (v)| dudv
—0o(1).

X

Thus, we get
(B.16)  E[V,r.il’ IV,rilll = O(1).
(iif) Similarly, we have
B17)  E[[Vars| Vars[ =0,  n+#0,

E[[Vari | WVori| [Vari ] =0, 6 #6#1,
E[” thr,i” ” Vir,i | ” Vir,i | ” Vt4T,i||] =0(1), h#L#L#L.
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Therefore, from (B.13)-(B.17), we get
4
k( p=d 4
=0\ 5 (mh" +m

kE|:
of5)

since km/T — 1, m/T — 0, and Th% — oco. Equation (B.12) follows if we
choose m such that m — oo and m*/ T — 0. Q.E.D.

1 m
\/_T E (UzT(oi) _E[vtT(gi)])
=1

From (B.10), Lemma B.4, and Lemma B.5, we conclude that
k
> Yir =5 N(O, X3
=1
B.1.2.2. The Last Two Terms of the Decomposition (B.9) Are Negligible.

LEMMA B.6: Under the assumptions of Lemma B.4,

k

Y Y =0,1), Yi=o0,0).

=1

PROOF: The proof is similar to the proof of Theorem 1.3.10 in Tenreiro

(1995, p. 14).
(i) We have
l(m+q)
Y//,T = Z Z.r
t=Im+(-1)g+1
n |: 1 I(m+q) n
=Y Nl—= Y. (vr(6)- E[vt,r(ei)l)} =Y AU,
i=1 \/T t=Im+(I-1)g+1 i=1
Thus

()] (Eefze)) ]

n & 241/2
sZnAinE[ > Un ] :
i=1 =1
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Therefore, it is sufficient to prove

k
E UlT,i
=1

k
E{
=1

2
} —o(1) Vi

(B.18) E|:

We have

> Ui

k—1
:| = kE[Uz/T,iUlT,i] + Z(k - |S|)E(U1,T,iUlfsT,i)

Isl=1

and

kg
kE[Ul/TlUsz]—kTr[V(Usz)]—_ |: < ZU, 7(0 )>:|

k ~
= 7q Tr(ET,,-l-).

From the proof of Lemma B.4, ST,,,- =0(1). Since kq/T = o(1), we get
kE[Ul/T,iUlTJ] = 0(1)

Moreover,

k—1

Y (k= IsDEUjy,Ui_r.:)

|s|=1

k—1

<k NEWUprUror)l

[s|=1

< T" Z|E(vt (0 Vs1(0)) — Eu1(6) E(vi_,,1(6))))|

s=1

< TqZHchw,Tw),vt ()]

Using the same argument as in the proof of Lemma B.4 (see also Sec-
tion B.1.4), we can show that )", | Cov(v, 7(6;), v,—7(6;))|l < cc. Thus,

k—1

> (k= ISDE(Ujp, Ur_sr.) = o(1).

|s|=1
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Then (B.18) follows.
(ii) We have

T
Y; = Z Z,T_Z/\[ﬁ > (vt,T(ei)—E[v,,Tw,-)J)}

t=k(m+q)+1 t=k(m+q)+1
n
J— /
= E /\,'UT,i
i=1

and
E[(Y;)" 1 <) IMIENUz 1717
i=1
Therefore, it is sufficient to prove

E[lUr:I’1=0(1) Vi

We have
T — k(m + q) T—k(m+q)
ElUr; U1 = v, (6
r,iUr, T — k(m 2 ; 7 (6;)
-0
and the proof is concluded. Q.E.D.

B.1.3. Stochastic Equicontinuity

Let us now prove the stochastic equicontinuity of empirical process vr(0)
(condition (ii) in Proposition B.2) along the lines of Theorem 1 in Andrews
(1991). Let us introduce the matrix-valued triangular array

Z; 0
= X, —
I/I/I,T < 0 th/2K< th xo)IdK2+L+l) 5 1< T7 T = 17

T

where Z, denotes the instrument. We can write
V() =W, r(Yi;0), 0€0,
where

P(y; 0)=(8(y: 0),8:(y; 0)), 0€0.
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Let {s;: j € N} be the basis of L*(Fy) introduced in Assumption A.16. Without
loss of generality, we can set ;(y) = 1. Thus, from Assumption A.16, there
exist sequences {cj(e) :j € N}, 6 € O, of vector coefficients such that

Y0 =Y Oy, yel,

j=1

for any 6 € @, where

hm supz —||c (0> < 0.

J=00 g

Thus, we have

[e°]

vr(6) —vr(1) = Z(fz (Whri () — E[mej(Y)]))
x [¢1(0) = ¢}(7)]

T
= Z(T_l/z ZX]‘,IT) [CI*(O) - C;(T)],

3

where X 7 := W, r;(Y:) — EIW, r;(Y,)] and
(B19)  vr(0) —vr(DIP <Y AT 1/22
j=1

Let d(-, -) denote the metric on @ defined by

~ 1/2
d(9,7)=<ZIIC}‘(0)—C}‘(7)IIZ) , 0,7€0.

j=1

1 * * 2
Zf||c,<0)—c,<r>|| :
J

j=1

For any 1, 6 > 0, we have

(B20) limsup P[ sup  vr(6) ~vr (D)l > 7]

T—o0 0,7€0:d(0,7)<8

1
< —timsup B[ sup [wr(6) - vr(n)I]

77 T—o0 0,7€0:d(0,7)<8

1 =~ 1
< —( sup Z;||c;f<e>—c;fmn2)
]

2
M \o.re0:d0,m<6
2i|
b

x lim sup Z/\E|: T

T—o0 j=1

T

12
> X
t=1
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using (B.19). Since

T 2
(B.21) E[ T3 X }
t=1

)£

T-1
k
=T (E[X;r X} 7] + Z (1 - %) T (ELXr X, i),

|k|=1

we can study the asymptotic behavior of the different terms in the decomposi-
tion.

LEMMA B.7: Under Assumptions A.5, A.8, A.9, A.17, and A.18,
E[X;1 X7
_ (V[zth)] 0 ) o
0 w2 EY (YD) X, = xolf () ldiyrn ) 07
E[X; X}, 4 1]

_ (COV(ZA!/;(Y:), Zihi(Yiz)) O

0 O)+uj,kT7 k#oa

where V[ Z(Y)] := E[Z,Z,{;(Y))*] — E[Z,y;(YDIE[Z,(Y))], Cov(Z, x
le(Y,), Zt—k‘pj(Yt—k)) = E[ZtZ;_kl/’j(Yt)‘pj(Yt—k)] - E[Zt‘pj(Yt)]E[Zz—k X
;Y 1), and

T
sup lu;rll =o(1), sup Y [luerll = o(1).
J

I k=1
PROOF: (i) We have

E(Z,Z Wy (Y) 1= E[Zy(Y)IE[Z(Y,)]
E[Xj,tTX,/‘,tT]=( [ Wi (Yo [O i (YDIELZ;(Y))]

0
X, - .
h;dV[wYt)K( - x”)]IdK2+L+1>

T

Let us consider the lower right block. The term

)
hr

_ / EW(YOIX, = xo + hrul f o + hru)K (u) du
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is bounded uniformly in j € N from Assumption A.17 and the Cauchy-Schwarz
inequality. Moreover, from standard bias expansion and Assumption A.17,

2
thE|:¢j(Yt)2K<¥) ] =/goj(xo+hTu)K(u)2du

T

= we;(x0) + O(sup | D6l 3 ).
J

Thus
—d X —xo 2 2
hyV{g;(YDK A =w E[Y;(Y)'|X: = x0lf (x0) + o(1)
T
uniformly in j € N.
(i) We have
where

Oy =EZZ (YO (Y)l = ELZsj(YDIELZ, (Y )],

X, —x Xik—x
03, = i Cor vk (K2 v,k (Ko=)
hT hT

X IdK2+L+1-
Let us consider (2% .. We can use the same arguments as in the proof of

Lemma B.4 to get bounds uniform in j € N from Assumptions A.5, A.8, A.9,
and A.18. Thus,

h;? C0V|:¢j(Y,)K<Xt _ x“), l,l”-(Y,QK(M)iH =o(1)

hT hT

T-1
k=1

uniformly in j € N. The proof is concluded. Q.E.D.

From the Davidov inequality, we have

2/r

(B22)  [Cov(Zj(Y1), Zi s (Y, 1)) | < comst - p“E[ | Z,4s;(Y)I']
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uniformly in j € N for some 0 < p < 1 and r > 2 as in Assumption A.16. Thus,
from Lemma B.7 and equations (B.21) and (B.22), we get

0 T 2
lim sup Z )\]—E|: T2 ZXJ-,;T i|
T—o0 iy =1
<Y MT(VIZy (YD) + CE[I Zip; (YD ']

j=1

+ CZE[¢’j(Yt)2|Xt = xo]}

2/r

for some constants C;, C, < oo. Now
T(VIZ; (YD) =T(EIZ,Zy;(Y))
- TI'(E[Z,l,bj(Y,)]E[Ztl,le(Yt)]’).

Since

Tr(ELZ.Zy;(Y)']) = E[IIZ:p (YD)’
and

Te(ELZj(YDIELZ i (Y)]) = ||E[Z,¢,-(Y,)]||2 <E[IZy;(YDI?],
we have

Te(VIZ (YD) < 2E[1 Zep,(YDIP] < 2E[I1 Zap; (YOI ™"

T

< G Y MENZa (YT + ELps (Y1 X, = xo1)
j=1

Thus, we get

lim sup Z )\]E|:
j=1

T—o0

T

-1/2

T2 Xur
=1

=C4<OO

for some constants C;, Cy < oo from Assumption A.16. We deduce from (B.20)
that

lim sup P*[ sup  lvr(0) —vr(7)| > ”fl]

T—o0 0,7€0:d(0,7)<5

1 =~ 1
§c4—2( sup Z;nc;f(e)—c;f(r)uz).

N\ 6,7€0:d(0,7)<5 P
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The conclusion follows from

oo

. 1
lim sup  H—=ej(6) = ¢ (DIF =0,

2700, re0:d(0.m=0 S A
which is proved by Andrews (1991, Equation (2.6)).

B.1.4. Bounds on Covariance Terms

In this section, we derive a bound for the covariance term Z?"ﬁil (1— ‘mﬂ)BT) i
in equation (B.11). This is done by deriving two bounds for the covariance
terms.

(i) For this purpose, let us define functions

$i(x) = E[:(Y,; 0)|X, = x1f (x),

b1ij(x, §) = E[8(Ys; 0)8(Yio; 01X, = x, X,y = Elfrimi(x, &).
We can write

X, — X, —
Cov( Z:(Ye 00K [ 220 ), (Y ) K [ 2L =20
hT hT

X — Xo &— X
=//¢1,z/(X,§)K( i )K( i )dxdf
- d)i(x)K(x}_lTxO)dx / ¢j<§>'1<(§ ;Tx())dg

= h¥ (/ / b1 (x0 + hru, xo + hrv)K(u)K (v) dudv

_/¢i(x0+hTu)K(u)du[¢j(x0+th)/K(v)dv>-

From Assumptions A.6, A.7, and A.14, and by the Cauchy-Schwarz inequality,
functions ¢; and ¢, ;; are bounded uniformly in / € N. We get

(B23) Tl = (up vl + I billcl bl ) IK 2 S = i
l
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(ii) From the strong mixing property (Assumption A.5) and the Davidov in-

equality,
~ X
H COV(gz(Yz§ 09K <Tx) BY, i 0)K ( )) ”
T

. X — X rq1/r
<const-p' - E| |2:(Y;; 0)K 7
T

Fo 1/
|: (Y, 0; )K<¥> :|
T

for some 0 < p < 1 and 7 > 2. Moreover, we have
- X, —xo\|
E[ BV a-)K( - x“) ]

T
from Assumptions A.8 and A.11. We deduce
(B.24) |7l < Cop'hy?

IA

IKILE[Ig(Y:; 6017]

= |K| ¢ < o0

for some constant C, < oo (that depends on i and j).
Let us now define Ly = [h;**| — co. From (B.23) and (B.24), we have,

m—1 l m—1
Z (1 - |m_|> || = 22 I Ll
Lyi|=1 I=
(chh + Z Cop'hz )

I=L7+1
C
= 2(C1LTh‘7{ + 2 thpLT+l)
—p

<const(1/Ls + L7.p*7*") — 0.

We deduce Z;’H;(l — Y r = o(D).

B.2. Proof of Consistency

In this section, we prove that P[II@’} —0;ll > €] > 0as T — oo for any & > 0.
We have

(B25) P&~ 6l zel<P[  inf 016 =00

0*€OxB:||6%—6} || ¢

<P[ inf  0n(6) =06,

9*6@><B:H9*703||zs
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Let us derive the orders of the RHS term and the left-hand side (LHS) term
inside the probability. Write the criterion as

(B.26)  Q7(0") =[Vr(0) + mr (6] Q[¥V7(0) + mr(07)], 6 €O xB.
Then, since ¥r(6y) = O,(1) from Lemma A.1, and m(6;;) =0, we get
(B27)  0r(8)) =0,(1).

Let us now derive the order of infy«co .5, o Glze 07(6*). From Lemma A.1 and
the continuous mapping theorem (CMT; Billingsley (1968)), we have

sup ¥r(0) 2¥7(6) = 0,(1),

0cO

sup mr(6°)Y QW (0) = 0,(VT).

0*cOxB

From (B.26), it follows that
Qr(6") = mr(8°) Qmzp(6°) + O,(V'T)

uniformly in 6* € ® x B. Now let A > 0 be the smallest eigenvalue of (2 (As-
sumption A.20). We get

mr(0') Qmr(0°)
> TA(|[Elgi (Y, Xz 001+ | Elga(Yis 01X, = x|
+ | Ela(Y,: 0)1X, = xo] - B])
> ThA(|Elgi (Y, X 01 + | Elga(Ys 0)1X, = xo1
+ | Ela(Y: 0)1X, = x0) - B[
for T large and any 6* € @ x B. From continuity of moment functions (Assump-

tion A.19), compactness of @ x B (Assumption A.4), and global identification
(Assumption A.2), we have

inf mr(0°) Qmy(0*) > CThi

0*cOxB:||6*— 6} | =&

for a constant C = C, > 0. From bandwidth Assumption A.9, we have VT =
o(Th%). Thus, we get

1
(B.28) inf Qr(6°) > 5CTh”;

0*€@xB:||0* ~ 0| =z &
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with probability approaching 1. Since Th? — oo from Assumption A.9, and
using (B.25), (B.27), and (B.28), the conclusion follows.

B.3. Proof of Lemma A.2

We use the following lemma.

LEMMA B.8: Under Assumptions A.1-A.20 and A.24, ||§’} — 651l = 0,(1/

JTHD).

PROOF: We follow the approach in the proof of Lemma Al in Stock and
Wright (2000). Since 0* is the minimizer of Qr, we have

QT(B*T) —0r(6y) = [IPT(OT) + mT(e;)]/Q[WT(OT) + mT(/é;)]
— Wr(60)' 27 (6))
<0,

that is,
mT(b\;),ﬂmT(@}) + ZmT(’O\’;)’Q‘IfT(’Q\T) +d,r <0,
where d17T = WT(ar),QIPT(aT) — WT(G())/QWT(BQ). By using

my(03) Qmy(67) = Aimy(0p)|1,
mr(03) QWr(0r) = —mr (O3 [112%7(07) ],

we deduce
(B29)  [mr (81> — 2o rlmr (85) + dsr <0,
where
do,r = 12¥;(6p)/A  and
ds.r = dy 1 /) = [Vr(0r) QW (0r) — Vr(00) QW (6y)]/A.
Inequality (B.29) implies
Imr (G < do,r + (d3r—ds )"
Let us now derive the order of the RHS. From Lemma A.1 and CMT, we have

dy,r <sup |QPr(0)||/A=0,(1),

0O

|d3,r| < 2sup |¥r(0) 2¥r(0)|/A = O,(1).

0cO
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We get ||mT(0 )l =0,(1). Define
G(6*) = (Elgi(X,, Ys; 0)]', E[g2(Y; )| xo]', Ela(Y,; 6) — Blxol)
for 6* € ® x B. Since ||mr(6)|> > ThL|G(6")|? 6 € ® x B, we deduce
||G(6 N=0,(1/ W ). By the mean-value theorem, we can write!

Ha 0 0* o;
5 (E @~ 6))

where 5’} is between 79\*; and 6. Since 79\*; converges to 6; by consistency (Sec-
tion B.2) and ¢G /460 (6*) is continuous by Assumption A.24, we have

P

03),
0*/( T) 70 ,( )
where dG /367 (6;) has full rank, by the local identification condition in As-
sumption A.3. The conclusion follows. Q.E.D.

Let us now prove Lemma A.2. From Lemma B.§, it is enough to show that
plim;_ . ZL(6;)Ry = J,, for any 65 such that |65 — 63| = O,(1/\/Th}). We
have

Jgr
(99*/

(67)Rr

= . J
E[aor(eT)}Rlz h'"E [ (f;(eT)}Rzz 0
~ ﬁ -
= | n?’E [ 076,<0T>|x0 Ry E[&—;<9T)|XO]R2,Z 0
h?/z (HT)‘XO Rz E &—a(éT)‘xo R,z —ld.
a6 ’ a0 ’

Thus, we have to show

J I
(i) [ﬁwn] fei (eo)}

(ii) [W(Om 0] [079, (90)|X0:|,

~| 0 _
(iif) h;d”E[%(GT)] Ray 1> 0.

More precisely, the mean-value theorem is applied separately for any component of function
G and the intermediary point 8% can differ across components.
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Let us now prove these results.
(i) From Assumptions A.4, A.5, A.21, and A.22, the ULLN (see Potscher and

Prucha (1989, Corollary 1)) implies that E [£1(0)] 2> E ["g1 (6)] uniformly in

a0
6 € 6. Moreover, E [23—61,(0)] is continuous w.r.t. 6 by Assumption A.24. Then
(i) follows.
(ii) Let g5 ; denote the ith component of function g; fori=1,...,K, + L.
We have

85.i ags ~[ g5, . _
[ 2(97)|X0] [Tg(eo)|xo]+E|:(90;’0/(0T)|x0:|(9T—90),

where 6 is between 6; and 6,. Under Assumptions A.5-A.9 and A.23, one can

show that E[”2:(0)]x] % E[%%(6,)[x,] and E[2% (67)]x,] = O,(1). Then
(ii) follows.
(iii) Let g; ; denote the ith component of function g;, i =1, ..., K;. We have

(B30) h;"E [‘?g“(eT)}Rzz

a0

«/—E[‘?g“ 0 ]R
W (60) |Ry.2

1 _ [ Pas -
+ W\/ Thi(6r — 90)'E|:(905;1é/ (HT)]RZ,Za
T

where 67 is between 07 and 6,. Let us derive the orders of the two terms in the
RHS of (B.30). For the first one,

i & i
ﬁE[ . (90)]Rzz fZ (Y X 00) R,

where E[dg,:/d0'(Y;, X:; 60)R,,z] = 0. From Assumptions A.5 and A.22, the
CLT for mixing processes (e.g., Herrndorf (1984, Corollary 1)) implies

281,
fE[fel, (90)]R22—0 (1.

Let us now consider the second term in (B.30). From Assumptions A.4, A.5,
A.22, and A.24, the ULLN implies

g1
[ £, <0T>]=0p(1).

9090
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Thus, from (B.30) we get

_an=| 0g1i =
hT"”E[ j’; (OT)j|R2,z = Op(

1 1
——+—— ) =0,01
JTh? «/Thﬂ;) ot

from the bandwidth condition in Assumption A.9. The proof is concluded.

B.4. Proof of Corollary 6

If the bandwidth is such that ¢ = lim Th2"*¢ = 0, from (A.6) the optimal
weighting matrix for a given instrument is £ = V;'. The proof that Z* =
E (%(Y; 00)| X)W (X) is still an optimal instrument is similar to the proof
of Proposition 3, replacing M(Z, ¢, a) with V(Z, a) = fX“:—;)e’(Jé,ZZ(]lJO,Z)‘le,
which is the asymptotic variance of Br. Thus, the bias-free kernel nonpara-
metric efficiency bound is B(a, xo) = fX"(’iO) eIy 1]5*)*1& Corollary 6 follows
from the block inversion formula.

B.5. Proof of Lemma A.3
B.5.1. Asymptotic Expansion of the Concentrated Objective Function

Since the conditional moment restrictions are satisfied asymptotically, we

have ’):T i 0, when T — oo. Therefore, we can consider the second-order
asymptotic expansion of function £(6, A) in a neighborhood of 6 = 6,, A =0.
Let us first derive the expansion w.r.t. A. We have

logE(eXp Ng2(6)]xo)

~ 1 -
~ log[l + NE(82(0)]x0) + z/\/E(gz(B)gz(H)/lxo)/\]

~ 1 -
~ NE(8(0)|x0) + EA,V(gZ(Q)le))\-

Therefore, we can asymptotically concentrate w.r.t. A,
(B31) A=V (g:(0)|x) 'E(g:(6)|x0),

and the asymptotic expansion of the concentrated objective function becomes
1 T
L£3:(0) > = 3 L E(@(0)|x)'V(g(0)]x) " E((0)]x)
=1

1 , -~ —~ ~
+ Eh?E(gz(eﬂxo),V(gz(@)|xo)_1E(82(9)|xo)-
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Criterion £5(6) multiplied by T is asymptotically equivalent to the criterion of
the kernel moment estimator (see Definition 4) with optimal instrument and

weighting matrix.
Let us now consider the expansion around 6 = 6,. We have

>(0— 6o),

and similarly for the expectations of function g,. Thus, we get

= = a
E(g(0)lx,) = E(g(00)lx,) + E( o

V(g(0)]x,) >V (g(60)]x,),

T

1 -~ d '
£5(0) = Z{E(gpc,) +E<a—§,|x,>(e - 90)} Vglx)™
t=1
t>(9 - 90)}

1 ~
+ Ehc;{E(gzpCo) + E(()G’ ixo)(e 00)} V(g2|x0)

x {E‘(gz|xo)+E(M,| 0)(9 90)}

where functions g and g, are evaluated at 6.

~ ag
E E
x { (glx,) + (070,

B.5.2. Asymptotic Expansion of 0r
We have

(a9/|x)(9 =~ (aef}x>Rl(m o)

We get

T

1 -~ J
L5(n) = TZ{E<g|xt>+E(&—§,

t=1

xz)Rl(nT - n’{,g)} Viglx)™

{E(gIX)+E( |x> 1(77*{—77’{,0)}
+ /’ld{E(g2|X0)+E<&0/|XO)R1(”71 M)

+E( &

20 xo>Rz(n2 nZ,o)}
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_ g
x V(g2]x9) ™" E(gzle) +E

a0’
82
E
+£(3

The asymptotic expansion of 7} , is obtained from the maximization of the
first term in £5(7n*), since the contribution of the second term is asymptotically
negligible. We get

VTG = i)
T -1
~_ lZR’E |x Vgl E( 28 |x, )R,
T~ ' P

1 < . {dg . o
x ﬁ ;R1E<%|x,>V(g|x,) /g(y, 00) f (ylx,) dy.

) (=)

xo>Rz(772 nﬁ,o)}-

Thus
VTG —iy)

_(R;E[E(i‘g;|x>l/(g|x) 1E<[m/|x )}R1>1

T [ [RE ( % |x >V<g|x>‘g<y; 00)F (v, x) dx dy

~ _(R/E|:E<()g"x >V( |x ) 1E<(9g |x >}R )—1
— 1 0,)0 t g 0[ ¢ 1
1 T &g’
% ;R3E<%|x’>”g'*>'g<»; o).

The bias term induced by the kernel estimator is asymptotically negligible since
Th§™" = o(1). The asymptotic expansion of 73 ; can be deduced from the
maximization of the second component of £$(n*). Estimator %  converges
at a nonparametric rate and terms involving (%}  — n} ;) can be neglected. We
get

Th‘%(fq\’;j - 77;,0)

o
_|:R/ ( g2|xo>V(gz|xo) 1E((9g;|x0>R2}
E(%|XO>V(82|XO)I\/T7M/&(Y§ 60)f (y1x0) dy.
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Then point (i) of Lemma A.3 is proved.

B.5.3. Asymptotic Expansion of Az
We have from (B.31),
Ar > =V (g2(07)1x0) " E(82(87)|x0) = —V (82(80) 1x0) " E(82(B7) | x0).
Moreover,

E(g:(0r)|x0)

~ J
= / &(y; 00) f (ylxo) dy ‘f‘E(;;,
- AN 982 ~ .
~ | & 00)f(ylxo)dy + E w‘xo Ry(m3.0 — m30)
(since the contribution of 7] ;. — 1] ; is asymptotically negligible)

~ (Id = M) f g:(y: 60)F(y1x0) d,

|x0) (ar — )

where M is the matrix in (A.19). Then
Ar 2 =V (g2(80)1x0) " (Id — M)/gz(y; 80)f (ylx0) dy

and point (ii) of Lemma A.3 is proved.

B.6. Proof of Corollary 8

From Appendix A.1.4, equation (A.5), the asymptotic distribution of the op-
timal kernel moment estimator of 6; is such that

(B.32)  (NT(ir —m0)s | ThE(ior — m20)'s o/ ThEBr — Bo))’
= _(J(/)QJO)ilj(/)QgT(GS) + Op(1)7

where 2 = V"', matrix V is given in (A.2), and

E<§g1>R1 0 0
960
P
Jy = 0 E(a‘g;f\x())Rz 0
da
0 E(ﬁ@’ xO)Rz —IdL
E(agl>R1 0)
- 960
J5
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For Z = E(%222%0 | X)V (g(Y; 60)|X)~", we have

dgi\ 4 i 98 _
E(w> _E[E(—Dm |X)V(g|X) E(—a0,|X>} =V(g).
R,E|E a—g|X>V(g|X)—1E a—g|X R _IR’
(J )T Q = ! 90 20 1 1

0

Thus

0
3T 3! ] ’

We get

(B.33)  (JpJo) T 0287(6;)

/ —1
- <R/1E[E<(;i|X>V(g|X)'E<%|X>}Rl) RWTElg]
(52505705 2 VThiElgs o)

Let us now compute & := (Ja”Zg]Ja‘)‘lJa”Zg]E[g;|x0]. Let us denote G :=
E(%|x0)R, and A := E(£|x9)R,. Then & = (&), &) € R” x RE solves

a6’

Ty 35 Elgslxol — J3€) =0, that is,

(G'zgl + A G3P g A’E%f) ( Elglx0] — G& >
= —37 Ela — Bolxo] — A& + &

where 2{{ , I, j =1, 2, denotes the blocks of 3 '. Solving for £, in the second
block equation, we get

& =—Ela— Bolxol + A& — (33) 1221(E[gz|xo] - Gé&).

By replacing in the first block equation, and using 3}, = 33! — 3§2(33) ' 33!
and (337) 7' 33" = —3 13 |, from the formulas of the inverse of a block matrix,
we get

&= (G'51,G)' G371 Elga]x0)]
and
& = —Ela — Bolxol + 301351 Elgalxo]
A - 3023, GG 3L GG 3, Elgslxol.
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Thus, using (B.32), (B.33), 311 =V (g21x0), and 3 = Cov(a, g2|x¢), we get

J / J -1
ﬁ(”fh,T —Mi0) = —(R;E|:E< & |X)V(g|X)1E( & |X>]R1>

a0 a0

x RIWTE[gi]+ 0,(1),

Th?(ﬁz,r — M2,0)

(g, L (d -
= —<R2E<(9g;|x0)V(g2|x0) 1E<(;§%|X0>R2>

(9 /
x R,E( 282
9

’XO)V(82|X0)1 ThiE(g:]x0] + 0,(1)
and
Thi(Br — By)
=/ Th{Ela — Bo|xe] — Cov(a, g2lx0)V (g2lx0) '\ Th$Elga]x0]
[
X (R;E(Z‘g;z |x0> V(g2|x0)‘1E(j‘Zz/ ’xo)Rz) B

Jg) ~
x R;E(% |x0)1/(gz|x0)1 ThiE[g:]x0] + 0,(1).

da 1%
-0 |xo>Rz — Cov(a, g2|x0)V(g2|x0)1E(a‘;g; |X0)Rz}

The asymptotic expansions for 1, r and 7, r correspond to the asymptotic ex-
pansions of the XMM estimators 7} ; and 13 ; in Lemma A.3(i). The conclu-
sion follows.

B.7. Regularity Conditions in the Stochastic Volatility Model

In this section, we discuss the technical regularity assumptions for the XMM
estimator (see Appendix A.1.1) when the DGP P, is compatible with the
stochastic volatility model (3.6)-(3.8). They concern the stationary distribution
(Section B.7.1) and the existence of moments (Section B.7.2).

B.7.1. Stationary Distribution

Let us consider process {X, = (7, 6}7) : t € Z}, where the dynamics of 7, =
r, —rg, and o? under the DGP P, are defined in Section 3.2. Markov process



32 P. GAGLIARDINI, C. GOURIEROUX, AND E. RENAULT
X, is exponential affine,
Efe o1,
= Ege™ ™71 X,] = Eg[e” v R Efem 01| (07), X1 X

_ By [etmn-a 2]

1 1
= exp|:—a0<you +v— §u2>0't2 — bo(you—i— v— Euz):|

ey eXp[—A(Z)/X[ - B(Z)]7

where A(z) = (0, ag(you + v — 3u?)), B(z) = by(you + v — ju?), for z =
(u,v)" € C? such that Re(you + v — su*) > —1/c¢y, and functions a, and b, are
defined in Section 3.2.

B.7.1.1. Strict Stationarity and Geometric Strong Mixing. From Proposi-
tion 2 in Gouriéroux and Jasiak (2006), the ARG process (o?) is stationary
if 0 < py < 1, with marginal invariant distribution such that [(1 — py)/clo? ~
v(80), where y(8y) denotes the gamma distribution with parameter ;. Thus,
when py < 1, process (X,) admits the marginal invariant distribution

_ 1 ; - YOUZ [(1 - PO)/CO]BO —(1=pg)/c o2 2\8n—1
(B34) f()C) = ;(l’)( pu ) F(80) e Po)/<o (0' yoo—t,
x=(F,0)eRxR =X,

To prove that (X,) is geometrically strongly mixing, we use Proposition 4.2 in
Darolles, Gouriéroux, and Jasiak (2006), and verify the condition

9A
B.35) lim == (0)" =0.
(B35)  lim Q)

We have

dA 0 0
o-(0 1)
0z YoPo Po

Condi‘gion (B.35) is satisfied if py < 1. Thus, with Y, = (X34, ..., X,;;) for
given h € N, we conclude that Assumption A.5 is satisfied if 0 < p, < 1.

B.7.1.2. Smoothness of the Marginal Distribution. The stationary distribu-
tion f in (B.34) is in C*(X"). Moreover, we have

2
f(x) < Cre o/ (g2 x e X,
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for a constant C; > 0. Thus, ||f]l. < oo if, and only if, §, > 3/2. Moreover, we
have the following lemma.

LEMMA B.9: || D" |« < oo if and only if 8o > 3/2 4+ m.

PROOF: Let m € N. Since f € C"(X), to prove || D" f|« < 00, it is sufficient
to show that any partial derivative of order m of function f is bounded at the
boundary of X, that is, for 7 — +o00, 0> — 00, 0> — 0. From (B.34), let us
write

f(F, 0% = Colh(F, oH)]e ™ (6P, (7,07 e X,
where A = (1 — pg)/cy, C =A% /[I"(8y)], and

7’—')’00'2

h(F, o) =

The function 4 is such that
oh 1

= 2
—r,0")=—,
ﬁr( ) o

oh — —(F— 2) /24 o2 1 1
RN s L G LAV S SN P
Jdo o o 20

We deduce the following assertions:
(i) Any partial derivative of f is a linear combination of functions of the

type
dPIh(F, aHh(F, 72)ke ™ (0?), n,keN,leR.

(ii) Since function h —> ¢™ (h)h* is bounded for any n, k € N, it is suf-
ficient to prove that partial derivatives of order m are bounded for o — 0.
This is the case if and only if the smallest power / of o, which occurs in partial
derivatives of order m, is nonnegative.

(iii) The smallest power of o? is featured by 7" f/d(a*)™ and is [ = §) —
3/2 — m. We conclude that | D™ f||,, < oo if and only if 8y > 3/2 + m.
Q.E.D.

Thus, Assumption A.6 is satisfied if 6, > 3/2 4+ m. For instance, for m = 2,
we get 6, > 7/2.
B.7.2. Existence of Moments

For expository purposes, let us assume that the actively traded derivatives
at date f, have times-to-maturity 4#; = 1 (and moneyness strikes k;) for j =
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1,...,n and that we are interested in estimating the price of the derivative
with time-to-maturity # = 1 and moneyness strike k. The moment function is
given by

e'fi+l
e+l
Teyl k +
g;(yt; 0) = eir/"‘“679'762”3+l’03‘7t2*947t+1 (e 1)
(e’r+1 — kn)+
(e"t+1 _ k)+
1
1
cto(k17 1)
Cto(kna 1)
0

where y, = (7141, 07,1, 07) and rq = Fry1 + r701. The relevant variables are
Y, = (Fi1, 02,4, 07) and X, = (74, 07), respectively. Note that function g3 does
not depend on 7, and thus we have dropped this variable from Y,. The following
lemma provides a condition for Eq[||g5(Y;; 60)]I*] < oo (see Assumption A.11).

LEMMA B.10: The function g;(-; 6y) is such that Eo[| g3(Yy; 60)]1*] < oo if and
only if

00 el = {(9], 02, 93, 04)/ €R4|03 > —1/4C0,

1 1—p0—|—4C093

0 —
2= 4C() 1 + 40093

— Y004y + 2607+ 2+ 0 — 404)+}.

PROOF: Since (e" —s)* < e for any r, s € R, condition Ey[||g5(Y:; 0)]*] < 0o
is satisfied if and only if

2 2 ~
(B36) E0[€749174020t+174930’ —404r,+1] < 00,
EO[674917402@2“74930,274(9471);&1] < 00.
We have
E, [6—491 —4007, | —40307 —404F, 41 ]

4. — 2 _4p 2 3
=E0[e 46, 4(02+7004)Ul+1 46307 E()(e 460401418141 (th+1, 0_[2)]
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=K, [6—491 —4(03+70 04209072, | —4930,2]
— 401 Eo[e—ww? E, (e—4<92+m94—2e§>a%+1 107)]
_ 6—4617b0(4(62+y094726‘2‘))E0 [ef[493+ao(4(02+y094720§))]0',2]
if
14+ 4cy(0; + yo0, — 202) > 0.

Moreover, since [(1 — py)/colo? ~ y(8p), we have

E, [67[463+a0(4(92+‘y0 947293))10,2]

1
(1 + 1 Up [403 + ao(4(02 + v 04 — 293))])
- Po
if
1+ COP [405 + a0 (40, + 700, — 262))] > 0.
— Po

We deduce that conditions (B.36) are satisfied if and only if
(B37)  1+44c¢o(6:+ v00s —267) > 0,

¢

——[465 + ag(4(6; + y00: — 269))] > 0,

1+
1 —po

144¢o(6; + v0(0s — 1) = 2(6, — 1)*) > 0,

O 465 + ao (40 + y0(0; — 1) —2(6, — 1)?))] > 0.

1

* L—po
Since 0, + yo(0s—1) —2(604 — 1)? = 02+ y904 — 263 + (46, — v, — 2) and function
a, is increasing, we can distinguish between two parameter regions to solve
system (B.37).

(i) First Case. 40, — yo — 2 > 0, that is, 6, > (2 + v,)/4. In this region, sys-
tem (B.37) is equivalent to

1+ 4¢o(0, + y004 — 263) > 0,
C
_“ [405 + ao(4(0, + 00, — 262))] > 0.

1+
1 —po

Let us introduce the new variable x = 4¢y(6, + yo04 — 267). Then this system
becomes

x> —1,
4¢y05 Do b
1—-py 1—pol+x

1+ > 0.
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By transforming the second equation, we get

x>—-1,
(1 + 40003)){ > —(1 — Po + 4C003).

There is no solution for which 1 + 4¢y6; < 0. Indeed, the second equation be-
comes
_1—P0+4C093_ Po

1+4c)0; 1+4¢y0; =

b

X <

which is incompatible with the first equation. Instead, for 1 4 4¢,60; > 0, the
second equation becomes

o Lopotdals L po
1 + 4C(]93 1 + 4C093
and implies the first equation. To summarize, a first region of solutions is
2+ 7o) 1 — po +4co03
0, > , 14+4c¢0;>0, —_
=Ty Faats =0, X e,
that is,
2+ ) 1
6, > 4 2 , 03>_ZC0,
11— 4cy6
0, > _ L 1=potaabs Y004 + 262

4C() 1 + 4C0 03

(ii) Second Case. 46, — yo — 2 < 0, that is, 8, < (2 + v,)/4. In this region,
system (B.37) is equivalent to

14 4co(02 4 yo(0s — 1) —2(0, — 1)*) > 0,
D [46: + ag(4(0; + 706, — 1) = 20, — 1)*))] > 0.

1+
1—po

By introducing the new variable y = 4¢y(0, + yo(6s — 1) — 2(6, — 1)?) and re-

peating the same argument as above, we get the second region of solutions,

- 2+ v0) 1—po+4c0;

64 1+4C003>0, y>-—

4 ’ 1+4C()0';
that is,
2+ v0)
04< 2 0 5 03>_ZC(],
1 1—p0+4C003 5
0> ———————— — YO0, + 260, +2 —46,.
2 > dcs 1+ 4c0, Yobs + 20, + 2+ vy 4 O.E.D.
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From Lemma B.10, the condition Ey[|g;(Y:; 60)||*] < oo is satisfied, when-
ever the risk premia parameters 69 and 6 for stochastic volatility are above
some thresholds. In particular, the lower bound for 69 depends on 6} and 6.
Imposing the no-arbitrage restriction 65 = vy, + 1/2, the inequality constraints
become

11— py+4c6’ 1
- Po 0 3+ﬂ+3(_,yo)++_

0> ¢y B> — - PeTTO%
3T T T T 1 A 2 4

4

These constraints are satisfied for the parameter values used in Section 3.4.3.

B.8. ARG Risk-Neutral Dynamics

In this section, we derive the dynamics of the ARG stochastic volatility
model under the risk-neutral distribution Q defined by the s.d.f. M, ,.1(0y) =

e "t exp(—0) — 0307 | — 0307 — 6037,.1). In Section B.7.1, we derived the his-

torical conditional moment generating function of X,,; = (7,1, U't2+1 ):

(B.38)  Eylexp(—uf s — val,,)|x,]

1 1
= exp[—a()(you +v— Euz)af - b0<y0u +v— §u2>].

Let us compute the risk-neutral conditional moment generating function of
(Fi1, 07,1). We have

EQlexp(—uFiy — voy,,)|x]
=Ey[M, +1(6p) eXp(_u;tH - vo-t2+1)|xl]/E0[Mt,t+1(00)|xt]

= e 87 Ey[exp(—(u+ 60)Fi1 — (v + 6D)02,)1x/]
= exp{—[ao (yO(u +69) + (v+6) — %(u + 92)2> + 92:| o;
- bo(Yo(u +0) + (v+63) — %(u + 92)2> - 0?}
by using Ey[M, ,1(6y)|x,] = e "+ and (B.38). From equations (3.9), we have

1
Yo(u + 69) + (v+ 69) — 5(u + 6%)*

(65)°
2

1
:u(y0—02)+v—§u2+923’0+93—

L + ! 24 A
=—=u+v—zu
2 2 »



38 P. GAGLIARDINI, C. GOURIEROUX, AND E. RENAULT
where A = 69+ y2/2 —1/8 and

0)=—by(1)), 65=—ay(A)).
Thus, we get

(B.39)  EZlexp(—uf,i — va?,)|x,]

1 1 1 1
= exp|:—a(*; (—Eu +v-— Euz)af - b;(—iu +v— Euz)],

where
u
ay () = ay(u+ AD) — ag(Ay) = 11’63”,
bi(u) = by(u + A) — bo(AY) = &;log(1 + cju),
with
p* = pO = pO
O A+ A)D? [+ a8+ vE/2—1/8)1
0y = 0o,
" Co Co
&)

T 1+ A 148 +y2/2—1/8)

By comparing (B.38) and (B.39), we deduce that, under the risk neutral dis-
tribution, the returns follow a stochastic volatility model with risk premium
parameter y; = —1 and ARG stochastic volatility with parameters pj;, &;, and
-

B.9. Proof of Lemma A.4
We have to show that
PoQ[O'z2+1 +o ko, 2 210y, =5, 07 = 03
is increasing w.r.t. s, for any z.
This condition is implied by
(B'40) P(?[O-zz-o—l +oet Ut2+h—1 z Z|Ut2+h =5, 0_12 = 0-(?]
is increasing w.r.t. s, for any z.
Since the ARG process is time-reversible, condition (B.40) is equivalent to
(B.41) PUQ[O'zZH +ot 0-t2+h—1 z Z|0-t2 =9, Ut2+h = 0_02]

is increasing w.r.t. s, for any z.
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To show (B.41), we use the stochastic representation of Markov process (o7?),
(B.42) 0'[2+1 = g((fzza Urs1),

where the innovation u,,, is independent of o. By /-fold compounding of func-
tion g w.r.t. the first argument, we have oﬁl =gi(o? Uup, .., Uyg), say, and
O't2+1 +eee 0'12+h_1 = G(O',z, Uity oy Urpot), Where G(U}z, Uity o vos Upp1) =
glor, up)+ -+ gna(o?, Ui, .., U1 Condition (B.41) becomes

2 2
PELG(S, Upsry ooy Upir) > 2|02, = 0F]

is increasing w.r.t. s, for any z.

This condition is satisfied if function G is increasing w.r.t. the first argument,
that is, if the function g in the stochastic representation (B.42) is increas-
ing w.r.t. the first argument. The latter condition is equivalent to o7, being
stochastically increasing in o under Q.

Finally, let us show that o7, | is stochastically increasing in 7 under Q for the
ARG process. This follows from the gamma-Poisson mixture representation of
the ARG process,

02/l ~¥(8E+ L)y Lenlal ~P(piat/ch),

where y and P denote gamma and Poisson distributions, respectively. Then

o7, is stochastically increasing in ¢, and {4 is stochastically increasing in

o?. The conclusion follows.

B.10. Calibration of the Parametric Stochastic Volatility Model

In this section, we describe the computation by Fourier transform meth-
ods of the option prices in the parametric stochastic volatility model of Sec-
tion 2.6.1. These Fourier transform methods are used for the cross-sectional
calibration of the model parameters. The risk-neutral distribution Q is given
in equations (2.15) and (2.16). The option price is such that

c:(h, k) = B(t,t + h)EC[(exp R, — k)| 07]
= E9[(exp R, — k)07,

where Rt, n=TF1+ -+ Fyyp is the cumulated excess return of the underlying
asset between ¢ and ¢ + h, and k = B(t, t + h)k is the discounted moneyness of
the option. Let us introduce the variable s :=log(k) and define the function

$(s) = e E°[(expR, ), — e)lo7], seR,
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for a given a > 0 (for expository purposes we omit the dependence of function
¢ on time-to-maturity /2 and current volatility value o?). Following Carr and
Madan (1999), the Fourier transform of ¢ is (see below)

A _ o —ius o (P(iu—a—l)
(B.43) ‘W)_fooe ¢>(S)dS—a2+a_uz_iu(2a+1)’

uelR,

where
®(z) = E9lexp(—2zR, ;) |0?].
For the ARG model, function @ is given by (see below)
(B.44) D(z) =exp[— A, 0'[2 — By],
where A, = A,(z) and B, = B, (z) are defined recursively by

Ahzaz(w—i_Ahfl)a AIZQS(UJ),

By =By_1 +bj(w+ A1), By=bj(w),
w=-z(142)/2,ai(u) = %, and b} (u) = 6 log(1+cju). By inverse Fourier
0
transform, we get the option price

oo

/ e (u)du,

e—as

2

Ct(h9 k) =
where s = log(B(¢, t + h)k) in the RHS. Since function ¢ (s) is real-valued, we

have $(—u) = qAﬁ(u). It follows that

e*IXS

(B45)  c,(h, k)=

Re/ e d(u)du.
™ 0

To compute the integral (B.45), we introduce a finite upper integration
boundary A > 0 and we discretize the resulting integral over [0, A]. More
precisely, let A > 0 be such that |¢(u)| is small for u > A. Define the grid
u,=(A/N)(k—1)fork=1,...,N,where N € Nis the number of grid points.
Then we have

e~

c(h, k)~

A
Re/ e d(u)du
0

v

Ae™* N o
- Re (1/N) Z el(AS/N)(k71)¢k7

k=1

~

where qAbk = q?)(uk).
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To summarize, the algorithm to compute c;(#, k) is as follows:
Step 1. Compute the coefficients

. 1 exp[— A, 02 — B
b= — LRl =Bl N
2 Wy

where
Ay =ay(we + Ap1), A= ag(wy),
By, =B + bj(wi + Ap—1), By =by(wy),

wi = —3(a? + o — up — iug(2a+ 1)), and u, = (A/N)(k —1).
Step 2. Compute the inverse Fourier transform of the coefficients

—as

c(h, k)= Ae

™

N
Re (1/N) ) " eWmeng,

k=1

PROOF OF EQUATION (B.43): We have

d(u) = foo e = EO(eRun — ¢*)*] ds

o0

r oo
=E? / e = (gRun _ g8y T ds]
LJ —oo
[ . Rt,h . Rt,/z .
— EtQ eR’*h / e—(zu—a)s dS _ / e—(lu—a—l)s dS
L -0 —00
= EtQ _;e_(i”_a_l)ét,h + ;e_(iu—a—l)ﬁt‘h
iu—« iu—a—1
1

— EQ e—(iu—a—l)Rnh ,
art+a—ur—iuRa+1) a ]

where E?[-] = E9[-|o?]. Q.E.D.
PROOF OF EQUATION (B.44): Under the risk-neutral distribution Q, we
have 7, = —107 + 0,8, where &, ~ IIN(0, 1) and (o7) follows an ARG pro-

cess independent of (&,) with parameters pj), 65, and c;. Thus,

Z 5

D(z) = E,Q |:CXP<20'M+;1 —z(op18p + -+ 0'z+h€t+h)):|

1
=E¢ |:exp<§(z + zz)a'f’wh)],
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where o7,,, :=07,, + - -- + 0;,,. From standard results for affine processes in

discrete time (e.g., Darolles, Gouriéroux, and Jasiak (2006)), equation (B.44)

follows. O.E.D.
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